
Combining Pattern Languages and Reusable Architectural Decision Models into
a Comprehensive and Comprehensible Design Method

Olaf Zimmermann Uwe Zdun Thomas Gschwind Frank Leymann
IBM Research GmbH Information Systems Institute IBM Research GmbH Institute of Architecture

Zurich Research Laboratory Vienna University of Technology Zurich Research Laboratory of Application Systems

Rüschlikon, Switzerland Vienna, Austria Rüschlikon, Switzerland University of Stuttgart, Germany

olz@zurich.ibm.com zdun@infosys.tuwien.ac.at thg@zurich.ibm.com leymann@iaas.uni-stuttgart.de

Abstract

When constructing software systems, software architects
must identify and evaluate many competing design options
and document the rationale behind any selections made.
Two supporting concepts are pattern languages and ar-
chitectural decision models. Unfortunately, both concepts
only provide partial support: Extensive upfront educationis
needed for practitioners to be in command of the full pattern
literature relevant in their field; retrospective architectural
decision modeling is viewed as a painful extra responsibility
without immediate gains. In this paper, we combine pattern
languages and reusable architectural decision models into
a design method that is both comprehensive and compre-
hensible. Our design method identifies the required deci-
sions in requirements models systematically, gives domain-
specific pattern selection advice, and provides traceability
from platform-independent patterns to platform-specific de-
cisions. We validate our approach by applying it to enter-
prise applications as an exemplary application genre and a
SOA case study from the finance industry.

1 Introduction

When constructing software-intense systems such as en-
terprise applications, software architects encounter numer-
ous design decision points. Both the “big picture” and many
technical details influence their decision making. Numer-
ous competing requirements must be balanced, tradeoffs oc-
cur. The high number of competing design options and tacit
dependencies between them are two additional sources of
complexity. Furthermore, a continuous stream of concep-
tual, technology, and product innovations must be evalu-
ated. A lot of time is spent on basic orientation tasks repeat-
edly, decisions must be made under high time pressure, and
the rationale is often lost. Consequently, constructing opti-

mal or “good enough” systems is a challenge. Software en-
gineering research has come up with many supporting con-
cepts, for instancepattern languages[5, 9, 13] and, more
recently,architectural decision models[14, 17, 21].

Unfortunately, neither pattern languages nor architec-
tural decision models solve all design and documentation
problems in practical projects. By definition, patterns doc-
ument reusable design knowledge, and hence they do not
serve as a complete documentation of an individual system.
Most practitioners only know a few patterns well, such as
the Gang of Four design patterns [9], although the pattern
community has documented patterns for many other do-
mains, such as enterprise applications and Service-Oriented
Architecture (SOA). Hence, extensive upfront education is
required to use a pattern language well.

Retrospective architectural decision modeling is often
seen as painful additional responsibility without many
gains. It is still a research issue how to capture architectural
decisions without introducing efforts that outweigh the ben-
efits and make the gathered knowledge reusable [21]. Tech-
niques, text templates and tool support have been proposed,
but failed to become broadly adopted in practice so far.

This paper combines pattern languages and architectural
decision models to their mutual benefit: Section 2 intro-
duces the two concepts, and Section 3 presents a case study.
In Section 4, an analysis of usage scenarios and character-
istics of patterns and decisions leads us to a proposal how
to combine them into a comprehensive and comprehensi-
ble design method. This method supports the systematic
identification of the required architectural decisions in re-
quirements models, allows giving domain-specific pattern
selection advice, and provides traceability from platform-
independent patterns to platform-specific decisions. Section
5 validates the method in the case study; the remaining sec-
tions discuss our approach, related work, and conclusions.

2 Review of Existing Work

Patterns and Pattern Languages.The pattern move-
ment is a software engineering success story. In 1995, the
Gang of Four published their seminal Design Patterns book
[9]. Many different types of patterns have been published
since then, for example Patterns of Software Architecture
(POSA) [5], domain analysis patterns, and even patterns for
non-IT topics. Examples for recent contributions are Pat-
terns of Enterprise Application Architecture (PoEAA) [8],
messaging [13], remoting [22], and SOA [12, 24].

A patternis a provensolutionto aproblemin a context,
resolving a set offorces. In more detail, the context refers
to a recurring set of situations in which the pattern applies.
The problem refers to a set of goals and constraints that
typically occur in this context and influence the pattern’s
solution, called the forces of the pattern. To systematically
explain how to apply a number of patterns in combination,
many pattern authors document patterns as part of larger
pattern languages, containing rich patternrelationshipsand
extensiveexamplesandknown usessections.

Patterns in a pattern language are applied in an incremen-
tal refinement process. The decision making in this process
is based on the pattern’s forces. In the architectural realm,
these forces include Nonfunctional Requirements (NFRs)
and software quality attributes [2]. Usually, not all forces
can be resolved optimally; a compromise has to be found.
The pattern describes how the forces are balanced in the
proposed solution, and why they have been balanced in the
proposed way. In addition, the advantages and disadvan-
tages of such a solution are described asconsequences.

Applying patterns during software design requires a
broad view on how to select from a large body of patterns
possibly eligible for a particular domain. Patterns do not
focus on a single, domain-specific solution in a particular
business context, but on generic design knowledge. For in-
stance, theINVOKER pattern [22] describes how a middle-
ware invokes remote objects in general. The pattern applies
to all kinds of middleware, but does not explain the specifics
of INVOKERS in a particular application context such as a
specific SOA middleware implementation.

Architectural Decision Capturing and Modeling. Ar-
chitectural decision capturing[14, 17, 21] is an approach to
software documentation that focuses on the expert knowl-
edge motivating certain designs rather than the resulting de-
signs themselves. Decisions capture selected design options
with their strengths and weaknesses, as well as justifications
for the selections. If a model-driven approach to architec-
tural decision capturing is followed, we refer to the involved
models asArchitectural Decision Models (ADMs).

In our earlier work, we refactored the decision template
used in [21] and extended it into a meta model supporting
decision maker collaboration and knowledge reuse [26]. We

defined architectural decisions as “conscious design deci-
sions concerning a software system as a whole, or one or
more of its core components. These decisions determine
the non-functional characteristics and quality factors ofthe
system”. The main elements of our extended meta-model
are: Architectural Decision (AD), AD alternative, AD out-
come, AD topic, andAD level. Architectural Decision (AD)
is the core entity describing a single, concrete design issue
with the following attributes: Decisionnameand unique
identifier; problem statement; scope, linking the AD to de-
sign model element types;decision drivers, listing types of
NFRs and quality attributes driving the design;references
to literature such as overviews, tutorials, and other decision
support material;dependency relationships; lifecycle infor-
mationsuch as decision owner and modification log.

AD alternatives enumerate design options for ADs along
with their pros, cons, andknown uses. One or more AD
outcome instances record the selection of an AD alternative
for a particular AD and thejustification for the decision.
AD topics group related ADs; AD topic hierarchies can be
formed. We separated platform-independent from platform-
specific concerns and introduced four AD levels: anexec-
utive, aconceptual, a technology, and avendor assetlevel.
All AD topics reside on one of these AD levels [26].

Architectural decision capturing and modeling entail
some potential problems. If positioned as retrospective doc-
umentation tasks, they do not have immediate benefits for
the original project team. A major problem of such an ap-
proach is that it is not possible to reuse architectural knowl-
edge gained on previous projects or earlier project stages.
As a consequence, decisions are often captured only in a
rudimentary fashion, or not at all. Many decisions are made
ad hoc, often biased and based on personal preferences and
unqualified recommendations (“gut feel” and “best prac-
tices”). In such situations, sound architectural choices with
respect to project goals and NFRs can hardly be made. Ac-
ceptance and quality problems result, as well as disconnects
between architecture and code.

3 Case Study: Application Integration

Enterprise application development is an application
genre that is both common and complex. Therefore, we use
a case study from this genre to illustrate the requirements
for and characteristics of our design method.

The case study [27] reports about the service-oriented
integration of enterprise application components in the fi-
nance industry, connecting 237 independent retail banks
with a shared core banking backend provider. The value
proposition for introducing SOA concepts was to resolve
technology mismatches between the teller application front
ends running in the banks (e.g., Java and scripting lan-
guages, Microsoft .NET on Windows) and the shared core

banking backend (COBOL, IBM z/OS mainframe systems
hosting a CICS transaction monitor and a DB2 database).
This heterogeneity motivated project goals such as the need
to improve the developer experience on a number of fron-
tend platforms while keeping the integration platform sim-
ple and maintainable. These goals justified the introduction
of a single middleware following theBROKER pattern [5].

To design the software architecture in this situation,
many decisions were required. For instance, pages 111 to
116 in [5] suggest six steps to implement theBROKER pat-
tern: “(1) Define an object model. (2) Decide which type of
component interoperability the system should offer, binary
or Interface Description Language (IDL). (3) Specify the
APIs the broker component provides for collaborating with
clients and servers. (4) Use proxy objects to hide implemen-
tation details from clients and servers. (5) Design the broker
component (6) Develop IDL compilers.” Step (5) has nine
sub steps: “(5.1) On-the-wire protocol, (5.2) Local broker,
(5.3) Direct communication variant, (5.4) (Un)marshalling,
(5.5) Message buffers, (5.6) Directory service, (5.7) Name
service, (5.8) Dynamic method invocation, (5.9) The case in
which something fails [. . .]”. Several of these steps are triv-
ial if a commercial broker product or a standardized, openly
specified technology implementing theBROKER pattern is
chosen; others lead to substantial design efforts:

• Regarding interoperability (2) and the on-the-wire pro-
tocol (5.1), a conceptual decision for an integration
technology such as Web services [28] was required.

• Decision points (5.2) to (5.8) were addressed by
the middleware technology and products. A re-
maining technical decision was XML messaging
with SOAP/HTTP vs. REpresentational State Transfer
(REST) [7], both proposing certain message exchange
formats, protocol primitives, and addressing schemes.

• As Web services technology had been chosen, the
IDL compiler design issue (6) was resolved trivially,
as a standardized Web Services Description Language
(WSDL) and a WSDL-to-Java generator were avail-
able. Many other solution elements also were man-
dated by the Web services technology, e.g., the Java
XML API for RPC (JAX-RPC) defined server-side
FACTORIES[9] andINVOKERS [22] as well asCLIENT

PROXIES[22] for design issues (3) and (4).

• However, as a consequence of deciding for Web ser-
vices, other patterns became eligible. For example, for
the object model definition (1),DATA TRANSFER OB-
JECT [1] and flat strings had to be considered; remote
objects were not an option.

• Detailed design work was required before any se-
lected pattern could be implemented, including a pat-

tern adoption to the project-specific context and ven-
dor asset selections (commercial products, open source
frameworks). The design of error handling procedures
(5.9) was an example of such detailed design work.

Many concrete NFRs in areas of architectural concern
such as performance, scalability and interoperability steered
the design. Furthermore, legacy constraints had to be taken
into consideration, e.g., existing network capacity and back-
end interfaces already implementing certain patterns for
user and session management. These issues are not cov-
ered by theBROKER pattern, but elsewhere, e.g., by Alur et
al. [1]. More recent SOA patterns literature such as Keen
et al. [15] presents solutions to some of these issues. How-
ever, even such SOA-specific guidance does not solve the
general problem of having to structure the domain-specific
architectural design work further than pattern languages do.

4 Pattern- and Decision-Centric Design

In the case study, both the business requirements and
the existing system landscape steered the decision making;
there were many dependencies between the related ADs.
Many architectural and design patterns existed in a large
number of variants. Even with information about pattern
selection forces and quality attribute scoring [2] it remained
hard to decide for a particular variant of a pattern. Some
ADs were not related to pattern selection at all, e.g., product
selections and team organization issues. These observations
(also made in other enterprise application projects [24, 25])
lead to several requirements for a design method, which we
now use to analyze where and how pattern languages and
ADMs fit in, and how they relate to each other.

4.1 Analysis of Pattern Languages and ADMs

Table 1 summarizes our analysis. Pattern languages and
ADMs have different purposes, but there is a strong rela-
tionship: By definition, patterns are not the documentation
of an individual system, but one source of (reusable) ar-
chitectural knowledge to be considered and brought to bear
when architecting a system. On the other hand, ADMs of-
fer a way of documenting and rationalizing the decisions
made and alternatives considered. Applying a patternis
making a decision; the consequences of applying a pattern
engender more decisions. Many of the issues captured in
ADMs aredomain-specific. We identified three categories
of such domain-specific decision drivers (forces): (1)Appli-
cation genre and business function, e.g., enterprise applica-
tion, core banking, order management. (2)Technical, e.g.,
a specific architectural concern and set of principles such
as integration and SOA. (3)Organizational, e.g., company-
wide guidelines, project team set up, and available skills.

Table 1. Characteristics of Pattern Languages and Architec tural Decision Models (ADMs)
Characteristic/Requirement Pattern Languages ADMs Assessment
Intent and main use case Capture generic architecture and design

elements as reusable solutions to com-
monly occurring problems

Capture and record system-specific de-
cisions justified by project-specific deci-
sion drivers

Complementary, strong relationship; pat-
tern application must also be captured as
a decision on a project

Standard description format Several templates, e.g., Portland style Several meta models, UML profiles Present in both approaches, overlap
Level of detail Comprehensive, detailed Terse, telegram style, details elsewhere Patterns more detailed by definition
Top-down decomposition of problem
into atomic units of design work

Objective of pattern languages and con-
text sections; approach depends on au-
thor, often informal

Modeled explicitly in our proposal [26]:
AD topic groups, AD levels; AD consists
of AD alternatives

Pattern languages often informal, ADMs
can add project-specific concretization
and modeling rigor

Bottom-up composition of atomic
units of design work into solution

Not a design goal Not a design goal of retrospective AD
capturing; supported in our proposal

Additional work for project team, inte-
gration effort required

Relationships between atomic units
of design work

Informally via consequences, related pat-
terns or pattern language diagrams (de-
sign spaces emerging, see [23])

Design goal, addressed by explicit de-
pendency management via associations
in UML meta model (directed graph)

ADMs more precise, can be populated
from pattern texts

Requirements management link Context, forces sections Decision driver attribute in AD, decision
identification step

Explicit in our proposal, informal in pat-
terns

Links to software engineering and
project management methods

Informal only, through other related pat-
terns, or out or scope

Modeled in our proposal: scope, phase,
role attributes

Integration effort required

Separate platform-independent from
platform-specific concerns in models,
but preserve links between concerns

Most patterns are platform-independent;
platform-specific aspects come in infor-
mally via known uses and examples

Dedicated vendor asset level exists in our
ADM proposal, decision dependencies
can model link between levels

AD levels provide explicit support, pat-
terns can be assigned to these levels

Ease of architectural documentation
(authoring)

As patterns are publications, signifi-
cant effort for pattern author (reviews,
writer’s workshops); easy to reference

Depends on project setup; no formal au-
thoring and review process (yet)

ADMs less rigorous, more project-
specific; patterns more sustainable, long
lasting (by definition)

Ease of consumption (usability) Depends on pattern author; time intense
due to in-depth education character

Search capabilities, multiple ordering di-
mensions to support orientation character

ADMs provide orientation, patterns in-
depth coverage of single design concern

Issues from each of these three categories influence the de-
cision making. Patterns typically capture timeless, generic
design aspects in their forces and consequences, but do not
cover all domain-specific aspects that might arise for a spe-
cific pattern instance adopted in a project.

Both approaches provide standardized description for-
mats. Several concepts can be found in both approaches, so
that it is straightforward to map many pattern templates to
ADMs: Pattern intent and context map to the AD problem
statement; pattern forces and decision drivers in ADMs dis-
cuss NFR types and related tradeoffs; pattern consequences
and related pattern information lead to additional ADs to be
made (AD dependency relationships).

A pattern represents established design knowledge har-
vested from successful software architectures from which
the pattern authors have mined the pattern; an ADM is the
decision log of a specific project. Patterns use an informal
description format, covering a broad variety of pattern vari-
ants. The pattern descriptions usually are provided in exces-
sive detail, using pattern templates. An ADM from an indi-
vidual project by definition is concrete and domain-specific.
ADs often are captured in a telegram style; short bullet lists,
text templates, tables, and forms are commonly used.

With regard to composition and decomposition capabil-
ities, pattern languages explain the piecemeal composition
of patterns. AD topic group hierarchies in ADMs serve sim-
ilar purposes. Both patterns and ADMs with explicit depen-
dency modeling support virtually any kind of relationship.
In comparison, the relationships between patterns are rather
informal, whereas in our extended meta-model for ADMs,
AD relationships are formalized. A similar assessment can

be made for the requirements management link and the soft-
ware engineering/project management link. Patterns use
informal forces; the decision drivers, scope, and phase at-
tributes of ADs make the related knowledge explicit. An
important consequence is that ADMs can be used as input
for model transformations and code generation.

Both patterns and ADMs cause documentation and con-
sumption efforts. ADMs authored during the architectural
documentation work on concrete projects can take domain-
specific decision drivers (forces) into account. Patterns are
only in seldom cases documented by the users of patterns,
but by pattern authors who are experts in the domain of the
pattern. Due to their level and topic structure and explicitre-
lationships, ADMs are well searchable (esp. if their creation
and consumptions is supported by tools); pattern languages
cover single design concerns in more depth.

4.2 ArchPad: Combining Patterns and Decisions

Based on this analysis, we propose to leverageReusable
ADMs (RADMs)to steer the pattern selection and other ar-
chitectural decision making activities. We call the result-
ing architectural pattern- and decision-based design method
ArchPad. In ArchPad, the following types of patterns ap-
pear as AD alternatives: Analysis and architectural patterns
are among the AD alternatives on the executive and con-
ceptual level, design patterns reside on the technology level,
and the vendor asset level can be populated with implemen-
tation and test patterns, as well as known uses of patterns
from higher levels. We demonstrated the motivation for
and feasibility of the creation of RADMs in our previous

ArchPad

1.0: Requirements Analysis
incl. Quality Attributes (a.k.a. Decision Drivers, Forc es)

2.2: Architectural Patterns
(e.g., POSA, PoEAA, SOA)

3.1: Technology Decisions
(Subsystem Architects,
Development Leads)

4.1: Vendor Asset Decisions
(Developers and Platform

Specialists)

1.1: Executive Decisions
(Decided by External Stakeholders or

To Dos for Overall Team Leads)

3.2: Design Patterns
(e.g., Gang of Four,

Core J2EE,
remoting, messaging)

4.2: Implementation and
Test Patterns,

Known Uses of Patterns
from Previous Stages

1.2: Business Patterns
(e.g., Analysis Patterns,

Industry Reference Models)

Start

RADM-E RADM-C RADM-T RADM-A

2.1: Conceptual Decisions
(Lead Architects,

Subsystem Architects)

Stage 1: “Forming” Stage 2: “Storming” Stage 3: “Norming” Stage 4: “Performing”

Figure 1. Refinement stages and decision/pattern correspon dences in ArchPad

work [26]. A RADM that is based on patterns does not
have to copy the pattern text and hence is easier to create
than a self-containing one. AD outcomes can be captured
in much less detail, because they only record the adoption of
the patterns and can reference the patterns for further detail
[10].

The relationships between RADMs and patterns in Arch-
Pad are illustrated in Figure 1. The upper row represents the
RADM perspective, the lower row the pattern perspective.
The columns in Figure 1 represent fourrefinement stages:

• Stage 1: Executive decisions, requirements analysis.

• Stage 2: Conceptual decisions including selection of
architectural patterns and key technology choices.

• Stage 3: Detailed technology decisions, design pat-
terns as architecture alternatives.

• Stage 4: Vendor asset level decisions and selection of
implementation, deployment, and test patterns.

The stages do not suggest a linear, non-invertible water-
fall process, but merely information flows. The horizon-
tal arrows in Figure 1 illustrate refinement relationships be-
tween stages; the vertical ones indicate the correspondences
between architecture alternatives and patterns. Backtrack-
ing and iterating over stage boundaries is possible.

Stage 1:This stage deals with requirements analysis and
executive decisions as entry points into the architecture de-
sign work. The motivation for this stage is that some non-
technical analysis and planning has to happen before any
technical patterns can be applied. Executive decisions re-
side here. The runtime platform and programming language

selection is such an executive decision. Business-level pat-
terns and industry reference models can be utilized as back-
ground information in this stage.

Stage 2: In Stage 2, conceptual decisions are made; ar-
chitectural patterns appear as AD alternatives. For instance,
BROKER is an architectural pattern; deciding for or against
it is a related conceptual decision.

Stage 3: In Stage 3, technological decisions are made
and detailed design patterns are selected. For instance, the
six implementation steps in theBROKER pattern from Sec-
tion 3 fall into this stage.

Stage 4:In Stage 4, implementation and deployment re-
lated decisions are made. Discrepancies between abstract
concepts and implementation reality can be discussed and
documented here – e.g., vendor products often implement
a conceptual pattern in a specific way, have limitations, or
offer proprietary extensions. Asset-level application server,
workflow engine, and other middleware selection decisions
fall into this stage, e.g., to use a particular SOAP engine for
XML messaging in a Web services-based BROKER.

RADMs as guides through the stages.Without reuse,
the limitations of patterns and decision modeling cannot
be overcome. Hence, RADMs in ArchPad are not created
from scratch on every new project, but made available as
a reusable asset, much like a pattern catalog or language.
Leveraging experience from projects in the same domain,
the RADM can be populated with patterns that already have
proven to be applicable; decision paths for certain project
types can be predefined. ArchPad RADMs are domain-
specific companions to pattern languages and catalogs.

Like pattern texts, RADMs are “living documents”: they
have to be updated when new technologies emerge or pat-

terns become available. The vendor asset levels in RADMs
typically face the largest amount of change over time. That
is, the decisions made in Stages 1 to 3 are usually rather sta-
ble in a certain domain, but Stage 4 will have to be adapted
as technology matures.

4.3 Pattern-based RADM for SOA

This section presents how we applied the concepts from
Section 4.2 to the genre of enterprise applications and devel-
oped a particularRADM for SOA. The RADM for SOA fol-
lows the four stages introduced in Section 4.2. At present,
it consists of 300 decisions covering various aspects such
as Web services integration, transaction and session man-
agement, security and user management, Enterprise Service
Bus (ESB) and presentation layer design; it is already in
use in practitioner communities. Table 2 shows a small ex-
cerpt. The detailed information organized according to the
meta model outlined in Section 2 is not shown; however,
we discuss selected decision drivers, relationships, and AD
alternatives informally throughout this section.

Stage 1: On this stage, executive decisions set the
boundaries for the subsequent decisions. For instance, in
this particular RADM, we must decide for the technolo-
gies (e.g., programming languages and runtime platforms)
to be used in a project. Furthermore, we have to decide
for the main architectural concepts in terms of principles,
paradigms, pattern languages, and processes used. As ex-
plained earlier, these executive decisions govern which pat-
terns are applicable in subsequent stages and which deci-
sions have to be made in these stages. For instance, if a
process-centric integration approach is selected, the SOA
patterns from [12] are applicable.

Stages 2 and 3:Following these fundamental executive
decisions, several conceptual decisions and then technology
decisions have to be made. Often conceptual decisions are
tightly coupled with related technology decisions.

Within the boundaries of the executive decisions, many
architectural patterns appear as alternatives of conceptual
ADs. For instance, different choices for the integration style
exist, such as on which layer to integrate and whether the
BROKER pattern [5] or direct client/server connectivity [22]
should be used. Message exchange patterns, such as syn-
chronous request-response,POLL OBJECT, RESULT CALL-
BACK, SYNC WITH SERVER, or FIRE AND FORGEThave to
be selected. The granularity of the in and out parameters of
service invocation messages has to be defined.

For a BROKER or a direct connection, the supported
message exchange technology must be selected. For in-
stance, technologies such as Web services, plain MOM,
RPC, CORBA, proprietary vendor protocols, or even cus-
tom developed protocols can be selected. If a conceptual
BROKER is used, a broker technology (e.g., commercial

ESB product vs. custom integration layers) must be picked.
Related decisions deal with the message exchange style and
format, with options like WS-* and SOAP vs. RESTful
and Plain Old XML (POX) or Java Script Object Notation
(JSON) vs. custom protocols and notations. Other follow-
on decisions are concerned with transport protocol binding
selection and service provider type definition and API.

Remoting patterns such asPROTOCOL PLUG-INS [22] to
support multiple, runtime-exchangeable protocols vs. just
one hard-coded protocol are now eligible. Other pattern se-
lection decisions depend on these decisions. For instance,
the use of an architecture based on theINVOCATION INTER-
CEPTORand INVOCATION CONTEXT patterns (from [22])
has to be contrasted to a simpler, but less flexible architec-
ture. Finally, these choices are also related to the design
or integration of theMARSHALLER(S). All these remoting
patterns from [22] are eligible as technology options for the
BROKER adoption. In ArchPad, details of these architecture
alternatives do not have to be documented in the RADM, a
reference to the pattern source is sufficient.

Services can be composed using custom code or us-
ing a business process engine, e.g. following theMACRO-
MICROFLOW pattern [12]. If this pattern is chosen, the
PROCESS-BASED INTEGRATION ARCHITECTURE pattern
[12] is an important option for architectural layering. A
service provider component technology has to be selected;
SCA, J2EE, CORBA, and .NET are some of the alterna-
tives. This decision implies a follow-on decision, which
business process language to use. Decision drivers include
the maturity of languages and tools. Other patterns from
[12] also have to be considered as subsequent technology
decisions, e.g.: should aRULE-BASED DISPATCHERbe in-
troduced or not; how to organize the deployment and struc-
ture ofMACROFLOW ENGINESandMICROFLOW ENGINES;
which CONFIGURABLE ADAPTERS and CONFIGURABLE

ADAPTER REPOSITORIESto use and how, etc.
Similar technology choices appear for the presentation

layer, for instance plain HTML vs. portal technology vs.
Web 2.0 vs. or Rich Internet Application (RIA) vs. Eclipse
Rich Client Platform (RCP). A follow-on technology deci-
sion that must be made is the presentation layer organiza-
tion. Here, patterns such asAPPLICATION CONTROLLER

[1], PAGE/FRONT CONTROLLER[1], or HUMAN TASK LIST

[18] are options. If a process-layer and a presentation layer
are present, the interface between presentation and process
layer also has to be designed.

Session and transaction management are important ar-
chitectural concerns. For conversational state, alternatives
areCLIENT SESSION STATE[8], SERVER SESSION STATE

[8], or no state. This leads to a technology decision for
the proper representation of state using activation strategy
patterns. Resource management patterns such asLEAS-
ING, POOLING, LAZY ACQUISITION , and PASSIVATION

Table 2. Excerpt from RADM for SOA

Refinement Stage Architectural Decision (AD) ADAlternatives (subset)
Stage 1 (RADM-E):
Executive Decisions
(EDs)

ED-1: Platform/Language/Tool Preferences Technologies such as J2EE, .NET, LAMPP, Ruby on Rails
ED-2 to ED-5: Architectural Principles, Paradigms,
Patterns, Processes

Selection of reference architecture, layering approach, design method, relevant literature
(many alternatives)

Stage 2 (RADM-C):
Conceptual
Decisions (CDs),
dealing with
selection of
architectural
patterns)

CD-1: Integration Style Front end centric vs. integration centric vs. process centric vs. database centric [13]
CD-2: Broker Pattern BROKER [5] (RPC or messaging) vs. direct client/server connectivity
CD-3: Message Exchange Pattern Synchronous request-response,POLL OBJECT, RESULT CALLBACK, SYNC WITH SERVER, or

FIRE AND FORGET[22]
CD-4: In and Out Message Parameter Granularity Deeply structuredDOMAIN MODEL [8] elements vs. flat strings
CD-5: Service Composition Paradigm Business process engine (followingMACRO-MICROFLOW [12] or no separation of flows) vs.

custom code;PROCESS-BASED INTEGRATION ARCHITECTURE[12] or not
CD-6: Presentation Layer Paradigm Rich client vs. thin client vs. best of both worlds
CD-7: Conversational State CLIENT SESSION STATE[8] vs. SERVER SESSION STATE[8] vs. none
CD-8: Transaction Management SYSTEM TRANSACTIONSvs. BUSINESS TRANSACTIONS[8]

Stage 3 (RADM-T):
Technology
Decisions (TDs),
dealing with
selection of design
patterns,
technologies

TD-1: Message Exchange Technology a.k.a. On-
The-Wire Protocol [5]

Web services vs. plain Message-Oriented Middleware (MOM) vs. plain Remote Procedure
Call (RPC) vs. CORBA vs. proprietary (e.g., CICS Transaction Gateway) vs. custom protocols

TD-2: Broker Technology Commercial ESB product vs. custom integration layer
TD-3: Remoting Patterns INVOKER, CLIENT PROXY, MARSHALLER, INVOCATION INTERCEPTOR, INVOCATION CON-

TEXT, use ofPROTOCOL PLUG-IN [22] or not
TD-4: Message Exchange Style and Format WS-* and SOAP vs. REST and POX/JSON vs. plain TCP/IP and custom strings vs. other
TD-5: Transport Protocol Binding HTTP vs. messaging
TD-6: Service Provider Type and Application Pro-
gramming Interface (API)

Enterprise Java Bean (EJB) vs. plain Java object vs. other provider in other programming
language; JAX-RPC vs. JAX-WS/JAX-B vs. proprietary

TD-7: Service Provider Component Container
Technology

Service Component Architecture (SCA) vs. Java 2 EnterpriseEdition (J2EE) vs. Spring vs.
Common Object Request Broker Architecture (CORBA) vs. .NETvs. other

TD-8: Business Process Language Business Process Execution Language (BPEL), other
TD-9: Process-based Integration Architecture De-
sign

RULE-BASED DISPATCHERor not; Deployment and Structure ofMACROFLOW ENGINES and
MICROFLOW ENGINES; CONFIGURABLE ADAPTERSandREPOSITORIES; etc. (see [12])

TD-10: Presentation Layer Technology Plain HTML (thin client) vs. portal (thin client) vs. Web 2.0RIA vs. Eclipse RCP
TD-11: Presentation Layer Organization APPLICATION CONTROLLER vs.PAGE/FRONT CONTROLLER[1] vs. HUMAN TASK LIST [18]
TD-12: Process Layer Interface Granularity Batch vs. conversational
TD-13: Presentation/Process Layer Coordination Pull (presentation leading) vs. push (process leading)
TD-14: Presentation/Process Layer Protocol Synchronous RPC API vs. asynchronous messaging
TD-15: Activation Strategy Patterns STATIC INSTANCES, PER-REQUEST INSTANCES, or CLIENT-DEPENDENT INSTANCES (all

from [22])
TD-16: Resource Management Patterns LEASING, POOLING, LAZY ACQUISITION , andPASSIVATION (all from [22])
TD-17: Session Management Client (e.g., full state in cookie) vs. presentation layer (HTTP session) vs. process layer (BPEL

correlation) vs. backend (database)
TD-18: Compensation Scheme BPEL vs. vendor-specific spheres vs. custom logic

Stage 4
(RADM-A): Vendor
Asset Decisions
(VDs), dealing with
product selection
and configuration

VD-1: ESB Product E.g. IBM WebSphere ESB, Progress Sonic ESB, Mule
VD-2: SOAP Message Exchange Engine Apache Axis, Codehaus XFire, vendor engines such as IBM WebSphere engine, WSIF and

Apache SOAP
VD-3: Service Provider Container J2EE application server with(out) EJB support, SCA container such as WebSphereProcess

Server
VD-4: Service Provider Sourcing Make or buy; adapt or refactor existing asset
VD-5: Business Process Engine Vendor E.g. IBM WebSphere Process Server, Oracle BPEL Process Manager), open source (Ac-

tiveBPEL)
VD-6: Presentation Layer Application Server E.g. various servlet engines and portal servers, application wiki engines
VD-7: Platform-Specific Transaction Attribute E.g. various SCA qualifiers and EJB attributes

[22] have to be considered to optimize resource usage. The
later two decisions are also related to the decision on broker
technology because only in some technologies these pat-
terns are already supported. For transaction management,
eitherSYSTEM TRANSACTIONS[8] or compensatingBUSI-
NESS TRANSACTIONS[8] can be chosen to roll back and
undo operations when handling processing errors.

Stage 4:Finally, in Stage 4, asset selection and config-
uration decisions are made. For instance, we have to de-
cide for the ESB product, SOAP message exchange engine,
service provider container and sourcing, business process
engine, and presentation layer application server. Some al-
ternatives for these decisions are also summarized in Table
2. Such vendor asset decisions typically refine conceptual
and technology decisions made in the previous stages.

5 Case Study Walkthrough

To validate ArchPad and the RADM for SOA, we ap-
plied them to the case study. We now walk through the four
steps from Section 4.2 and provide ADOutcome informa-
tion for selected ADs from Table 2 as well as case study
specific decision drivers and justifications from [27].

Stage 1:Already existing core banking functions merely
had to be integrated; an initial Stage 1.0 analysis of the busi-
ness domain therefore was not required. Other executive
decisions were to use J2EE on the integration layer and to
support mulitple front end platforms. The back end was
decided to be based on CICS, COBOL, and DB2. The jus-
tification for these decisions can be found in the business
model, operational procedures, and the project objectives.

Stage 2:The selection of theBROKER pattern was man-
dated by the main challenges of the case, as explained in
Section 3. The invocation semantics from the consumer’s
perspective called for using request-reply as the message
exchange pattern. To decide for the in and out message pa-
rameter granularity, the technology-specific issue of creat-
ing XML Schema (XSD) definitions for the operations de-
fined in the WSDL contracts of the core banking compo-
nents had to be taken into account. Alternatives included a
deeply nested structure, representing the businessDOMAIN

MODEL accurately, and flat, serialized strings [27]. Deci-
sion drivers included service consumer API convenience
(highly expressive, strongly typed API), acceptable mes-
sage verbosity, and proven interoperability between Java,
.NET, and scripting languages. In this case, the deciding
factor for selecting the richDOMAIN MODEL was that API
convenience had a high priority (allowing to catch errors at
development time) and the verbosity concerns could be re-
solved. If real-time responses or bandwidth constraints had
been a top concern, a more compact textual or binary mes-
sage format would have been selected.

Service composition was decided to be the responsibility
of the front end application developers; therefore, no pro-
cess layer was introduced.

Stage 3: On Stage 3, many technology decisions were
made and design patterns selected. Aiming to reduce devel-
opment and maintenance costs, Web services were chosen
as a cross-platform message exchange technology. Perfor-
mance and interoperability results on an early prototype had
confirmed that the technology was good enough for the pur-
poses of the project. Due to decision drivers such as licens-
ing cost, available development skills, as well as availabil-
ity of an in-house command interface on top of an adapter
product (CICS Transaction Gateway), it was decided to de-
velop a custom integration tier asBROKER technology. The
Stage 4 ESB product selection decision therefore was not
required. A custom integration tier introduces development
and maintenance, but no licensing costs; it gives maximum
control over the implementation, but has a higher technical
risk than using a mature broker product.

Many design patterns and API concerns such as the de-
cision to use JAX-RPC were mandated by the platform se-
lected in Stage 1, Java. Due to an enterprise-wide architec-
tural principle, the service providers were realized as plain
Java objects and not as EJBs. Being supported by all service
consumers in the retail banks, HTTP was selected as the
transport protocol binding between the service consumers
and the mid tier. Due to legacy system constraints, a propri-
etary protocol was chosen as the backend interface.

Session management was required due to the conversa-
tional nature of the core banking functions to be integrated
(e.g., request all customer whose name starts with “Z”, re-
trieve 10 results per request, then get the account details of

customers as needed). A session management capability al-
ready existed in the backend, using it was a natural choice.
This alternative simplifies the service consumer (front end)
programming and minimizes the amount of data exposed on
the integration channel. For transaction management, exist-
ing operational procedures mandated to handle each back-
end call as one atomic system transaction and implement
business compensation in the front end. As a process layer
had not been introduced, related patterns and business pro-
cess languages did not have to be selected.

Stage 4: On the vendor asset level, several SOAP en-
gines such as Apache Axis were evaluated. Using a stan-
dardized API was an important requirement ensuring porta-
bility and vendor independence, and the WebSphere Appli-
cation Server was already in use as J2EE application server;
therefore deciding for its JAX-RPC API and SOAP engine
was an obvious choice because of the desire to have ven-
dor support. This is an example for a technology decision
tightly coupled with a vendor asset decision.

Evolution and reuse.In the case study, an executive de-
cision was validated and confirmed with high level quality
attribute analysis; interoperability needs, API convenience,
and maintainability were important NFR types. Next, the
selected architectural patterns were refined into design pat-
terns via conceptual and technology ADs. Many new deci-
sions originated from that refinement step, others were im-
plied by assets strategically decided upon. However, deci-
sions made at previous stages had to be revisited regularly.
For example, when designing the second release of the so-
lution it was decided to switch to a generic integration tier
not using any deeply nested domain objects; however, dur-
ing the following interoperability tests, it turned out that this
design would have led to unacceptable future test and main-
tenance efforts. Therefore the decision was revisited and
the original domain object-based design revived. This cor-
responds to stepping back from Stage 4 to Stage 3.

Over time, we could observe that it is possible to share
and reuse the decision knowledge gained on this project:
We harvested these and other ADs and produced sev-
eral reusable assets ranging from an informal collection of
lessons learned to a text book section, which presents 26
architectural decisions commonly required during Web ser-
vices design [28].

6 Discussion and Related Work

Applicability and maturity. ArchPad originates from
our practices employed on the case study project. Since
then we refined it on additional projects, and evolved it into
a design method also applicable to other application genres
and architectural styles. Our method requires the existence
of suitable patterns and decision logs harvested from several
projects, which can be assembled into an RADM. This ef-

fort only pays off if many projects in a particular application
domain follow the same architectural style and the specific
forces and decision outcomes vary. While the four-stage de-
sign method from Section 4.2 is applicable to many project
types, the RADM for SOA from Section 4.3 is specific for
one particular style of enterprise application development
and integration.

Pattern languages and ADMs differ in their adoption
rate. Pattern usage is state-of-the-practice, whereas most
projects still capture architectural decisions retrospectively
and informally (if at all). When conducted in isolation, AD
capturing and modeling do not produce enough immediate
value to be adopted in practice. As demonstrated in Section
4.3, patterns enhance the reusability of ADMs. The value
proposition of a design method in which RADMs take an
active, guiding role is more appealing than that of a retro-
spective and therefore unwelcome documentation task.

Benefits and drawbacks.ArchPad is a rather compre-
hensive, but still comprehensible design method: From a
pattern perspective, RADMs provide domain-specific re-
finements, progressing from the conceptual and technologi-
cal levels to the vendor asset level (where product recom-
mendations and limitations can be discussed). Relation-
ships between patterns across language boundaries can be
captured in them. Tool support can be provided guiding the
decision maker through the decision making process. The
transformation of a conceptual design to the implementa-
tion level is no longer left to developers, code generators,
or off-the-shelf products. Code generators and off-the-shelf
products often hard code proprietary variations of de jure
or de facto standards. In contrast to so-called pattern toolk-
its, ArchPad offers an elaborate combination of patterns and
RADMs, in which an incremental, creative process of de-
cision making and pattern adoption is required from the
project team – which can also be supported by tools. Us-
ing references to patterns, RADMs also enable a domain-
specific entrance into the relevant pattern literature. Hence
our approach enables the learning of relevant design knowl-
edge in a project for new team members.

A potential drawback of our design method is that the
RADMs must be combined with the existing pattern litera-
ture carefully. Content syndication and change management
require architectural experience and knowledge engineering
skills. Furthermore, some documentation effort for actual
ADMs on projects is still required.

RADMs make it possible to rapidly identify decisions in
requirements models and map the requirements to the forces
in the pattern texts. This can be done semi-automatically,
which also enables traceability from generic design knowl-
edge in patterns to ADs to design models to generated code.
The quality of the decision making can be expected to
improve, as forces discussions in pattern descriptions can
serve as additional sources of advice.

Related work. Architectural decisions and patterns are
research topics that both have been covered extensively,
but so far they have not been combined into a design
method. Still, our work extends several recent contributions
from software architecture and design decision research
[14, 17, 19, 21], as well as the rich architecture knowledge
captured by the patterns community [5, 8, 12, 22, 24].

Design decision research in the 1990s focused on facil-
itating the decision making step. Quality Options and Cri-
teria (QOC) diagrams [19] raise a design question, which
points to the available solution options; decision criteria are
associated with the options. Option selection can lead to
follow-on questions. In [17], Kruchten et al. extend this
research by defining an ontology that describes the infor-
mation needed for a decision, the types of decisions to be
made, how decisions are being made, and their dependen-
cies. In [6], Falessi et al. present the Decision, Goal, and
Alternatives framework to capture design decisions. They
identify why a certain approach has been chosen and which
design decisions have to be updated upon changes. In our
work we build on these approaches, but take their relation-
ship with patterns into account.

Braga and Masiero [4] propose a systematic approach to
organize a pattern language. They identify hot spots in a
pattern language, which can be identified from the informa-
tion present in the elements of the patterns. The approach
thus uses a technique for understanding a pattern language
similar to ours, but in contrast to our approach it aims at re-
ducing the complexity of object-oriented frameworks rather
than general relationships between patterns and decisions.

Porter, Coplien, and Winn [20] provide an approach to
compose pattern languages using pattern sequences, and in-
troduce a formalism for representing a sequence as a sin-
gle, totally ordered set of patterns. Henney extends this ap-
proach using a grammar-oriented approach for deriving se-
quences [11]. This approach is extended by our work in [23]
with graphical pattern language grammar overviews and a
subsequent design space analysis. All these approaches do
not offer explicit support for decision capturing and doc-
umentation, or resolving domain-specific forces, but only
support generic pattern selection.

Our approach does not replace existing general-purpose
software engineering processes, such as the Rational Uni-
fied Process (RUP) [16] or agile methods such as Extreme
Programming (XP) [3]. Such processes take a wide range of
the software design cycle into account and are independent
of the design concerns in a specific application genre. In
contrast, ArchPad is a domain-specific design method “plug
in” for such general-purpose processes. RADMs in Arch-
Pad focus on a particular application genre and can there-
fore draw on knowledge gathered from previous projects.

7 Conclusions

In this paper, we presented an architecture design
method which combines pattern languages and architectural
decision models to their mutual benefit. This work orig-
inates from an analysis of our decision making and pat-
tern selection practices on industry projects. When com-
bined, the strengths of patterns and decision models com-
plement each other and eliminate the weaknesses and in-
hibitors we observed in practice. To validate this hypoth-
esis, we analyzed the two approaches and combined them
into a four-stage design method. This method provides
reusable, domain-specific decision models guiding practi-
tioners through the pattern selection and adoption process.
Architectural patterns are architecture alternatives on the
conceptual level, design patterns reside on the technology
level. Domain-specific refinement relationships are part of
the decision models, facilitating project-specific adaptation
of patterns based on decision drivers such as NFRs, legacy
system constraints, software quality factors, and experience
from previous projects. To validate our method, we created
a reusable architectural decision model for SOA and applied
it to an industry case study. The validation showed that the
method is comprehensive, but still comprehensible.

References

[1] D. Alur, J. Crupi, and D. Malks.Core J2EE Patterns. Pren-
tice Hall, 2003.

[2] L. Bass, P. Clements, and R. Kazman.Software Architecture
in Practice 1st (2nd) Edition. Addison Wesley, Reading,
MA, USA, 1998 (2003).

[3] K. Beck. Extreme Programming Explained. Addison Wes-
ley, 2000.

[4] R. Braga and P. Masiero. Finding frameworks hot spots in
pattern languages.Journal of Object Technology, 3(1):123–
142, 2004.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-oriented Software Architecture - A System
of Patterns. J. Wiley and Sons Ltd., 1996.

[6] D. Falessi, M. Becker, and G. Cantone. Design decicion
rationale: Experiences and steps towards a more systematic
approach.SIG-SOFT Software Eng. Notes 31 – Workshop on
Sharing and Reusing Architectural Knowledge, 31(5), 2006.

[7] R. Fielding.Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of Cal-
ifornia, Irvine, 2000.

[8] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, 2002.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[10] N. Harrison, P. Avgeriou, and U. Zdun. Using patterns to
capture architectural decisions.IEEE Software, pages 38–
45, July/Aug. 2007.

[11] K. Henney. Context encapsulation – Three stories, a lan-
guage, and some sequences. InProceedings of 10th Euro-
pean Conference on Pattern Languages of Programs (Euro-
PloP 2005), Irsee, Germany, July 2005.

[12] C. Hentrich and U. Zdun. Patterns for process-orientedin-
tegration in service-oriented architectures. InProceedings
of 11th European Conference on Pattern Languages of Pro-
grams (EuroPLoP 2006), Irsee, Germany, July 2006.

[13] G. Hohpe and B. Woolf.Enterprise Integration Patterns.
Addison-Wesley, 2003.

[14] A. Jansen and J. Bosch. Software architecture as a set ofar-
chitectural design decisions. InProceedings of the 5th Work-
ing IEE/IFP Conference on Software Architecture, WICSA,
2005.

[15] M. Keen et al. Implementing an SOA using an ESB. IBM
Redbook, 2004.

[16] P. Kruchten.The Rational Unified Process: An Introduction.
Addison-Wesley, 2003.

[17] P. Kruchten, P. Lago, and H. Vliet. Building up and reason-
ing about architectural knowledge. In C. Hofmeister, editor,
QoSA 2006 (Vol. LNCS 4214), pages 43–58, 2006.

[18] F. Leymann and D. Roller.Production Workflow – Concepts
and Techniques. Prentice Hall, 2000.

[19] A. MacLean, R. Young, V. Bellotti, and T. Moran. Ques-
tions, options, and criteria: Elements of design space analy-
sis. Human-Computer Interaction, 6(3–4):201–250, 1991.

[20] R. Porter, J. Coplien, and T. Winn. Sequences as a basis for
pattern language composition.Science of Computer Pro-
gramming, 56(1–2), 2005.

[21] J. Tyree and A. Ackerman. Architecture decisions: Demys-
tifying architecture.IEEE Software, 22(19–27), 2005.

[22] M. Voelter, M. Kircher, and U. Zdun.Remoting Patterns.
Pattern Series. John Wiley and Sons, 2004.

[23] U. Zdun. Systematic pattern selection using pattern lan-
guage grammars and design space analysis.Accepted for
publication in Software: Practice & Experience, 2007.

[24] U. Zdun, C. Hentrich, and W. van der Aalst. A survey of pat-
terns for service-oriented architectures.International Jour-
nal of Internet Protocol Technology, 1(3):132–143, 2006.

[25] O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg.
Service-oriented architecture and business process choreog-
raphy in an order management scenario. InOOPSLA Con-
ference Companion, San Diego, CA, USA, October 2005.

[26] O. Zimmermann, T. Gschwind, J. Kuester, F. Leymann,
and N. Schuster. Reusable architectural decision models
for enterprise application development. In S. Overhage
and C. Szyperski, editors,Quality of Software Architecture
(QoSA) 2007, Lecture Notes in Computer Science, Boston,
USA, July 2007. Springer-Verlag Berlin Heidelberg.

[27] O. Zimmermann, M. Milinski, M. Craes, and F. Oeller-
mann. Second generation web services-oriented architecture
in production in the finance industry. InOOPSLA Confer-
ence Companion, 2004.

[28] O. Zimmermann, M. Tomlinson, and S. Peuser.Perspectives
on Web Services. Springer-Verlag, Heidelberg, Germany,
2003.

