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ABSTRACT:  In this paper we present JETCAT, a
Japanese-English transfer-based machine translation
system. Our main research contribution is that the
transfer rules are not handcrafted but are learnt
automatically from a parallel corpus. The system has
been implemented in Amzi! Prolog, which offers
scalability for large rule bases, full Unicode support for
Japanese characters, and several APIs for the seamless
integration of the translation functionality into common
office environments. As a first user interface we have
developed a translation environment under Microsoft
Word. The dynamic nature of our system allows for an
easy customization of the rule base according to the
user’s personal preferences by simply post-editing the
translation results, which leads to an automatic update.
The user interface for Microsoft Word also provides the
possibility for the user to display token lists, parse
trees, and transfer rules, which makes JETCAT also a
very useful tool for language students.
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1. Introduction

Despite the large amount of effort invested in the development
of machine translation systems, the achieved translation
quality is still appalling. One major reason is the missing
ability to learn from translation errors through incremental
updates of the rule base.

In our research we use the bilingual data from the JENAAD
corpus [27] comprising 150,000 Japanese-English sentence
pairs from news articles to learn specific transfer rules from
the examples through structural matching between the parse
trees for the source and target language. The rules are
generalized in a consolidation phase to avoid overtraining
and to increase the coverage for new input. Based on the
resulting rule base we have developed JETCAT (Japanese-
English Translation using Corpus-based Acquisition of
Transfer rules), a Japanese-English transfer-based machine
translation system.

Our current research work originates from the PETRA project
(Personal Embedded Translation and Reading Assistant)

[29], in which we had developed a translation system from
Japanese into German. One main problem for that language
pair was the lack of training material, i.e. high quality Japanese-
German parallel corpora, which was one of the reasons why
we shifted our research focus to Japanese-English.

For the implementation of our machine translation system
we have chosen Amzi! Prolog because it provides an
expressive declarative programming language within the
Eclipse Platform. It offers powerful unification operations
required for the efficient application of the transfer rules and
full Unicode support so that Japanese characters can be
used as textual elements in the Prolog source code. Amzi!
Prolog has also proven its scalability during past projects
where we accessed large bilingual dictionaries stored as
fact files with several 100,000 facts. Finally, it offers several
APIs, which makes it possible to run the translation program
in the background so that the users can invoke the translation
functionality from their familiar text editor. For example, we
have developed a prototype interface for Microsoft Word using
Visual Basic macros.

The rest of the paper is organized as follows. We first provide
a brief discussion of related work in Sect. 2 and an overview
of the system architecture in Sect. 3. In Sect. 4 we describe
the preprocessing stages to prepare the input for the
acquisition and application of transfer rules. Section 5 gives
a formal account of the three generic types of transfer rules
that we use in our system along with several illustrative
examples. The processing steps for the acquisition of new
rules and the subsequent consolidation phase to avoid
overtraining are presented in Sect. 6. Finally, Sect. 7 focusses
on the application of the transfer rules during translation and
the generation of the final natural language output. We close
the paper with some concluding remarks and an outlook on
future work in Sect. 8.

2. Related Work

Research on machine translation has a long tradition (for
good overviews see [6, 7, 12, 21]). The state of the art in
machine translation is that there are quite good solutions for
narrow application domains with a limited vocabulary and
concept space. However, it is the general opinion that fully
automatic high quality translation without any limitations on
the subject and without any human intervention is far beyond
the scope of today’s machine translation technology, and
there is serious doubt that it will be ever possible in the
future [8, 10].

It is very disappointing to have to notice that the translation
quality has not much improved in the last 10 years [26]. One
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main obstacle on the way to achieving better quality is seen in
the fact that most of the current machine translation systems
are not able to learn from their mistakes [9]. Most of the
translation systems consist of large static rule bases with limited
coverage, which have been compiled manually with huge
intellectual effort. All the valuable effort spent by users on post-
editing translation results is usually lost for future translations.

As a solution to this knowledge acquisition bottleneck, corpus-
based machine translation tries to learn the transfer knowledge
automatically on the basis of large bilingual corpora for the
language pair [3, 15]. Statistical machine translation [2], in its
pure form, uses no additional linguistic knowledge to train both
a statistical translation and target language model. The two
models are used to assign probabilities to translation candidates
and then to choose the candidate with the maximum score. For
the first few years the translation model was built only at the
word level, however, as the limitations became apparent, several
extensions towards phrase-based translation [16, 18, 22] and
syntax-based translation [13, 28, 30] have been proposed.
Although some improvements in the translation quality could be
achieved, statistical machine translation has still one main
disadvantage in common with rule-based translation, i.e. an
incremental adaptation of the statistical model by the user is
usually impossible.

The most prominent approach for the translation of Japanese
has been example-based machine translation [11, 20, 25]. It
uses a parallel corpus to create a database of translation
examples for source language fragments. The different
approaches vary in how they represent these fragments: as
surface strings, structured representations, generalized
templates with variables, etc. [1, 4, 5, 14]. However, most of
the representations of translation examples used in
example-based systems of reasonable size have to be
manually crafted or at least reviewed for correctness [23] to
achieve sufficient accuracy.

3. System Architecture

The three main tasks that we have to perform in our system
are acquisition, consolidation, and translation. During
acquisition (see Fig. 1) we derive new transfer rules by using
a Japanese-English sentence pair as input. Both sentences
are first analyzed by the tagging modules, which produce the
correct segmentations into word tokens associated with their
part-of-speech tags. The token lists are then transformed
into parse trees by the parsing modules. The parse trees
represent the input to the acquisition module, which uses a
structural matching algorithm to discover new transfer rules.

Whereas the transfer rules learnt during acquisition are very
accurate and guarantee consistent translations, this specificity
reduces the coverage for new unseen data. Therefore, the
consolidation step generalizes transfer rules as long as such
relaxations do not result in conflicts with other rules in the rule
base.

Finally, we perform the translation of a Japanese sentence
by first tagging and parsing the sentence and then invoking
the transfer module. It applies the transfer rules stored in the
rule base to transform the Japanese parse tree into the
corresponding English parse tree. The latter is the input to
the generation module, which produces the surface form of
the English sentence as character string. In the following
sections we give a more detailed technical description of the
individual modules. We illustrate their mode of operation by
using the sentence pair in Fig. 2 as a running example
throughout the rest of this paper.

4. Tagging and Parsing

We use Python scripts for the basic string operations to import
the sentence pairs from the JENAAD corpus. For the part-of-
speech tagging of Japanese sentences we use a Japanese
lexicon, which was compiled automatically by applying the
Japanese morphological analysis system ChaSen [19] to the
JENAAD corpus. Figure 3 shows the result produced by the
tagging module. It segments the Japanese input into morphemes
and tags each morpheme with its pronunciation, base form,
part-of-speech, conjugation type, and conjugation form. The last
three columns are encoded as numerical categories. For the
ease of the reader we have added Roman transcriptions,
approximate English equivalents of the numerical categories,
and contextual English translations.

The Japanese language uses postpositions instead of
prepositions. The postposition O indicates the direct object, the
theme particle WA the subject (in this sentence). The verb SURU

is used to derive verbs from sahen nouns (e.g. recognize from
recognition), and the phrase DE ARU KOTO changes an adjectival
noun into a noun (e.g. important into importance). Finally, the
verb suffix RERU indicates passive voice and the auxiliary verb TA

past tense.

The acquisition of the Japanese lexicon is performed in two
steps. We first create a lexicon entry for each Japanese word
in the corpus based on the tags assigned by ChaSen. For words
with several different tags, we store one default tag and, in a
second step, learn word sense disambiguation rules based on
the local context. We had to correct some wrong tag
assignments by ChaSen, in particular regarding different uses
of postpositions.

Figure 1.  System architecture
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Figure 2.  Example of sentence pair

Figure 3.  Example of Japanese token list

The English input is tagged by using an English lexicon, which
is again automatically derived by applying the MontyTagger [17]
to JENAAD. The tagging module segments the English input
into morphemes, and tags each morpheme with its base form
and part-of-speech tag from the Penn Treebank tagset [24]. Also
the tag assignments by MontyTagger had to be corrected in
several cases. Figure 4 shows the output for our example
sentence, we added the verbose description of the part-of-
speech tags for clarification.

The parsing modules compute the syntactic structure of
sentences based on the information in the token lists. The
Japanese and English grammars were learnt automatically from
manually parsed sentences in the JENAAD corpus and are
formulated as Definite Clause Grammar rules. A sentence is
modeled as a list of constituents. A constituent is defined as a
compound term of arity 1 with the constituent category as
principal functor. We use three-letter acronyms to encode the
constituent categories. Regarding the argument of a constituent
we distinguish two types:

Figure 4.  Example of English token list

· simple constituents represent words or features (atom/
atom or atom),

· complex constituents represent phrases modeled as lists
of subconstituents.

Since the Japanese language uses postpositions and the
general structure of a simple sentence is sentence-initial
element, pre-verbal element, and verbal, it is much easier to
parse a Japanese sentence from right to left. Therefore, we
reverse the Japanese token list before we start with the
parsing process. The output of the parser for our example
sentence is (using Roman transcriptions of Japanese
words):

[vbl([hea(SURU/47), hef(3/1), sjc(NINSHIKI/17)]),
dob([apo(O/61), hea(KOTO/21), mvp([vbl([hea(DA/74),
hef(55/4), aux([hea(ARU/74), hef(18/1)]),
cap([hea(JUUYOU/18)])]), sub([apo(GA/61), hea(AKUSESU/
17), mno([hea(SHIJOU/2)]), mvp([vbl([hea(SURU/47), hef(3/
5), aux([hea(RERU/49), hef(6/4)]), aux([hea(TA/74),
hef(54/1)]), sjc(KAIZEN/17)])])])])]), aob([apo(NITOTTE/
63), hea(HATTEN/17), mno([hea(KEIZAI/2)]), mnp([apo(NO/
71), hea(ROSHIA/12)])]), sub([apo(WA/65), hea(WAREWARE/
14)])]

Figure 5 provides a more human-readable presentation of
the parse tree. We have added verbose descriptions of the
constituent categories. The category “head form” encodes
the conjugation type and conjugation form according to
ChaSen. We use the categories “adposition” and
“adpositional object” to also cover prepositions and
prepositional objects in English parse trees.

The grammar acquisition is achieved by aligning the token
lists with the parse trees and building a hierarchical graph
as intermediate representation, which, at the end of the
acquisition process, is translated into Definite Clause
Grammar rules.

If a punctuation mark such as a comma is followed by a non-
conjugated word, we use its tag as subtag for the following
word to increase the discriminative power of the lexical
tagging. We traverse the parse tree top-down and try to
navigate the corresponding graph. Starting from an initial
node, we follow links representing tags of words to nodes
representing constituents. A link to a simple constituent
removes the word from the token list, whereas a link to a
complex constituent keeps the word in the list and navigates
to the initial node of the corresponding subgraph. To leave a
subgraph we follow an exit link, which again leaves the word
intact and returns to the node from which the subgraph was
called. All nodes and links are stored as dynamic facts to
enable an easy incremental adaptation. If there is no existing
link for a transition in the parse tree, we distinguish three
cases:

· if the transition is an exit link or if the target node exists,
then we add a new link,

· if the target node does not exist, then we also add a
new node,

· if the target node represents a complex constituent and
the corresponding subgraph does not exist, then we
also add a new subgraph.

Figure 6 shows the hierarchical graph built from our example
sentence. As can be seen we handle certain common
complex constituents, e.g. aux or mno, which only contain
hea, or hea and hef as subconstituents, like simple
constituents to facilitate the acquisition process. We also
learn rules to rearrange constituents for which the order in
the token list does not correspond to the order in the parse
tree. The resulting graph is highly non-deterministic,
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therefore, we replace ambiguous transitions with more
specific conditions starting from words, word and tag
sequences, two-word sequences, etc., until we reach a
deterministic representation.

English sentences are parsed from left to right. To facilitate
the structural matching between Japanese and English
parse trees during acquisition we tried to align the use of
constituent categories in the English grammar as best as
possible with corresponding Japanese categories. In

addition, we have chosen the same order of subconstituents
as in the Japanese parse tree. Figure 7 shows the English
parse tree for our example.

We have added explicit constituent categories for the
determiner type (e.g. definite) and syntactic features such as
number, comparison, tense, aspect, or voice. For each feature
we have defined a default value (e.g. singular for number) so
that we only indicate a feature in the parse tree if its value
differs from the default value.

5. Transfer Rules

One characteristic of our approach is that we model all
translation problems with only three generic types of transfer
rules. The transfer rules are stored as Prolog facts in the
rule base. We have defined three Prolog predicates for the
three different rule types. Therefore, for the rest of this paper,
when we talk about “transfer rules” we always refer to transfer
rules for machine translation in the more general sense, not
to logical rules in the strict sense of Prolog terminology. We
also use the terms “equal” and “equality” synonymously with
“unifiable” and “unifiability”.

In the next subsections we give an overview of the three
different rule types along with illustrative examples. For the
ease of the reader we use Roman transcription for the
Japanese examples instead of the original Japanese
characters.

5.1 Word Transfer Rules

For simple context-insensitive translations at the word level,
the argument A1 of a simple constituent is changed to A2 byFigure 5.  Example of Japanese parse tree

Figure 6.  Example of grammar acquisition
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This changes a complex constituent C1(A1) to C2(A2) if the
category is equal to category condition C1, the head is equal
to head condition Hea, and the argument is equal to argument
condition A1.

applying the following predicate, i.e. if the argument of a
simple constituent is equal to argument condition A1, it is
replaced by A2:

wtr(A1, A2).

Example 1. The default transfer rule to translate the Japanese
noun SEKAI into the English counterpart world is stated as the
fact:

wtr(SEKAI/2, world/nn).

5.2  Constituent Transfer Rules

The second rule type concerns the translation of complex
constituents to cover cases where both the category and the
argument of a constituent have to be altered:

ctr(C1, C2, Hea, A1, A2).

Example 2. The modifying noun (mno) with head KOKUSAI is
translated as modifying adjective phrase (maj) with head
international:

ctr(mno, maj , KOKUSAI/2, [hea(KOKUSAI/2)],
[hea(international/jj)]).

The head condition serves as index for the fast retrieval of
matching facts during the translation of a sentence and
significantly reduces the number of facts for which the
argument condition has to be tested.

Constituent transfer rules can contain shared variables for
unification, which makes it possible to replace only certain
parts of the argument and to leave the rest unchanged.

As can be seen, if we have to translate the phrase MINSHUKA NI

MUKETA (toward democratization), the application of the above
rule only translates NI MUKETA and leaves the translation of
MINSHUKA to another transfer rule.

5.3 Phrase Transfer Rules

The most common and most versatile type of transfer rules
are phrase transfer rules, which allow to define elaborate
conditions and substitutions on phrases, i.e. arguments of
complex constituents:

ptr(C, Hea, Req1, Req2).

Figure 7.  Example of English parse tree

Rules of this type change the argument of a complex
constituent with category C from A1 = Req1   Add to A2 =
Req2    Add if hea(Hea)    A1. To enable the flexible application
of phrase transfer rules, input A1 and argument condition
Req1 are treated as sets and not as lists of subconstituents,
i.e. the order of subconstituents does not affect the
satisfiability of the argument condition. The application of a
transfer rule requires that the set of subconstituents in Req1
is included in the argument A1 of the input constituent C(A1)
to replace Req1 by Req2. Besides Req1 any additional
constituents can be included in the input, which are
transferred to the output unchanged. This allows for an
efficient and robust realization of the transfer module
because one rule application changes only certain aspects
of a phrase whereas other aspects can be translated by
other rules in subsequent steps. It is also possible to use
the special constant notex as argument of a subconstituent
in Req1, e.g. sub(notex). In that case the rule can only be
applied if no subconstituent of this category is included in
A1, e.g. if A1 includes no subject.

In addition to an exact match the generalized constituent
categories np (noun phrase) and vp (verb phrase) can be
used in the category condition, i.e. the condition is satisfied
if the constituent category C is subsumed by the generalized
category (e.g. mvp   vp).

The head condition is again used to speed up the selection
of possible candidates during the transfer step. If the
applicability of a transfer rule does not depend on the head
of the phrase, then the special constant nil is used as head
condition. Another special case is the head condition notex.
In analogy to the corresponding use in the argument condition
this indicates that the rule can only be applied if A1 does not
contain a head element.

Example 4. The Japanese verbal with head SURU and Sino-
Japanese compound NINSHIKI is translated into an English
verbal with head recognize:

ptr(vbl , SURU/47, [hea(SURU/47), sjc(NINSHIKI/17)],
[hea(recognize/vb)]).

A1 = [hea(SURU/47), hef(3/1), sjc(NINSHIKI/17)]
A2 = [hea(recognize/vb), hef(3/1)]

As explained before, the order of the elements in A1 is of no
importance, the rule is applied to A1 and the additional
element hef(3/1) is added to the elements in Req2.

Just as in the case of constituent transfer rules, also the
expressiveness of phrase transfer rules can be increased
significantly by using shared variables for unification.

Example 5. The following rule states that a noun phrase with
head KOTO and a modifying verb phrase with verbal JUUYOU DE

ARU and a subject X is translated into a noun phrase with
head importance, definite determiner, and a modifying noun
phrase of X:

Example 3. The Japanese modifying verb phrase (mvp) X
NIMUKETA is translated as modifying adpositional phrase (map)
toward X. In more detail, the Japanese modifying verb phrase
contains a verbal with head MUKERU and auxiliary TA and an
adpositional object with adposition NI:

ctr(mvp, map, MUKERU/47,
[vbl([hea(MUKERU/47),hef(6/4), aux([hea(TA),
hef(54/1)])]), aob([apo(NI/61)| X ])],
[apo(toward/in)| X ]).

C1(A1) = mvp([vbl([hea(MUKERU/47), hef(6/4),
aux([hea(TA), hef(54/1)])]),

aob([apo(NI/61), hea(MINSHU/2), suf(KA/
31)])])
C2(A2) = map([apo(toward/in), hea(MINSHU/
2), suf(KA/31)])

∪
∪
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       ptr(np, KOTO/21,
[hea(KOTO/21), mvp([vbl([hea(DA/74, hef(55/4),
        aux([hea(ARU/74), hef(18/1)]), cap([hea(JUUYOU/18)])]),
       sub([apo(GA/61)| X ])])],
[hea(importance/nn), det(def ), mnp([apo(of/in)| X ])]).

        A1 = [hea(KOTO/21), mvp([vbl([hea(DA/74, hef(55/4),
       aux([hea(ARU/74),hef(18/1)]), cap([hea(JUUYOU/18)])]),
     sub([hea(AKUSESU/17), apo(GA/61), mno(Y), mvp(Z)])])]

         A2 = [hea(importance/nn), det(def ), mnp([apo(of/in),
hea(AKUSESU/17), mno(Y), mvp(Z)])]

The variables Y, Z are used for the convenience of the reader
to shorten the example. An important point that becomes
obvious from the example is that the set property for the
argument condition does not only apply to the top level of A1
but extends recursively to any level of detail specified in Req1,
e.g. to the subconstituents of sub in this example.

6.  Acquisition and Consolidation

The acquisition module traverses the Japanese and English
parse trees and derives new transfer rules, which are added
to the rule base. We start the search for new rules at the
sentence level by calling vp_match(vp, JapSent, EngSent).
This predicate matches two verb phrases VPJ and VPE, the
constituent category C is required for the category condition
in the transfer rules:

vp_match(C, VPJ, VPE) :-
reverse(VPJ, VPJR),
reverse(VPE, VPER),
vp_map(C, VPJR, VPER).

The predicate first reverses the two lists so that the leftmost
constituents (in the sentences) are examined first, which
facilitates the correct mapping of subconstituents with
identical constituent category, e.g. several modifying nouns.
It then calls the predicate vp_map, which is implemented as
recursive predicate for the correct mapping of the individual
subconstituents of VPJ:

vp_map(_, [], []).
...
vp_map(C, VPJ, VPE) :-
   map_dob(C, VPJ, VPE, VPJ2, VPE2),
  vp_map(C, VPJ2, VPE2).
...
vp_map(_, _, _).

Each rule for the predicate vp_map is responsible for the
mapping of a specific Japanese subconstituent (possibly
together with other subconstituents), e.g. map_dob looks
for a subconstituent with category dob in VPJ and tries to
derive a transfer rule to produce the corresponding translation
in VPE. All subconstituents in VPJ and VPE that are covered
by the new transfer rule are removed from the two lists to
produce VPJ2 and VPE2. In that way all subconstituents are
examined until the lists are empty or no more new rules can
be found. Each derived rule is added to the rule base if it is
not included yet.

Each predicate of type map_dob for the mapping of the
individual subconstituents both covers special mappings
as well as the default treatment:

...
map_dob(_, VPJ, VPE, VPJ2, VPE2)

:-
map_default(dob, VPJ, VPE,

VPJ2, VPE2).
...

map_default(C, J, E, J2, E2) :-
remove_constituent(C, J,

ArgJ, J2),
remove_constituent(C, E,

ArgE, E2),
map_argument(C, ArgJ, ArgE).

...
map_argument(dob, J, E) :-

np_match(dob, J, E).

For the default mapping of direct objects both phrases must
contain a subconstituent with category dob. The
subconstituents are removed from the lists by calling the
predicate remove_constituent. This predicate returns the
argument of the removed constituent, it fails if the constituent
does not exist. Finally, np_match is called, which is defined
in analogy to vp_match, in order to derive transfer rules for
the subconstituents of the two arguments.

The transfer rules that are derived by the acquisition module
are very specific because they consider all context-dependent
translation dependencies in full detail to avoid any conflict
with existing rules in the rule base. This guarantees correct
translations but leads to a huge number of complex rules,
which has negative effects on computational efficiency. It also
badly affects the coverage for unseen sentences. To avoid
this overtraining we perform a consolidation step to prune
the transfer rules as long as such new generalized rules are
not in conflict with other rules. The relaxation of rules mainly
concerns contextual translation dependencies of
adpositions, head nouns, determiners, the number feature,
and verbals. The most commonly performed transformations
are:

• to simplify a phrase transfer rule or to replace it with
a word transfer rule,

• to use the generalized categories np or vp in the
category condition,

• to split a phrase transfer rule in two simpler rules.
Figure 8 shows the transfer rules that were derived from our
translation example. Rule 4 and Rule 10 are word transfer
rules that were produced by the consolidation module (the
original rules are struck out and written in angle brackets).

7. Transfer and Generation

The transfer module traverses the Japanese parse tree top-
down and searches for transfer rules that can be applied.
The chosen design of the transfer rules guarantees the robust
processing of the parse tree. One rule only changes certain
parts of a constituent into the English equivalent, other parts
are left unchanged to be transformed by other rules during
subsequent processing steps. Therefore, our transfer
algorithm is able to work efficiently on a mixed Japanese-
English parse tree, which gradually turns into a fully translated
English parse tree.

At the top level we first apply phrase transfer rules (predicate
apply_ptrules) to the sentence before we try to translate each

constituent in the sentence individually (predicate
transfer_const):

   transfer(JapSent, EngSent) :-
     apply_ptrules(vp, JapSent, IntermediateResult),
    transfer_const(IntermediateResult, EngSent).
  apply_ptrules(C, JapSent, EngSent) :-
    apply_ptr(C, JapSent, IntermediateResult),
     apply_ptrules(C, IntermediateResult, EngSent).

  apply_ptrules(_, Sent, Sent).
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The predicate apply_ptrules applies phrase transfer rules
recursively until no further rule can be applied successfully.
The application of a single phrase transfer rule (predicate
apply_ptr) is divided in two steps. First, we select all rule
candidates that satisfy the category, head, and argument
conditions in the rule. Second, we rate each rule and choose
the one with the highest score. The score is calculated based
on the complexity of the argument condition. In addition, rules
are ranked higher if:

• the head condition is not nil,

• the argument condition does not depend on the
head,

• the argument condition contains notex.

The most challenging task for selecting rule candidates is
the verification of the argument condition because this
involves testing for set inclusion (argument condition    input)
at the top level as well as recursively testing for set equality
of arguments of subconstituents. This is achieved by using
the predicate split, which retrieves each element in the
argument condition AC from the input I (at the same time
binding free variables through unification) and returns the
remaining constituents from the input as list of additional
elements Add, which are then appended to the translation of
the argument condition:

    split(I, AC, Add) :-
once(split_rec(I, AC, AC, Add)).

       split_rec(Add, [], [], Add).
   split_rec(I,[ConstAC|RestAC],[ConstAC2|RestAC2],

                                    Add):-
once(retrieve_const(ConstAC, I, ConstAC2,

                      I2)),
split_rec(I2, RestAC, RestAC2, Add).

  retrieve_const(Const,[Const|RestI],Const,RestI). %(1)
  retrieve_const(ConstAC, [ConstI|RestI],

                     ConstAC, RestI):-%(2)
ConstAC =.. [Category, ArgAC],
ConstI =.. [Category, ArgI],
equal_args(ArgI, ArgAC).

 retrieve_const(ConstAC,

      [ConstI|RestI], ConstAC2,
  [ConstI|RestI2]):-

retrieve_const(ConstAC, RestI,
         ConstAC2, RestI2).

equal_args(ArgI, ArgAC) :-
once(unify_args(ArgI, ArgAC, ArgAC)).

unify_args(ArgI, ArgAC, ArgAC2) :-   %(3)
var(ArgAC), ArgAC2 = ArgI.

unify_args([], [], []).   %(4)
unify_args(ArgI, [ConstArgAC | RestArgAC],

     [ConstArgAC2 | RestArgAC2]) :-
  once(retrieve_const(ConstArgAC, ArgI,

ConstArgAC2, ArgI2)),
   unify_args(ArgI2, RestArgAC, RestArgAC2).

A constituent can be retrieved from the input, if the
corresponding element from the argument condition can be
(1) directly unified or (2) if the two categories are identical
and the two arguments are equal sets. The equality of the
arguments is tested by retrieving the argument condition
subconstituents from the input argument until either (3) a
free variable as tail (i.e. |X]) or (4) the end of the list is reached.
For the convenience of the reader we have not shown the
correct treatment of using notex in the argument condition,
i.e. we also check that no such subconstituent is included in
the input.

After applying phrase transfer rules at the sentence level, the
predicate transfer_const examines each individual
subconstituent. It first tries to apply constituent transfer rules
before calling a predicate trans(C, JapArg, EngArg) for the
category-specific transfer of the argument. For simple
constituents this means the application of a word transfer
rule, for complex constituents it involves again the application
of phrase transfer rules (apply_ptrules), the recursive call of
the predicate transfer_const, and some post-editing, e.g.
removing the theme particle from a subject.

As last processing step of a translation, the generation
module generates the surface form of the sentence as
character string. For that purpose we traverse again the parse
tree in a top-down fashion and transform the argument of
each complex constituent into a list of surface strings, which

Figure 8.  Example of transfer rules

⊆
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is computed recursively from its subconstituents as nested
list and flattened afterwards. The correct surface forms for
words with irregular inflections is determined by accessing
the English lexicon.

Since the order of the subconstituents in the argument of a
complex constituent could have been arbitrarily rearranged
through the application of phrase transfer rules, the
generation module cannot derive the original sequence of
several subconstituents with identical category (e.g. several
modifying adjective phrases) from the information in the
parse tree. However, to maintain the original sequence in
the translation is an important default choice in such a case.
Therefore, we have added an additional processing step
after parsing a Japanese source sentence in which we add
a sequence number as simple constituent seq(Seq) to each
argument of a complex constituent. As a consequence we
had to extend the transfer component so that it ignores but
preserves this sequence information during the application
of transfer rules.

8. Conclusion

In this paper we have presented JETCAT, a Japanese-English
machine translation system based on the automatic
acquisition of transfer rules from a parallel corpus. We have
finished the implementation of the system and demonstrated
the feasibility of the approach based on a small subset of
the JENAAD corpus.

We also have just started implementing a Web interface
using Java Server Faces with interactive features to
manipulate lexical, syntactic, and translation knowledge. For
example, it will be possible to correct parse trees by simple
drag-and-drop and editing actions at the Web client. After
submitting the changes, the grammar will be instantly
updated. In the same way we plan to customize lexical data
and transfer rules. The user only has to revise translation
results to customize the rule base according to his personal
preferences.We have also developed a convenient prototype
interface to Microsoft Word (see Fig. 9 for an example
screenshot). The user can simply click on a sentence and
translate it. In addition, it is possible to view the token lists
and parse trees for both source and target language, the
application sequence of transfer rules during translation,

and the resulting parse tree after the transfer step. Finally,
the user can choose a Japanese-English sentence pair and
watch the details of the acquisition and consolidation
process. This enables the user to correct the result of a
translation and verify the consequences for acquisition and
consolidation before updating the rule base. The resulting
system represents a valuable tool for language learning and
customized machine translation.

Future work will focus on extending the coverage of the
system so that we can process the full JENAAD corpus and
perform a thorough quantitative evaluation of the translation
quality using tenfold cross-validation. We also plan to make
our system available to students of Japanese Studies at our
university in order to receive valuable feedback from practical
use.We also have just started implementing a Web interface
using Java Server Faces with interactive features to
manipulate lexical, syntactic, and translation knowledge. For
example, it will be possible to correct parse trees by simple
drag-and-drop and editing actions at the Web client. After
submitting the changes, the grammar will be instantly
updated. In the same way we plan to customize lexical data
and transfer rules. The user only has to revise translation
results to customize the rule base according to his personal
preferences.

We have also agreed on a new research collaboration with
Korean researchers from Korea Advanced Institute of
Science and Technology (KAIST) in September 2007. Due to
the similar nature of Japanese and Korean there is a high
potential for a straightforward portation to Korean-English
machine translation. One important intended extension of
the machine translation framework is the incorporation of
ontological knowledge to improve translation quality and to
address advanced text understanding tasks such as
question answering or summarization. Finally, the translation
knowledge shall serve as a valuable resource for ontology
mining and refinement.
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