
AWtemplate Examples, 1

Content Conversion and
Generation on the Web: A
Pattern Language

Oliver Vogel Uwe Zdun

Application Services New Media Lab

IBM Business Consulting Services Department of Information Science

Switzerland Vienna University of Economics and BA

mail@ovogel.de Austria

 zdun@acm.org

Content conversion and generation is required by many interactive, Web-based applications.
Simplistic implementations of content converters, creators, and templates often cannot satisfy
typical requirements such as high performance, end-user customizability, personalization,
dynamic system updates, and integration with multiple channels. In this chapter, we present a
pattern language resolving central forces in this context. A GENERIC CONTENT FORMAT can be
used to integrate content from different supported content sources. PUBLISHER AND GATHERER are
central instances to trigger back and forth conversion to the GENERIC CONTENT FORMAT, and to
handle other central content management tasks such as cache lookup and storage. Conversions are
performed by CONTENT CONVERTERS. The patterns CONTENT CREATOR, CONTENT FORMAT
TEMPLATES, and FRAGMENTS generate content on request. A CONTENT CACHE is used to store and
retrieve the content in a central repository, and FRAGMENTS are the basic elements stored in the
cache.

Introduction

Interactive, Web-based applications generate formatted content on request. That is, the content is
not available or only partially available in pre-built files. In typical application scenarios, the
generated content has to be formatted in different markup languages, such as HTML, WML, and
XML. Other formats, such as graphical user interfaces or textual representations, need to be
supported as well. The content might be provided to different channels with different protocols,
such as HTTP, COM, CORBA, MMS, and WAP.

In first place, interactive, Web-based applications represent their services using HTML pages. An
HTTP server transfers HTML pages with the HTTP protocol. A Web user agent, such as a
browser, communicates with a Web server, and the Web server “understands” that certain
requests are handled interactively.

AWtemplate Examples, 2

Thus, it forwards the request and all its information to another module running in another thread
or process. This handler may handle the request solely and generate an HTML page in response.
Or it may translate and forward the HTTP request to a legacy system’s API, and then the response
has to be decorated with HTML markup.

On the first glance, content creation on the Web seems to be a simple effort, especially when a
given legacy system with a distinct API should be reengineered to the Web. In our experience,
this naive view is fundamentally wrong, and it leads to severe problems when the resulting
system has to be further evolved later on (see [Zdun2002b] for a detailed discussion). In many
systems HTML pages are simply generated by string concatenation:

StringBuffer htmlText = new StringBuffer();
String name = legacyObject.getName();
...
htmlText.append("
 Name: ");
htmlText.append(name);

Such hard-coding of HTML markup in the program will inevitably lead to problems because
central requirements of modern Web engineering are violated. Such central requirements for
interactive, Web-based applications are:

− Content, representation style, and application behavior should be changeable ad
hoc.

− Web-based applications typically have to represent business logic on the Web in
a coherent way, say, in a common representation style.

− In many cases, the same content is presented to other channels, possibly with
different representation formats than HTML, as well.

− Often rapid integration of new functionality is required, perhaps within a few
hours, and it should be possible to evolve the system incrementally.

− In many cases, the running system cannot be stopped during changes.
− Many (large-scale) Web applications have very high performance and memory

demands.
− Many applications require highly personalized presentations of content.
− Customization of content and behavior by non-programmers, such as content

editors, domain experts, and end-users, might be required.
− Content, content structure and content presentation should be separated.

These requirements are met by many different Web architectures. In this chapter we discuss a
pattern language that documents “successful” solutions in the realm of converting and generating
content on the Web. These patterns lead, in a mostly technology neutral form, to flexible and
generic software architectures for Web applications. The pattern’s consequences and variants lead
to the decision which technological choices are appropriate. During the stepwise and sequential
application of the patterns different consequences and forces have to be compared with the
technological options and the concrete application’s requirements.

AWtemplate Examples, 3

INTENDED AUDIENCE

This chapter is intended to software and information architects faced with the development of
highly dynamic, personalized, and content-centric Web applications. The patterns within this
chapter can be used as a roadmap for building architectures capable of serving clients with
dynamic Web pages in a consistent and efficient manner.

A NOTE ON THE FORM

For convenience and clarity each of our patterns has the same format. In this chapter we use a
modification of a form called Alexandrian form that is inspired by the writings of Christopher
Alexander, especially “A Pattern Language”. Each of our patterns begins with a name. This is
followed by an introductory paragraph, which sets the context of the pattern and its basic
relations to other patterns in the pattern language. Then, there are three diamonds to mark the
beginning of the problem, and, in bold type, the problem is summarized in one or two sentences.
The following body of the problem explains the problem in more detail, and discusses the set of
forces in focus of the pattern. Then, again in bold type, the solution is given in form of an
instruction. In the following paragraphs, the solution is discussed in more detail, diagrams
visualize the solution, dependencies to contained patterns are introduced, and consequences of
applying the pattern are discussed. Another three diamonds show that the main body of the
pattern is finished. And finally, there is a discussion of variants of the pattern and variations in
relationships to other patterns.

Pattern Language Overview

The pattern language consists of the patterns summarized in Table 1.1 as thumbnails. As some of
the pattern descriptions reference later described patterns, we give a thumbnail table here as an
initial overview of our pattern language.
Table 1.1
Pattern Thumbnails
 Pattern Name Problem Solution

GENERIC CONTENT FORMAT How can we use content from different
sources like legacy systems, DBMS, or
Web services in a system without
having to know its concrete
representation in advance?

Provide a generic representation which is
used to represent content from any
anticipated content source. Along with the
generic representation provide a class
structure representing the elements of the
generic representation. Convert the content
from its concrete representation into the
generic representation before you process it
within your Web application.

PUBLISHER AND GATHERER How can we convert to and from a
GENERIC CONTENT FORMAT (semi-)
automatically, provide access to all
content required on the target platforms
centrally, and integrate other content
management tasks such as caching?

Provide central instance(s) for publishing
and gathering of content. The content is
given either in the GENERIC CONTENT
FORMAT(S), or in other formats delivered to
target platforms. The PUBLISHER AND
GATHERER trigger conversions, lookup in
the cache, and other central content
management tasks.

CONTENT CONVERTER How can we automatically convert For each required conversion type, provide

AWtemplate Examples, 4

content in one format to a different
format, and/or update the content
according to a set of change rules?

a converter that has callback methods to be
called when a conversion should take place.
Content conversion includes input
processing of the input format, data
conversion and manipulation, and output
processing to the target format.

CONTENT CREATOR How can we build up content in
different content formats dynamically
and reuse the same code for different
content formats? How do we avoid
hard-coding content format specifics in
the business logic code?

Provide an abstract class that determines
the common denominator of the used
interfaces. Build special classes that
implement that interface for each supported
content format, as well as special methods
(e.g. as callbacks) for required specialties.

CONTENT FORMAT
TEMPLATE

How can we build up content in target
content format and allow the content
editor to add highly dynamic content
parts in a simple way that yields a high
performance?

Provide a template written in the content
format that contains special code in a
template language to be substituted by a
template engine.

FRAGMENTS How can Web pages be designed in
order to allow the generation of Web
pages dynamically by assuring the
consistency of its content? Moreover,
how do you provide these dynamic
Web pages in a highly efficient way?

Provide an information architecture which
represents Web pages from smaller
building blocks called FRAGMENTS. Connect
these FRAGMENTS so that updates and
changes can be propagated along a
FRAGMENTS chain.

CONTENT CACHE How can you increase the performance
of Web page delivery and thereby
increase efficiency of the underlying
Web architecture?

Provide a central cache for caching already
created dynamic content. Consider the
lifetime of the content and cache them as
long as it is still valid in the application’s
context.

Figure 1.1 illustrates the most important pattern dependencies in the pattern language. GENERIC
CONTENT FORMAT is used to represent content from any supported content source. Usually, the
pattern language is applied incrementally. Typically, at first, an initial GENERIC CONTENT
FORMAT is defined to start off, and it is refined as the application evolves.

AWtemplate Examples, 5

Fragments

Publisher and Gatherer

Content Creator Content Format Template Content Converter

Service Abstraction LayerMessage Redirector

Publisher can act
as a Message

Redirector

Message Redirector for
symbolic servive abstraction

Service-based
abstraction for

integrating
multiple
channels

Publisher and
Gatherer provide

content management
tasks on top of

Generic Content
Format

Fragments are
basic cache

elements

Triggers content
conversion

Builders/Templates
create Fragments

Publisher and Gatherer
is a Facade for the

conversion, generation, and
caching components

Internal
information
architecture

elements

Facade

Publisher and Gatherer
triggers content

generation

Generic Content Format

Content Cache

Triggers content
caching

Figure 1.1
Pattern Interactions in the Pattern Language

PUBLISHER AND GATHERER are central instances triggering conversion to and from the GENERIC
CONTENT FORMAT. They also handle other central content management tasks. Therefore, it is
quite usual to design and build PUBLISHER AND GATHERER very early in a project. There are some
external patterns that are often integrated with the pattern language:

− The PUBLISHER AND GATHERER has to be integrated with the mapping of URLs
(or other document/service IDs) to service implementations. This task is often
handled by the MESSAGE REDIRECTOR pattern [Goedicke+2001].

− If multiple channels have to be served, often the PUBLISHER AND GATHERER is
integrated with a SERVICE ABSTRACTION LAYER [Vogel2001] as well.

− Usually, PUBLISHER AND GATHERER trigger the content conversion, generation,
and caching components, and they are FACADES [Gamma+1995] to this
subsystem.

Conversions are performed by CONTENT CONVERTERS. Converters are triggered by PUBLISHER
AND GATHERER. For each supported content format, one converter has to be written for
conversion to and from the GENERIC CONTENT FORMAT. These may be hand-built or one can use
one of the patterns for content generation.

Concerning the patterns CONTENT CREATORS, FRAGMENTS, and CONTENT FORMAT TEMPLATES,
we want to introduce a major distinction of content generation models into template-based
approaches, generating pages by substituting certain elements in template files, and constructive
approaches, constructing a Web page on the fly. CONTENT CREATORS are implementing the
constructive approach. They are highly flexible and programmable, but not the fastest alternative
and not well-suited for end-user customization. FRAGMENTS and CONTENT FORMAT TEMPLATES
are template-based approaches. Potentially, FRAGMENTS offer a very high performance but can
only assemble pre-built parts. A compromise is CONTENT FORMAT TEMPLATES that integrate
program elements in the content source. Thus they are customizable with behavior and offer a

AWtemplate Examples, 6

sufficient performance, but they are less flexible and less well-integrated with the programming
model than CONTENT CREATORS. There are several systems supporting more than one of the
approaches in different combinations.

FRAGMENTS, CONTENT CREATORS, and CONTENT FORMAT TEMPLATES can be seen alternatives
for implementing dynamic content generation. However, FRAGMENTS are acting at a different
abstraction level than the other two patterns, because they used as elements of the content cache.
Therefore, often the patterns are integrated. For instance, CONTENT CREATORS and CONTENT
FORMAT TEMPLATES create FRAGMENTS as results that are stored in the cache. The information
architecture of the GENERIC CONTENT FORMAT pattern can be implemented with FRAGMENTS.

A CONTENT CACHE is used to store and retrieve the content in a central repository. Content
caching is a central document management task. Therefore, the CONTENT CACHE is usually
triggered by the PUBLISHER AND GATHERER. Besides complete documents, FRAGMENTS are the
primary information elements stored in the cache.

Patterns for Converting and Generating Content on the Web

In this section, we present seven individual patterns that we have mined for content conversion
and generation on the Web.

AWtemplate Examples, 7

GENERIC CONTENT FORMAT

You are developing a Web application that provides content in different formats to different types
of clients over different channels, like HTTP and WAP.

♦♦♦
Each channel has its own presentation format that requires you to convert content into the
channel-specific format before publishing it on the channel. Moreover, content can be
retrieved from different backend systems characterized by their own content formats. This
can lead to an N*M combination problem as potentially N source formats (backend
formats) have to be converted into M target formats (channel formats). How can we
integrate content from different sources like legacy systems, DBMS, or Web services?

The code for conversion to and from different formats should be reusable, and the number of
conversions should be minimal.

Often different programming languages and programs should be able to access the same
information base. Suppose you are developing a Web application, which retrieves content from a
RDBMS and displays it using HTML. Usually the logic necessary to generate the HTML page
operates directly on the content. Therefore it has to know its concrete format (the database
schema in this case). This approach works well, if the number of input formats (N) and the
number of output formats (M) are very small as there is a N*M conversion between the different
formats.

If there is a large number of different formats or if new formats shall be supported in the future,
changes in any content format might influence the channel-specific presentation logic directly.
This prohibits the straightforward integration of new content sources as a change in one of the N
formats might require changes in all M output formats.

A simple and straightforward mapping of content formats and information architecture
representation is necessary for efficient content conversion and generation.

Therefore:

Provide a generic representation which is used to represent content from any anticipated
content source. Typically, this generic representation uses a (textual) markup format that
represents at least the common denominator of all known input formats. Along with the
generic representation provide a class structure representing the elements of the generic
representation closely (i.e. one class for each representation format element type). Convert
the content from its concrete representation into the generic representation before you
process it within your Web application.

When choosing a generic representation, often it is important that it is readable and changeable
easily, so that, for instance, end users can manipulate it without programming experience.
Nowadays XML is often used to represent the GENERIC CONTENT FORMAT. Note that other (e.g.
binary) formats may as well be chosen, if for instance the overhead of processing XML is a
problem.

The GENERIC CONTENT FORMAT should enable the representation of arbitrary content models
including primitive types like String, Integer, and Double as well as compound types like
Address, Customer, or Account. Furthermore binary data such as images and multimedia formats

AWtemplate Examples, 8

should be supported. By using a GENERIC CONTENT FORMAT new content sources can be
integrated without having to modify the presentation logic responsible for generating output
formats like HTML and WML. The number of potential conversions from the input to the output
formats is thereby reduced to N+M.

The GENERIC CONTENT FORMAT represents the application-specific superset of content types.
Thus, the ontological problem of integrating content from any source is not tackled by the pattern.
Each content type is described by one class of the information architecture.

Content

String name
String type

CompoundContentPrimitiveContent

<GenericContent>
 <PrimitiveContent name="Firstname" type="String">John</PrimitiveContent>
 <PrimitiveContent name="Lastname" type="String">Doe</PrimitiveContent>
 <PrimitiveContent name="Income" type="Income">100000</PrimitiveContent>

 <CompoundContent name="Address">
 <PrimitiveContent name="Street" type="String">
 Edgware Road
 </PrimitiveContent>
 <PrimitiveContent name="Number" type="String">2A</PrimitiveContent>
 <PrimitiveContent name="City" type="String">London</PrimitiveContent>
 <PrimitiveContent name="ZipCode" type="String">NW4</PrimitiveContent>
 <PrimitiveContent name="Country" type="String">
 United Kingdom
 </PrimitiveContent>
 </CompoundContent>
</GenericContent>

PrimitiveContentString PrimitiveContentDouble PrimitiveContentIncome

Figure 1.2

Generic Content Format Representation Using the Composite Pattern

Figure 1.2 illustrates a possible generic structure of an information architecture following the
GENERIC CONTENT FORMAT pattern concept. Here, we use dynamic typing with a string-based
type property. Of course, static types can as well be used. Often content is represented using a
XML vocabulary expressing the abstractions necessary to model a GENERIC CONTENT FORMAT.
In the example, we can see that there is a one-to-one correspondence of types in the XML
vocabulary and the class hierarchy. In the example, compound types in the XML vocabulary are
modeled as COMPOSITE [Gamma+1995] classes.

A PrimitiveContent class is used to represent primitive data types like Integer, String, and
Double as well as Images or arbitrary binary content. CompoundContent can contain other
content like PrimitiveContent or other CompoundContent. An Address may consist of a
PrimitiveContent Street of type String and a PrimitiveContent Number of type
String.

The GENERIC CONTENT FORMAT pattern offers a set of benefits: GENERIC CONTENT FORMAT
serves as “data glue” for integrating content from heterogeneous sources. It reduces the necessary
number of converters to N input format converters plus M target format converters. Automatic
conversions with CONTENT CONVERTERS often rely on a GENERIC CONTENT FORMAT as a central
conversion (and storage) format. A GENERIC CONTENT FORMAT helps us to implement an efficient
content conversion and generation architecture, which is a primary intent of the pattern language.

The GENERIC CONTENT FORMAT pattern can also incur the following liabilities: a GENERIC
CONTENT FORMAT has to be defined centrally; thus, as applications evolve, it may be hard to
evolve the GENERIC CONTENT FORMAT non-centrally (in a distributed and collaborative working
environment). Therefore, initial formats have to be well designed for the particular domain, and

AWtemplate Examples, 9

extension processes have to be defined. Most GENERIC CONTENT FORMATS are domain-
dependent. Conversion can mean to loose information if the expressive power of other supported
formats and the GENERIC CONTENT FORMAT are significantly different. It may be hard to guess
automatically in unknown documents, which parts of GENERIC CONTENT FORMAT conform to
which part of the unknown document.

♦♦♦
The COMPOSITE [Gamma+1995] pattern can be applied to model the information architecture
required to support GENERIC CONTENT FORMAT in the software architecture of a Web application
system. However, the GENERIC CONTENT FORMAT does not mandate the use of the COMPOSITE
pattern. The COMPOSITE pattern is just a convenient and proven way to model tree structures.

The pattern also occurs in non-hierarchical structures. For instance, RDF [Lassila+1998] is a
graph-based GENERIC CONTENT FORMAT that can be linearized to hierarchical XML structures.

Usually, if a FRAGMENTS architecture is supported, the FRAGMENTS architecture is also used as
the information architecture of the GENERIC CONTENT FORMAT pattern.

We have discussed typed data for the GENERIC CONTENT FORMAT. In some variants types are
omitted, and a central data conversion type such as a string is used for all data. In such cases, each
supported type must be convertible to and from Strings.

AWtemplate Examples, 10

PUBLISHER AND GATHERER

In the context of a GENERIC CONTENT FORMAT, several issues with regard to central content
management are important: delivering content to clients, receiving incoming content, content
conversion and generation in different formats, content caching, ensuring content consistency,
and other content management tasks.

♦♦♦
In a content conversion and generation architecture we have to handle incoming and
outgoing requests. How can we integrate central content management task with request
handling?

Multiple different clients need to access content in a GENERIC CONTENT FORMAT. Somehow these
different kinds of requests have to be handled. Clients should access different devices on which
the content is stored, such as disk drives, network devices, databases, optical devices, etc., via a
unique interface so that clients can abstract from the storage devices used.

Sometimes, multiple GENERIC CONTENT FORMATS have to be created. For instance, in the Web
context, often Web content is converted to XML, unsupported image formats are converted to
GIF or JPEG, and proprietary text formats are converted to PDF. A Web application has to
coordinate what should be converted to what.

Some content is delivered statically; some other content is dynamically processed on-the-fly.
Content change detection and content change propagation can also induce dynamic changes in
already processed static content. A Web application has to handle and integrate static and
dynamic content (and possibly handle caching of content).

Central access points to Web portals and services often have very high hit rates; therefore, high
scalability is required.

Therefore:

Provide central instance(s) for publishing and gathering of content. For content gathering,
the content is provided either in the GENERIC CONTENT FORMAT(S), or in other formats
delivered to target platforms. Then it is converted to the GENERIC CONTENT FORMAT and
(perhaps) cached. Published content can be requested by clients in any supported content
format. Upon a request, the content is looked up in the cache, perhaps the content parts are
dynamically created, and content conversion to the requested channel is triggered. All these
central content management tasks are fulfilled by the PUBLISHER AND GATHERER.

PUBLISHER AND GATHERER are usually two entities like objects, threads, or processes.
Sometimes, say in smaller systems, they are represented by the same entity. Usually, there are
distinct access points on these entities for each specific type of content, say, PUBLISHER AND
GATHERER are two objects with handler methods for each request type or they are realized as two
daemons that fork handlers for each individual request. The content may be stored in a cache
and/or on different devices, say, on the disk, in the memory, in a database, on optical devices, or
on a network device. A CONTENT CACHE is used to abstract from these storage device specifics.

For each specific content type supported, the PUBLISHER AND GATHERER can access CONTENT
CONVERTERS for back-and-forth conversion to the GENERIC CONTENT FORMAT. The CONTENT
CONVERTERS may have to operate on the fly. Once the content is converted to GENERIC CONTENT

AWtemplate Examples, 11

FORMAT, it is stored in the PUBLISHER AND GATHERER’S CONTENT CACHE. FRAGMENTS of the
CONTENT CACHE are the basic internal information entity used by the PUBLISHER AND GATHERER.

Content consistency issues are central content management tasks as well. For instance, content
changes and updates may be induced by content change detection and content change
propagation.

As central access points, the PUBLISHER AND GATHERER handle integration with other channels
than the Web, if this is required. Depending on the URL different channels can be served. Usually
the publisher is triggered by a MESSAGE REDIRECTOR [Goedicke+2001] used for redirecting URL
calls to implementations. Each of these implementations is a service that should be published to
the Web (and other channels). The URL usually denotes which document or service is requested,
which format is required, and which protocol is used. One or more publishers can be integrated as
services into this architecture (see Figure 1.3), or the MESSAGE REDIRECTOR can be part of the
publisher, if the publisher is the only service supported. The presented structure is a SERVICE
ABSTRACTION LAYER [Vogel2001]. It is quite common for PUBLISHERS AND GATHERERS to be
combined with a SERVICE ABSTRACTION LAYER if multiple services are offered to a number of
channels.

PUBLISHER AND GATHERER architecturally integrate the other patterns of the pattern language,
and they also integrate other related services and channel abstractions.

Content
Editing Tools

Content
Editing Tools

HTML Content
CachePublisher

WML

...

Service
Abstraction

Layer

Gatherer

...

C
on

te
nt

C
on

ve
rte

r

C
on

te
nt

C
on

ve
rte

r

Content
Source

Content
Source

Figure 1.3

Content Converters, Publisher and Gatherer, Content Cache, and Service Abstraction Layer

The PUBLISHER AND GATHERER pattern offers a set of benefits: PUBLISHER AND GATHERER are
central instances that enable service access from different platforms and with different protocols.
Correct content conversion and generation is triggered automatically, and caching is handled.
PUBLISHER AND GATHERER can be easily integrated with sophisticated service abstraction
architectures.

The PUBLISHER AND GATHERER pattern can also incur the following liabilities: using a central
instance means that we have to care about scalability and performance issues. The converters are
stateless, so they can be replicated. Only the caches must be shared. To enable automatic
conversion means that all converters have to be written and maintained, whereas hand-built
architectures can only rely on the relevant converters.

AWtemplate Examples, 12

♦♦♦
PUBLISHERS AND GATHERERS can be implemented in different variants. First, we can decide
whether PUBLISHER AND GATHERER are implemented as two separate entities or as one entity of
the programming language. In many more advanced server architectures PUBLISHER AND
GATHERER are separated. Often they can be forked or redirect to other servers to provide a higher
scalability of the architecture. Often there is a central instance to receive requests, and multiple
workers to handle individual requests. Of course, this is only an issue if they run in different
threads or processes. This architecture is actually quite typical for PUBLISHERS AND GATHERERS
in systems with high hit rates.

In SERVICE ABSTRACTION LAYERS [Vogel2001] the publisher can either be used as a service or as
a MESSAGE REDIRECTOR [Goedicke+2001] for resolving URLs.

AWtemplate Examples, 13

CONTENT CONVERTER

Content has to be represented in multiple different formats. Typical target formats for the Web
include XML, WML, and HTML. Sometimes formats, such as PDF, are required as well. Often
pictures in formats, such as GIF, JPEG, PNG, have to be generated.

♦♦♦
How to automatically convert content in one format to a different format, and/or update the
content according to a set of change rules?

Content in different formats has to be generated for an interactive Web application. Important
considerations in this context are performance and scalability issues: for high-performance Web
applications (typically with high hit rates) generating all content on-the-fly is usually costly in
terms of memory and performance, and this imposes severe requirements on the scalability of the
application.

In the context of migrating legacy applications to the Web (or other new media platforms),
usually the original format has to be supported as well. Thus, we cannot change the legacy
application to directly support Web-enabled output as its primary output format. It is necessary to
convert either the legacy format or the Web format.

Converting one content format to another often means to reduce the expressiveness of the
application to the common denominator of all target (and input) formats involved. Otherwise we
have to live with lossy conversions.

Usually, conversions should take place either on request or upon certain events.

Therefore:

For each required conversion type, provide a converter class that has callback methods to
be lazily called when a conversion should take place. In general, content conversion includes
input processing of the input format, data conversion and manipulation, and output
processing to the target format.

A CONTENT CONVERTER is constructed from three elements that are ordered in a CHAIN OF
RESPONSIBILITY [Gamma+1995], each of them is optional:

1. Input processing creates a representation in memory from a given input format.
As a result an intermediate representation is created. Usually, this is a
representation in memory. In exceptional cases, such as operating on very large
data sets (that do not fit into memory), we may use different intermediate
representations. If the conversion is very simple, we can also directly operate on
the input format.

2. Data conversion and manipulation routines on the intermediate representation
(i.e. most often in memory) apply a set of change rules. The result is manipulated
data in the intermediate format. Of course, this step can be repeated multiple
times.

3. Output processing is used to create and convert the intermediate format to the
target format.

AWtemplate Examples, 14

The CHAIN OF RESPONSIBILITY and the produced data formats of a CONTENT CONVERTER are
depicted in Figure 1.4. All parts of the CHAIN OF RESPONSIBILITY are optional; however, most
often all parts are present. For instance, if steps 2 and 3 are performed on the input format, input
processing is not required. If there is only a one-to-one conversion from one format to another
one without any manipulations (e.g. to adapt the differences of the two formats) then step 2 is
obsolete. If the intermediate format is equal to the target format then step 3 is not required.

Client

Document
in Input
Format

Input
Processing

Converter Chain of Responsibility

Data Conversion &
Manipulation

Output
Processing

Document in
Intermediate

Format

Document in
Intermediate Format

(Manipulated)

Document
in Target
Format

Data Formats Produced in Each Processing Step

Figure 1.4

Content Converters: Chain of Responsibility and Produced Data Formats

There are different events that trigger CONTENT CONVERTERS. The CONTENT CONVERTER can be
triggered on demand, say, when an HTTP request is coming in. The conversion can also be
caused by events like content changes. Finally, the content can be pre-processed when the system
is idle or has a low work-load.

The converter may be able to operate back and forth. It unifies all different conversions to and
from the target format. Therefore, usually the converter has two TEMPLATE METHODS
[Gamma+1995] on an abstract converter class that call the three CHAIN OF RESPONSIBILITY
methods for input processing, conversions, and output processing. One TEMPLATE METHOD
handles conversion to the target format, and one handles conversion to the GENERIC CONTENT
FORMAT such as XML. Special converter classes implement the hook methods for the target
format that they represent (such as HTML). Figure 1.5 illustrates this design.

AWtemplate Examples, 15

Document convertFromXML(Document d)
Document convertToXML(Document d)
InternalRep inputProcessingXML(Document d)
void conversionsXML(InternalRep ir)
Document ouputProcessingXML(InternalRep ir)
InternalRep inputProcessingTarget(Document d)
void conversionsTarget(InternalRep ir)
Document ouputProcessingTarget(InternalRep ir)

ContentConverter

InternalRep inputProcessingXML(HTMLDocument d)
void conversionsXML(InternalRep ir)
HTMLDocument ouputProcessingXML(InternalRep ir)
InternalRep inputProcessingTarget(HTMLDocument d)
void conversionsTarget(InternalRep ir)
HTMLDocument ouputProcessingTarget(InternalRep ir)

HTMLConverter ...

InternalRep ir =
 inputProcessingXML(d)
conversionsXML(ir)
return ouputProcessingXML(ir)

InternalRep ir =
 inputProcessingTarget(d)
conversionsTarget(ir)
return ouputProcessingTarget(ir)

Figure 1.5

Generic XML and Special HTML Content Converter Classes

Often static and dynamic content FRAGMENTS have to be combined to create one page. CONTENT
FORMAT TEMPLATES and FRAGMENTS can be used for specifying in a static page where dynamic
parts have to be inserted. CONTENT CREATOR can be used to build up content dynamically in a
specific format using a generic interface. Thus, of course, it can be used to build up the target
format processed by the CONTENT CONVERTER.

The CONTENT CONVERTER pattern offers a set of benefits: it unifies different APIs for data
transformation and manipulation to one abstract converter interface. Thus, in a content
management environment different converters can be applied in an automated fashion. Automatic
data conversion is required for automatically updating dynamic data in CONTENT CACHES and for
dynamically applying conversion in PUBLISHER AND GATHERER. Moreover, the pattern allows for
combining different content conversion approaches such as the event-based, tree-based, and rule-
based processing models. Content conversion is an efficient way to (re-)construct FRAGMENTS
when new or changed input arrives.

The CONTENT CONVERTER pattern can also incur the following liabilities: content conversion
offers only a limited expressiveness compared to FRAGMENTS, templates, or creators. Therefore,
higher-level manipulations of content should be implemented using these patterns. However, they
can be triggered by a CONTENT CONVERTER. In many problem settings there are certain
exceptional conversions that should be handled differently. Here, the CONTENT CONVERTER
offers only limited diversity of conversions because it does not make much sense to produce a
new converter for each exception. Better solutions are to provide a MESSAGE INTERCEPTOR
[Zdun2003, Goedicke+2002] or other callback mechanisms on the converter object for these
cases.

♦♦♦
There are different CONTENT CONVERTER variants. Since all three parts of a CONTENT
CONVERTER are optional all parts can be omitted. The internal creation of content can be hand-
built, or it can use CONTENT CREATOR, TEMPLATES, or FRAGMENTS.

AWtemplate Examples, 16

In some variants, the CONTENT CONVERTER object is also used to store the internal (generic) and
the target format (instead of using an external CONTENT CACHE). This especially makes sense in
automatic type conversion systems following the AUTOMATIC TYPE CONVERTER pattern
[Zdun2004]. Here, the CONTENT CONVERTER object potentially “knows” the two representations
in the two supported formats. However, at any time one of them may be undefined, if it is
possible to create the content without loosing information in both directions. The conversion is
performed when the typed or untyped object is requested the next time. When the information
changes in one of the representations, the other representation is automatically invalidated. This
variant is especially useful for integrating FRAGMENTS objects and a GENERIC CONTENT FORMAT.
At any time, only one of the representations has to be valid, and the other one can be lazily
created on demand. Lazy resource acquisition is also the focus of the LAZY ACQUISITION pattern
[Kircher2001].

AWtemplate Examples, 17

CONTENT CREATOR

In interactive Web applications, dynamically generated content in HTML format and most often
in multiple others formats is required. Sometimes the same application supports the same format
in different variants. For instance, HTML may be delivered pretty-printed in a debugging version
and compressed for optimizing file size in the released version. CONTENT CONVERTERS require a
facility to build up a representation in a target format dynamically.

♦♦♦
How can we build up content in different content formats dynamically and reuse the same
code for different content formats? How do we avoid hard-coding content format specifics
in the business logic code?

Different content formats have different characteristics and specialties; however, the requirement
for supporting multiple formats exists in many systems. As an example of this diversity, consider
for instance classical widget sets and markup formats, such as HTML and XML. Moreover,
format types are heterogeneous in different incarnations. For instance, some widget sets have
highly static and monolithic programming interfaces (such as Swing, AWT, or MFC), whereas
other interfaces are highly dynamic (such as TK). Some markup formats such as XML are well-
formed and can be validated with a DTD or schema, whereas HTML, for instance, is only loosely
defined.

Converting one content format to another often means to reduce the expressiveness of the
application to the common denominator of all target (and input) formats involved. Otherwise we
have to live with lossy conversions.

Often, we have to create the same content in the same format in different ways. Consider, for
instance, generation of HTML text. Ideally, we would like to have pretty printed and indented
HTML output that is easily readable. However, for larger pages this may become problematic:
pretty printing HTML text means to insert a lot of white space and carriage returns. Therefore, in
such cases, we require a more compressed output. When different platforms have to be supported,
often we want to leave away marked parts of the content, such as leaving away larger pictures in
HTML text for supporting mobile devices. Another common example is stripping out comments.

Therefore:

Provide an abstract CONTENT CREATOR class that provides operations to build up content
incrementally in the memory. These operations support at least the common denominator
of the used content formats. Build special classes that implement that interface for each
supported content format, as well as special methods (e.g. callbacks) for required specialties
of the respective content formats.

The classes’ instances enable the application to incrementally build up pages in the user interface
and to retrieve the result. Usually for each user interface element we have methods for starting
and ending the element, so that elements may be placed in between.

Sometimes, the CONTENT CREATOR builds up a string, say, for generating XML or HTML
directly. The CONTENT CREATOR’S internal data representation can also be a COMPOSITE that is
built up incrementally from the content format elements (which are then represented as objects).
This variant has the advantage that the content representation in memory can be changed. That is,
if the internal format of a CONTENT CREATOR and a CONTENT CONVERTER are identical (e.g. a

AWtemplate Examples, 18

DOM tree), we do not have to perform input processing in the CONTENT CONVERTER after
generating content on the CONTENT CREATOR, but we can directly use the internal format
generated. Those objects may also be of the internal FRAGMENTS structure.

CONTENT CREATORS let us abstract specialties and characteristics of different user interfaces.
However, we have to “simulate” the more advanced formats in the less advanced ones, or reduce
the output to the common denominator. Another variant is to live with lossy conversions.

Sometimes, living with lossy conversions is intended, say, if we want to provide a rich Web
interface, and reduced content for smaller mobile devices or settop boxes. In such cases, we can
either leave certain parts of the content away during the building process or use different
CONTENT CREATOR objects as STRATEGIES [Gamma+1995]. Note that it is often easier and less
memory and performance consuming to use CONTENT FORMAT TEMPLATES to create multiple
different variants of the same content in the same format. Here, the content to be provided only
on some platforms can be marked in the template definition.

In Figure 1.6 a typical design of a CONTENT CREATOR is shown. An abstract CONTENT CREATOR
class determines the common interface for all derived creators. Here, four special Creator classes
are derived: the GENERIC CONTENT FORMAT XML, HTML pages on the Web, MMS pages for
mobiles, and DVB-J Java classes that represent pages on interactive digital television platforms
such as the Multimedia Home Platform (MHP).

Document getDocument()
void clearDocument()
void addDocument(Document d)
void startDocument(...)
void endDocument(...)
void startParagraph(String attributes)
void endParagraph(String attributes)
void addString(String s)
...

AbstractContentCreator

HTMLBuilderWeb ...MMSBuilder DVBJPageBuilderXMLBuilder

Figure 1.6

Example of Abstract and Special Content Creators

The CONTENT CREATOR pattern offers a set of benefits: the CONTENT CREATOR allows for
abstracting multiple target formats. Compared to implementing each target format by hand, the
CONTENT CREATOR result in shorter code that is easier to maintain, say in cases of changing Web
standards, new features, etc. CONTENT CREATORS avoid scattering format specifics throughout the
business logic code. In comparison to template or fragment approaches, the constructive approach
of the CONTENT CREATOR is more flexible. Syntax errors in the target format can be detected a
priori, say, the creator can raise an error, if a content element is opened but not closed.

AWtemplate Examples, 19

The CONTENT CREATOR pattern can also incur the following liabilities: in comparison to template
or fragment approaches, the constructive approach of the CONTENT CREATOR is rather slow.
Problems of lossy conversions and reducing all inputs to the common denominator of the target
formats can only be avoided by programming specialties of target formats for all other formats by
hand. CONTENT CREATORS require programming efforts to create and customize content; thus,
they are hardly applicable at the end-user level without tool support.

♦♦♦
CONTENT CREATORS let us generically program how to build up the content format; thus, they are
a generic constructive approach. In contrast, CONTENT FORMAT TEMPLATES and FRAGMENTS are
template-based approaches for the same problem (but both have a different set of forces in focus).

CONTENT CREATORS can be structured as class hierarchies with methods for each content
element, as discussed above, or as alternative variants other descriptive structures can be chosen.
As a runtime structure an object can be created for each content element. Sometimes simpler list
structures are appropriate as well.

AWtemplate Examples, 20

CONTENT FORMAT TEMPLATE

In interactive Web applications, content in HTML format and most often in multiple others
formats has to be dynamically generated. CONTENT CONVERTERS need a facility to build up a
representation in a target format dynamically.

♦♦♦
How can we build up content in a target content format and allow the content editor to add
highly dynamic content parts in a simple way that yields a high performance?

An important limitation of CONTENT CREATOR is that it requires programming to create and
customize the content created. End-user-level customizability, however, is important for many
Web applications since changes to the content presentation can be applied quicker.

Cmpared to static HTML content, CONTENT CREATORS are rather slow. For high-performance
systems a performance closer to using static content is required. Most often only small parts of a
page are dynamic, and others are given statically. In suitable cases, we should not build up the
whole page dynamically, but use static content where possible.

The same content in the same format may be presented in different ways. For example, when
different platforms are supported, often we want to leave away marked parts of the content, such
as leaving away larger pictures in HTML text for supporting mobile devices.

FRAGMENTS solve both of these issues to a certain extent. However, for highly dynamic content
elements we still have to create these Fragments e.g. using CONTENT CREATORS. Therefore, in
such cases the problems appear again during construction of the FRAGMENTS.

Therefore:

Provide a template written in the content format that contains special code in a template
language to be substituted by a template engine. This way, content editors can work directly
using a (familiar) content format and add dynamic elements to it. As large parts of the
content do not have to be processed dynamically, such a CONTENT FORMAT TEMPLATE
provides a potentially high performance.

A CONTENT FORMAT TEMPLATE enriches the content with meta-information. A template language
is needed for specifying the substitutions to be performed by the template engine. In some
variants this is a whole scripting language.

A typical example structure is AOLServer’s ADP templates that are using Tcl. For instance, in
the following example a Web page is created dynamically in which the user’s browser type and
the time is displayed:

<%
 set header [ns_conn headers]
 set browser [ns_set iget $headers User-Agent]
 set time [clock seconds]
%>
<html>
 <body>
 Time: <%= $time %>
 Browser: <%= $browser %>
 </body>

AWtemplate Examples, 21

</html>

The template engine replaces the embedded Tcl code and produces proper HTML output.

The CONTENT FORMAT TEMPLATE pattern offers a set of benefits: for simple scenarios, template
production is very simple and straightforward. That is, Web page design can be separated from
program development, and it is possible for Web designers to create dynamic pages. In general,
the approach is more efficient then purely constructive approaches on top of CONTENT CREATORS.
In contrast to FRAGMENTS more high-level dynamic interactions can be supported in the content
format. Simple behavioral customizations can be performed by the Web designer.

The CONTENT FORMAT TEMPLATE pattern can also incur the following liabilities: in many
approaches such as JSP and ASP the promise to be simple and straightforward turns out to be
unrealistic in practice, because complex programming language elements have to be understood
by the Web designers. Real applications have complex interdependencies. Since templates only
act at the local level of a single document they can hardly cope with these issues. A second
liability results from this problem: recurring elements often have to be recoded for every use in a
template; that is, there is only limited reuse of template code. The page design and business logic
of the application are often not separated.

♦♦♦
CONTENT CREATORS operate in the same context as CONTENT FORMAT TEMPLATE. But they build
up the content in a programmatic and constructive approach. In some domains, this can lead to
significant liabilities regarding end-user customizability and performance compared to static
HTML content.

The CONTENT FORMAT TEMPLATE can internally be realized using CONTENT CREATORS. Other
combinations of the patterns are also possible. For instance, templates may be embedded in
CONTENT CREATOR’S client code. It is also useful to reference FRAGMENTS or CONTENT
CREATORS directly from the embedded template code written in the content format.

A FRAGMENT is another template-based approach. It codes only the fragment ID into the
document, but it does not include the dynamic content itself. Thus, dynamic behavioral aspects of
content that can be coded into the documents themselves are limited.

There are many CONTENT FORMAT TEMPLATE variants based on popular programming languages
that are embedded in HTML code. We can generally distinguish between approaches aiming at
the end-user and Web designer level, and more complex approaches. Another aspect to
distinguish the approaches is caching and interpretation. Some approaches always compile pages,
some approaches cache pages once they are created, and other approaches always interpret the
pages.

Fowler [Fowler2003] documents a variant of this pattern called TEMPLATE VIEW, which renders
information into HTML by embedding meta-information as comments in the HTML page.

AWtemplate Examples, 22

FRAGMENTS

Instead of providing static Web pages only, today’s Web sites offer dynamically generated Web
pages, enriched with real time information like stock quotes in a sometimes highly personalized
manner. Examples of such Web sites are financial, news and sports sites. You are developing a
Web application serving Web pages containing dynamic content.

♦♦♦
The different parts of your Web page can have a different life time, be highly personalized,
or be redundant. You have to assure that the content presented is consistent. You have to
provide these dynamic Web pages in a highly efficient manner.

Generating Web pages from dynamic content is an expensive task as content has to be fetched
from data stores like RDBMS, XMLDBMS or even from other Web systems by accessing Web
services. This leads to increased I/O operations and often network overhead as backend systems
are incorporated over the intranet or even the internet.

Furthermore, assembling of the retrieved content to Web pages results in a processing overhead.
Content might have to be converted into a GENERIC CONTENT FORMAT and Web pages are
regenerated completely as no means are available to determine which parts of a Web page have
changed. Often Web pages as a whole are the finest grained building blocks of Web systems.
Therefore, Web pages cannot be served in an efficient manner if the whole Web page is
regenerated.

The consistency of the content displayed on the Web page is another key challenge. Different
parts of a Web page should be consistent. Consider a Web page showing stock quotes belonging
to the user’s portfolio. To get more detailed information on a specific stock the user can click on a
hyperlink bringing up a details page. The information on that page may not be older or
inconsistent with the one displayed on the former page. To assure that Web pages are generated
consistently, intelligent means must be available to identify that underlying content has changed.
This enforces flexible and intelligent information architectures.

Therefore:

Provide an information architecture which represents Web pages from smaller building
blocks called FRAGMENTS. Connect these FRAGMENTS so that updates and changes can be
propagated along a FRAGMENTS chain.

FRAGMENTS are pieces of information that have an independent meaning and identity. Single
stock quotes, news, or user profiles are examples of FRAGMENTS. These independent parts can be
assembled to compound parts like whole Web pages. Thus FRAGMENTS can contain other
FRAGMENTS and reference others. FRAGMENTS can thereby build a dependency chain or object
dependency graph. If FRAGMENTS lower in the chain change, the higher FRAGMENTS have to be
revalidated and regenerated. Thus, only the parts of a Web page which have actually changed are
regenerated leading to a decreased processing overhead.

As FRAGMENTS have an independent meaning in the user’s conceptual model they can build the
basic entities for caching strategies. It is important to understand that FRAGMENTS are a concept
of the used information architecture and are completely independent of base technologies like
J2EE or .NET. Therefore the same information architecture can be used on different technology
platforms [Kriha2001]. A FRAGMENTS based information architecture fits nicely into the overall

AWtemplate Examples, 23

software architecture of a Web application system as they can be represented by conventional
means like classes.

Web Page

Portal Logo Navigation Menu (Contact, Customize, Filter,
Logoff etc.)

Not Customized Stock Quotes View

Stock Quote 1,
Stock Quote 2,
Stock Quote 3,
.
.
Stock Quote N.

Customized News View

Company X invests in Company Z.
Company Y has new CEO.
.
.
.
Company W released new version of its core
product.

Figure 1.7

An Example Web Page Containing Personalized and Non-Personalized Parts

The illustration in Figure 1.7 shows a Web page of a financial portal site constructed from smaller
building blocks. The portal logo and the navigation menu are user independent and thus appear
on every portal page. The uncustomized stock quotes view is build upon dynamic content but not
personalized. Therefore, it can be reused across different portal pages.

In contrast, the customized news view is personalized by the user and is specifically generated for
that particular user. However, several users could have the very same configuration; or different
news items could appear on different Web pages as well. Thus, there is a reuse potential for the
news view and news items. Furthermore the stock quotes view and the news view are themselves
built from smaller building blocks, namely stock quotes or news items respectively.

Using the FRAGMENTS concept the Web page is a compound FRAGMENT containing the portal
logo FRAGMENT, the navigation menu FRAGMENT, the stock quotes FRAGMENT and the news
FRAGMENT. The stock quotes and news FRAGMENTS are compound FRAGMENTS as well build
from stock quote and news item FRAGMENTS. Like the GENERIC CONTENT FORMAT a FRAGMENTS
architecture can be designed using the COMPOSITE pattern.

PrimitiveFragment CompoundFragment

Fragment

String name
String identifier

consists of

Figure 1.8

Generic Fragments Structure Using the Composite Pattern

Using the COMPOSITE pattern arbitrary FRAGMENT trees can be assembled, as shown in Figure
1.8. In order to tell which FRAGMENTS make up which other FRAGMENT’S Fragment Definition

AWtemplate Examples, 24

Sets (FDS) are used. Fragment Definition Sets are FRAGMENTS themselves and build an object
dependency graph necessary to invalidate FRAGMENTS and to detect which parts of a FRAGMENT
have to be regenerated. The Fragment Definition Sets can themselves be modeled using the
COMPOSITE pattern (see Figure 1.9).

PrimitiveFragmentDef CompoundFragmentDef

Fragment

String name
String identifier

FragmentDef

String name
String identifier

fragment definition set
consists of

Figure 1.9

Generic Structure of a Fragment Definition Set

FRAGMENTS are defined by FRAGMENT definitions. Combining the definition and the instance
level of the information architecture leads to a dynamic object model system as described in
[Riehle+2001].

Besides using FRAGMENTS to structure Web pages, FRAGMENTS are also ideal candidates to
model dependencies between different formats of the same content.

Stock Quote in
RAW Format
(e.g. row in

database table)

Domain Object of
Stock Quote
(e.g. JDBC

representation of
RAW format)

Stock Quote in
Generic

ContentFormat
(e.g. company,
buy, sell, stock,

number of stocks
in portfolio)

Stock Quote in
Personalized

GCF (e.g.
company name
and price only)

Stock Quote in
Personalized

Rendered
Format (e.g.

HTML)

Stock Quote in
Personalized

GCF (e.g. buy/
sell overview)

Stock Quote in
Personalized

Rendered
Format (e.g.

WML)

Figure 1.10

Fragment Dependency Graph of the same Content

In Figure 1.10 we can see a typical FRAGMENTS dependency graph of the same content. If any
part of the FRAGMENTS dependency graph changes, its successor has to be revalidated and
regenerated. The upper part in the dependency graph, the rendered FRAGMENT, is usually part of a
Web page dependency graph triggering the revalidation of the affected parts of the Web page
after its regeneration. To detect and to propagate fragment changes special algorithms can be
used. For example, a Data Update Propagation (DUP) algorithm can be used to propagate
changes along the FRAGMENT dependency graph by assuring consistent updates as described in
[Challenger+2000]. Another approach is to include special validator objects containing the logic
necessary to determine if FRAGMENTS have become invalid and therefore have to be updated. The
validators can either be configured using a rule based approach or be created programmatically
[Kriha2001]. Moreover, caching can be integrated within the FRAGMENTS architecture as
explained in CONTENT CACHE.

AWtemplate Examples, 25

The FRAGMENTS pattern offers a set of benefits: compared to the other content generation
patterns, FRAGMENTS potentially offer the highest performance. Fragments offer a good
integration with a layered CONTENT CACHE. The other content generation patterns can be
combined with the FRAGMENT approach.

The FRAGMENTS pattern can also incur the following liabilities: FRAGMENTS only assemble pre-
built parts. They are not highly programmable and do not offer behavioral abstractions. However,
these problems can be eliminated by combining them with the other content generation patterns.
In pre-built FRAGMENTS content changes have to be detected and propagated to ensure content
consistency.

♦♦♦
In their internal structure, FRAGMENTS can be atomic, chained, COMPOSITES, or cascaded
COMPOSITES. Fragments can only have an object representation or they can also cache the
GENERIC CONTENT FORMAT representation that corresponds to their internal representation. Then
only one of these representations has to be valid, and the other one can be computed lazily.

AWtemplate Examples, 26

CONTENT CACHE

You are developing a Web application system targeting many users that has to support dynamic
content in an efficient way. You are using FRAGMENTS to structure your content. The processing
time required to render Web pages should be reduced.

♦♦♦
How can you increase the performance of Web page delivery and thereby increase
efficiency of the Web architecture?

Dynamic Web application systems often lack in providing Web pages in an efficient way. A
FRAGMENTS architecture can be used to reduce the amount of parts of a Web page having to be
regenerated every time a new request enters the system. However, the performance of the overall
Web architecture might still be insufficient.

Content changes that affect already created content have to be detected and propagated to avoid
content inconsistencies.

Therefore:

Provide a central cache for caching already created dynamic content. Let the PUBLISHER
AND GATHERER enter newly created or updated FRAGMENTS in the cache. When the content
changes, invalidate the respective content entries in the cache. When a client wants to access
some content, let the PUBLISHER AND GATHERER check the cache before dynamically
creating the requested content.

The main reason for caching is to increase throughput and thereby performance. According to a
report by Yahoo [Manber+2000], 80% of all users do not customize their homepage. This means
that besides the welcome message, everything appearing on the individual’s portal page stays the
same. Caching these parts truly increases the performance of the overall Web site tremendously.

However, enabling caching in a consistent way is challenging as accurate cache invalidation
algorithms have to be applied. Moreover, client and server side caching has to be considered.
Whereas server side caching enables cache invalidation by introducing validator objects
containing the knowledge when a cached piece of content becomes invalid, client side caching is
often quite cumbersome.

First of all, clients, in most cases Web browsers, must adhere to a protocol supporting the control
of client side caching from the server side. Although, the common protocol HTTP allows for
setting certain caching parameters most popular Web browsers still do not implement the HTTP
specification accurately. This makes caching of dynamic content on the client side unreliable as it
is not clear how the client’s browser implements the specification. One can limit access to Web
sites to certain, tested browsers only. But the next version or the same version on another
platform might still behave differently. Thus, often the only choice is to turn off client side
caching completely leading to a decrease of performance.

Server side caching is an effective means to speed up overall request satisfaction. To support
efficient server side caching information architecture must be in place which decomposes the
information space along the dimensions time and personalization and which distinguishes clearly
between global pieces, individual selections of global pieces and really individual pieces
[Kriha2001]. An information architecture based on FRAGMENTS can be used to classify content.

AWtemplate Examples, 27

Moreover validator objects can be applied to determine, if a piece of information is still valid
according to time and personalization constraints. The validator objects can either be configured
using a rule-based approach or implemented programmatically. Different validator algorithms can
be supplied using the STRATEGY pattern [Gamma+1995].

Assuming that hundreds of requests for the same stock quote are entering the system, the same
number of requests to the backend system, requesting the same information, would be required.
Thus, the system performance would be influenced very negatively. Only the first request should
trigger the retrieval of the information all subsequent request should receive the information from
the server side cache as long as it is valid. For most types of information an accuracy of a few
seconds is acceptable. Therefore, every request should go through a CONTENT CACHE. The
CONTENT CACHE checks if the requested piece of information is in the cache and if it is valid. If
not, the content is loaded from the backend system and stored in the cache. Afterwards it is
returned to the client. This applies for whole Web pages as well for parts of Web pages.

Content can be gathered and published by using the PUBLISHER AND GATHERER pattern.
Typically CONTENT CONVERTERS are triggered before and/or after the content is placed in the
CONTENT CACHE. The PUBLISHER AND GATHERER checks whether the CONTENT CACHE contains
a valid entry before it re-creates content dynamically.

Content Cache

Fragment FragmentDef FragmentValidator

defined by

used for validation

Figure 1.11

Internal Structure of a Content Cache

The ContentCache itself contains Fragments as well as FragmentDefs and uses
associated FragmentValidators to validate Fragments of certain types (see Figure 1.11).

Chains or dependency graphs of FRAGMENTS, representing the same content in different formats,
can be cached in the ContentCache too. Because of the behavior of FragmentChains, the
ContentCache is not the only active component within the caching process. FRAGMENTS
within a chain automatically notify its successors upon content change triggering their
revalidation and probably leading to the invalidation of the ContentCache. Thus, FRAGMENTS
play an active role in the caching process as well.

The CONTENT CACHE pattern offers a set of benefits: in combination with FRAGMENTS the
patterns allows for highly efficient information architectures. Together with a PUBLISHER AND
GATHERER it integrates well with CONTENT CONVERTERS.

The CONTENT CACHE pattern can also incur the following liabilities: possible inconsistencies in
the CONTENT CACHE have to be resolved. In exceptional cases change detection and propagation
can be more costly than the performance gain of caching. In multi-threaded environments a
CONTENT CACHE requires mutex locks which can result in lock contention. Therefore, it is
important to monitor hit rates and contention closely.

AWtemplate Examples, 28

♦♦♦
There are different variants of CONTENT CACHES. A cache can be supplied as one central instance.
As a variant, there can also be multiple caching instances, one for each content element. For
instance, in Tcl, Tcl_Objs use this style of caching: each Tcl_Obj is one cached element plus
a CONTENT CONVERTER to/from a generic, string-based representation.

A CONTENT CACHE can support automatic invalidation of all dependent objects, or invalidation
has to be handled by hand. Moreover, CONTENT CACHES can also support more advanced forms
of content change detection and propagation such as object dependency graphs
[Challenger+2000].

If personalized FRAGMENTS are supported, an important variant is a layered CONTENT CACHE.
Each caching layer than reflects one personalization layer in the FRAGMENTS.

AWtemplate Examples, 29

Implementation Example in Java

In this section, we provide a few Java code examples to illustrate the practical use of the patterns.
In the pattern language, the PUBLISHER AND GATHERER pattern is used as the central pattern for
architecturally integrating the other patterns of the language. Let us consider PUBLISHER AND
GATHERER realized as two separate Java classes with methods for each type of source content. In
a simple publisher class methods for retrieving each individual content type are provided. A
document in the GENERIC CONTENT FORMAT (here: XML) can directly be delivered with
getXml, if it is found in the cache. Each document has a unique document ID, for instance
denoted by an URL. We would have to trigger building a page from FRAGMENTS here as well, if
this functionality is supported. Internally, the document FRAGMENTS consist of an object tree
corresponding with the GENERIC CONTENT FORMAT’S information architecture. XML and HTML
text are just views on this generic representation; however, the XML view has a one-to-one
correspondence.

Other formats, such as HTML, are either already converted or stored in the generic cache, or they
have to be converted from XML. If a conversion took place, we can put the generated HTML
document into the cache.

 class Publisher {
 CacheHandler xmlCache;
 CacheHandler htmlCache;
 ContentConverter htmlConverter;
 ...
 public XmlDocument getXml (DocumentID docID) {
 return xmlCache.get(docID);
 }
 public HtmlDocument getHtml (DocumentID docID) {
 HtmlDocument htmlDoc = htmlCache.get(docID)
 if (htmlDoc == null) {
 XmlDocument xmlDoc = getXml(docID);
 htmlDoc = htmlConverter.convertFromXml(xmlDoc);
 if (htmlDoc != null)
 htmlCache.enter(docID, htmlDoc);
 }
 return htmlDoc;
 }
 ...
 }

Similarly, a gatherer can directly store XML input into the document cache (or on any other
storage device), and entries for the document in depending caches, such as the HTML cache, are
invalidated. If HTML input is received, the XML and HTML cache entries are invalidated, and
the new document is converted to XML.

 class Gatherer {
 CacheHandler xmlCache;
 CacheHandler htmlCache;
 ContentConverter htmlConverter;
 ...

AWtemplate Examples, 30

 public void storeXml (DocumentID docID,
 XmlDocument xmlDoc) {
 xmlCache.store(xmlDoc);
 xmlCache.propagateChangeToDependingCaches(xmlDoc);
 }
 public void storeHtmlAsXml (HtmlDocument htmlDoc) {
 invalidateAllCaches(docID);
 xmlCache.store(docID,
 htmlConverter.convertToXml(htmlDoc));
 }
 ...
 }

CONTENT CONVERTERS are triggered by the PUBLISHER AND GATHERER. We will now discuss
code examples for input processing with the tree-based model on basis of the Document Object
Model (DOM). The CONTENT CONVERTER has to wrap and trigger a DOM CONTENT CREATOR.
Before parsing, we have to instantiate a document tree creator object first. Then we have to parse
the file as well:

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 factory.setValidating(false);
 DocumentBuilder builder =
 factory.newDocumentBuilder();
 ...
 Document document = builder.parse(file);

A tree structure is generated in memory. DOM provides a low-level API to traverse this tree as an
intermediate format in memory, e.g.:

 NodeList nodes_i =
 document.getDocumentElement().getChildNodes();
 for (int i = 0; i < nodes_i.getLength(); i++) {
 Node node_i = nodes_i.item(i);
 if (node_i.getNodeType() == Node.ELEMENT_NODE &&
 ((Element) node_i).getTagName().equals("A")) {
 handleElementA();
 }
 ...
 }

A CONTENT CONVERTER wraps these low-level details of XML processing and generates the
appropriate GENERIC CONTENT FORMAT with its corresponding information architecture. Usually,
only the Java FRAGMENT objects are created from the DOM tree and the corresponding XML text
and other content formats are created lazily on demand.

Alternatively, we can use event-based XML processing models, such as SAX or Expat, or rule-
based processing models, such as XSLT.

CONTENT CREATORS can be used in this architecture to generate XML and HTML text from the
FRAGMENTS that are created after input processing. Here, the FRAGMENTS are ordered
hierarchically in a COMPOSITE structure. For each element of the content format, the CONTENT

AWtemplate Examples, 31

CREATOR has methods for starting the element and ending it. For instance, a paragraph in an
HTML creator may have children; thus, it has to be started and ended:

 void startParagraph(String attributes) {
 addStringIncr(“<P ”);
 addString(parseArguments(attributes));
 addStringIncr(“>\n”);
 }
 void endParagraph() {
 addStringDecr(“</P>”);
 }

Leafs, such as strings, have only a method for adding the leaf. In startParagraph and
endParagraph we have used the methods addStringIncr, addString, and
addStringDecr for adding the leafs that markup the paragraph. Only addString is a
method supported by the abstract CONTENT CREATOR. addStringIncr and
addStringDecr are methods for increasing and decreasing the indent level of HTML text
before adding a string. Thus, they represent a specialty of the HTML format.

An XML CONTENT CREATOR usually has a one-to-one mapping of content FRAGMENTS and
CONTENT CREATOR methods, as there is a one-to-one correspondence between those elements in
the GENERIC CONTENT FORMAT pattern. A mapping method for each FRAGMENT type defines the
correspondence between the semantic content in the FRAGMENTS and basic content layout, such
as HTML or WML. Further layout refinements can be added with different means, such as
Cascading Style Sheets (CSS) and XSLT processing.

As an alternative, we can enhance given content with §. A simple example of CONTENT FORMAT
TEMPLATE is JSPs that contain Java code to be substituted. The substitution rules can also be
applied with XML. The template engine finds special tags containing the Java code and executes
this code before delivering the pages. Here the data for date and time is computed dynamically:

<%@page import="java.util.*" %>
<HTML>
...
<BODY>
<H2>Date and Time</H2>
 Today’s date is: <%= new Date() %>
</BODY>
</HTML>

Of course, CONTENT FORMAT TEMPLATES are especially valuable if they are combined with the
other patterns in the language. For instance, the called methods can refer to FRAGMENTS that are
dynamically computed and/or cached. This computation can be done with CONTENT CREATORS.

Known Uses and Related Work

There are different commercial web service and portal architectures that are based on parts of the
pattern language. For instance, BEA WebLogic Integration uses a GENERIC CONTENT FORMAT to
receive and send data from and to clients connected to its integration platform. ORACLE’s

AWtemplate Examples, 32

PortalToGo uses a SimpleResult data structure to represent content in a device independent
manner. It generates device-specific pages based on the content represented in the GENERIC
CONTENT FORMAT. The Java Connector Architecture (JCA) provides ResultSets,
MapResultsSets and other generic formats to represent data coming from different backend
systems.

Different web standards and their implementations are also based on parts of the pattern
language: SOAP [Box+2000] is an XML-based remote procedure call (RPC) protocol. SOAP
envelopes are a typed GENERIC CONTENT FORMAT. RDF [Lassila+1998] is a graph-based
GENERIC CONTENT FORMAT for providing meta-data on the web.

Servers that allow for putting and retrieving data (and programs) are simplistic implementation
variants of the PUBLISHER AND GATHERER pattern with one entity: examples are FTP servers and
HTTP PUT/POST-enabled HTTP servers.

There are numerous XML-based CONTENT CONVERTERS, based on the different processing
standards: SAX [Megginson1999] parsers and Expat are the basics for numerous event-based
parsing architectures, DOM [W3C2000] is the basics for numerous tree-based parsing
architectures, and XSLT [Clark1999] is the basics for numerous rule-based parsing architectures.

xoComm [Neumann+2000] is a extensible web server architecture that has a worker object for
each request, and a central server for handling incoming and outgoing HTTP requests. Thus, this
web server architecture is also a PUBLISHER AND GATHERER variant. xoComm provides a
CONTENT CACHE structure on the client side. Actiweb [Neumann+2001] is a web object and
mobile code system based on xoComm. It uses the “events” generated by the corresponding
worker of the web server. It translates the URLs in an invoker component. Depending on the
URL, normal web pages are delivered, an agent immigration or RPC invocation is handled, or a
web object is triggered. In this framework, xoRDF [Neumann+2002] is a tree-based CONTENT
CONVERTER architecture for RDF data that is extensible with multiple other interpretations using
a VISITOR framework. Antti Salonen’s Htmllib is a CONTENT CREATOR written in XOTcl for the
HTML target format that is integrated in Actiweb. It builds up a Tcl list dynamically on the
creator object and supports the most important parts of HTML’s functionality. The conference
management system, described in [Zdun2002a], uses these HTML creator objects extensively.

The Credit Control Platform has been developed for a leading Swiss bank. The platform stores
credit control information coming from different credit control systems in GENERIC CONTENT
FORMAT and uses it to render HTML pages. Credit Control Platform uses efficient, format
specific, code generated CONTENT CONVERTERS to convert credit reports from different credit
control systems into a GENERIC CONTENT FORMAT [Vogel2000]. A modeling tool can be used to
describe the schema of the input format. Based on the schema-specific CONTENT CONVERTERS are
created. Credit Control Platform supports different CONTENT FORMAT TEMPLATES. Data
Visualizers can be specified on a meta-level using a special modeling tool [Bredenfeld+2000].
Concrete CONTENT FORMAT TEMPLATES can be generated for different technologies like JSP,
ASP and XSLT.

The document archiving system in [Goedicke+2002] provides a GENERIC CONTENT FORMAT in
form of a data capsule format for document archiving. The capsules contain the document plus
metadata. In future system versions, the capsule format should be XML. The system provides
central GATHERER entities for archiving of different content formats, and a document retrieval
handler. All handlers are daemons that are provided for initial access only. Upon a request, a
PUBLISHER handler is forked from the central instance and handles the request. The system
supports CONTENT CONVERTERS for converting all inputs into an archive capsule format.

AWtemplate Examples, 33

In the document management system DocMe a central gatherd and publishd are provided to
realize the pattern PUBLISHER AND GATHERER. Internally, all gathered information is converted.
Here, different constructive CONTENT CONVERTERS are provided, e.g. from MS Word format and
similar formats used by end users as content editors. The system approximates how the
documents should look like in different formats, such as HTML, TV broadcasted data, etc. Using
the central PUBLISHER AND GATHERER the system caches the information, handles multiple
document versions in the CONTENT CACHE, change detection and propagation, user and rights
management, and document classification issues.

AOL Digital City, based on AOL Server [Davidson2000], has an architecture with a central Pub
server and multiple front end servers as a variant of PUBLISHER AND GATHERER. A switch server
multiplexes a client onto one of the front end servers. AOL Server’s SOB (small objects) is an
interface for dynamic publishing editorial content. SOBs can be placed as FRAGMENTS in
templates. They are aggressively cached in a CONTENT CACHE, e.g. in AOL Movie Guide. AOL
Server implements a CONTENT CACHE in a multi-threaded environment. Here, the cached data has
to be mutex-protected during writing. AOL Digital City and Movie Guide use this functionality
for central content caching servers. AOLServer’s ADP templates are CONTENT FORMAT
TEMPLATES that integrate HTML, Tcl, and the AOL Server interfaces. They are used on
numerous high-performance web sites, including AOL Digital City and Movie Guide.

The Olympic Games 2000 Web Site [Challenger+2000] is build by IBM using a FRAGMENTS-
based system for dynamic creation of web content. It uses a server side CONTENT CACHE to
cache dynamic content [Challenger+2000].

Edge Side Includes are a new evolving FRAGMENT technology used to describe cacheable and
non-cacheable Web page components. These components can be aggregated, assembled, and
delivered at runtime [ESI2002].

WebShell [Vckovski2001] uses Tcl procedure to implement each part of the construction of a
web page as a CONTENT CREATOR. These are combined in a special method that assembles and
delivers the web page. The code of this procedure already resembles the document to be created,
but actually Tcl commands and lists are used.

In the TPMHP project we are building a Java-based CONTENT CREATOR for the Multimedia Home
Platform (MHP) which should support DVB-J, HTML, and MMS pages.

There are several different languages and platforms that support CONTENT FORMAT TEMPLATES
natively. ASP and JSP are approaches that use tags to allow embedded code in an HTML page.
ASP pages are written in Visual Basic, and JSP pages are written in Java. ASPs offer a CONTENT
CACHE for all created pages. As a disadvantage, both approaches require “low-level”
programming and are therefore hardly applicable at the end-user level. Scripting approaches for
building templates on the web are often easy to customize. PHP introduces a new language for
web page templates. It is small, light-weight, efficient, and easy to use for non-programmers.
However, as a disadvantage the language is only created for one use: on the web. The Apache
modules mod_perl, mod_tcl, and WebShell [Vckovski2001] allow for combining templates,
written in Tcl and Perl, with the Apache web server. Zope is a rather complex and powerful
system for integrated web development that resides on the Python language, and also allows for
templates.

Some approaches provide combinations of CONTENT FORMAT TEMPLATES and CONTENT
CREATORS: WebShell [Vckovski2001], ActiWeb [Neumann+2001], and Brent Welch’s TclHttpd

AWtemplate Examples, 34

can construct pages dynamically, and embedded template elements in the HTML code used to
construct an HTML page.

Conclusion

In this chapter we have presented patterns for dynamic content conversion and generation on the
web. The patterns are used in many different web architectures, and, to a certain extent, different
available technological instances can be exchanged. For instance, different models of CONTENT
CONVERTERS or different content generation techniques can easily be exchanged. However, the
base-line architecture stays the same, despite such important technological decisions. Since most
basic technologies are based on XML, and since components, such as parsers and processors, are
widely available for many different programming languages, we can assert that the patterns can
be used for architectural decisions apart from concrete technological realizations. Therefore, they
provide a good communication means with different stakeholders of the system in focus.

In our experience, the patterns yield architectures with a set of benefits and liabilities that vary
slightly for different used implementation technologies, for different combinations of the patterns,
for different sequences through the language, and for different variants of the patterns.

The patterns strongly encourage architectures that provide a separation of concerns between
content, styles, formats, and channels. That is the reason, why different technological choices can
relatively easily be exchanged against each other. MESSAGE REDIRECTORS [Goedicke+2001] can
be used to implement the indirection to the channels, and add-ons for the channels can be
transparently provided, such as logging or authentication.

With a SERVICE ABSTRACTION LAYER [Vogel2001] multiple representation channels may be
supported. CONTENT CREATOR and CONTENT FORMAT TEMPLATE can be used to abstract from
different content formats. Thus, a common denominator can be implemented with minimal
programming effort. Both patterns provide a programmable alternative to using FRAGMENTS
alone, and both can be integrated with FRAGMENT approaches.

Generational aspects in the pattern language can be handled at runtime. Therefore, introducing
changes into a running program is natively supported by much architecture based on the pattern
language. However, since generation is always more performance-intensive than delivering static
HTML pages (e.g. stored in files or in a database), performance may be influenced negatively.
Therefore, the balance between CONTENT CREATORS, CONTENT FORMAT TEMPLATES, and static
content often has to be considered very carefully. In different applications, performance impacts
may significantly vary. Thus often combinations of the patterns and caching architectures are
necessary to reach acceptable results. These forces are primarily resolved by the FRAGMENT and
CONTENT CACHE patterns.

If CONTENT CREATORS are used exclusively, the user interfaces are reduced to the common
denominator defined in the abstract creator. Of course, certain CONTENT CREATORS may also
ignore certain formatting instructions, say, like a WML CONTENT CREATOR that does not fully
support the HTML subset.

On first sight, the complexity of architectures based on the pattern language is higher then simple
architectures, such as template-based approaches or CGI scripts. However, for larger tasks, the
complexity of the simpler models usually grows exponentially, say, because of cut-and-paste
code and missing integration models. Therefore, in our experience, in real-world, large-scale web

AWtemplate Examples, 35

applications the complexity, and thus the maintainability and understandability, is rather
influenced positively by applying the pattern language.

Acknowledgements

We wish to thank our EuroPLoP shepherd Markus Voelter for his valuable comments during the
shepherding process. Also we wish to thank the participants of the EuroPLoP 2002 writer’s
workshop, who also provided substantial feedback that helped us to improve the chapter.

