
E-Mail Classification for Phishing Defense

Wilfried N. Gansterer, David Pölz

University of Vienna, Research Lab Computational Technologies and Applications

Abstract. We discuss a classification-based approach for filtering phish-
ing messages in an e-mail stream. Upon arrival, various features of every
e-mail are extracted. This forms the basis of a classification process which
detects potentially harmful phishing messages. We introduce various new
features for identifying phishing e-mail and rank established as well as
newly introduced features according to their significance for this classi-
fication problem. Moreover, in contrast to classical binary classification
approaches (spam vs. not spam), a more refined ternary classification ap-
proach for filtering e-mail data is investigated which automatically distin-
guishes three message types: ham (solicited e-mail), spam, and phishing.

Experiments with representative data sets illustrate that our approach
yields significantly better classification results than existing phishing de-
tection methods. Moreover, the direct ternary classification proposed is
compared to a sequence of two binary classification processes. Direct one-
step ternary classification is not only more efficient, but is also shown to
achieve better accuracy than repeated binary classification.

1 Introduction

In recent years, phishing (“password fishing”) has become an enormous problem
and threat for all big internet based commercial operations. The term covers
various criminal activities which try to fraudulently acquire sensitive data or
financial account credentials from internet users, such as account user names,
passwords or credit card details [1]. Phishing attacks use both social engineering
and technical means in order to get access to such data. The damage caused by
successful phishing attempts was estimated a six digit Euro amount in Austria
in 20061 and more than four million Euro in Germany2. These figures do not
yet account for image loss and reduced customer trust.

A central component in social engineering-based schemes is the abuse of e-
mail communication. Unsolicited e-mail messages are masqueraded in order to
pretend that they come from a trustworthy entity and lead users to counter-
feit web sites which ask the recipients to divulge sensitive data. The research
summarized in this paper investigates new methods for filtering phishing e-mail
messages. The focus is on classification-based techniques, in particular, on the
definition of properly suited feature sets, on the application of feature selection

1 http://www.bmi.gv.at/bmireader/documents/428.pdf
2 http://www.at-mix.de/news/1226.html

methods, and on machine learning methods for detecting e-mail phishing at-
tempts. More specifically, as an alternative to classical binary spam filtering, we
investigate the problem as a ternary classification problem, i. e., automatically
distinguishing three classes of messages in e-mail data: solicted and legitimate
messages (“ham”); unsolicited, but otherwise harmless messages (“spam”); and
phishing messages, which are also unsolicited, but dangerous and potentially
harmful. Obviously, this problem can also be addressed with a sequence of two
binary classification problems, for example, first applying a binary filter which
separates unsolicited e-mail from solicited e-mail, and then applying a binary fil-
ter on the result which separates spam and phishing. Such a two-step approach
does not only have disadvantages in terms of overhead and efficiency compared to
a direct ternary approach, but also achieves lower accuracy, as we will illustrate.

Related Work. A lot of research has been done on filtering spam e-mail (un-
solicted commercial or bulk e-mail), an older problem than phishing (see, for
example, [11, 5, 7] and the references therein).

Relatively little research has been done so far on specifically detecting phish-
ing e-mail, which usually differs significantly in its properties and characteristics
from spam e-mail. The latter is—even for humans—usually much easier to distin-
guish from legitimate e-mail messages than phishing e-mail, which is deliberately
designed to look like a legitimate message from a trusted contact. Existing work
ranges from theoretically oriented academic research efforts to tools for practical
use which are often based on heuristics and ad-hoc strategies. Among the former,
we find concepts based on changing or enhancing the graphical user interfaces
and on modifying the workflow of the user, for example, in projects like Web-
Wallet [18], AntiPhish [8] or SPS [13]. Unfortunately, such approaches impose
additional work upon the user. Thus, often these additional security features are
disabled. The method proposed in [12] tries to detect phishing web sites by send-
ing faked formular data and analyzing the returned answers. It is based on the
assumption that many phishing web sites do not check input data, whereas an
authentic web site would usually check the input and produce error messages. A
complementary approach to thwart social engineering attacks such as phishing
attempts is to raise the awareness and education of users [6, 9, 16].

The most promising methods utilize the general concept of feature-based
phishing detection. In [10], key words are extracted from every e-mail, and then
the web pages linked within the e-mail are compared with web sites which are
close to these key words based on their visual layout . In a related approach,
a browser plugin which analyzes the content of a website referred to from an
e-mail has been described in [19]. First, keywords are extracted from the website
and queried in a search engine. Then, domain names linked from the e-mail are
compared to the search results. Suggestions for six e-mail features which are
indicators for a phishing message mail have been made in [2]. Another feature-
based approach called PILFER has been described in [4], where ten features
are used for deciding whether an e-mail is considered a phishing message. For a
binary classification of ham vs. phishing messages, an overall accuracy of 99,5%,
0,2% false positive rate, and 4% false negative rate is reported.

Some of the concepts developed have been integrated into tools. Apache’s
Spamassassin system (http://spamassassin.apache.org/) is a widely used
server side solution which has become a de-facto standard, primarily for filtering
spam messages. It is based on a set of more than 700 static rules. Over time,
some rules have been integrated which specifically target phishing messages.
Other tools enhance or alter the information provided about websites visited in
the graphical user interface of the web browser. The idea is to visually warn
the user about the web site referred to. Based on this information provided
the user has to decide whether he trusts the web site or not. Examples are
toolbars such as Siteadvisor (http://www.siteadvisor.com/), Netcraft (http:
//toolbar.netcraft.com/), or the Google toolbar (http://www.google.com/
tools/firefox/safebrowsing/). A drawback of such toolbars is that they act
after the user has already decided to follow a link provided in an e-mail. It
is preferable to provide an earlier line of defense in the e-mail client. Mozilla’s
Thunderbird or Microsoft’s Outlook (as well as the respective browsers) use
combinations of (URL) black- and whitelists and various heuristics for identifying
a phishing message before the user has followed any link in the message.

Approach Taken in this Paper. Concepts based on graphical user interfaces
have various potential problems: The toolbars may fail to provide the proper
judgement of a web site, and many users do not pay enough attention to or
misinterpret the information provided. This leads to rather poor efficiency of
toolbars. Investigations have shown that only 40-50 percent of the phishing at-
tempts were spotted successfully by the users based on the information provided
by toolbars [15, 17].

The main objective of the work summarized here was to improve on exist-
ing anti-phishing methods. Conceptually, feature-based e-mail classification is
the most promising approach. The method discussed in this paper further ex-
tends and refines feature-based phishing detection, on the one hand by adding
new features which turn out to be crucial for the classification accuracy, on the
other hand by addressing the ternary classification problem formulated above
instead of the classical binary one. This allows for specifically targeting phish-
ing messages in the enormous volume of regular unsolicited e-mail. Moreover, in
contrast to some of the related work, the approach pursued here can be imple-
mented server-based, which has several advantages: (i) efficiency can be improved
compared to repeatedly performing the same tests on identical messages at the
client-side; (ii) it is not required to support different e-mail clients; and (iii) a lot
of the responsibility and overhead (setup, administration, maintenance) caused
by phishing filtering can be taken away from the end user.

2 Methodology

We adopt the basic structure of a classification process: Based on a fixed set of
features which results from a feature selection and feature ranking process, the
values of these features are extracted from each e-mail message to be classified

(feature extraction). These extracted feature values are the basis for the actual
classification process.

Although there are analogies between e-mail phishing and e-mail spamming
(phishers profit from the fact that sending out large numbers of e-mail is very
cheap and the revenue from one phished account is potentially rather big), there
are also important differences. In contrast to spam attacks an individual phishing
attack tends to be carried out over a much shorter period of time [1] (because of
the more aggressive prosecution of phishing web sites). Moreover, the structure
of phishing messages tends to differ significantly from the structure of spam
messages, but it may be quite close to the structure of regular ham messages
(because for a phishing message it is particularly important to look like a regular
message from a trustworthy source). Consequently, it is pivotal to select good
features as the basis for the classification process.

Some of the e-mail features used in our approach are based on results reported
in the literature [2–4]. They are summarized in Section 2.1. Some other features
are newly introduced in Section 2.2. In Section 2.3 we discuss the method used
for ranking and selecting the features according to their significance, and we
summarize the classification methods applied.

2.1 E-Mail Features Already Used in the Literature

The following fifteen e-mail features have been proposed earlier in [2–4]. The
abbreviations introduced here and in the following section are used throughout
the rest of the paper.

Number of links (NoLinks) [4] counts the number of links which are included
in the body of an e-mail. Number of different domains (NoDifDom) [4] counts
the number of different domains that are linked from within the e-mail.

HTML-mail (HTML) [4], a binary feature, checks if the e-mail is an HTML
mail by inspecting the Content-Type parameter in the e-mail header. HTML-
form (HTMLForm) [3], a binary feature, checks if the e-mail is an HTML e-mail
which contains an HTML form element. Thunderbird’s anti-phishing tool uses
this feature as one of three decision variables.

Link-target differs from link-text (DifLinktar) [3, 4] counts the number of
links in the e-mail for which the link text does not contain the domain name
of the link target. Link-domain differs from sender-domain (LinkDifSender) [2]
counts how many links point to a different domain than the domain from where
the e-mail was sent.

Number of dots in a domain (NoDots) [4] counts the maximum number of
dots in any linked domain in the e-mail. URL contains IP address (UrlIP) [3,
4] counts how many links in a message contain an IP address. URL contains
@ (UrlAt) [3] counts how many links in a message contain the “@” character.
URL contains hexadecimal characters (UrlHex) [3] counts how many links in
a message contain hexadecimal characters or URL-escaped characters, which
make links unreadable to a human reader. URL contains a non-standard port
(UrlPort) [3] counts how many links in a message contain a non-standard port
(other than 80 or 443).

Use of JavaScript pop-ups (JSPopup) [3] counts the number of pop-ups that
are created by the links in the e-mail message. SSL SelfSigned (SSLSS) [3]
counts how many links in the e-mail message point to a website that encrypts
the connection with a self signed certificate. Compare DNS and rDNS of links
(DNSrevDNS) [2] counts how many domain names within the links of an e-mail
message do not have a corresponding reverse DNS entry.

Spamassassin (SaXX) [4] denotes a set of forty boolean features taken out
of the Spamassassin rule set. It contains those Spamassassin rules which yielded
the highest information gain on our training set. A spam threshold of five was
chosen, and only static local rules were considered. Blacklist lookups as well as
Bayesian filters were omitted.

2.2 New E-Mail Features Introduced

Sixteen new features summarized in the following. Their relevance for the ternary
classification problem stated in Section 1 is investigated in this paper for the
first time. These newly introduced features belong to three different groups:
The first group contains six “off-line” features, and the second group contains
eight “online” features. The third group is a control group of presumably class-
independent features containing two features: Subject length (SubjectLen) counts
the number of characters in the subject field, and Sender length (SenderLen)
counts the number of characters in the sender field of a message.

Off-line Features. These features can all be extracted locally and quite effi-
ciently. Consequently, they are well suited for a high-load context as it has to be
handled on large mailservers.

Number of pictures used as link (NoPicLink) counts the number of pictures
which are linked to web sites. Image maps used as link (NoMapLink) counts the
number of pictures with image maps that are linked to web sites.

URL contains non ASCII characters (UrlChar) counts how many links con-
tain standard ASCII character look-a-likes. Some of these characters (for exam-
ple, some cyrillic letters) look almost identical to some “normal” ASCII charac-
ters so that a user will not see the difference between a legitimate and a spoofed
website. Message size (MesSize) denotes the size of the e-mail message in bytes.

Countries of links (ColXX) determines the countries of servers which are
linked from inside an e-mail based on their IP addresses. Since statistics show
that almost 60% of all phishing messages link to only two countries [1], this
information can give a hint on the reliability and security of linked servers. The
feature is not a single value but consists of 51 numeric values that represent
the number of links to 50 different countries and the link targets which cannot
be assigned to a certain country. Signed Mail (Signed), a binary feature, checks
whether the e-mail has been signed.

Online Features. The extraction of the “online” features imposes a significantly
higher cost. Since it is based on internet connections, the time required for the
associated queries may vary widely (depending on the status of the internet
connection). Consequently, the extraction of these online features may cause

serious performance bottlenecks in practical high load situations (large-scale
business e-mail servers, etc.) and severely restrict performance and scalability of
the e-mail filtering system. In order to overcome these problems, it is crucial to
restrict the number of messages for which such features need to be extracted.
One possibility is to apply a layered approach, for example, using multilevel
greylisting as proposed in [7], where it has been shown that currently much
less than 1% of the incoming e-mail messages reach the highest levels in this
framework. Due to this enormous reduction in the number of messages and
the decoupling of SMTP connections from feature extraction and classification
processes in the context of multilevel greylisting, the extraction of costly online
features is restricted to very few messages (those which could not be classified
unambiguously at the previous levels). This solves the scalabilty problems and
eliminates the performance bottleneck of online features. In the following, the
newly introduced online features are summarized.

Number of OnClickEvents in the e-mail (NoOCE) counts the use of OnClick-
Events in embedded and linked JavaScript code. HTML-form SSL protected
(HTMLSSL), a binary feature, determines whether an HTML formular con-
tained in a website is SSL protected.

JavaScript statusbar manipulation (JSStatus) counts the number of status-
bar alteration attempts within all linked websites. Link domain differs from
JavaScript domain (DifLinkJS) counts how many JavaScript parts are loaded
from a domain which differs from any other domain linked within the message.

The last four online features are based on queries to search engines. Result
quantity of sender domain (NoSendRes) counts the hits of a search for the do-
main name of the sender. Result quantity of link domain (NoLinkRes) denotes
the lowest number of hits when searching for the domain names of the links
contained in an e-mail message. Link domains differ from search results (Di-
fLinkRes) counts the number of domains linked from the e-mail message which
do not match any of the first ten hits from a search for the domain of the
FROM-field (sender) of the message. Distance of message text and linked do-
main (DifTextLink) tries to evaluate the “distance” of the message text from
the domain names which it links to. For this purpose, five keywords are ex-
tracted from the message text using the automatic keyword creating algorithm
of the classifier4J software (http://classifier4j.sourceforge.net/). These
keywords are sent to a search engine individually and also in a combined query.
For each of these six queries, the domains of the ten highest ranked hits are
compared to the domains linked from the e-mail. The feature value is defined as
the number of links in the message which are not found in any of the top ten
hits of the queries.

2.3 Feature Ranking and Classification

One option for ranking the message features listed above according to how well
they differentiate the three classes ham, spam, and phishing would be to use the
information gain, defined as gain(X, C) := info(C) − infox(C) for a set of class
labels C and a feature set X. The function info(C) is Shannon’s entropy function

and infox is the conditional entropy function defined as infox(C) :=
∑

v∈X P (v)∗
P (C|v), where P (v) is the probability of v and P (C|v) the conditional probability
of C given v.

However, the information gain favors features which assume many different
values. In order to address this, we instead rank features according to their
information gain ratio:

gainratio(X, C) :=
gain(X, C)
splitinfo(X)

with splitinfo(X) := −
∑

v∈X P (v) ∗ log2 P (v).
For the classification process, we compared several different methods (see

Section 3.2) from the open source software Weka (http://www.cs.waikato.
ac.nz/ml/weka/).
Implementation. We implemented the feature extraction and classification
functionality as a plug-in for the Apache James server (http://james.apache.
org/). The feature ranking is based on the ratio-gain algorithm [14] in Weka.

The extraction of the online features introduced in Section 2.2 has been im-
plemented by randomly querying one of the three search engines Google, Yahoo
and MSN. Since each of them limits the number of daily search requests from the
same source, it can be required to alternate between them, which also adds some
variance to these features. Even if the same search engine is used all the time,
the online features based on web search results will change over time. However,
experience shows that these variations do not have a negative influence on the
relevance of the features for classification.

3 Experimental Evaluation

Our prototype system was tested on an Intel Duo Core E6600 system with 2
GB RAM and a Linux operating system. Our plug-in implemented in Java was
integrated into the Apache James server. Test data were sent from an e-mail
collection in mbox format using Google Mail Loader (http://marklyon.org/
gmail/).

3.1 Test Data

The data used for the evaluation of our method has been obtained from two
sources: A sample set of 11 000 phishing messages from May 2007 was kindly
made available to us by the Phishery (http://phishery.internetdefence.
net/); and from the 2007 TREC corpus (http://trec.nist.gov/data/spam.
html), which consists of roughly 25 000 ham and 52 000 spam messages.

As training set we selected the oldest 4000 e-mails of each class. As test set we
used the newest 1000 e-mail messages of each class. This chronological ordering
of the test data and training on historical data allows for simulating the changes
and adaptations in spam and phishing messages which occur in practice.

3.2 Results

In order to account for the widely differing values of different features, the data
was normalized and discretized into equal frequency bins before the ratio-gain
algorithm was run for feature ranking. This leads to different bin sizes, but splits
the data more evenly into the bins and improves the results achieved with the
ratio-gain algorithm.

Feature Ranking and Feature Selection. Figure 1 shows the ranking of the
best 30 features for the ternary classification problem and the corresponding
ratio-gain values for the ternary and the binary classification scenario. For the
binary case, spam and phishing were merged into a single class. The features
newly introduced in this paper are marked with double brackets (“<< . . .>>”).
Note that the first two positions are taken by features already used before,
but position three to nine are occupied by new features. Seven out of the top
ten features are new. Figure 1 also shows that a feature ranking for the binary
classification problem looks differently. In this case the number of links where the
source country is Austria, Switzerland or unidentifiable (ColAT, ColCH, Col-)
turn out to be the most relevant features.

Fig. 1. Ratio gain values for the top 30 features of feature set F2

Comparison of Feature Sets. In the following, we compare the classification
results for three different feature sets. Feature set F1 constains all features that
were explained in Sections 2.1 and 2.2, feature set F2 contains the features F1

without the SaXX features, and feature set F3 contains only the features used
in the literature as listed in Section 2.1. Table 1 summarizes the classification
results of a decision tree generated with the J48 algorithm for the feature sets
F1 and F2. Overall, 94,1% of all messages were classified correctly based on the
feature set F1, but only 91,5% based on the feature set F2, which illustrates the
improvement from integrating the SaXX features. When using only a subset of
F2, the classification accuracy decreases rapidly: When using the top 20 features
from Figure 1, it goes down to 87%, when using only the top 10 features, it goes
down to 84,6%.

feature set F1 feature set F2

as Ham as Spam as Phish as Ham as Spam as Phish

979 97,9% 21 2,1% 0 0% 981 98,1% 19 1,9% 0 0% Ham

35 3,5% 913 91,3% 52 5,2% 36 3,6% 931 93,1% 33 3,3% Spam

3 0,3% 65 6,5% 932 93,2% 5 0,5% 161 16,1% 834 83,4% Phish

Table 1. Classification with a J48 decision tree based on feature sets F1 and F2

To examine the improvement achieved with the new features introduced we
trained an SVM classifier based on feature set F3. This resulted in an overall
accuracy of only 73,3% and a false positive rate for ham e-mails of 13,8%, which
is much worse than the accuracy achieved with either F1 or F2 or subsets of F2,
which illustrates the importance of the new features we introduced.

Comparison of Classifiers. Table 2 compares the overall percentages of cor-
rectly classified messages of a J48 decision tree (also in bagged and boosted
variants), a random forest (RF), a BayesMultinomial classifier (BM), a support
vector machine (SVM), and a k-nearest neighbor algorithm (kNN) based on the
feature sets F1 and F2. Clear differences between various classifiers can be ob-
served. Overall, the SVM achieves the highest accuracy. The differences between
feature sets F1 and F2 again illustrate the effect of the SaXX features.

feature set J48 bagged J48 boosted J48 RF BM SVM kNN

F1 94,1% 93,5% 95,2% 93,7% 65,0% 97,0% 92,7%

F2 91,5% 91,4% 92,1% 92,1% 62,0% 92,1% 90,6%

Table 2. Accuracies of various classification methods (ternary classification problem)

Weka supports the construction of cost-sensitive classifiers by associating
misclassification costs with each class. For the SVM, we increased the costs for
misclassified ham emails (false positives) to five times the costs of other types of
misclassifications. Table 3 shows the results. Compared to Table 1, the number
of misclassified ham e-mails was reduced by more than a third, but compared to
Table 2, the overall accuracy of the SVM classifier was reduced to 95,6%.

as Ham as Spam as Phish

987 98,7% 13 1,3% 0 0% Ham

79 7,9% 905 90,5% 16 1,6% Spam

4 0,4% 19 1,9% 977 97,7% Phish

Table 3. Cost-sensitive SVM classifier based on feature set F1

Ternary vs. Binary Classification. So far, only the accuracies achieved for
the ternary classification problem were summarized. To put them into perspec-
tive, we first compared them with a binary ham vs. spam+phishing classification
performed by full Spamassassin. We considered phishing e-mails correctly classi-
fied if they reached a score of 5 points or more and thus were put into the spam
category by Spamassassin. On our test set Spamassassin assigned 93,7% of the
messages correctly to the two classes. The false positive rate was 0,3% and the
false negative rate 4,7%. Except for the false positive rate this is comparable
to the results shown in Table 1. We also compared our results with the scam
e-mail detection implemented in the Thunderbird e-mail client. On our test data
set, this system performed much worse. It classified only 75,8% of the messages
correctly with a false positive rate of 5,7% and a false negative rate of 18,9%.

In order to compare our feature set with the one Spamassassin uses, we ran
some more tests with the SVM classifier based on the F1 feature set (see Table 4).
In the first test, we performed a binary classification ham vs. spam+phishing.
98,2% of the messages were correctly classified with a false positive rate of 1,9%.
Note that this is better than the binary Spamassassin classification, and also
better than the ternary SVM classification. In the second test, we performed a
binary classification ham+spam vs. phishing. In this scenario the SVM classified
98,7% of the messages correctly with a false positive rate of 0,8%. In the third
test, we performed a binary classification ham+phishing vs. spam. This resulted
in an overall accuracy of 95,7% and a false positive rate of 1,7%. However, after
completely removing the spam class from the data set and classifying ham vs.
phishing, our feature set achieved an accuracy of 99,7% with a false positive rate
of 0,2%. This is slightly better than the accuracy reported in [4]. Finally, we
emulated a ternary classification process as a sequence of two binary classifica-
tion processes. First separating spam from phishing+ham and in a second step
separating ham and phishing e-mails in the result yields an accuracy of 95%,
which is worse than the ternary classification results (cf. Table 2).

Binary classes Accuracy False positive rate

Ham Spam+Phish 98,2% 1,9%

Ham+Spam Phish 98,7% 0,8%

Ham+Phish Spam 95,7% 1,7%

Ham Phish 99,7% 0,2%

Table 4. Binary classification results of SVM with feature set F1

4 Conclusion

A ternary classification approach for distinguishing three groups of e-mail mes-
sages in an incoming stream (ham, spam, and phishing) has been investigated.
The classification is based on a partly new designed set of features to be extracted
from each incoming message. Various classifiers have been compared to assign
them into one of the three groups. Over all three groups, a classification accu-
racy of 97% was achieved, which is better than solving the ternary classification
problem by a sequence of two binary classifiers. In particular, it was illustrated
that the methodology proposed achieved a significantly better accuracy than the
widespread Spamassasin system with a binary classification.

In the future, we will focus on further reducing the false positive rates (ham
wrongly classified as spam or phishing). Moreover, we will investigate improve-
ments of the subset selection strategies in order to further reduce the number of
features without loss of classification accuracy.
Acknowledgments. This research was partly supported by Internet Privat-
stiftung Austria.

References

1. Anti Phishing Work Group. Phishing attacks trends report. http://www.

antiphishing.org, Dec. 2007.
2. A. Inomata, Sk. Md. M. Rahman, T. Okamoto, and E. Okamoto. A novel mail

filtering method against phishing. Japan Science and Technology agency, Research
Institute of Science and Technology for Society, 2005.

3. C.E. Drake, J.J. Oliver, and E.J. Koontz. Anatomy of a Phishing Email. In
Conference on E-mail and Anti-Spam, 1841 Page Mill Road, Palo Alto, CA 94304,
USA, 2004. MailFrontier, Inc.

4. I. Fette, N. Sadeh, and A. Tomasic. Learning to detect phishing emails. In WWW
’07: Proceedings of the 16th international conference on World Wide Web, pages
649–656, New York, NY, USA, 2007. ACM.

5. W. N. Gansterer, A. G. K. Janecek, and R. Neumayer. Spam filtering based on
latent semantic indexing. In M. W. Berry and M. Castellanos, editors, Survey of
Text Mining II: Clustering, Classification, and Retrieval, pages 165–183. Springer-
Verlag, 2008.

6. M. Jakobsson and J. Ratkiewicz. Designing ethical phishing experiments: a study
of (rot13) ronl query features. In L. Carr, D. D. Roure, A. Iyengar, C. A. Goble,
and M. Dahlin, editors, World Wide Web Conference, pages 513–522. ACM, 2006.

7. A. G. K. Janecek, W. N. Gansterer, and K. A. Kumar. Multi-level reputation-
based greylisting. In Proceedings of ARES 2008 – International Conference on
Availability, Reliability and Security, pages 10–17. IEEE Computer Society, 2008.

8. E. Kirda and C. Kruegel. Protecting users against phishing attacks with antiphish.
29th Annual International Computer Software and Applications Conference Vol-
ume 1, 01:517–524, 2005.

9. P. Kumaraguru, Y. Rhee, A. Acquisti, L. F. Cranor, J. Hong, and E. Nunge.
Protecting people from phishing: the design and evaluation of an embedded training
email system. In CHI ’07: Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 905–914, New York, NY, USA, 2007. ACM.

10. W. Liu, X. Deng, G. Huang, and A. Y. Fu. An antiphishing strategy based on
visual similarity assessment. IEEE Internet Computing, 10(2):58–65, 2006.

11. T. R. Lynam, G. V. Cormack, and D. R. Cheriton. On-line spam filter fusion. In
SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR conference
on research and development in information retrieval, pages 123–130, New York,
NY, USA, 2006. ACM Press.

12. M. Chandrasekaran, R. Chinchani, and S. Upadhyaya. Phoney: Mimicking user
response to detect phishing attacks. International Symposium on a World of Wire-
less, Mobile and Multimedia Networks, 00:668–672, 2006.

13. D. Miyamoto, H. Hazeyama, and Y. Kadobayashi. SPS: A simple filtering algo-
rithm to thwart phishing attacks. In Technologies for Advanced Heterogeneous
Networks, volume Volume 3837/2005, pages 195–209. Springer Verlag, 2005.

14. J. R. Quinlan. C4.5: Programms for Machine Learning. Morgan Kaufmann, San
Mateo, 1993.

15. S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The emperor’s new
security indicators. In IEEE Symposium on Security and Privacy, pages 51–65.
IEEE Computer Society, 2007.

16. S. Sheng, B. Magnien, P. Kumaraguru, A. Acquisti, L. F. Cranor, J. Hong, and
E. Nunge. Anti-phishing phil: the design and evaluation of a game that teaches
people not to fall for phish. In SOUPS ’07: Proceedings of the 3rd symposium on
Usable privacy and security, pages 88–99, New York, NY, USA, 2007. ACM.

17. M. Wu, R. C. Miller, and S. L. Garfinkel. Do security toolbars actually prevent
phishing attacks? In CHI ’06: Proceedings of the SIGCHI conference on Human
Factors in computing systems, pages 601–610, New York, NY, USA, 2006. ACM.

18. M. Wu, R. C. Miller, and G. Little. Web wallet: preventing phishing attacks by
revealing user intentions. In SOUPS ’06: Proceedings of the second symposium
on Usable privacy and security, pages 102–113, New York, NY, USA, 2006. ACM
Press.

19. Y. Zhang, J. I. Hong, and L. F. Cranor. Cantina: a content-based approach to
detecting phishing web sites. In WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 639–648, New York, NY, USA, 2007. ACM.

