
View-based Integration of Process-driven SOA

Models At Various Abstraction Levels

Huy Tran and Uwe Zdun and Schahram Dustdar

Distributed Systems Group, Institute of Information Systems
Vienna University of Technology, Austria

htran,zdun,dustdar@infosys.tuwien.ac.at

Abstract. SOA is an emerging architectural style to achieve loosely-
coupling and high interoperability of software components and systems
by using message exchanges via standard public interfaces. In SOAs,
software components are exposed as services and typically coordinated
by using processes which enable service invocations from corresponding
activities. These processes are described in high-level or low-level model-
ing languages. The extreme divergence in term of syntax, semantics and
levels of abstraction of existing process modeling languages hinders the
interoperability and reusability of software components or systems being
built upon or relying on such models. In this paper we present a novel
approach that provides an automated integration of modeling languages
at different abstraction levels using the concept of architectural view.
Our approach is realized as a view-based reverse engineering tool-chain
in which process descriptions are mapped onto appropriate high-level or
low-level views, offered by a view-based modeling framework.

1 Introduction

In a Service-oriented Architecture (SOA), software components are often ex-
posed as services that have standard interfaces and can be invoked by message
exchanges. A number of relevant services can be coordinated to achieve a spe-
cific business functionality. The integration and interoperability of the software
components or systems are accomplished by orchestrating them using a process,
which is deployed in a process engine. Each process typically consists of a control
flow, a number of service invocations and other activities for data processing,
fault and transaction handling, and so on. Processes are often developed us-
ing modeling languages such as EPC [4,13], BPMN [9], UML Activity Diagram
extensions [8], BPEL [7] or XPDL [15].

Business analysts usually design processes in high abstraction languages, such
as BPMN, EPC, or UML Activity Diagram, and developers implement them
using executable languages, such as BPEL/WSDL. An important issue that
hinders the interoperability and the reusability of existing process models is the
huge divergence of these modeling languages. This issue occurs because there
is no explicit link between two modeling languages at the same or different
abstraction levels. For instance, developers could not re-use or integrate the

Extension
View

Extension
View

Core
meta-model

Meta-
meta-model

Control Flow
View

meta-model

Collaboration
View

meta-model

Information
View

meta-model

Transaction
View

meta-model

M3

New-Concern
View

meta-model

M2

Extension
View

meta-model

Extension
View

Extension
View

Extension
ViewView

M1

M0
Extension

View
Extension

View
Executable

Code

Extension
View

Configuration
files

View-level operations:
- design (view)
- integrate
- generate (code)

Meta-level operations:
- design (meta-model)
- extend

Code-level operations:
- deploy
- code

(a) View-based model-driven framework

ExtensibleElement
NamedElement

-name : String

NameSpace

-uri : String
-prefix : String

View

-ID : String

ServiceProcess

consumer

*

required

*

provider

*

provided

*

element

*

view

*

(b) The core meta-model

Fig. 1. Meta-meta-model and the Core meta-model

whole or part of a process described using BPEL in another process developed
using BPMN or EPC, and vice versa. The most popular solution for this issue is
to define direct transformations between the different process modeling languages
[5,6,11,16]. These approaches, even though they partially solve the problem, pose
a serious limitation regarding extensibility. First, they focus on one concern, the
control flow of the process models, and ignore other crucial concerns, such as
collaborations, data processing, fault handling, and so on. Second, each of these
transformation approaches only provides the integration of two specific kinds
of process models, but provides neither interoperability with process models
realized in other languages than those two nor the reusability of these models.

To overcome this issue and the limitations of transformation-based approaches,
we present a novel integration approach for enhancing the interoperability and
reusability of process-driven SOA models. Our approach exploits the concept of
architectural view during the bottom-up analysis, then maps the process descrip-
tions onto relevant high-level or low-level views. Using a view-based modeling
framework (VbMF), originally introduced in our previous work [12], we can pro-
vide the interoperability and reusability between these views, or in other words,
between different process modeling languages.

In this paper, we first present an overview of VbMF in Section 2. Section 3
describes the model integration approach we propose in this paper in terms of
our view-based reverse engineering tool-chain. Section 4 depicts the empirical
analysis of this approach to exemplify process descriptions in popular modeling
languages, namely, BPEL and WSDL, via a simple but realistic example. Finally,
we compare to related work in Section 5 and conclude.

Activity

Switch

-otherwise : Activity [0..1]

StructuredActivity

-link : Link [*]

Case

-condition : String
-activity : Activity [1]

View

(core)

ControlFlowView

Link

SimpleActivity

SequenceFlow

activity
1..*

activity
1

source 1

outgoing 1

target 1

incoming 1

cases1..*

(a) Control flow view meta-model

PartnerLink

-name : String
-myRole : Role [0..1]
-partnerRole : Role [0..1]

CollaborationView

View

(core)

PartnerLinkType

Service

(core)

Interaction

OperationChannel

RoleInterface

Service

Message

interaction

*

message* role*

partnerLinkType

1
out

*

in

*

interaction *

partnerLink 1

interface

1

message1

channel* operation*

role 1..*

partnerLinkType*

service *

interface 1..*

service *

(b) Collaboration view meta-model

Fig. 2. The control flow view and collaboration view meta-models

2 Overview of View-based Modeling Framework (VbMF)

Figure 1(a) gives an overview of the concepts in VbMF. A view is defined accord-
ing to a corresponding meta-model, which is a (semi-)formalized representation
of a particular process concern. At the heart of VbMF is the Core meta-model
(see Figure 1(b)) from which each view meta-model is derived. Example meta-
models that we have derived from the Core include the following views [12]: Col-
laboration (see Figure 2(b)), Control Flow (see Figure 2(a)) and Information.
Based on the meta-models, we derive particular views. For specific technolo-
gies, for instance, BPEL and WSDL, we provide extension meta-models which
comprise additional details required to depict the specifics of these technologies.
Figure 3 depicts the BPEL-specific extension of the collaboration view in Fig-
ure 2(b). Hence, we can use the distinction of Core meta-model, generic view
meta-models, and extension view meta-models to handle different abstraction
levels, including business-level concerns and technical concerns.

The main task of the Core meta-model (shown in Figure 1(b)) is to provide
integration points for the various meta-models defined as parts of VbMF, as well
as extension points for enabling the extension with views for other concerns or
more specific view meta-models, such as those for specific technologies. Consider
the control flow view meta-model in Figure 2(a) as an example: A control flow
view comprises many activities and control structures. The activities are process
tasks, such as service invocations, or data handling, while control structures
describe the execution order of the activities. The control flow view meta-model
is defined by extending the View and ExtensibleElement meta-classes from Core.

All other view meta-models are essentially defined in the same way: by ex-
tending the model elements provided as integration and extension points in the
Core meta-model. The more specific extension view meta-models are also defined
in the same way: they extend the elements of their root meta-models and of the

Receive

-createInstance : Boolean

PropertyAlias

-messageType : String
-part : String
-query : String

AbstractInteraction
CorrelationSet

-properties : Property

BPELCollaboration
View

CollaborationView

(collaboration)

Correlation

-isInitiate : Boolean

CorrelationSets

Interaction

(collaboration)

Interface

(collaboration)

Property

-type : String

Variable

ReplyInvoke

variable

0..1

correlationSets0..1

correlationSet

1..*
correlation

*

propertyAlias
*

variable

*

correlation
0..1

variable

0..1

property

1

interface

1

in
0..1

out
0..1

property

*

correlationSet1..*

Fig. 3. BPEL extension of the collaboration view meta-model

Framework
meta-models

High-level
Views

View-based
intepreters

Low-level
Views

Process descriptions
(BPEL,WSDL,etc.)

High-level
Languages

Low-level
Languages

d e s c r ib e d in

defines

"virtual"
integration of
high-level and

low-level
representations

in various
languages

"v irtu a lly " re fin e s

interpretes

produces

produces

conforms

conforms

corresponds to

corresponds to

described in

refin e s in to

Fig. 4. Integration of various modeling languages using view-based reverse engineering

Core meta-model. For instance, a BPEL-specific control flow meta-model with
extra elements, such as while, wait, terminate, etc., can be defined by extending
the elements from Figures 1(b) and 2(a).

In our implementation of these concepts, we exploit the model-driven soft-
ware development (MDSD) paradigm [14] to separate the platform-neutral views
from the platform-specific views. Platform-specific models or executable code, for
instance, Java code, or BPEL and WSDL descriptions, can be generated from
the views by using model-to-code transformations. Our prototype is realized
using openArchitectureWare (oAW) [10], a model-driven software development
tool, and the Eclipse Modeling Framework [3]. The tools allow stake-holders of
a process to only view a specific perspective, by examining a single view, or to
analyze any combination of views (i.e., to produce an integrated view).

3 View-Based Model Integration

In this section, we present a view-based reverse engineering approach for ad-
dressing the divergence issue of modeling languages and for overcoming the lim-

itations of transformation-based solutions. The ultimate goal of this approach is
to map the process descriptions onto high-level or low-level views, appropriate
for different stakeholders (see Figure 4). To demonstrate our approach, we have
exemplified it using the combination of BPEL and WSDL, which are possibly
the most popular process and service modeling descriptions used by numerous
companies today. The same approach can be taken for any other process-driven
SOA technologies. In addition, due to space limitation, we only present the ex-
traction and the integration of two basic views in VbMF: the control flow view
and the collaboration view. Other views, for instance, the Information View, the
Transaction View, etc., can be integrated using the same approach.

The tool-chain consists of a number of view-based interpreters, such as control

flow interpreter, information view interpreter, collaboration view interpreter, and
so on. Each interpreter is responsible for extracting one view from the process
descriptions. Therefore, an interpreter for a certain view must be defined based
on the meta-model which that view conforms to. For instance, the control flow

view consists of elements, such as Activity, Flow, Sequence, Switch, etc. (see
also Figure 2(a)). To extract the control flow view from process descriptions,
the interpreter walks through the input descriptions to pick only these elements
and ignores others. As the modeling framework grows with additional views, the
reverse engineering tool-chain can be scaled to fit to the growing framework. To
add a new view to the framework, an adequate meta-model of this view has to
be specified using extension mechanisms [12]. Next, we develop an interpreter
based on the new meta-model specification and hook the it into the tool-chain.

4 Empirical Analysis of Model Integration

In this section, we exemplify our approach for the combination of the process
and service modeling languages BPEL and WSDL. However, the concepts are
not specific for BPEL/WSDL, but applicable in the same way for other process-
driven modeling languages.

To demonstrate the realization of aforementioned concepts, we present a sim-
ple but realistic case study, namely, a Shopping process, which depicts a typical
e-commerce scenario. The Shopping process is represented in BPEL and WSDL.
The process starts when the customer’s purchase order arrives together with
their billing information (e.g., credit card). Then, the process invokes a Bank-

ing service to validate the customer’s credit card through the VerifyCreditCard

activity. If the validation is successful, the customer will obtain the purchased
items which is shipped by a delegated Shipping service. After that, the process
will send the order invoice to the customer. Otherwise, the order will be canceled
as a negative confirmation is received from the Banking service. An excerpt from
the BPEL/WSDL code is shown on the left hand side of Figures 5 and 6.

4.1 Control Flow View Mapping

According to the specification of the control flow view meta-model (see Fig-
ure 2(a)), a control flow view consists of elements which represent the control

<process name="Shopping">
<partnerLinks>

<partnerLink name="Seller" partnerLinkType="Seller" myRole="Seller" />
<partnerLink name="Approver" partnerRole="Approver" partnerLinkType="Approver" />
<partnerLink name="Payer" partnerRole="Payer" partnerLinkType="Payer" />
<partnerLink name="Shipping" partnerRole="Shipper" partnerLinkType="Shipping"/>

</partnerLinks>
<variables>

<variable name="po_in" messageType="PurchaseOrder" />
<variable name="po_out" messageType="OrderResponse" />
<variable name="v_in" messageType="VerifyRequest" />
<variable name="v_out" messageType="VerifyResponse" />
<variable name="c_in" messageType="ChargeRequest" />
<variable name="c_out" messageType="ChargeResponse" />
<variable name="s_in" messageType="ShippingRequest" />
<variable name="s_out" messageType="ShippingResponse" />

</variables>
<sequence>

<receive name="ReceiveOrder" variable="po_in"
partnerLink="Seller" portType="Shopping"
operation="doShopping" createInstance="yes" />

<invoke name="VerifyCreditCard" operation="verifyCreditCard"
inputVariable="v_in" outputVariable="v_out"
partnerLink="Approver" portType="CreditCard" />

<switch>
<case condition="/VerifyRequest/status" == "OK">

<reply name="CancelOrder" variable="po_out"
operation="doShopping" partnerLink="Seller"
portType="Shopping" />

</case>
<otherwise>

<sequence>
<flow>

<invoke name="DoShipping" operation="doShipping"
inputVariable="s_in" outputVariable="s_out"
partnerLink="ShippingPL" portType="Shipping" />

<invoke name="DoCharging" operation="chargeCreditCard"
inputVariable="c_in" outputVariable="c_out"
partnerLink="Payer" portType="CreditCard" />

</flow>
<reply name="SendInvoice" operation="doShopping"

variable="po_out"
partnerLink="Seller" portType="Shopping" />

</sequence>
</otherwise>

</switch>
</sequence>

</process>

Fig. 5. The mapping of the Shopping process descriptions in BPEL to the collaboration
view (top-right) and the control flow view (bottom-right).

flow of a business process. The hierarchy and the execution order of the con-
trol flow are defined using basic structured activities. These structured activities
include: sequence, for defining a sequential execution order; flow, for the concur-
rent executions; and switch-case-otherwise, for conditional branches. Structured
activities can be nested and combined in arbitrary manners to represent various
complex control flows in BPEL processes. In addition, BPEL also has primitive
activities, such as invoke, an service invocation; receive, waiting for a message
from partners; reply, sending back a response to a certain partner; assign, as-
signing values to BPEL variables.

The interpreter walks through the process description in BPEL and col-
lects the information of atomic and structured activities. Then, it creates the
correspondent elements in the view and assigns relevant values (e.g. the name

attribute) to their attributes. We describe in Table 1 the mapping specifica-
tion between BPEL and the control flow view elements/attributes. The BPEL
mapping is illustrated in Figure 5.

Table 1. The basic mapping from BPEL onto the control flow view

BPEL element Control flow view element

invoke, receive, reply, assign controlflow::SimpleActivity
name=”...” setName()

sequence name=”...” controlflow::Sequence/setName()

flow name=”...” controlflow::Flow/setName()

switch name=”...” controlflow::Switch/setName()

case controlflow::Case
name=”...” setName()
condition=”...” setCondition()

otherwise name=”...” controlflow::Otherwise/setName()

Table 2. The basic mapping from WSDL onto collaboration view elements

WSDL element Collaboration view element

definition core::Service

message name=”...” collaboration::Message/setName()

portType name=”...” collaboration::Interface/setName()

operation name=”...” collaboration::Operation/setName()

input,output collaboration::Channel
name=”...” message=”...” setName(), setMessage()

plnk::partnerLinkType name=”...” collaboration::PartnerLinkType/setName()

plnk::Role name=”...” collaboration::Role/setName()

service name=”...” core::Service.setName()

4.2 Collaboration View Mapping

The collaboration view interpreter is realized using the same approach as the
control flow interpreter. However, the collaboration view comprises not only the
elements from BPEL but also from WSDL. Hence, first of all, the interpreter
has to collect all service interface, message, role, partnerLinkType descriptions
from WSDL. Then, the interpreter creates relevant elements in the collabora-
tion view according the mapping rules given in Table 2. Figure 6 depicts the
mapping of the Shopping process in WSDL to corresponding elements in the
collaboration view. Next, the interpreter walks through the BPEL code to ex-
tract collaborative elements in a similar manner. The basic activities, namely,
invoke, receive, and reply, appear on the collaboration view with the same name
as in the control flow view. However, these activities contain additional collab-
orative attributes as depicted in Table 3. The BPEL mapping is illustrated in
Figure 5. Besides generating the collaboration view’s elements, the interpreter
uses the information collected in the former step to establish necessary rela-
tionships between these elements. For instance, the relationship between col-

laboration::Interaction and collaboration::PartnerLink elements is derived from
the association between the communication activities (e.g.,invoke, receive, reply)
and the partnerLink, or the relationship between collaboration::PartnerLink and
collaboration::PartnerLinkType is derived from the association among the part-

<definitions>
<message name="PurchaseOrder" />
<message name="OrderResponse" />

<portType name="Shopping">
<operation name="doShopping">

<input message="PurchaseOrder" />
<output message="OrderResponse" />

</operation>
</portType>

<partnerLinkType name="Seller">
<role name="Seller">

<portType name="Shopping" />
</role>

</partnerLinkType>
<partnerLinkType name="Approver">

<role name="Approver">
<portType name="CreditCard" />

</role>
</partnerLinkType>
<partnerLinkType name="Payer">

<role name="Payer">
<portType name="CreditCard" />

</role>
</partnerLinkType>
<partnerLinkType name="Shipping">

<role name="ShippingPartner">
<portType name="Shipping" />

</role>
</partnerLinkType>

</definitions>

Fig. 6. The mapping of the Shopping process descriptions in WSDL to the collabora-
tion view.

nerLinkType elements in WSDL and the partnerLink elements in BPEL, and so
on.

4.3 BPEL-extension Collaboration View Mapping

According to the collaboration view meta-model, we map the Shopping process
onto a high abstraction view as shown in Figures 6 and 5. This view is suitable
for communication with business analysts, but it does not provide appropriate
information for IT experts. As we mentioned in Section 2, the collaboration view
can be refined into a lower abstraction view, namely, the BPELCollaboration
View (see Figure 3). To demonstrate the concept of view refinement, we present
the mapping of the Shopping process in BPEL to the corresponding BPEL-
specific collaboration view in Figure 7 according to the specification in Table 3.
For the sake of readability, we omit the elements inherited from the collaboration
view and depict an excerpt of the BPEL-extension collaboration view together
with additional features.

4.4 Discussion

In the previous empirical analysis, we illustrated the mapping of process descrip-
tions onto high-level or low-level views. The high-level views in our approach are
platform-independent models designed to capture abstract features in a process.

<process name="Shopping">
 ...

<correlationSets>
<correlationSet name="CorPO" properties="CustomerName" />
<correlationSet name="CorCC" properties="CreditCardNo" />

</bp:correlationSets>

<property name="CustomerName" type="xsd:string" />
<property name="CreditCard" type="xsd:string" />

<propertyAlias propertyName="CustomerName" messageType="Customer"
 part="fullname" query="/Customer/fullname" />

<propertyAlias propertyName="CreditCard" messageType="CreditCard"
 part="CCNo" query="/CreditCard/CCNo" />

<sequence>

<invoke name="VerifyCreditCard" inputVariable="verify_input"
outputVariable="verify_output" partnerLink="Approver"
portType="bank:CreditCard" operation="verifyCreditCard">
<correlations>

<correlation set="CorPurchaseOrder" initiate="yes"
pattern="out" />

</correlations>
</invoke>

</sequence>

</process>

Fig. 7. The mapping of the Shopping process descriptions in BPEL to the BPEL
collaboration view

Corresponding to these views are high-level modeling languages, such as
EPC, BPMN or UML Activity Diagram. In this paper, we illustrated a mapping
of such models into our framework from high-level view models, which reflect
the concepts in the low-level models rather closely. This has a number of ad-
vantages. Firstly, it uses one kind of modeling approach for all types of views.
Secondly, it avoids any semantic mismatch or transformation between modeling
concepts. But, on the other hand, this approach has the disadvantage that ex-
isting modeling language code (say realized in EPCs, BPMN or UML Activity
Diagrams) would have to be mapped to our high-level models, which could be a
considerable effort for huge existing process repositories. But in general this is
possible and can even be largely automated, because our control flow view repre-
sents five basics patterns that exist in any modeling language; the collaboration
view describes generic interactions that typically occur between a process and
its partners [12]. Hence, an adequate interpreter for a certain language can distill
these views from the process descriptions in that language using our approach.
Alternatively, our approach can of course also be extended with a respective new
view model, such as an EPC or BPMN control flow view.

A high-level view can be refined into a low-level view which captures the
specifics of a particular technology. For example, the collaboration view is ex-
tended and refined to the BPEL collaboration view that embodies several BPEL-
specific features. Using the same approach, we can define appropriate meta-
models and interpreters for pulling out corresponding views from process im-
plementations in low-level, executable languages such as BPEL. Using VbMF
the stakeholders can work on a particular view or can examine any combination
of several views instead of manipulating various kinds of process descriptions
or digging into the implementation code in executable languages. Our approach
can help the stakeholders to quickly understand and grasp the information in
(different) modeling languages as well as re-use adequate views.

5 Related Work

In the software engineering area, the concept of reverse engineering is the process
of analyzing a system to identify the system’s components and their relationships

and create representations of the system in another form or at a higher level of

abstraction [1, 2]. We devised a novel view-based reverse engineering approach
that supports extracting relevant abstraction levels of process representations in
terms of architectural views. Various modeling languages can be integrated into
VbMF and manipulated or re-used in other process models.

Existing modeling languages provide high-level abstractions, such as EPC
[4,13], BPMN [9], or UML Activity Diagram extensions [8], or low-level and ex-
ecutable descriptions, such as BPEL [7], or XPDL [15]. There are several efforts
to transform process models described in one language into models represented
in another language. For instance, Mendling et al. [6] present the mapping of
BPEL to EPCs; Ziemann et al. [16] report on an approach to model BPEL
processes using EPC-based models; Recker et al. [11] translate between BPMN
and BPEL; Mendling et al. [5] discuss X-to-BPEL and BPEL-to-Y transforma-
tions. These transformation-based approaches mostly focus on one concern of
the process models, namely, the control flow. There is no support for handling
or integrating other process concerns, such as service interactions, data process-
ing, or transaction handling. Moreover, each of these approaches only provide
the integration of a certain pair of process modeling languages, but does not
offer the interoperability of process models in other languages, or the reusability
of these models to develop other processes.

Zou et al. [17] propose an approach for extracting business logic, in term
of workflows, from existing e-commerce applications. The analyzing process is
guided by documented workflows to identify the business logic. Then, the busi-
ness logic is captured in terms of the control flows using the concept of process
algebra. This approach aims at providing high-level representations of processes
and maintaining the relationships among different abstraction levels to quickly
re-act to changes in business requirements. This approach only focuses on con-
trol flow and does not target other concerns. In addition, there is no support for
the interoperability and the re-usability of different software components.

6 Conclusion

Interoperability and reusability suffer from the heterogeneous nature of the par-
ticipants of a software system. SOA partially reconciles this heterogeneity by
defining standard service interfaces as well as messaging mechanisms for com-
municating between services. Process-driven SOAs provide an efficient way of
coordinating various services in terms of processes to accomplish a specific busi-
ness goal. However, the huge divergence of process modeling languages raises a
critical issue that deteriorates the interoperability and the reusability of software
components or systems. Our approach, presented in this paper, exploits the con-
cept of architectural views and a reverse engineering tool-chain to map high-level

or low-level descriptions of processes into appropriate views. The resulting views
are integrated into the view-based modeling framework and can be manipulated
or re-used to develop other processes.

References

1. T. J. Biggerstaff. Design recovery for maintenance and reuse. IEEE Computer,
22(7):36–49, 1989.

2. E. J. Chikofsky and J. H. I. Cross. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, 1990.

3. Eclipse. Eclipse Modeling Framework. http://www.eclipse.org/emf/, 2006.
4. E. Kindler. On the semantics of EPCs: A framework for resolving the vicious circle.

In Business Process Management, pages 82–97, 2004.
5. J. Mendling, K. B. Lassen, and U. Zdun. Transformation strategies between block-

oriented and graph-oriented process modelling languages. Technical Report JM-
200510 -10, WU Vienna, 2005.

6. J. Mendling and J. Ziemann. Transformation of BPEL processes to EPCs. In Proc.
of the 4th GI Workshop on Event-Driven Process Chains (EPK 2005), volume 167,
pages 41–53, Dec 2005.

7. OASIS. Business Process Execution Language (WSBPEL) 2.0. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, May 2007.

8. OMG. Unified Modelling Language 2.0 (UML). http://www.uml.org, 2004.
9. OMG. Business Process Modeling Notation.

http://www.bpmn.org/Documents/OMG-02-01.pdf, Feb 2006.
10. openArchitectureWare.org. http://www.openarchitectureware.org, Aug 2002.
11. J. Recker and J. Mendling. On the translation between BPMN and BPEL: Con-

ceptual mismatch between process modeling languages. In Eleventh Int. Workshop
on Exploring Modeling Methods in Systems Analysis and Design (EMMSAD’06),
pages 521–532, Jun 2006.

12. H. Tran, U. Zdun, and S. Dustdar. View-based and Model-driven Approach for
Reducing the Development Complexity in Process-Driven SOA. In Intl. Working
Conf. on Business Process and Services Computing (BPSC’07), volume 116 of
Lecture Notes in Informatics, pages 105–124, sep 2007.

13. W. van der Aalst. On the verification of interorganizational workflows. Computing
Science Reports 97/16, Eindhoven University of Technology, 1997.

14. M. Völter and T. Stahl. Model-Driven Software Development: Technology, Engi-
neering, Management. Wiley, 2006.

15. WfMC. XML Process Definition Language (XPDL).
http://www.wfmc.org/standards/XPDL.htm, Apr 2005.

16. J. Ziemann and J. Mendling. EPC-based modelling of BPEL processes: a pragmatic
transformation approach. In Proc. of the 7th Int. Conference “Modern Informa-
tion Technology in the Innovation Processes of the Industrial Enterprises” (MITIP
2005), 2005.

17. Y. Zou and M. Hung. An approach for extracting workflows from e-commerce
applications. In ICPC ’06: Proc. of the 14th IEEE Int. Conf. on Program Compre-
hension (ICPC’06), pages 127–136, Washington, DC, USA, 2006. IEEE Computer
Society.

Table 3. The basic mapping from BPEL description onto the collaboration view

BPEL Collaboration view BPELCollaboration view

element element element

invoke collaboration::Interaction bpel::Invoke
name=”...” setName() setName()
partnerLink=”...” setPartnerLink() setPartnerLink()
portType=”...” setInterface() setInterface()
operation=”...” setOperation()
inputVariable=”...” setInput()
outputVariable=”...” setOutput()
correlation set=”...” createCorrelation()

receive/reply collaboration::Interaction bpel::Receive/bpel::Reply
name=”...” setName() setName()
partnerLink=”...” setPartnerLink() setPartnerLink()
portType=”...” setInterface() setInterface()
operation=”...” setOperation()
variable=”...” setVariable()
createInstance=”yes” setCreateInstance(true) setCreateInstance(true)
correlation set=”...” createCorrelation()

partnerLink collaboration::PartnerLink (inherits from parent –
name=”...” setName() the collaboration view)
partnerLinkType=”...” setPartnerLinkType()
myRole=”...” setMyRole()
partnerRole=”...” setPartnerRole()

correlationSets bpel::CorrelationSets

correlationSet bpel::CorrelationSet
name=”...” setName()
properties=”...” setProperty()

property bpel::Property
name=”...” setName()
type=”...” setType()

propertyAlias bpel::PropertyAlias
propertyName=”...” setProperty()
messageType=”...” setMessageType()
part=”...” setPart()
query=”...” setQuery()

