
On the Transformation of
Control Flow between
Block-Oriented and
Graph-Oriented Process
Modeling Languages

Jan Mendling*
Institute of Information Systems and New Media
Vienna University of Economics and Business Administration
Augasse 2-6, A-1090 Wien, Austria
E-mail: jan.mendling@wu-wien.ac.at
*Corresponding author

Kristian Bisgaard Lassen
Department of Computer Science,
University of Aarhus,
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark
E-mail: k.b.lassen@daimi.au.dk

Uwe Zdun
Distributed Systems Group, Information Systems Institute
Vienna University of Technology
Argentinierstrasse 8/184-1, A-1040 Wien, Austria
E-mail: zdun@acm.org

Abstract: Much recent research work discusses the transformation between differ-
ent process modeling languages. This work, however, is mainly focussed on specific
process modeling languages, and thus the general reusability of the applied transfor-
mation concepts is rather limited. In this article, we aim to abstract from concrete
transformations by distinguishing two major paradigms for representing control flow in
process modeling languages: block-oriented languages (such as BPEL and BPML) and
graph-oriented languages (such as BPMN, EPCs, and YAWL). The contribution of this
article are generic strategies for transforming from block-oriented process languages to
graph-oriented languages, and vice versa.

Keywords: business process management; model transformation; business process
modeling languages; workflow; BPEL

Reference to this article should be made as follows: Mendling, J., Lassen, K.B.,
Zdun, U. (2006) ‘On the Transformation of Control Flow between Block-Oriented and
Graph-Oriented Process Modeling Languages’, Int. J. Business Process Integration
and Management, Vol. X, No. X, pp.XX–XX.

Biographical notes: Jan Mendling is a PhD student at the Institute of Information
Systems and New Media at the Vienna University of Economics and Business Ad-
ministration. His research interests include business process management, enterprise
modeling, and workflow standardization. He is co-author of the EPC Markup Lan-
guage (EPML) and co-organizer of the XML4BPM workshop series.
Kristian Bisgaard Lassen is a PhD student in the Colored Petri nets group at the Com-
puter Science Institute at the University of Aarhus, Denmark. The subject of his PhD
is model driven software development. His research interests include workflow model-
ing languages (Coloured Petri nets, BPEL, YAWL) and model state visualization.
Uwe Zdun is currently working as an assistant professor in the Distributed Systems
Group at the Vienna University of Technology, Vienna, Austria. Uwe received his
doctoral degree from the University of Essen in 2002. His research interests include
software patterns, software architecture, SOA, distributed systems, object-orientation,
and Web engineering. Uwe has published in numerous conferences and journals, and
is co-author of the book “Remoting Patterns” published by J. Wiley & Sons. He has
co-organized a number of workshops at conferences such as EuroPLoP, CHI, ECOOP,
and OOPSLA, and serves as a program chair for EuroPLoP 2006.

1 Introduction

Business process modeling (BPM) languages play an
important role not only for the specification of workflows
but also for the documentation of business requirements.
Even after more than ten years of standardization efforts
(Hollingsworth, 2004), the primary BPM languages
are still heterogeneous in syntax and semantics. This
problem mainly relates to two issues: Firstly, various
BPM language concepts that need to be specified in
terms of control flow (van der Aalst et al., 2003) and
data flow (Russell et al., 2005) have been identified,
and most BPM languages introduce a different subset
of these (see (Mendling et al., 2004) for a comparison of
BPM concepts). Secondly, the paradigm for representing
control flow used in the BPM languages is another source
of heterogeneity. This issue has not been discussed in
full depth so far, but it is of special importance when
transformations between BPM languages need to be
implemented. In essence, two control flow paradigms can
be distinguished, graph- and block-oriented:

• Graph-oriented BPM languages specify control flow
via arcs that represent the temporal and logical de-
pendencies between nodes. A graph-oriented language
may include different types of nodes. These node
types may be different from language to language.
Workflow nets (van der Aalst, 1997) distinguish places
and transitions similar to Petri nets. EPCs (Keller
et al., 1992) include function, event, and connector
node types. YAWL (van der Aalst and ter Hofstede,
2005) uses nodes that represent tasks and conditions.
Similar to XPDL (Workflow Management Coalition,
2002), these tasks may specify join and split rules.

• Block-oriented BPM languages define control flow by
nesting control primitives used to represent concur-
rency, alternatives, and loops. XLANG (Thatte,
2001) is an example of a pure block-oriented lan-
guage. BPML (Arkin, 2002) and BPEL (Andrews
et al., 2003) are also block-oriented languages but
they also include some graph-oriented concepts (i.e.
links). In BPEL, the control primitives are called
structured activities. Due to the widespread adop-
tion of BPEL as a standard, we will stick to BPEL
as an example of a block-oriented language. Please
note that the concepts presented later are also appli-
cable for other block-oriented languages, but as our
definitions of block-oriented control flow are rather
BPEL-specific, some effort is needed to customize our
concepts to other block-oriented languages.

Transformations between block-oriented languages and
graph-oriented languages are useful or needed in a number
of scenarios. Many commercial tools support the import
and export in other formats and languages, meaning that
transformations in both directions are implemented by im-

Copyright c© 200x Inderscience Enterprises Ltd.

port and export filters. For instance, many graph-oriented
tools are recently enhanced to export BPEL in order to
support the standard for interoperability and commercial
reasons. Transforming BPEL to Petri nets is for instance
done for the purpose of verification (Hinz et al., 2005).
BPEL does not have formal semantics and can therefore
not be verified. By defining a transformation semantics
for BPEL in terms of a mapping to Petri nets, it is possi-
ble to investigate behavioral properties, such as dead-locks
and live-locks. BPEL process definitions are also trans-
formed to EPCs with the goal to communicate the process
behavior e.g. to business analysts in a more visual rep-
resentation (Mendling and Ziemann, 2005). In the direc-
tion from EPCs to BPEL, model-driven development ap-
proaches start from a visual graph-oriented BPM language
such as UML activity diagrams to generate executable
BPEL models (Gardner, 2003). These are only some ex-
ample scenarios, where BPM transformations are needed.
The contribution of this article is to abstract from par-
ticular graph-oriented or block-oriented control flow rep-
resentations, to enable a generic discussion of transforma-
tion strategies between both. The presented transforma-
tion strategies are independent from a certain application
scenario and can be used in any setting where transforma-
tions between graph-oriented and block-oriented languages
are needed.

The rest of the paper article is structured as follows. Sec-
tion defines the abstractions that are used throughout this
article. In particular, we define an abstraction of graph-
oriented BPM languages called Process Graph that shares
most of its concepts with EPCs and YAWL. Block-oriented
languages are abstracted by a language called BPEL Con-
trol Flow. This language is – as mentioned before – an
abstraction of BPEL concepts, but can be mapped to the
concepts of other block-oriented languages such as BPML.
In Section 2.4 we discuss strategies for transforming BPEL
Control Flow to Process Graph, and in Section 3.3 the op-
posite direction. The strategies are specified using pseudo-
code algorithms and their prerequisites, advantages, and
shortcomings are discussed. Section 4.5 discusses related
work, before Section 4.5 concludes the article.

2 Process Graphs and BPEL Control Flow

2.1 Introductory Example

To discuss transformations between graph-oriented and
block-oriented BPM languages in a general way, we have to
abstract from specific languages. Before that, we illustrate
some features of process graphs and BPEL control flow.

The left part of Figure 1 shows a process graph in BPMN
notation (BPMI and OMG, 2006). As we are interested in
syntax transformations, we give the semantics of process
graphs only in an informal manner. A process graph has
at least one start event and can have multiple end events.
Multiple start events represent mutually exclusive, alterna-

2

C D E F G

H I

Pick

A B

Switch

empty

Flow

C

Flow

E F

D

While

G

Flow

H I

termi-
nate

termi-
nate

SequenceSequence

Pick

Switch

Flow Flow While

Flow

A B

Figure 1: Process graph and BPEL control flow

tive start conditions. End events have explicit termination
semantics. This means that when an end event is reached,
the complete process is terminated. Connectors represent
split and join rules of type OR, XOR, or AND, as they
are specified for YAWL (van der Aalst and ter Hofstede,
2005) or EPCs (Keller et al., 1992). All of these elements
are connected via arcs which may have an optional guard.
Guards are logical expressions that can evaluate to true
or false. If a guard of an arc from a split node with type
OR or XOR yields false, the target branch of the arc is
not executed. If true, execution continues with the target
function. After an XOR split, the logical expressions of
guards on subsequent arcs must be mutually exclusive.

The right part of Figure 1 gives a BPEL control flow
with similar control flow semantics as the process graph.
In the example, so-called structured activities are used
whenever possible. There are structured activities to de-
fine alternative start conditions (pick), parallel execution
(flow), sequential execution (sequence), conditional repe-
tition (while), and alternative branches (switch). Struc-
tured activities can be nested for the definition of complex
control flow behavior. Basic activities represent atomic
elements of work. There are special basic activities to rep-
resent that nothing is done (empty) or that the BPEL con-
trol flow is terminated (terminate). Within a flow activity,
complex synchronization conditions can be specified via
so-called links. Each link can have a transition condition,
and each activity that is a target of links can include a
join condition of the type OR, XOR, or AND. For BPEL
control flow, we adopt the semantics defined in the BPEL
specification (Andrews et al., 2003).

2.2 Definition of Process Graphs

To provide a precise description of the transformation
strategies, we formalize the syntax of process graphs and
those aspects of BPEL that are relevant for a transforma-
tion of control flow. We define process graphs to be close
to EPCs and YAWL using an EPC-like notation. The re-
spective syntax elements provide the core of graph-based
business process modelling languages. Furthermore, AND
and XOR connectors can easily be mapped to Petri nets,
XPDL, or UML activity diagrams.

Notation 1 (Predecessor and Successor Nodes). Let
N be a set of nodes and A ⊆ N ×N a binary relation over
N defining the arcs. For each node n ∈ N , we define the
set of predecessor nodes •n = {x ∈ N |(x, n) ∈ A}, and
the set of successor nodes n• = {x ∈ N |(n, x) ∈ A}.
Definition 1 (Process Graph PG). A process graph
PG = (S, E, F, C, l, A, g) consists of four pairwise disjoint
sets S, E, F, C, a mapping l : C → {AND, OR, XOR}, a
binary relation A ⊆ (S ∪ F ∪ C) × (E ∪ F ∪ C), and a
mapping guard : A → expr such that:

– S denotes the set of start events. |S| ≥ 1 and ∀s ∈ S :
|s•| = 1 ∧ |•s| = 0.

– E denotes the set of end events. |E| ≥ 1 and ∀e ∈ E :
|•e| = 1 ∧ |e•| = 0.

– F denotes the set of functions. ∀f ∈ F : |•f | = 1 ∧
|f•| = 1.

– C denotes the set of connectors. ∀c ∈ C : |•c| =
1 ∧ |c•| > 1 ∨ |•c| > 1 ∧ |c•| = 1

– The mapping l specifies the type of a connector c ∈ C
as AND, OR, or XOR.

– A defines the flow as a simple and directed graph.
An element of A is called arc. Being a simple graph
implies that ∀n ∈ (E∪F ∪C) : (n, n) /∈ A (no reflexive
arcs) and that ∀x, y ∈ (E ∪ F ∪ C)} : |{(x, y)|(x, y) ∈
A}| = 1 (no multiple arcs).

– The mapping guard specifies a guard for an arc a ∈ A.
expr is a non-terminal symbol to represent a logical
expression that defines the guard condition. If and
only if this expression yields true, control is propa-
gated to the node following after the guard. Guards
of arcs after XOR connector nodes have to be mu-
tually exclusive. Guards are defined on A, however
it is only arcs (c,n), where c ∈ C, l(c) 6= AND and
n ∈ E ∪ F ∪ C, that can be expressed as any logical
expression. All other guard always yields true; e.g.
a guard from an AND-split can never yield false and
each function in a sequence is always executed.

Definition 2 (Transitive Closure). Let PG =
(S,E, F,C, l, A, g) be defined as in Definition 1. Then A∗
is the transitive closure of A. That is, if (n1, n2) ∈ A∗
there is a path from n1 to n2 in the process via some arcs
of A.

2.3 Definition of BPEL Control Flow

Definition 3 (BPEL Control Flow). A
BPEL Control Flow BCF is a tuple BCF =
(Seq, F low, Switch,While, P ick, Scope, Basic, Empty,
Terminate, Link, de, jc, tc). BCF consists of pairwise dis-
joint sets Seq, F low, Switch, While, P ick, Scope, Basic,
Empty, Terminate. The set Str = Seq∪Flow∪Switch∪
While∪Pick∪Scope is called structured activities, the set
Bas = Basic ∪ Empty ∪ Terminate is called basic activi-
ties, and the set Act = Str ∪Bas activities. Furthermore,
BCF consists of a binary relation Link ⊆ Act × Act, a
mapping de : S → P(A) \ ∅, a mapping jc : A → expr, and
a mapping tc : Link → expr, such that

3

– Seq defines the set of BPEL sequence activities.
– Flow defines the set of BPEL flow activities.
– Switch defines the set of BPEL switch activities.
– While defines the set of BPEL while activities.
– Pick defines the set of BPEL pick activities.
– Scope defines the set of BPEL scopes.
– Basic defines the set of BPEL basic activities without

terminate and empty activities. As we are only inter-
ested in control flow, the distinction of various basic
activities can be neglected here.

– Empty defines the set of BPEL empty activities.
– Terminate defines the set of BPEL terminate activi-

ties.
– Link defines a directed graph of BPEL links. These

need not to be coherent, but acyclic, and not be con-
nected across the borders of a while activity.

– The mapping de denotes a decomposition relation
from structured activities to set of nested activities
modelled as the power set P(A). de is a tree, i.e. there
is no recursive decomposition.

– The mapping jc defines the join condition of activities.
– The mapping tc defines transition conditions of links.

Definition 4 (Join condition). The join condition, jc,
on activities is defined as a jc : A → expr using op-
erations such as ∧, ∨ and Y. For an activity x, where
•x = {y1, . . . , yn} including its predecessor in a structured
activity, we use the shorthand AND, OR and XOR for the
boolean expressions

jc(x) = tc(y1, x) ∧ · · · ∧ tc(yn, x) (AND)

jc(x) = tc(y1, x) ∨ · · · ∨ tc(yn, x) (OR)

jc(x) = tc(y1, x) Y · · · Y tc(yn, x) (XOR)

Definition 5 (Subtree Fragment). Let Struct ⊆ Act×
Act be relation with (a1, a2) ∈ Struct if and only if a2 ∈
de(a1). Struct∗ is the transitive closure of Struct. This
implies that a2 is nested in the subtree fragment of a1.

Notice that Definition 2.3 do not describe event-, fault-,
and compensation handlers. This is because our strategies
do not take these into consideration. Also, we do not allow
links to cross scope boundaries.

For the purpose of discussing control flow transforma-
tions, other BPEL elements than those included in the def-
inition can be neglected. For details on BPEL semantics
refer to (Andrews et al., 2003). Note that e.g. BPML has
similar syntax elements with comparable semantics (Arkin,
2002). Accordingly, the strategies discussed in the follow-
ing section can also be applied to define transformations
between BPML and process graphs.

2.4 Structural Properties of Process
Graphs and BPEL Control Flow

Various transformation choices are bound to certain struc-
tural properties of the input model. A process graph can
be structured or unstructured and acyclic or cyclic. We

define a process graph to be structured by the help of re-
duction rules. They provide not only a formalization of
structuredness but also a means to define a transforma-
tion strategy from process graphs to BPEL control flow.
Details on this will be explained in Section 3.3.

Definition 6 (Structured Process Graph). A process
graph PG is structured if and only if it can be reduced to
a single node by the following reduction rules, otherwise it
is unstructured. All the reduction rules describe a certain
component that is part of the process graph and then how
to replace it by a single function.

1. Sequence reduction: A sequence is a set of nodes
f1, . . . , fn ∈ F such that (f1, f2), . . . , (fn−1, fn) ∈
A. PG is reduced by removing the sequence and
adding a function fC representing the sequence: F :=
(F ∪ {fC}) \ {f1, ..., fn}, A := (A ∪ {(x, fC) | x ∈
•f1} ∪ {(fC , x) | x ∈ fN•}) \ {(f1, f2), ..., (fn−1, fn)}.

2. Connector pair reduction: A connecter pair is com-
posed of two connectors c1, c2 ∈ C and functions
c1• ⊆ F such that |•c1| = 1 (split), |c2•| = 1 (join),
l(c1) = l(c2) and c1• = •c2. Depending on the image
of c1 and c2 under l we denote the blocks in the follow-
ing ways. We call the connector pair an AND-block if
l(c1) = and, OR-block if l(c1) = or and XOR-block if
l(c1) = xor. PG is reduced by adding a function fC

representing the connector pair: F := (F ∪{fC})\c1•,
A := (A ∪ {(x, fC) |x ∈ •c1} ∪ {(fC , x)|x ∈ c2•}) \
({(x, c1)|x ∈ •c1} ∪ {(c1, x)|x ∈ c1•} ∪ {(x, c2)|x ∈
•c2} ∪ {(c2, x)|x ∈ c2•}) and C := C \ {c1, c2}.

3. XOR-loop reduction: An XOR-loop is composed of
two connectors c1, c2 ∈ C and functions c1•∩•c2, •c1∩
c2• ⊆ F such that |c1•| = 1 (join), |•c2| = 1 (split)
and either (1) c1• = {c2} and •c1 ∩ c2• 6= ∅, (2) c1• =
•c2 and c2 ∈ •c1, (3) c1• = •c2 and •c1 ∩ c2• 6= ∅
or (4) c1• = {c2} and c2 ∈ •c1. We will refer to
an XOR-loop of type (1) as a while-do loop, (2) as a
repeat-until loop, (3) as a mixed loop and (4) as the
empty loop. PG is reduced by removing the XOR-
loop and adding a function fC representing the XOR-
loop: F := (F ∪ {fC}) \ ((c1 • ∩ • c2) ∪ (•c1 ∩ c2•)),
A := (A∪{(x, fC)|x ∈ •c1 \ c2•}∪{(fC , x)|x ∈ c2 •\•
c1})\({(x, c1)|x ∈ •c1}∪{(c1, x)|x ∈ c1•}∪{(x, c2)|x ∈
•c2} ∪ {(c2, x)|x ∈ c2•}) and C := C \ {c1, c2}.

4. Start-block: A start-block is composed of an XOR
connector c and the set of start events S such that
S = •c. PG is reduced by replacing the start-block
by a function fC : S := ∅, F := F ∪ {fC}, A := (A ∪
{(fC , x)|x ∈ c•}) \ ({(x, c)|x ∈ •c} ∪ {(c, x)|x ∈ c•})
and C := C \ {c}.

5. End-block: An end-block is composed of an XOR con-
nector c and the set of end events E such that E = c•.
PG is reduced by replacing the end-block by a function
fC : E = ∅, F := F ∪ {fC}, A := (A ∪ {(x, fC)|x ∈
•c}) \ ({(x, c)|x ∈ •c} ∪ {(c, x)|x ∈ c•}) and C :=
C \ {c}.

4

Definition 7 (Cyclic versus Acyclic Process Graph).
Let F∪C be the set of functions and connectors of a process
graph PG. If ∃n ∈ F ∪C : (n, n) ∈ A∗, then PG is cyclic,
otherwise it is acyclic. As a process graph is a simple
graph, it holds that (n, n) /∈ A (no reflexive arcs). But if
(n, n) ∈ A∗, there must be a path from n to n via some
further nodes n1, ..., nm ∈ (E ∪ F ∪ C).

Definition 8 (Structured BPEL Control Flow). A
BPEL Control Flow BCF is structured if and only if its
set Link = ∅. Otherwise BCF is unstructured.

Furthermore, we define the point wise application of
mapping functions which we need in algorithms for the
transformation strategies.

Definition 9 (Point Wise Application of Functions).
If a function is defined as f : A → B then we extend the
behavior to sets so that f(X) = ∪x∈Xf(x), X ⊆ A.

3 From BPEL Control Flow to Process Graph

3.1 Strategy 1: Flattening

Before we present the transformation algorithms, we need
to define the mapping function M that transforms a BPEL
basic activity to a process graph function.

flow

sequence

sequence

link

assign

assign

target

assign

assign

assign

assign

assign

assign

source

Figure 2: Flattening strategy

Definition 10 (Mapping Function M). Let F be a set
of functions of a process graph PG and Basic a set of basic
activities of a BCF . The mapping M : Basic → F defines
a transformation of a BPEL basic activity to a process
graph function.

The general idea of the Flattening strategy is to map
BCF structured activities to respective process graph frag-
ments (see Figure 2). The nested BCF control flow then
becomes a flat process graph without hierarchy. For this
strategy, there are no prerequisites, both structured and
unstructured BPEL control flow can be transformed ac-
cording to this strategy. The advantage of Flattening

Algorithm 1 Pseudo code for Flattening strategy
procedure: Flattening(BCF)
1: Struct ← Seq∪Flow∪Switch∪While∪Pick∪Scope
2: S ← {s}; E ← {e}; F ← ∅; C ← ∅; A ← ∅
3: root ← a, where a ∈ Struct ∧ @s ∈ Struct : de(s) = a
4: BCFtransform(root, s, e, PG)
5: for all (l1, l2) ∈ Link do
6: A ← A ∪ {(c1, c2)}
7: guard(c1, c2) = tc(l1, l2)
8: end for
9: return PG

is that the behavior of the whole BPEL control flow is
mapped to one process graph. Yet, as a drawback the de-
scriptive semantics of structured activities get lost. Such
a transformation strategy is useful in a scenario where a
BPEL control flow has to be communicated to business an-
alysts, because business analysts are used to graph-based
visualization of processes.

The algorithm for the Flattening strategy takes a BCF
as input and returns a PG. It recursively traverses the
nested structure of BPEL control flow in a top-down man-
ner. This is achieved by identifying the root activity and
invoking the BCFtransform(activity, predecessor, succes-
sor, partialResult) procedure (see Algorithm 1, line 4)
which is reinvoked recursively on nested elements. The
respective code is given in Algorithm 2. The first parame-
ter activity represents the activity to be processed followed
by the predecessor and successor node of the output pro-
cess graph between which the nested structure is hooked
in; i.e. predecessor and successor. For the root activity
these are the start and end events s and e. The param-
eter partialResult is used to forward the partial result of
the transformation to the procedure. In lines 5–8 links are
mapped to arcs and respective join and split connectors
around the activity are added.

The BCFtransform procedure (see Algorithm 2) starts
with checking whether the current activity serves as target
or source for links. If so, respective connectors are added
at the beginning and the end of the current activity block.
There are four sub-procedures to handle the five structured
activities Seq, Flow, Switch, While, and Pick. Here, it is
assumed that Pick is only used to model alternative start
events.1 The transformation of Scopes simply calls the
procedure for its nested activity.2 Terminate is mapped
to an end event. Moreover, Basic activities are mapped
to functions using M and hooked in the process graph.
Empty activities map to an arc between predecessor and
successor nodes.

1In BPEL, Pick can be used at any place where the process waits
for concurrent events. As we do not distinguish message-based and
other basic activities, decisions are captured by a Switch in BCF .

2Please note that Scopes play an important role in BPEL as a
local context for variables, handlers, and also Terminate activities.
In the algorithm we abstract from the fact that Terminate only ter-
minates the current Scope but not the whole process. Furthermore,
we abstract from the fact that a BPEL terminate leads to improper
termination.

5

Algorithm 2 Pseudo code for BCFtransform
procedure: BCFtransform(activity, pred, succ, PG)
1: if ∃(l1, activity) ∈ Links then
2: C ← C ∪ {c1}; l(c1) = jc(activity)
3: A ← A ∪ {(pred, c1)}; pred ← c1

4: end if
5: if ∃(activity, l2) ∈ Links then
6: C ← C ∪ {c2}, l(c2) = OR
7: A ← A ∪ {(c2, succ)}; succ ← c2

8: end if
9: if activity ∈ Seq then

10: PG ← transSeq(activity, pred, succ, PG)
11: else if activity ∈ Flow then
12: PG ← transBlock(activity, pred, succ, AND, PG)
13: else if activity ∈ Switch then
14: PG ← transBlock(activity, pred, succ, XOR,PG)
15: else if activity ∈ While then
16: PG ← transWhile(activity, pred, succ, PG)
17: else if activity ∈ Pick then
18: PG ← transPick(activity, pred, succ, PG)
19: else if activity ∈ Scope then
20: PG ← BCFtransform(de(activity), pred, succ)
21: else if activity ∈ Basic then
22: F ← F ∪ {M(activity)}
23: A ← A ∪ {(pred, activity), (activity, succ)}
24: else if activity ∈ Empty then
25: A ← A ∪ {(pred, succ)}
26: else if activity ∈ Terminate then
27: E ← E ∪ {e}
28: A ← A ∪ {(pred, e)}
29: end if
30: return PG

The procedures transSeq, transBlock, transP ick, and
transWhile used in the BCFtransform procedure gen-
erate the process graph elements that correspond to the
respective BCF structured activities. The transSeq pro-
cedure connects all nested activities of a sequence with
process graph arcs. This transformation requires an order
defined on the nested activities. For each sub-activities
the BCFtransform procedure is invoked again. This is
similar to transBlock. Here, a split and a join connector
are generated. Depending on the label given as a fourth
parameter the procedure can transform both Switch or
Flow. The transP ick replaces the start event of the pro-
cess graph with one start event for each nested sub-activity.
Finally, the transWhile procedure generates a loop be-
tween an XOR join and XOR split.

3.2 Strategy 2: Hierarchy-Preservation

Many graph-based BPM languages allow to define hierar-
chies of processes. EPCs for example include hierarchical
functions and process interfaces to model sub-processes. In
YAWL tasks can be decomposed to sub-workflows. Pro-
cess graphs can be extended to process graph schemas in
a similar way to allow for decomposition.

flow

sequence

sequence

link

assign

assign

target

assign

assign

source

assign

assign

assign

assign

Figure 3: Hierarchy-Preservation strategy

Definition 11 (Process Graph Schema PGS). A pro-
cess graph schema PGS = {PG, s} consists of a set of
process graphs PG and a mapping s : F → {∅, pg} with
pg ∈ PG. The mapping s is called subprocess relation.
It points from a function to a refining subprocess or, if
the function is not decomposed, to the empty set. The
relation s is a tree, i.e. there is no recursive definition of
sub-processes.

The general idea of the Hierarchy-Preservation strategy
is to map each BCF structured activity to a process graph
of a process graph schema (see Figure 3). The nesting of
structured activities is preserved as functions with subpro-
cess relations. The algorithm can be defined in a top-down
way similar to the Flattening strategy. Changes have to
be defined for the transformation of structured activities
as each is mapped to a new process graph. A prerequisite
of this strategy is that the BCF is structured: links across
the border of structured activities cannot be expressed by
the subprocess relation. The advantage of the Hierarchy-
Preservation strategy is that the descriptive semantics of
structured activities can be preserved. Furthermore, such
a transformation can correctly map the BPEL semantics
of Terminate activities that are nested in Scopes. As a
drawback, the model hierarchy has to be navigated in or-
der to understand the whole process. This strategy might
be useful in a scenario where process graphs have to be
mapped back to BPEL structured activities, e.g. if a busi-
ness analyst makes chances in an EPC representation a
BPEL control flow and the result is forwarded to a BPEL
engineer.

3.3 Strategy 3: Hierarchy-Maximization

One disadvantage of Strategy 2 is that it is bound to struc-
tured BPEL control flow. The Hierarchy-Maximization
Strategy aims at preserving as much hierarchy as possi-
ble with also being applicable to any BPEL control flow –
anyway if structured or unstructured. The general idea of
the strategy is to map those BCF structured activities s to
subprocess hierarchies if there are no links nested that cross
the border of s (see Figure 4). Accordingly, this strategy is
not subject to any structural prerequisites. The advantage

6

is that as much structure as possible is preserved. Yet, as a
drawback the logic of both Strategy 1 and Strategy 2 need
to be implemented.

flow

sequence

sequence

link

assign

assign

target

assign

assign

source

assign

assign

assign

assign

Figure 4: Hierarchy-Maximization strategy

4 From Process Graph to BPEL Control Flow

4.1 Strategy 1: Element-Preservation

In this section we will describe the first strategy for going
from process graphs to BCF. Before we go into the details
of the Element-Preservation Strategy, we will provide two
definitions in which we introduce the notion of an anno-
tated process graph to ease the specification of the strat-
egy. These two definitions, Definition 12 (Annotated Pro-
cess Graph) and Definition 13 (Annotated Process Graph
Node Map), are also relevant for the further strategies.

flow

link

assign

assign

link

...

empty

target

target

source

...

assign

assign

assign

assign

...

Figure 5: Element-Preservation strategy

Definition 12 (Annotated Process Graph). Let
APG = (S,E, F, C, l, A, B) define an annotated graph,
where S, E, F, C and l are defined as Definition 1. We
define A and B as

– A is a flow relation on the nodes in PG, A = (S ∪F ∪
C ∪B) × (E ∪ F ∪ C ∪B).

– B is a node in PG that holds a BCF annotation.

One could think of the set B in the annotated process
graph, Definition 12, as the set of already translated parts
of the process graph. Definition 13 shows how to translate
the nodes in an annotated process graph. The general idea
of this strategy is to map all process graph elements to a
Flow and map arcs to Links (see Figure 5). In particular,
start events are mapped to Basic,3 functions are mapped
to elements of Basic, and connectors are mapped to ele-
ments of Empty, and end events are translated to elements
of Terminate. M defines the identity on BPEL constructs.

Definition 13 (Annotated Process Graph Node
Map). Let M define a mapping: E ∪ S ∪ F ∪ C ∪ B →
Basic ∪ Empty ∪ Terminate ∪B and M is defined as

M(x) =

Empty(x), if x ∈ C;
Basic(x), if x ∈ F ∪ S;
Terminate(x), if x ∈ E;
x, if x ∈ B.

an injective translation from the nodes in the graph to
activities in BPEL control flow.

It is a prerequisite of this strategy that the process graph
needs to be acyclic, i.e. (x, x) /∈ A∗. This is because it is
not possible to create an activity that logically precedes
itself (Andrews et al., 2003). That is, if X precedes Y
then Y cannot precede X. The advantage of the Element-
Preservation strategy is that it is easy to implement and
the resulting BPEL control flow will be very similar to the
original process graph since there is a one-to-one corre-
spondence between the nodes. As a drawback, the resulting
BPEL control flow includes more elements than actually
needed: connectors are explicitly translated to empty ac-
tivities in BPEL instead of join condition on nodes. This
means that the BPEL control flow might have a lot of
nodes which simply act as synchronization points. Further-
more, the resulting BPEL control flow might be difficult
to understand compared to strategies in which structured
activities, such as the Switch, are chosen to represent some
part of the translated graph. If the BPEL control flow is
used in a scenario where readability is important, then it
should be applied only for small process graphs since all
elements of the process graph are mapped to BCF .

The algorithm for the Element-Preservation strategy
takes a process graph as input and generates a respective
BCF as output. Algorithm 3 applies the map M as de-
fined in Definition 13 in lines 1–3. Then, a flow element is
added that nests all other activities (lines 4–5). For each
arc in the process graph between two nodes a link is added
in the BCF between the corresponding two BCF nodes

3As a consequence, all alternative start branches are activated
when the process is started. Specific transition conditions could be
defined to have only one branch being activated. In the algorithm
we abstract from this issue.

7

Algorithm 3 Pseudo Code for Element-Preservation
strategy
procedure: Element-Preservation(PG)
1: Empty ← M(C)
2: Basic ← M(F ∪ S)
3: Terminate ← M(E)
4: Flow ← flow
5: de(flow) ← Empty ∪Basic ∪ Terminate
6: Link ← ∅
7: for all (x, y) ∈ A do
8: Link ← Link ∪ (M(x),M(y))
9: end for

10: jc(x) =

AND, | •M−1(x)| > 1 ∧ l(M−1(x)) = and;
XOR, | •M−1(x)| > 1 ∧ l(M−1(x)) = xor;
OR, otherwise.

11: tc(x, y) = guard(M−1(x),M−1(y))
12: return(BCF)

(lines 6–9). The join condition of activities is determined
from their corresponding node in the process graph. If it
is a connector it will get a similar join condition, i.e. AND
for and, OR for or and XOR for xor. Other nodes will get
an OR join condition (line 10). If two nodes are connected
by a guarded arc then this guard will also be present in
the BPEL control flow (line 11).

4.2 Strategy 2: Element-Minimization

This strategy simplifies the generated BCF of Strategy 1.
The general idea is to remove the empty activities that
have been generated from connectors and instead repre-
sent splitting behavior by transition conditions of links and
joining behavior by join conditions of subsequent activities
(see Figure 6).

assign

assign

assign

assign

flow

link

...

assign

target

target

source

assign

target

source

source

Figure 6: Element-Minimization strategy

As a prerequisite the process graph needs to be acyclic,
i.e. (x, x) /∈ A∗, in order to make dead path elimination of
BPEL work. The advantage of the resulting BCF specifi-
cation is, at least to a greater extent than Strategy 1, that
it is in the spirit of BPEL Flow, since it removes empty

activities generated from connectors. As a drawback, it
is less intuitive to identify correspondences between the
process graph and the generated BCF specification. This
strategy should be used in scenarios where the resulting
BPEL control flow needs to have as few nodes as possible.
This might be the case when performance of the BPEL
process matters. In contrast to Strategy 1, the amount
of nodes is decreased since all empty activities translated
from connector nodes are skipped.

Algorithm 4 Pseudo code for Element-Minimization
strategy
procedure: Element-Minimization(PG)
1: BCF ← Element-Preservation(PG)
2: while ∃x ∈ Empty : M−1(•x) ∩ C = ∅ do
3: Link ← Link ∪ {(y1, y2) | y1 ∈ •x ∧ y2 ∈ x•}
4: for all y ∈ x• do

5: jc ←
(

jc′(y′) =
{

jc(y′), y′ 6= y;
jc(y′) ∧ jc(x), otherwise.

)

6: end for
7: Link ← Link \ ({(x, y) | y ∈ x•}∪ {(x, y) | y ∈ •x})
8: Empty ← Empty \ {x}
9: end while

10: return(BCF)

The algorithm for Element-Minimization translates a
PG into a BCF using Algorithm 3 (line 1). Then, there
is a loop iterating over all empty activities that have been
generated from connectors (line 2) and do not have other
translated connector nodes as input links. Finally all trans-
lated connector nodes will be removed. For each empty
activity x, the nodes having a link to it, are connected
to nodes having a link from it. Then, the join conditions
of the activities subsequent to x need to be updated. The
join condition of an activity is the old join condition it had,
before removing x, in conjunction with the join condition
of x (lines 4–6). Lines 7–9 defines the actual removal of x.
This involves removing all link relations that x occurs in
and removing x from the set of Empty activities.

4.3 Strategy 3: Structure-Identification

The general idea of this transformation strategy is to iden-
tify structured activities in the process graph and apply
mappings that are similar to the reduction rules given in
Definition 6 on them (see Figure 7). As a prerequisite the
process graph needs to be structured according to Defini-
tion 6. The advantage of this strategy is that all control
flow is translated to structured activities. For understand-
ing the resulting code this is the best strategy since it re-
veals the structured components of the process graph. As
a drawback the relation to the original process graph might
not be intuitive to identify. This transformation strategy
is appropriate in a scenario when the BCF needs to be
edited by a BPEL modeling tool or, generally, when un-
derstanding the control flow of the process graph is impor-
tant.

8

assign

assign

assign

assign

flow

sequence

sequence

assign

assign

assign

assign

Figure 7: Structure-Identification strategy

This algorithm for Structure-Identification uses the re-
duction rules of Definition 6, but instead of substituting a
pattern with a function it is replaced by an annotated node
containing the BPEL translation of the process graph frag-
ment. This means, in reducing the process graph we gener-
ate an annotated process graph that finally includes only
one single annotated node. A single function is mapped
to Basic in the resulting BCF , whereas annotated nodes
are mapped to the set which their annotation is a member
of; e.g. Switch if a Switch annotation. Each of the rules
identifies structure that has an equivalent representation
in BPEL control flow as follows:

– A sequence of elements is translated to a BCF se-
quence with activities in the same order as nodes of
the process graph sequence.

– An AND-block is translated to a flow in the BCF .
The nodes of the AND-block are translated to nested
activities of the flow.

– An OR-block is translated to a flow in the BCF . The
nodes of the OR-block are translated to nested activi-
ties of the flow with an additional empty activity. This
points to each alternative branch and transition con-
ditions are used to activate only a subset of branches.
Notice that this translation makes BCF unstructured.

– An XOR-block is translated to a switch in the BCF .
Each branch of the XOR-block is mapped to a nested
activity of the switch including the respective guard.

– A mixed loop has no direct representation in the
BCF . As the rules in Definition 6 state, the
graph has the structure c1• = {a1}, •c1 ∩ c2• =
{a2, . . . , an}. The condition to leave the loop is
cond, i.e. the boolean expression (Yx∈Aguard(x)) ∧
¬(Yx∈Bguard(x)), A = {(c2, x)|x ∈ •c1 ∩ c2•} and
B = {(c2, x)|x /∈ •c1 ∩ c2•}. However, since exactly
one of the arcs from an XOR connector node is true
at a time the boolean expression can be reduced to
either the left and the right part in the conjunction.
Guards in PG are mapped to transition conditions in
the BFC. The mixed loop can be mapped to the
following BPEL control flow:
1: assign(continueLoop,true);

2: while(continueLoop) {

3: M(a1);

4: switch {

5: case cond: assign(continueLoop,false);

6: case tc(c2,a2)): M(a2);

7: ...

8: case tc(c2,an)): M(an);

9: }

10:}

– A while-do loop is translated into a while activity with
a switch inside it. It is mapped as the mixed loop
with the difference that lines 1, 3, and 5 are omit-
ted and the condition, cond, for looping replaces the
continueLoop in line 2.

– A repeat-until loop has no direct representation in the
BCF . It is mapped in a similar way as the mixed loop
– lines 6–8 in the pseudo code are omitted.

– An empty loop is translated to an empty activity.
– A start-block is mapped to a Pick containing empty

activities for each branch.
– An end-block is translated to a respective AND-, OR-,

or XOR-block with each branch followed by a termi-
nate activity.

Algorithm 5 Pseudo code for Structure-Identification
strategy
procedure: Structure-Identification(PG)
1: APG ← (S, E, F,C, l, A, ∅)
2: while |F ∪ C ∪B| > 1 do
3: APG′ ← match(APG) {Using rules in Definition 6}
4: b ← translate(APG′) {Using the described transla-

tions above}
5: Reduce APG substituting APG’ with b {Using rules

in Definition 6}
6: end while
7: return(BCF)

Algorithm 5 describes the Structure-Identification trans-
formation strategy. Line 1 initializes the annotated process
graph. After that, a loop is iterated until the annotated
process graph is reduced down to one activity. The reduc-
tion rules of Definition 6 are used to substitute components
of the process graph by corresponding BCF structured
activities in the same way as the function fC substituted
components in Definition 6.

4.4 Strategy 4: Structure-Maximization

The general idea of this strategy is to apply the reduc-
tion rules of the Structure-Identification strategy as often
as possible to identify a maximum of structure (see Fig-
ure 8). The remaining annotated process graph is then
translated following the Element-Preservation or Element-
Minimization strategy. The advantage of this strategy is
that it can be applied for arbitrary unstructured process
graphs as long as its loops can be reduced via the reduc-
tion rules of Definition 6. This strategy is also not able
to translate arbitrary cycles, i.e. cycles with multiple en-
trance and/or multiple exit points. A drawback of this

9

strategy is that both the Structure-Identification and the
Element-Preservation strategies need to be implemented.
The strategy could be used in scenarios where models have
to be edited by a BPEL modeling tool that uses structured
activities as the primal modeling paradigm.

assign

assign

assign

assign

flow

sequence

sequence

link

assign

assign

target

assign

assign

source

Figure 8: Structure-Maximization strategy

4.5 Strategy 5: Event-Condition-Action-
Rules

Similar to the Structure-Maximization strategy, the gen-
eral idea of this strategy to apply the reduction rules of
the Structure-Identification strategy as often as possible
to identify a maximum of structure (see Figure 9). The
remaining annotated process graph is then translated ac-
cording to the Event-Condition-Action (ECA) rules ap-
proach presented in (Ouyang et al., 2006a,b). This ap-
proach derives a set of BPEL event handlers that a pro-
cess calls on itself to capture unstructured control flow.
The structured part of the process graph is then encapsu-
lated within BPEL event handlers. Unstructured control
flow maps to messages sent from some place in the pro-
cess to itself where it is fetched by an event handler. In
the following we assume the process graph to be reduced
according to the Structure-Identification strategy and that
the remaining unstructured part is input to Algorithm 6.
The general idea of the strategy is similar to an algorithm
presented in Ouyang et al. (2006b). First, we introduce
three extensions to BPEL control flow:

• Handler defines the set of event handlers associated
with a BPEL control flow. A precondition set prc is
associated with a handler and a set of activities Act
in the expression handler(prc, Act).

• Invoke defines the set of invoke activities that a BCF
recursively calls upon itself. An invoke takes a symbol
s as a parameter to represent the message to be sent
in the expression invoke(s).

• Receive defines the set of receive activities that wait
for messages being sent to the BCF . A receive takes
a symbol s as a parameter to represent the message
to be received in the expression receive(s).

assign

assign

assign

assign

sequence

sequence

assign

assign

eventHandler

invoke

invoke

receive

...

Figure 9: Event-Condition-Action Rules strategy

Algorithm 6 essentially captures the logic defined in
Ouyang et al. (2006a). Lines 1–5 generate a sequence to
include the first activity of the process graph. When this
first activity completes, the invoke(firstCompleted) ac-
tivity signals this completion to all event handlers that
have the first activity in their precondition set. The loop
in lines 6–10 adds for each function not being the initial
function an individual event handler that is executed when
its precondition set evaluates to true.

Algorithm 6 Pseudo code for Event-Condition-Action-
Rules strategy
procedure: Event-Condition-Action-Rules(PG)
1: Receive ← receive(processStarted)
2: Basic ← M(getFirstFunction(PG))
3: Invoke ← invoke(firstCompleted)
4: Sequence ← sequence
5: de(sequence) ← Receive ∪Basic ∪ Invoke
6: Handler ← ∅
7: for all f ∈ F \ {getFirstFunction(PG)} do
8: prc ← getPreconditionSet(f)
9: Handler ← Handler ∪ handler(prc, M(f))

10: end for

The advantage of this strategy is that it is applicable for
any process graph, even for those that have unstructured
loops. But there are also some drawbacks. First, the gen-
erated BPEL control flow is more difficult to comprehend
than the code generated by the Structure-Maximization
strategy, as control flow crosses the border of event han-
dlers. Second, it is so far not clear how the generated
BPEL processes behave if the input models have semantic
problems. In (Kindler, 2006), it is proven that there are
process models with OR-joins waiting for one another that
do not have a formal semantics. Basically, the approach
presented in (Ouyang et al., 2006b), and also the other
strategies, cannot resolve such problems.

5 Case Study on Strategy-based Transformation

We validated the applicability to the strategies for the

10

implementation of a BPEL export filter of a commercial
workflow designer. This workflow designer uses UML
Activity Diagrams with product-specific extensions for
modeling. In essence, we followed the element-preservation
strategy and deviated in order to capture specifics of start
and end events, split elements, and a two-level modeling
concept. Models built by the workflow designer have
exactly one start node and one or more end nodes with
implicit termination semantics. As the entry and exit of a
BPEL flow exactly captures these semantics, we decided
not to transform them to BPEL. The workflow designer
offers two split elements that have semantics comparable
to an XOR split: switch nodes (two alternatives) and
decision nodes (multiple alternatives). We decided to map
both of these elements to a BPEL switch that includes
empty elements for each alternative that serves as a source
for a link to the subsequent activity. This design has
been chosen instead of a mapping to empty activities in
order to easier distinguish different types of splits when
the exported BPEL is re-imported. Furthermore, the
workflow designer offers a two-level modeling approach:
step nodes similar to process graph functions have to be
specified by a sequence of one or multiple step actions.
Step nodes are part of the UML model, step actions have
no visual representation. Therefore, we map step nodes
to BPEL sequences that nest further BPEL activities
corresponding to the semantics of the step actions.

The mapping of many proprietary concepts of the work-
flow designer turned out to be a challenge for our ex-
port filter design. These proprietary concepts include sub-
workflow elements, step actions, and properties of the in-
dividual visual elements:

• Regarding the sub-workflow concept, we decided to
map each sub-workflow to a BPEL scope containing a
nested subprocess. For a more appropriate mapping,
the upcoming BPEL-SPE extension will be very help-
ful (Kloppmann et al., 2005), especially for variable
passing as well as fault and compensation handling.

• Step actions are defined in an abstract class, which
is customized by a number of different possible step
actions, such as defining a (local) variable, inline Java
code, or mail sending. To map these steps, we first
defined a generic mapping operation to BPEL in the
abstract step action class which is used when no spe-
cial class overrides the operation. In this case, a BPEL
invoke is written to the output, containing the name
of the step as a partner link. We also defined map-
pings for a number of concrete step actions, e.g. trans-
forming the Java code step action is transformed to a
BPELJ snippet (Blow et al., 2004).

• All visual elements of the workflow designer can have
additional properties. Some of those, such as time-out
conditions and escalations, might even have an influ-
ence on the control flow. We defined a special XML
namespace for these properties and included them as
attributes in the respective BPEL activity. Finally, we

had to map step actions contained in the step nodes
to BPEL basic activities.

In conclusion, the transformation strategies have helped
us to find a systematic, initial approach and process for
the transformation of the workflow designer’s notation to
BPEL. They are also useful for explaining the overall de-
sign decisions. The case study also shows that the trans-
formation strategies can be mixed. The strategies define
ideal, prototypical mappings, but in a complex product
like the workflow designer in our case study it is necessary
to identify the most suitable transformation strategy for
the different parts of the mapping.

6 Related Work

There have been several works on transformations between
BPEL control flow and graph-based process modeling
languages. We highlight only some of them and refer to
(Mendling et al., 2005) for a comprehensive overview.

The transformation of graph-based languages to BPEL
control flow can be related to work dedicated to model-
driven development of executable BPEL process defini-
tions. A conceptual mapping from EPCs to BPEL is
presented in (Ziemann and Mendling, 2005). The au-
thors choose a transformation based on the Element-
Preservation strategy for the reason that it is easy to im-
plement. In (van der Aalst et al., 2005; van der Aalst and
Lassen, 2005) a Workflow-net-based modeling approach
for BPEL including a respective transformation is pre-
sented. Similar to the Structure-Identification strategy,
Workflow nets are reduced by matching components that
are equivalent to BPEL structured activities such as switch
and pick. The Structure-Identification strategy has been
chosen in order to generate readable BPEL template code
and not executable BPEL processes. In transformation
based on the Flattering strategy from XML nets to BPEL
is reported in (Koschmider and von Mevius, 2005).

Further work takes the modeling standards UML and
BPMN as a starting point. In (Gardner, 2003) a BPM-
specific profile of UML is used to generate BPEL code.
From the paper the transformation strategy is not clear,
but the figures suggest that the author uses an Element-
Preservation strategy and maps sequences to BPEL se-
quences. The BPMN specification (BPMI and OMG,
2006) comes along with a proposal for a mapping to BPEL.
The subsection 11.17 of BPMN specification presents a
mapping that is close to the Structure-Identification strat-
egy. Yet, the mapping is given rather in prose, a precise
algorithm and a definition of required structural properties
is missing. (Ouyang et al., 2006a) show a translation from
so-called Standard Process Models (SPMs) (Kiepuszewski
et al., 2003) to BPEL. SPM basically reflects the common-
alities of UML Activity Diagrams and BPMN. The authors
generate Event-Condition-Action (ECA) rules for each ac-
tivity in the SPM that describes what event must occur
under what condition for an activity to become active.

11

Each ECA is translated into BPEL as an event handler
resulting in the entire BPEL process being a sequence of
event handlers that invoke each other. An extension of
this work defines the Event-Condition-Action-Rules strat-
egy (Ouyang et al., 2006b) mapping structure to BPEL
structured activities.

There is also some work reported on transformations
from BPEL to graph-based process modeling languages.
The verification of BPEL with Petri net analysis tech-
niques is an important stream of research in this context.
Transformations essentially utilizing the Flattening strat-
egy are reported in (Hinz et al., 2005; Ouyang et al., 2005).
The latter also provides an overview of BPEL verification
approaches in general. In (Mendling and Ziemann, 2005),
a transformation to EPCs is presented. The motivation of
this work is that executable BPEL processes have to be
discussed with business people who are often familiar with
the EPC notation. As BPEL does not offer a standardized
notation, such a transformation can be used to visualize
BPEL processes.

Table 1 summarizes academic work on transformations
between BPEL and graph-based process modeling lan-
guages as well as the applied transformation strategies.
Such transformations are also important to commercial
business process management systems. Several of these
systems offer a modeling component with a graph-based
process modeling notation. As BPEL is becoming accepted
as a standard for executable process definitions, these tools
face the challenge of importing and exporting BPEL. Some
experiences with applying transformation strategies to the
development of import and export filters are reported in
(Mendling et al., 2006).

Table 1: Transformation strategies and related work

Transformation Strategy

EPC to BPEL Element-Preservation
(Ziemann and Mendling, 2005)
Workflow nets to BPEL Structure-Identification
(van der Aalst and Lassen, 2005)
UML to BPEL Element-Preservation
(Gardner, 2003)
BPMN to BPEL Structure-Identification
(BPMI and OMG, 2006)
SPM to BPEL Event-Condition-Action-Rules
(Ouyang et al., 2006a)
BPMN to BPEL Event-Condition-Action-Rules
(Ouyang et al., 2006b)
XML nets to BPEL Element-Preservation
(Koschmider and von Mevius, 2005)

BPEL to Petri nets Flattening
(Hinz et al., 2005)
BPEL to Petri nets Flattening
(Ouyang et al., 2005)
BPEL to EPCs Flattening
(Mendling and Ziemann, 2005)

7 Conclusion and Future Work

This article has addressed the problem of transforma-
tions between graph-oriented and block-oriented BPM
languages. In order to discuss such transformations in a

general way, we defined process graphs as an abstraction
of graph-oriented BPM languages and BPEL control
flow as an abstraction of BPEL that shares most of
its concepts with block-oriented languages like BPML.
Our major contribution is the identification of different
transformation strategies between the two BPM mod-
elling paradigms and their specification as pseudo code
algorithms. In particular, we identified the Flattening,
Hierarchy-Preservation, and the Hierarchy-Maximization
strategies for transformations from BPEL control flow
to process graphs. In the other direction we identi-
fied the Element-Preservation, Element-Minimization,
Structure-Identification, Structure-Maximization, and
Event-Condition-Action-Rule strategies. As such, the
strategies provide a useful generalization of many current
X-to-BPEL and BPEL-to-Y papers, not only for identi-
fying design alternatives but also for discussing design
decisions. We checked the applicability of these strategies
in two case studies which are reported in (Mendling et al.,
2005), one of them is reported in this article.

In future research, we aim to conduct further case stud-
ies in order to identify how aspects that are not captured by
process graphs and BPEL control flow can be addressed in
a systematic way. Another issue is the upcoming new ver-
sion of BPEL which is expected to be issued as a standard
in 2006. It will be interesting to discuss in how far that
new version simplifies or complicates the mapping to and
from graph-oriented BPM languages. Furthermore, there
is potential for additional strategies. The transformation
of unstructured process graphs to structured BPEL has
been recently discussed in (Zhao et al., 2006). But even
though unstructured process graphs including only XOR-
splits and -joins can be transformed, arbitrary concurrency
cannot be structured (Kiepuszewski et al., 2000). Still fu-
ture transformation strategies might provide better output
in terms of readability or minimal number of constructs for
specific subclasses of BPEL processes or process graphs.

REFERENCES

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein,
J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte,
S., Trickovic, I., and Weerawarana, S. (2003). Business
Process Execution Language for Web Services, Version
1.1. Specification, BEA Systems, IBM Corp., Microsoft
Corp., SAP AG, Siebel Systems.

Arkin, A. (2002). Business Process Modeling Language
(BPML). Spec., BPMI.org.

Blow, M., Goland, Y., Kloppmann, M., Leymann, F.,
Pfau, G., Roller, D., and Rowley, M. (2004). BPELJ:
BPEL for Java. Whitepaper, BEA and IBM.

BPMI and OMG (2006). Business Process Model-
ing Notation Specification. Final Adopted Specification.
http://www.bpmn.org/.

12

Gardner, T. (2003). UML Modelling of Automated Busi-
ness Processes with a Mapping to BPEL4WS. In Pro-
ceedings of the First European Workshop on Object Ori-
entation and Web Services at ECOOP 2003.

Hinz, S., Schmidt, K., and Stahl, C. (2005). Transforming
BPEL to Petri Nets. In Proceedings of BPM 2005, LNCS
3649, pages 220–235.

Hollingsworth, D. (2004). The Workflow Handbook 2004,
chapter The Workflow Reference Model: 10 Years On,
pages 295–312. Workflow Management Coalition.

Keller, G., Nüttgens, M., and Scheer, A. W. (1992).
Semantische Prozessmodellierung auf der Grundlage
“Ereignisgesteuerter Prozessketten (EPK)”. Heft 89,
Inst. für Wirtschaftsinformatik, Saarbrücken, Germany.

Kiepuszewski, B., ter Hofstede, A. H. M., and Bussler, C.
(2000). On structured workflow modelling. In Wangler,
B. and Bergman, L., editors, Advanced Information Sys-
tems Engineering, 12th International Conference CAiSE
2000, volume 1789 of Lecture Notes in Computer Sci-
ence, pages 431–445. Springer.

Kiepuszewski, B., ter Hofstede, A. H. M., and van der
Aalst, W. M. P. (2003). Fundamentals of control flow in
workflows. Acta Inf., 39(3):143–209.

Kindler, E. (2006). On the semantics of epcs: Resolving
the vicious circle. Data Knowl. Eng., 56(1):23–40.

Kloppmann, M., König, D., Leymann, F., Pfau, G., Rick-
ayzen, A., von Riegen, C., Schmidt, P., and Trickovic, I.
(2005). WS-BPEL Extension for Sub-processes BPEL-
SPE. Joint white paper, IBM and SAP.

Koschmider, A. and von Mevius, M. (2005). A petri net
based approach for process model driven deduction of
bpel code. In Meersman, R., Tari, Z., and Herrero, P.,
editors, OTM Workshops, volume 3762 of Lecture Notes
in Computer Science, pages 495–505. Springer.

Mendling, J., Lassen, K., and Zdun, U. (2005). Trans-
formation strategies between block-oriented and graph-
oriented process modelling languages. Technical Report
JM-2005-10-10, WU Vienna.

Mendling, J., Lassen, K., and Zdun, U. (2006). Experi-
ences in enhancing existing bpm tools with bpel import
and export. Technical Report JM-2006-03-10, WU Vi-
enna.

Mendling, J., Nüttgens, M., and Neumann, G. (2004). A
Comparison of XML Interchange Formats for Business
Process Modelling. In Feltz, F., Oberweis, A., and Ot-
jacques, B., editors, Proceedings of EMISA 2004, LNI
56, pages 129–140.

Mendling, J. and Ziemann, J. (2005). Transformation of
BPEL Processes to EPCs. In M. Nüttgens and F. J.
Rump, editor, Proceedings of the 4th GI Workshop on

Business Process Management with Event-Driven Pro-
cess Chains (EPK 2005), pages 41–53.

Ouyang, C., Dumas, M., Breutel, S., and ter Hofstede, A.
(2006a). Translating Standard Process Models to BPEL.
In E. Dubois, K. P., editor, Proceedings of the 18th Inter-
national Conference on Advanced Information Systems
Engineering (CAiSE’06), volume 4001 of Lecture Notes
in Computer Science.

Ouyang, C., van der Aalst, W., Breutel, S., Dumas, M.,
ter Hofstede, A., and Verbeek, H. (2005). Formal seman-
tics and analysis of control flow in ws-bpel. BPMCenter
Report BPM-05-13, BPMcenter.org.

Ouyang, C., van der Aalst, W., Dumas, M., and ter Hofst-
ede, A. (2006b). Translating bpmn to bpel. BPMCenter
Report BPM-06-02, BPMcenter.org.

Russell, N., ter Hofstede, A., Edmond, D., and van der
Aalst, W. M. (2005). Workflow data patterns: Identifi-
cation, representation and tool support. In Proc. of the
24th International Conference on Conceptual Modeling
(ER 2005), LNCS.

Thatte, S. (2001). XLANG. Specification, Microsoft Corp.

van der Aalst, W. and Lassen, K. (2005). Translating
Workflow Nets to BPEL4WS. BETA Working Paper
Series, WP 145, Eindhoven University of Technology,
Eindhoven.

van der Aalst, W. M., Jørgensen, J. B., and Lassen, K. B.
(2005). Let’s Go All the Way: From Requirements via
Colored Workflow Nets to a BPEL Implementation of a
New Bank System. In Meersman, R. and Z.Tari, editors,
Proceedings of CoopIS/DOA/ODBASE 2005, Cyprus,
LNCS 3760, pages 22–39.

van der Aalst, W. M. P. (1997). Verification of Workflow
Nets. In Azéma, P. and Balbo, G., editors, Application
and Theory of Petri Nets, LNCS 1248, pages 407–426.

van der Aalst, W. M. P. and ter Hofstede, A. H. M. (2005).
YAWL: Yet Another Workflow Language. Information
Systems, 30(4):245–275.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kie-
puszewski, B., and Barros, A. P. (2003). Workflow Pat-
terns. Distributed and Parallel Databases, 14(1):5–51.

Workflow Management Coalition (2002). Workflow Pro-
cess Definition Interface – XML Process Definition Lan-
guage. Document Number WFMC-TC-1025, October
25, 2002, Version 1.0, Workflow Management Coalition.

Zhao, W., Hauser, R., Bhattacharya, K., Bryant, B. R.,
and Cao, F. (2006). Compiling business processes: un-
tangling unstructured loops in irreducible flow graphs.
Int. Journal of Web and Grid Services, 2(1):68–91.

Ziemann, J. and Mendling, J. (2005). EPC-Based Mod-
elling of BPEL Processes: a Pragmatic Transformation
Approach. In Proceedings of MITIP 2005, Italy.

13

