Combining Pattern Languages and Reusable Architectural Deision Models into
a Comprehensive and Comprehensible Design Method

Olaf Zimmermann Uwe Zdun Thomas Gschwind Frank Leymann
IBM Research GmbH Information Systems Institute IBM Resk@@mbH Institute of Architecture
Zurich Research Laboratory Vienna University of TechnglogZurich Research Laboratory of Application Systems
Ruschlikon, Switzerland Vienna, Austria Ruschlikon,i&erland University of Stuttgart, Germany
olz@zurich.ibm.com zdun@infosys.tuwien.ac.at thg@ztuitom.com leymann@iaas.uni-stuttgart.de
Abstract mal or “good enough” systems is a challenge. Software en-

gineering research has come up with many supporting con-
When constructing software systems, software architectscepts, for instanceattern language$s, 9, 13] and, more

must identify and evaluate many competing design optionsrecently,architectural decision mode[d4, 17, 21].
and document the rationale behind any selections made.
Two Supporting Concepts are pattern |anguages and ar- Unfortunately, neither pattern Ianguages nor architec-
chitectural decision models. Unfortunately, both consept tural decision models solve all design and documentation
only provide partial support: Extensive upfronteducatipn ~ Problems in practical projects. By definition, patterns-doc
needed for practitioners to be in command of the full pattern Ument reusable design knowledge, and hence they do not
literature relevant in their field; retrospective architecal serve as a complete documentation of an individual system.
decision modeling is viewed as a painful extra respongbili Most practitioners only know a few patterns well, such as
without immediate gains. In this paper, we combine pattern the Gang of Four design patterns [9], although the pattern
languages and reusable architectural decision models into community has documented patterns for many other do-
a design method that is both comprehensive and compremains, such as enterprise applications and Service-@dent
hensible. Our design method identifies the required deci- Architecture (SOA). Hence, extensive upfront education is
sions in requirements models systematically, gives domain required to use a pattern language well.
specific pattern selection advice, and provides tracegbili
from platform-independent patterns to platform-speciéie d
cisions. We validate our approach by applying it to enter-
prise applications as an exemplary application genre and a
SOA case study from the finance industry.

Retrospective architectural decision modeling is often
seen as painful additional responsibility without many
gains. Itis still a research issue how to capture architattu
decisions without introducing efforts that outweigh thabe
efits and make the gathered knowledge reusable [21]. Tech-
nigues, text templates and tool support have been proposed,

) but failed to become broadly adopted in practice so far.
1 Introduction y adop p

This paper combines pattern languages and architectural

When constructing software-intense systems such as endecision models to their mutual benefit: Section 2 intro-
terprise applications, software architects encounterarum duces the two concepts, and Section 3 presents a case study.
ous design decision points. Both the “big picture” and many In Section 4, an analysis of usage scenarios and character-
technical details influence their decision making. Numer- istics of patterns and decisions leads us to a proposal how
ous competing requirements must be balanced, tradeoffs octo combine them into a comprehensive and comprehensi-
cur. The high number of competing design options and tacitble design method. This method supports the systematic
dependencies between them are two additional sources ofdentification of the required architectural decisionsén r
complexity. Furthermore, a continuous stream of concep-quirements models, allows giving domain-specific pattern
tual, technology, and product innovations must be evalu- selection advice, and provides traceability from platform
ated. A lot of time is spent on basic orientation tasks repeat independent patterns to platform-specific decisions.i@ect
edly, decisions must be made under high time pressure, and validates the method in the case study; the remaining sec-
the rationale is often lost. Consequently, constructintirop tions discuss our approach, related work, and conclusions.

2 Review of Existing Work defined architectural decisions as “conscious design deci-

sions concerning a software system as a whole, or one or

Patterns and Pattern Languages. The pattern move- ~ More of its core component_s._ These dec_isions determine
ment is a software engineering success story. In 1995, thdhe non-functlonal_ characteristics and quality factorthef

Gang of Four published their seminal Design Patterns bookSyStem”. The main elements of our extended meta-model
[9]. Many different types of patterns have been published &'€: Architectural Decision (AD)AD alternative AD out-
since then, for example Patterns of Software Architecture ©©M&AD topic andAD level Architectural Decision (AD)

(POSA) [5], domain analysis patterns, and even patterns for'S the core entity describing a single, concrete desigreissu
non-IT topics. Examples for recent contributions are Pa

t. with the following attributes: Decisiomameand unique
terns of Enterprise Application Architecture (PoEAA) [8], dentifier, problem statemenscope linking the AD to de-

messaging [13], remoting [22], and SOA [12, 24]. sign model element ty_pedecisipr) driverslistipg types of
NFRs and quality attributes driving the desigaferences
to literature such as overviews, tutorials, and other d@tis
support materialgdependency relationshipfecycle infor-
mationsuch as decision owner and modification log.

AD alternatives enumerate design options for ADs along
with their pros cons andknown uses One or more AD
outcome instances record the selection of an AD alternative

A patternis a proversolutionto aproblemin a context
resolving a set oforces In more detail, the context refers
to a recurring set of situations in which the pattern applies
The problem refers to a set of goals and constraints that
typically occur in this context and influence the pattern’s
solution, called the forces of the pattern. To systemadyical
explain how to apply a number of patterns in combination,

many pattern authors document patterns as part of largefo! @ particular ADI angl th@jstificationf(ﬁ_r the ﬂgcision.b
pattern languagesontaining rich patterrelationshipsand AP topics group related ADs; AD topic hierarchies can be

extensiveexamplesndknown usesections formed. We separated platform-independent from platform-
Patterns in a pattern language are applied in an incremen:‘sli)_eCIfIC conce;nslar;d |2tro|duced ;our Alj Ievelsgsaej:-
tal refinement process. The decision making in this processil'l\/:Datconcep u%a echno O?i/han i’g? OrIaSZG Vel.
is based on the pattern’s forces. In the architectural realm OpICs reside on one ot these evels [26].

these forces include Nonfunctional Requirements (NFRs) ArCh'tfcutJ_r?l debci|3|on Icf:aptu{_lng (ajmd mtodehngt_en;an
and software quality attributes [2]. Usually, not all fosce some potential problems. [positioned as retrospectize do

can be resolved optimally; a compromise has to be found umentation tasks, they do not have immediate benefits for

The pattern describes how the forces are balanced in théhe Or;]g.m‘;l] ptrf?.e‘:t t?am. ,ék\)lmzt;\Jor problemh_(if stuchl?{n ap-
proposed solution, and why they have been balanced in theProachn is thatitis not possibie 1o reuse architectural Row

proposed way. In addition, the advantages and disadvan-edge gained on previous projects or earlier project stages.

tages of such a solution are described@ssequences As a consequence, decisions are often cgp_tured only in a
Applying patterns during software design requires a rudlmentaryfas_hlon, or not at all. Many decisions are made
broad view on how to select from a large body of patterns ad hoc: pften biased and pased on personal preferences and
possibly eligible for a particular domain. Patterns do not L.quf,a“f'ed recommgndaﬂons (‘qut fgel and be.st. prac-

. . - Lo ; tices”). In such situations, sound architectural choicib w
focus on a single, domain-specific solution in a particular respect 1o proiect aoals and NERs can hardly be made. Ac-
business context, but on generic design knowledge. For in- P projectg y ’

stance, thenvokER pattern [22] describes how a middie- ceptance and quality problems result, as well as discoanect

) . . . __between architecture and code.
ware invokes remote objects in general. The pattern applies

to all kinds of middleware, but does not explain the specifics
of INVOKERS in a particular application context such as a 3 Case Study: Application Integration
specific SOA middleware implementation.

Architectural Decision Capturing and Modeling. Ar- Enterprise application development is an application
chitectural decision capturinfil4, 17, 21] is an approachto genre that is both common and complex. Therefore, we use
software documentation that focuses on the expert knowl-a case study from this genre to illustrate the requirements
edge motivating certain designs rather than the resuléiag d for and characteristics of our design method.
signs themselves. Decisions capture selected desigmeptio The case study [27] reports about the service-oriented
with their strengths and weaknesses, as well as justifitsitio integration of enterprise application components in the fi-
for the selections. If a model-driven approach to architec- nance industry, connecting 237 independent retail banks
tural decision capturing is followed, we refer to the invedv ~ with a shared core banking backend provider. The value
models a#rchitectural Decision Models (ADMs) proposition for introducing SOA concepts was to resolve

In our earlier work, we refactored the decision template technology mismatches between the teller applicationtfron
used in [21] and extended it into a meta model supportingends running in the banks (e.g., Java and scripting lan-
decision maker collaboration and knowledge reuse [26]. We guages, Microsoft .NET on Windows) and the shared core

banking backend (COBOL, IBM z/OS mainframe systems tern adoption to the project-specific context and ven-
hosting a CICS transaction monitor and a DB2 database). dor asset selections (commercial products, open source
This heterogeneity motivated project goals such as the need frameworks). The design of error handling procedures
to improve the developer experience on a number of fron- (5.9) was an example of such detailed design work.
tend platforms while keeping the integration platform sim-
ple and maintainable. These goals justified the introdnctio ~ Many concrete NFRs in areas of architectural concern
of a single middleware following thBROKER pattern [5]. such as performance, scalability and interoperabilityrete

To design the software architecture in this situation, the design. Furthermore, legacy constraints had to be taken
many decisions were required. For instance, pages 111 tdnto consideration, e.g., existing network capacity antkba
116 in [5] suggest six steps to implement #ROKER pat- end interfaces already implementing certain patterns for
tern: “(1) Define an object model. (2) Decide which type of user and session management. These issues are not cov-
component interoperability the system should offer, binar €red by theBROKER pattern, but elsewhere, e.g., by Alur et
or Interface Description Language (IDL). (3) Specify the al. [1]. More recent SOA patterns literature such as Keen
APIs the broker component provides for collaborating with €t al. [15] presents solutions to some of these issues. How-
clients and servers. (4) Use proxy objects to hide implemen-ever, even such SOA-specific guidance does not solve the
tation details from clients and servers. (5) Design theérok general problem of having to structure the domain-specific
component (6) Develop IDL compilers.” Step (5) has nine architectural design work further than pattern languages d
sub steps: “(5.1) On-the-wire protocol, (5.2) Local broker
(5.3) Direct communication variant, (5.4) (Un)marshallin - 4 Pattern- and Decision-Centric Design
(5.5) Message buffers, (5.6) Directory service, (5.7) Name
service, (5.8) Dynamic method invocation, (5.9) The case in
which something fails [. ..]". Several of these steps afe tri
ial if a commercial broker product or a standardized, openly
specified technology implementing tiB®ROKER pattern is
chosen; others lead to substantial design efforts:

In the case study, both the business requirements and
the existing system landscape steered the decision making;
there were many dependencies between the related ADs.
Many architectural and design patterns existed in a large
number of variants. Even with information about pattern
selection forces and quality attribute scoring [2] it reneal
hard to decide for a particular variant of a pattern. Some
ADs were not related to pattern selection at all, e.g., pcodu
selections and team organization issues. These observatio
e Decision points (5.2) to (5.8) were addressed by (also made in other enterprise application projects [2}), 25

the middleware technology and products. A re- lead to several requirements for a design method, which we

maining technical decision was XML messaging NOw use to analyze where and how pattern languages and
with SOAP/HTTP vs. REpresentational State Transfer ADMs fit in, and how they relate to each other.

(REST) [7], both proposing certain message exchange

formats, protocol primitives, and addressing schemes. 4.1 Analysis of Pattern Languages and ADMs

e Regarding interoperability (2) and the on-the-wire pro-
tocol (5.1), a conceptual decision for an integration
technology such as Web services [28] was required.

e As Web services technology had been chosen, the 15416 1 summarizes our analysis. Pattern languages and
IDL compiler design issue (6) was resolved trivially, Apws have different purposes, but there is a strong rela-
as a standardized Web Services Description Langu_age[ionship: By definition, patterns are not the documentation
(WSDL) and a WSDL-tp-Java generator were avail- ot o individual system, but one source of (reusable) ar-
able. ‘Many other solution elements also were man- - tral knowledge to be considered and brought to bear
dated by the Web services technology, €.g., the Javaan architecting a system. On the other hand, ADMs of-
XML API for RPC (JAX-RPC) defined server-side o 5 \yay of documenting and rationalizing the decisions
FACTORIES[9] and'N_VOK_ERS[ZZ] as well ascLIENT made and alternatives considered. Applying a patiern
PROXIES[22] for design issues (3) and (4). making a decision; the consequences of applying a pattern

o However, as a consequence of deciding for Web ser-€ngender more decisions. Many of the issues captured in
vices, other patterns became eligible. For example, for ADMs aredomain-specific\We identified three categories
the object model definition (LpATA TRANSFER OB- ofs_uch domaln-spem_flc deC|S|on drivers (forcgs):/(mpl_l-
JECT[1] and flat strings had to be considered; remote C&tion genre and business functjeng., enterprise applica-
objects were not an option. tion, core bank_mg, order management. '(@):hn_ma_] e.g.,

a specific architectural concern and set of principles such

e Detailed design work was required before any se- as integration and SOA. (®)rganizationa) e.g., company-
lected pattern could be implemented, including a pat- wide guidelines, project team set up, and available skills.

Table 1. Characteristics of Pattern Languages and Architec

Pattern Languages ADMSs

Capture generic architecture and designCapture and record system-specific d
elements as reusable solutions to com-cisions justified by project-specific deci
monly occurring problems sion drivers

tural Decision Models (ADMSs)

Assessment
le-Complementary, strong relationship; palt-
tern application must also be captured as
a decision on a project

Characteristic/Requirement
Intent and main use case

Standard description format

Several templates, e.g., Portland style

Several meta models, UML profiles

Present in both approaches, overlap

Level of detalil

Comprehensive, detailed

Terse, telegram style, details elsewherg

Patterns more detailed by definition

Top-down decomposition of problent
into atomic units of design work

Objective of pattern languages and co|
text sections; approach depends on 4
thor, often informal

h-Modeled explicitly in our proposal [26]:
u-AD topic groups, AD levels; AD consistg
of AD alternatives

Pattern languages often informal, ADM|
can add project-specific concretizatig
and modeling rigor

Bottom-up composition of atomid
units of design work into solution

Not a design goal

Not a design goal of retrospective Al
capturing; supported in our proposal

Additional work for project team, inte-|
gration effort required

Relationships between atomic unifs Informally via consequences, related pg

of design work

terns or pattern language diagrams (d
sign spaces emerging, see [23])

t-Design goal, addressed by explicit dg
e-pendency management via associatiq
in UML meta model (directed graph)

»- ADMs more precise, can be populate
ngrom pattern texts

Requirements management link

Context, forces sections

Decision driver attribute in AD, decisior]
identification step

Explicit in our proposal, informal in pat-|
terns

Links to software engineering an
project management methods

il Informal only, through other related paf
terns, or out or scope

role attributes

- Modeled in our proposal: scope, phask,Integration effort required

Separate platform-independent fro
platform-specific concerns in models
but preserve links between concern

i Most patterns are platform-independen
, platform-specific aspects come in info
5 mally via known uses and examples

t; Dedicated vendor asset level exists in 0|
- ADM proposal, decision dependencig
can model link between levels

brAD levels provide explicit support, pat
s terns can be assigned to these levels

Ease of architectural documentatiq
(authoring)

5
n As patterns are publications, signif
cant effort for pattern author (reviewg

- Depends on project setup; no formal a
, thoring and review process (yet)

-ADMs less rigorous, more project
specific; patterns more sustainable, lol

W

=]

Q.

lasting (by definition)
- ADMs provide orientation, patterns in
erdepth coverage of single design concel

writer's workshops); easy to reference
Depends on pattern author; time inten
due to in-depth education character

seSearch capabilities, multiple ordering d
mensions to support orientation charact

Ease of consumption (usability)

Issues from each of these three categories influence the debe made for the requirements management link and the soft-
cision making. Patterns typically capture timeless, gener ware engineering/project management link. Patterns use
design aspects in their forces and consequences, but do nabformal forces; the decision drivers, scope, and phase at-
cover all domain-specific aspects that might arise for a spe-tributes of ADs make the related knowledge explicit. An
cific pattern instance adopted in a project. important consequence is that ADMs can be used as input

Both approaches provide standardized description for-for model transformations and code generation.
mats. Several concepts can be found in both approaches, so Both patterns and ADMs cause documentation and con-
that it is straightforward to map many pattern templates to sumption efforts. ADMs authored during the architectural
ADMSs: Pattern intent and context map to the AD problem documentation work on concrete projects can take domain-
statement; pattern forces and decision drivers in ADMs dis- specific decision drivers (forces) into account. Patteras a
cuss NFR types and related tradeoffs; pattern consequencednly in seldom cases documented by the users of patterns,
and related pattern information lead to additional ADs to be but by pattern authors who are experts in the domain of the
made (AD dependency relationships). pattern. Due to their level and topic structure and expigit

A pattern represents established design knowledge harlationships, ADMs are well searchable (esp. if their cxati
vested from successful software architectures from whichand consumptions is supported by tools); pattern languages
the pattern authors have mined the pattern; an ADM is thecover single design concerns in more depth.
decision log of a specific project. Patterns use an informal
description format, covering a broad variety of pattern-var 4.2 ArchPad: Combining Patterns and Decisions
ants. The pattern descriptions usually are provided inexce
sive detall, using pattern templates. An ADM from an indi- Based on this analysis, we propose to leveffagasable
vidual project by definition is concrete and domain-specific ADMs (RADMs)o steer the pattern selection and other ar-
ADs often are captured in a telegram style; short bullet list chitectural decision making activities. We call the result
text templates, tables, and forms are commonly used. ing architectural pattern- and decision-based designadeth

With regard to composition and decomposition capabil- ArchPad In ArchPad, the following types of patterns ap-
ities, pattern languages explain the piecemeal compasitio pear as AD alternatives: Analysis and architectural paster
of patterns. AD topic group hierarchiesin ADMs serve sim- are among the AD alternatives on the executive and con-
ilar purposes. Both patterns and ADMs with explicit depen- ceptual level, design patterns reside on the technology,lev
dency modeling support virtually any kind of relationship. and the vendor asset level can be populated with implemen-
In comparison, the relationships between patterns arerrath tation and test patterns, as well as known uses of patterns
informal, whereas in our extended meta-model for ADMs, from higher levels. We demonstrated the motivation for
AD relationships are formalized. A similar assessment canand feasibility of the creation of RADMs in our previous

Stage 1: “Forming” Stage 2: “Storming” Stage 3: “Norming” Stage 4: “Performing”

RADM-E] RADM-C [RAOMT] RADM-A
—> { —> ol e — =

1] Hr) T [
1.1: Executive Decisions 2.1: Conceptual Decisions 3.1: Technology Decisions 4.1: Vendor Asset Decisions

(Decided by External Stakeholders or (Lead Architects, (Subsystem Architects, (Developers and Platform
To Dos for Overall Team Leads) Subsystem Architects) Development Leads) Specialists)

E

Start - E []
:> = i - ArchPad

o0 O
1.0: Requirements Analysis
incl. Quality Attributes (a.k.a. Decision Drivers, Forc es)

1.2: Business Patterns 2.2: Architectural Patterns 3.2: Design Patterns 4.2: Implementation and
(e.g., Analysis Patterns, (e.g., POSA, POEAA, SOA) (e.g., Gang of Four, Test Patterns,
Industry Reference Models) Core J2EE, Known Uses of Patterns
remoting, messaging) from Previous Stages

Figure 1. Refinement stages and decision/pattern correspon dences in ArchPad

work [26]. A RADM that is based on patterns does not selection is such an executive decision. Business-level pa
have to copy the pattern text and hence is easier to creatéerns and industry reference models can be utilized as back-
than a self-containing one. AD outcomes can be capturedground information in this stage.
in much less detail, because they only record the adoptionof Stage 2:In Stage 2, conceptual decisions are made; ar-
the patterns and can reference the patterns for furtheif deta chitectural patterns appear as AD alternatives. For imstan
[10]. BROKER is an architectural pattern; deciding for or against
The relationships between RADMs and patterns in Arch- it is a related conceptual decision.
Pad are iIIustratgd in Figure 1. The upper row represent§ the Stage 3: In Stage 3, technological decisions are made
RADM perspective, the lower row the pattern perspective. 4nd detailed design patterns are selected. For instarese, th
The columns in Figure 1 represent foafinement stages six implementation steps in trEROKER pattern from Sec-
tion 3 fall into this stage.
Stage 4:In Stage 4, implementation and deployment re-
e Stage 2 Conceptual decisions including selection of lated decisions are made. Discrepancies between abstract
architectural patterns and key technology choices. concepts and implementation reality can be discussed and
documented here — e.g., vendor products often implement
* Stage 3 Detailed technology decisions, design pat- 3 conceptual pattern in a specific way, have limitations, or
terns as architecture alternatives. offer proprietary extensions. Asset-level applicatiorvee
workflow engine, and other middleware selection decisions
fall into this stage, e.g., to use a particular SOAP engime fo
XML messaging in a Web services-base”dXER.

The stages do not suggest a linear, non-invertible water- RADMs as guides through the stagesWithout reuse,
fall process, but merely information flows. The horizon- the limitations of patterns and decision modeling cannot
tal arrows in Figure 1 illustrate refinement relationships b~ be overcome. Hence, RADMs in ArchPad are not created
tween stages; the vertical ones indicate the correspordenc from scratch on every new project, but made available as
between architecture alternatives and patterns. Badktrac @ reusable asset, much like a pattern catalog or language.
ing and iterating over stage boundaries is possible. Leveraging experience from projects in the same domain,

Stage 1:This stage deals with requirements analysis and the RADM can be populated with patterns that already have
executive decisions as entry points into the architectare d proven to be applicable; decision paths for certain project
sign work. The motivation for this stage is that some non- types can be predefined. ArchPad RADMs are domain-
technical analysis and planning has to happen before anyspecific companions to pattern languages and catalogs.
technical patterns can be applied. Executive decisions re- Like pattern texts, RADMs are “living documents”; they
side here. The runtime platform and programming languagehave to be updated when new technologies emerge or pat-

e Stage 1 Executive decisions, requirements analysis.

e Stage 4 Vendor asset level decisions and selection of
implementation, deployment, and test patterns.

terns become available. The vendor asset levels in RADMSESB product vs. custom integration layers) must be picked.
typically face the largest amount of change over time. That Related decisions deal with the message exchange style and
is, the decisions made in Stages 1 to 3 are usually rather staformat, with options like WS-* and SOAP vs. RESTful
ble in a certain domain, but Stage 4 will have to be adaptedand Plain Old XML (POX) or Java Script Object Notation

as technology matures. (JSON) vs. custom protocols and notations. Other follow-
on decisions are concerned with transport protocol binding
4.3 Pattern-based RADM for SOA selection and service provider type definition and API.

Remoting patterns such 820TOCOL PLUGINS [22] to

This section presents how we applied the concepts fromSUPPOrt multiple, runtime-exchangeable protocols vst jus
Section 4.2 to the genre of enterprise applications anddeve On€ hard-coded protocol are now eligible. Other pattern se-
oped a particulaRADM for SOAThe RADM for SOA fol- lection decisions erend on these decisions. For instance,
lows the four stages introduced in Section 4.2. At present, the use of an architecture based onitihéOCATION INTER-
it consists of 300 decisions covering various aspects suchCEPTORaNdINVOCATION CONTEXT patterns (from [22])
as Web services integration, transaction and session mant'a@s to be contrasted to a simpler, but less flexible architec-
agement, security and user management, Enterprise Servici!'e. Finally, these choices are also related to the design
Bus (ESB) and presentation layer design; it is already in ©F integration of thewARSHALLER(S). All these remoting
use in practitioner communities. Table 2 shows a small ex- Patterns from [22] are eligible as technology options fer th
cerpt. The detailed information organized according to the BROKERadoption. In ArchPad, details of these architecture
meta model outlined in Section 2 is not shown: however, alternatives do not have to be documented in the RADM, a
we discuss selected decision drivers, relationships, and A reference to the pattern source is sufficient.
alternatives informally throughout this section. Services can be composed using custom code or us-

Stage 1: On this stage, executive decisions set the iNg & business process engine, e.g. followingnizeRo-
boundaries for the subsequent decisions. For instance, ifMICROFLOW pattern [12]. If this pattern is chosen, the
this particular RADM, we must decide for the technolo- PROCESSBASED INTEGRATION ARCHITECTURE pattern
gies (e.g., programming languages and runtime platforms)[12] is an important option for architectural layering. A
to be used in a project. Furthermore, we have to decideService provider component technology has to be selected;
for the main architectural concepts in terms of principles, SCA, J2EE, CORBA, and .NET are some of the alterna-
paradigms, pattern languages, and processes used. As efives. This decision implies a follow-on decision, which
plained earlier, these executive decisions govern whith pa business process language to use. Decision drivers include
terns are applicable in subsequent stages and which decithe maturity of languages and tools. Other patterns from
sions have to be made in these stages. For instance, if 412] also have to be considered as subsequent technology
process-centric integration approach is selected, the SOAdecisions, e.g.: shouldRULE-BASED DISPATCHERbe in-
patterns from [12] are applicable. troduced or not; how to organize the deployment and struc-

Stages 2 and 3Following these fundamental executive ture OfMACROFLOW ENGINESandMICROFLOW ENGINES
decisions, several conceptual decisions and then teogyiolo Which CONFIGURABLE ADAPTERS and CONFIGURABLE
decisions have to be made. Often conceptual decisions aré PAPTER REPOSITORIEZ0 use and how, etc.
tightly coupled with related technology decisions. Similar technology choices appear for the presentation

Within the boundaries of the executive decisions, many layer, for instance plain HTML vs. portal technology vs.
architectural patterns appear as alternatives of conakptu Web 2.0 vs. or Rich Internet Application (RIA) vs. Eclipse
ADs. For instance, different choices for the integratigtest ~ Rich Client Platform (RCP). A follow-on technology deci-
exist, such as on which layer to integrate and whether thesion that must be made is the presentation layer organiza-
BROKER pattern [5] or direct client/server connectivity [22] tion. Here, patterns such a®PLICATION CONTROLLER
should be used. Message exchange patterns, such as syfl], PAGE/FRONT CONTROLLER[1], Or HUMAN TASK LIST
chronous request-respons@LL OBJECT, RESULT CALL- [18] are options. If a process-layer and a presentatiorr laye
BACK, SYNC WITH SERVER Of FIRE AND FORGEThave to are present, the interface between presentation and groces
be selected. The granularity of the in and out parameters oflayer also has to be designed.
service invocation messages has to be defined. Session and transaction management are important ar-

For a BROKER or a direct connection, the supported chitectural concerns. For conversational state, altmest
message exchange technology must be selected. For inare CLIENT SESSION STATE[8], SERVER SESSION STATE
stance, technologies such as Web services, plain MOM,[8], or no state. This leads to a technology decision for
RPC, CORBA, proprietary vendor protocols, or even cus- the proper representation of state using activation gfyate
tom developed protocols can be selected. If a conceptuabatterns. Resource management patterns sualeas-
BROKER is used, a broker technology (e.g., commercial ING, POOLING, LAZY ACQUISITION, and PASSIVATION

Table 2. Excerpt from RADM for SOA

Refinement Stage

Architectural Decision (AD)

ADAlternatives (subset)

Stage 1 (RADM-E);

Executive Decision
(EDs)

ED-1: Platform/Language/Tool Preferences

Technologies such as J2EE, .NET, LAMPP, Ruby on Rails

ED-2 to ED-5: Architectural Principles, Paradigm
Patterns, Processes

5, Selection of reference architecture, Tayering approadsighh method, relevant literatur
(many alternatives)

Stage 2 (RADM-C):

Conceptual
Decisions (CDs),
dealing with
selection of
architectural
patterns)

CD-1: Integration Style

Front end centric vs. integration centric vs. process @ens. database centric [13]

CD-2: Broker Pattern

BROKER [5] (RPC or messaging) vs. direct client/server conneiytivi

CD-3: Message Exchange Pattern

Synchronous request-respongejL OBJECT RESULT CALLBACK, SYNC WITH SERVER Or
FIRE AND FORGET[22]

CD-4: In and Out Message Parameter Granularit

Deeply structuredomAIN MODEL [8] elements vs. flat strings

CD-5: Service Composition Paradigm

Business process engine (followinpCRO-MICROFLOW [12] or no separation of flows) vs
custom codepPROCESSBASED INTEGRATION ARCHITECTURE[12] or not

CD-6: Presentation Layer Paradigm

Rich client vs. thin client vs. best of both worlds

CD-7: Conversational State

CLIENT SESSION STATE[8] VS. SERVER SESSION STATH8] vs. none

CD-8: Transaction Management

SYSTEM TRANSACTIONSVS. BUSINESS TRANSACTIONS[8]

Stage 3 (RADM-T):

Technology
Decisions (TDs),
dealing with
selection of design
patterns,
technologies

TD-1: Message Exchange Technology a.k.a. G
The-Wire Protocol [5]

nWeb services vs. plain Message-Oriented Middleware (MOM)plain Remote Procedur
Call (RPC) vs. CORBA vs. proprietary (e.g., CICS Transat@ateway) vs. custom protocol

TD-2: Broker Technology

Commercial ESB product vs. custom integration layer

TD-3: Remoting Patterns

INVOKER, CLIENT PROXY, MARSHALLER, INVOCATION INTERCEPTOR INVOCATION CON-
TEXT, use ofPROTOCOL PLUGIN [22] or not

TD-4: Message Exchange Style and Format

WS-*and SOAP vs. REST and POX/JSON vs. plain TCP/IP and oustangs vs. other

TD-5: Transport Protocol Binding

HTTP vs. messaging

b

h

5

TD-6: Service Provider Type and Application Prq
gramming Interface (API)

- Enterprise Java Bean (EJB) vs. plain Java object vs. otfevidar in other programming|
language; JAX-RPC vs. JAX-WS/JAX-B vs. proprietary

TD-7: Service Provider Component Contain
Technology

prService Component Architecture (SCA) vs. Java 2 EnterfiEgiéon (J2EE) vs. Spring vs]
Common Object Request Broker Architecture (CORBA) vs. .N&Tother

TD-8: Business Process Language

Business Process Execution Language (BPEL), other

TD-9: Process-based Integration Architecture D

©-RULE-BASED DISPATCHEROTr not; Deployment and Structure BRCROFLOW ENGINES and

—

sign MICROFLOW ENGINES CONFIGURABLE ADAPTERSandREPOSITORIES etc. (see [12])
TD-10: Presentation Layer Technology Plain HTML (thin client) vs. portal (thin client) vs. Web 2RJIA vs. Eclipse RCP
TD-11: Presentation Layer Organization APPLICATION CONTROLLERVS.PAGE/FRONT CONTROLLER[1] VS. HUMAN TASK LIST [18]
TD-12: Process Layer Interface Granularity Batch vs. conversational
TD-13: Presentation/Process Layer Coordination| Pull (presentation leading) vs. push (process leading)
TD-14: Presentation/Process Layer Protocol Synchronous RPC API vs. asynchronous messaging
TD-15: Activation Strategy Patterns STATIC INSTANCES PER-REQUEST INSTANCES Of CLIENT-DEPENDENT INSTANCES (all
from [22])
TD-16: Resource Management Patterns LEASING, POOLING, LAZY ACQUISITION, andPASSIVATION (all from [22])
TD-17: Session Management Client (e.g., full state in cookie) vs. presentation Tay€f { P session) vs. process layer (BP
correlation) vs. backend (database)
TD-18: Compensation Scheme BPEL vs. vendor-specific spheres vs. custom logic
Stage 4 VD-1: ESB Product E.g. IBM WebSphere ESB, Progress Sonic ESB, Mule
(RADM-A): Vendor [VD-2: SOAP Message Exchange Engine Apache Axis, Codehaus XFire, vendor engines such as IBM Wed® engine, WSIF and
Asset Decisions Apache SOAP
(VDs), dealing with| VD-3: Service Provider Container J2EE application server with(out) EJB support, SCA comtasuch as WebSphereProce
product selection Server
and configuration [VD-4: Service Provider Sourcing Make or buy; adapt or refactor existing asset
VD-5: Business Process Engine Vendor E.g. IBM WebSphere Process Server, Oracle BPEL Processdédgnapen source (Ac
tiveBPEL)
VD-6: Presentation Layer Application Server E.g. various serviet engines and portal servers, appicatiki engines
VD-7: Platform-Specific Transaction Attribute E.g. various SCA qualifiers and EJB attributes

B

w

[22] have to be considered to optimize resource usage. Théd Case Study Walkthrough
later two decisions are also related to the decision on loroke

technology because only in some technologies these pat-

To validate ArchPad and the RADM for SOA, we

ap-

terns are already supported. For transaction managemenb"ed them to the case study. We now walk through the four

eitherSYSTEM TRANSACTIONS[8] or compensatingusi-
NESS TRANSACTIONS[8] can be chosen to roll back and

undo operations when handling processing errors.

Stage 4:Finally, in Stage 4, asset selection and config-

specific decision drivers and justifications from [27].

steps from Section 4.2 and provide ADOutcome informa-
tion for selected ADs from Table 2 as well as case study

Stage 1:Already existing core banking functions merely

uration decisions are made. For instance, we have to de-ad to be integrated; an initial Stage 1.0 analysis of the bus

cide for the ESB product, SOAP message exchange engineness domain therefore was not required. Other executive
service provider container and sourcing, business processlecisions were to use J2EE on the integration layer and to
engine, and presentation layer application server. Some al support mulitple front end platforms. The back end was
ternatives for these decisions are also summarized in Tabledecided to be based on CICS, COBOL, and DB2. The jus-
2. Such vendor asset decisions typically refine conceptuattification for these decisions can be found in the business
and technology decisions made in the previous stages. model, operational procedures, and the project objectives

Stage 2:The selection of theROKER pattern was man- customers as needed). A session management capability al-
dated by the main challenges of the case, as explained irready existed in the backend, using it was a natural choice.
Section 3. The invocation semantics from the consumer’s This alternative simplifies the service consumer (front)end
perspective called for using request-reply as the messag@rogramming and minimizes the amount of data exposed on
exchange pattern. To decide for the in and out message pathe integration channel. For transaction management; exis
rameter granularity, the technology-specific issue ofterea ing operational procedures mandated to handle each back-
ing XML Schema (XSD) definitions for the operations de- end call as one atomic system transaction and implement
fined in the WSDL contracts of the core banking compo- business compensation in the front end. As a process layer
nents had to be taken into account. Alternatives included ahad not been introduced, related patterns and business pro-
deeply nested structure, representing the businessainN cess languages did not have to be selected.

MODEL accurately, and flat, serialized strings [27]. Deci- Stage 4: On the vendor asset level, several SOAP en-
sion drivers included service consumer API conveniencegines such as Apache Axis were evaluated. Using a stan-
(highly expressive, strongly typed API), acceptable mes- dardized APl was an important requirement ensuring porta-
sage verbosity, and proven interoperability between Javability and vendor independence, and the WebSphere Appli-
.NET, and scripting languages. In this case, the decidingcation Server was already in use as J2EE application server;
factor for selecting the ricbomMAIN MODEL was that API therefore deciding for its JAX-RPC APl and SOAP engine
convenience had a high priority (allowing to catch errors at was an obvious choice because of the desire to have ven-
development time) and the verbosity concerns could be re-dor support. This is an example for a technology decision
solved. If real-time responses or bandwidth constrainds ha tightly coupled with a vendor asset decision.

been a top concern, a more compact textual or binary mes- Evolution and reuse.In the case study, an executive de-
sage format would have been selected. cision was validated and confirmed with high level quality

Service composition was decided to be the responsibility attribute analysis; interoperability needs, API convanég
of the front end application developers; therefore, no pro- and maintainability were important NFR types. Next, the
cess layer was introduced. selected architectural patterns were refined into design pa

Stage 3: On Stage 3, many technology decisions were t€rns via conceptual and technology ADs. Many new deci-
made and design patterns selected. Aiming to reduce develSiOnS originated from that refinement step, others were im-
opment and maintenance costs, Web services were choseflied by assets strategically decided upon. However, deci-
as a cross-platform message exchange technology. Perfor$ions made at prewous.sta.ges had to be revisited regularly.
mance and interoperability results on an early prototye ha For €xample, when designing the second release of the so-
confirmed that the technology was good enough for the pur_Iut|on |_t was decided to switch to a generic integration tier
poses of the project. Due to decision drivers such as licens 10t using any deeply nested domain objects; however, dur-
ing cost, available development skills, as well as availabi nd the following interoperability tests, it turned out thais
ity of an in-house command interface on top of an adapter 4€sign would have led to unacceptable future test and main-
product (CICS Transaction Gateway), it was decided to de-tenance efforts. Therefore the decision was revisited and
velop a custom integration tier 8®OKER technology. The the original domam object-based design revived. This cor-
Stage 4 ESB product selection decision therefore was not€SPonds to stepping back from Stage 4 to Stage 3.
required. A custom integration tier introduces developmen ~ Over time, we could observe that it is possible to share
and maintenance, but no licensing costs; it gives maximumand reuse the decision knowledge gained on this project:

control over the implementation, but has a higher technical We harvested these and other ADs and produced sev-
risk than using a mature broker product. eral reusable assets ranging from an informal collection of

lessons learned to a text book section, which presents 26
architectural decisions commonly required during Web ser-
vices design [28].

Many design patterns and API concerns such as the de
cision to use JAX-RPC were mandated by the platform se-
lected in Stage 1, Java. Due to an enterprise-wide architec
tural principle, the service providers were realized agpla
Java objects and not as EJBs. Being supported by all servicdd Discussion and Related Work
consumers in the retail banks, HTTP was selected as the

transport protocol binding between the service consumers Applicability and maturity. ArchPad originates from
and the mid tier. Due to legacy system constraints, a propri-our practices employed on the case study project. Since
etary protocol was chosen as the backend interface. then we refined it on additional projects, and evolved it into
Session management was required due to the conversaa design method also applicable to other application genres
tional nature of the core banking functions to be integrated and architectural styles. Our method requires the existenc
(e.g., request all customer whose name starts with “Z”, re- of suitable patterns and decision logs harvested from akver
trieve 10 results per request, then get the account defails oprojects, which can be assembled into an RADM. This ef-

fort only pays off if many projects in a particular applicati Related work. Architectural decisions and patterns are
domain follow the same architectural style and the specific research topics that both have been covered extensively,
forces and decision outcomes vary. While the four-stage de-but so far they have not been combined into a design
sign method from Section 4.2 is applicable to many project method. Still, our work extends several recent contrimgio
types, the RADM for SOA from Section 4.3 is specific for from software architecture and design decision research
one particular style of enterprise application developmen [14, 17, 19, 21], as well as the rich architecture knowledge
and integration. captured by the patterns community [5, 8, 12, 22, 24].

Pattern languages and ADMs differ in their adoption

: . Design decision research in the 1990s focused on facil-
rate. Pattern usage is state-of-the-practice, whereas MOS, _+inar the decision making ste Quality Options and Cri-
projects still capture architectural decisions retrosipely 9 g step. y P

and informally (if at all). When conducted in isolation, AD teria (QOC) diagrams [19] raise a design question, which

. X . .. _points to the available solution options; decision créetie
capturing and modeling do not produce enough immediate : : : . _
. . . . "associated with the options. Option selection can lead to
value to be adopted in practice. As demonstrated in Section

4.3, patterns enhance the reusability of ADMs. The value];lek;g;(c)r? guzsé;ﬁqﬁ ;r:] [gl'?t]c')IoKrU(:tEftn ditsgrli.beé):?r?s it:flcs)r_
proposition of a design method in which RADMs take an y 9 gy

) - . . mation needed for a decision, the types of decisions to be
active, guiding role is more appealing than that of a retro- . . :
i . made, how decisions are being made, and their dependen-
spective and therefore unwelcome documentation task. . . -
, : cies. In [6], Falessi et al. present the Decision, Goal, and
Benefits and drawbacks.ArchPad is a rather compre- Ajarnatives framework to capture design decisions. They
hensive, but still comprehensible design method: From a

) - - - identify why a certain approach has been chosen and which
pattern perspective, RADMs provide domain-specific re-

X i _design decisions have to be updated upon changes. In our
finements, progressing from the conceptual and technologi-

work we build on these approaches, but take their relation-
cal Ieve_ls to the v_en_dor_ asset level (W_here product reCOM-ghin with patterns into account.
mendations and limitations can be discussed). Relation-
ships between patterns across language boundaries can be Braga and Masiero [4] propose a systematic approach to
captured in them. Tool support can be provided guiding the organize a pattern language. They identify hot spots in a
decision maker through the decision making process. Thepattern language, which can be identified from the informa-
transformation of a conceptual design to the implementa-tion present in the elements of the patterns. The approach
tion level is no longer left to developers, code generators,thus uses a technique for understanding a pattern language
or off-the-shelf products. Code generators and off-thedfsh similar to ours, but in contrast to our approach it aims at re-
products often hard code proprietary variations of de jure ducing the complexity of object-oriented frameworks rathe
or de facto standards. In contrast to so-called patterk+tool than general relationships between patterns and decisions
its, ArchPad offers an elaborate combination of patterds an

RADMSs, in which an incremental, creative process of de- ¢)
cision making and pattern adoption is required from the COMPOSE pattern languages using pattern sequences, and in-

project team — which can also be supported by tools. Us. troduce a formalism for representing a sequence as a sin-
ing references to patterns, RADMSs also enable a domain-9!€: totally ordered set of patterns. Henney extends this ap
specific entrance into the relevant pattern literature.dgen Proach using a grammar-oriented approach for deriving se-
our approach enables the learning of relevant design knowl-4U€nces [1_1]' This approachis extended by ourV_/ork in [23]
edge in a project for new team members. with graphical pattern language grammar overviews and a

A potential drawback of our design method is that the subsequent design space analysis. All these approaches do

RADMSs must be combined with the existing pattern litera- not offer_ explicit support for de.C'SKm ‘?"?‘ptu“”g and doc-
o mentation, or resolving domain-specific forces, but only
ture carefully. Content syndication and change managemen{J : .
) . : . ' 'support generic pattern selection.

require architectural experience and knowledge engingeri
skills. Furthermore, some documentation effort for actual Qur approach does not replace existing general-purpose
ADMs on projects is still required. software engineering processes, such as the Rational Uni-

RADMSs make it possible to rapidly identify decisions in fied Process (RUP) [16] or agile methods such as Extreme
requirements models and map the requirements to the force®rogramming (XP) [3]. Such processes take a wide range of
in the pattern texts. This can be done semi-automatically,the software design cycle into account and are independent
which also enables traceability from generic design knowl- of the design concerns in a specific application genre. In
edge in patterns to ADs to design models to generated codecontrast, ArchPad is a domain-specific design method “plug
The quality of the decision making can be expected to in” for such general-purpose processes. RADMSs in Arch-
improve, as forces discussions in pattern descriptions canPad focus on a particular application genre and can there-
serve as additional sources of advice. fore draw on knowledge gathered from previous projects.

Porter, Coplien, and Winn [20] provide an approach to

7 Conclusions

In this paper, we presented an architecture design
method which combines pattern languages and architectural[lz]
decision models to their mutual benefit. This work orig-
inates from an analysis of our decision making and pat-
tern selection practices on industry projects. When com-
bined, the strengths of patterns and decision models com-[13]
plement each other and eliminate the weaknesses and in-
hibitors we observed in practice. To validate this hypoth- [14]
esis, we analyzed the two approaches and combined them
into a four-stage design method. This method provides
reusable, domain-specific decision models guiding practi-
tioners through the pattern selection and adoption process
Architectural patterns are architecture alternatives han t
conceptual level, design patterns reside on the technology
level. Domain-specific refinement relationships are part of [17]
the decision models, facilitating project-specific adtipta
of patterns based on decision drivers such as NFRs, legacy
system constraints, software quality factors, and expeée
from previous projects. To validate our method, we created
areusable architectural decision model for SOA and applied
it to an industry case study. The validation showed that the
method is comprehensive, but still comprehensible.

References

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]
(9]

(10]

D. Alur, J. Crupi, and D. MalksCore J2EE PatternsPren-
tice Hall, 2003.

L. Bass, P. Clements, and R. Kazm&uftware Architecture

in Practice 1st (2nd) Edition Addison Wesley, Reading,
MA, USA, 1998 (2003).

K. Beck. Extreme Programming Explained\ddison Wes-
ley, 2000.

R. Braga and P. Masiero. Finding frameworks hot spots in
pattern languageslournal of Object Technolog(1):123—
142, 2004.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-oriented Software Architecture - A System
of Patterns J. Wiley and Sons Ltd., 1996.

D. Falessi, M. Becker, and G. Cantone. Design decicion
rationale: Experiences and steps towards a more systematic
approachSIG-SOFT Software Eng. Notes 31 — Workshop on
Sharing and Reusing Architectural Knowled@é(5), 2006.

R. Fielding.Architectural Styles and the Design of Network-
based Software ArchitectureBhD thesis, University of Cal-
ifornia, Irvine, 2000.

M. Fowler. Patterns of Enterprise Application Architecture
Addison-Wesley, 2002.

E. Gamma, R. Helm, R. Johnson, and J. VlissidBgsign
Patterns: Elements of Reusable Object-Oriented Software
Addison-Wesley, 1994.

N. Harrison, P. Avgeriou, and U. Zdun. Using patterns to
capture architectural decision$EEE Software pages 38—
45, July/Aug. 2007.

[11]

[15]

[16]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

K. Henney. Context encapsulation — Three stories, a lan
guage, and some sequences.Pmceedings of 10th Euro-
pean Conference on Pattern Languages of Programs (Euro-
PloP 2005) Irsee, Germany, July 2005.

C. Hentrich and U. Zdun. Patterns for process-orieiied
tegration in service-oriented architectures. Pimceedings

of 11th European Conference on Pattern Languages of Pro-
grams (EuroPLoP 2006)rsee, Germany, July 2006.

G. Hohpe and B. Woolf. Enterprise Integration Patterns
Addison-Wesley, 2003.

A. Jansen and J. Bosch. Software architecture as a set of
chitectural design decisions. Rroceedings of the 5th Work-
ing IEE/IFP Conference on Software Architecture, WICSA
2005.

M. Keen et al. Implementing an SOA using an ESBM
Redbook, 2004.

P. Kruchten.The Rational Unified Process: An Introduction
Addison-Wesley, 2003.

P. Kruchten, P. Lago, and H. Vliet. Building up and reaso
ing about architectural knowledge. In C. Hofmeister, adito
QO0SA 2006 (Vol. LNCS 4214)ages 43-58, 2006.

F. Leymann and D. RolleProduction Workflow — Concepts
and TechniquesPrentice Hall, 2000.

A. MacLean, R. Young, V. Bellotti, and T. Moran. Ques-
tions, options, and criteria: Elements of design spaceyanal
sis. Human-Computer Interactiqrs(3—4):201-250, 1991.

R. Porter, J. Coplien, and T. Winn. Sequences as a hasis f
pattern language compositionScience of Computer Pro-
gramming 56(1-2), 2005.

J. Tyree and A. Ackerman. Architecture decisions: Demy
tifying architecture IEEE Software22(19-27), 2005.

M. Voelter, M. Kircher, and U. Zdun.Remoting Patterns
Pattern Series. John Wiley and Sons, 2004.

U. Zdun. Systematic pattern selection using pattem la
guage grammars and design space analyAiscepted for
publication in Software: Practice & Experienc2007.

U. Zdun, C. Hentrich, and W. van der Aalst. A survey of-pat
terns for service-oriented architecturdsternational Jour-
nal of Internet Protocol Technology(3):132—-143, 2006.

O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg.
Service-oriented architecture and business processagpore
raphy in an order management scenario O@PSLA Con-
ference CompanigrSan Diego, CA, USA, October 2005.

O. Zimmermann, T. Gschwind, J. Kuester, F. Leymann,
and N. Schuster. Reusable architectural decision models
for enterprise application development. In S. Overhage
and C. Szyperski, editorQuality of Software Architecture
(QoSA) 2007 Lecture Notes in Computer Science, Boston,
USA, July 2007. Springer-Verlag Berlin Heidelberg.

O. Zimmermann, M. Milinski, M. Craes, and F. Oeller-
mann. Second generation web services-oriented archigectu
in production in the finance industry. @OPSLA Confer-
ence Companiqr2004.

0. Zimmermann, M. Tomlinson, and S. Peustarspectives
on Web Services Springer-Verlag, Heidelberg, Germany,
2003.

