Definition of an Aspect-Oriented DSL using a Dynamic
Language

Mark Strembeck, Uwe Zdun
Institute of Information Systems, New Media Lab
Vienna University of Economics, Austria

{mark.strembeck|uwe.zdun}@wu-wien.ac.at

ABSTRACT

We present an approach to define an aspect-oriented DSL asing
dynamic language. In particular, we describe an extensibject-
oriented DSL for role-based access control and its impleatiem.
Furthermore, we show how a dynamic pointcut language casée u
to compose the different elements of our DSL. We implemented
approach using the XOTcl scripting language. The genemalaeh,
however, can be realized using any other dynamic languagelas

INTRODUCTION

Domain-specific languages (DSL) are “small” languages aat
particularly expressive in a certain problem domain. Régeim the
area of model-driven software development and relatedarebear-
eas (see for instance [11, 4, 1, 3]), DSLs are used as langudgeh
represent the abstractions familiar to domain expert<éied do-
main modeling languages). A DSL may either have a textual or
graphical representation. This concrete syntax of the BShapped
to an abstract syntax which is defined by the formal languaogein
In the model-driven approach, the semantics of the DSL dinatk
using model transformation and code generation. That ignerngy
ator translates the DSL into an executable representaiimrgrding
to the models and meta-models, and the semantics of the reledel
ments.

Sometimes DSLs define semantics that are aspect-orienteeiin
nature. Consider, for instance, a DSL for defining role-dasecess
control policies. In this context, an access control subject has a
number of roles that are assigned to the subject. Moreoeemig-
sions are assigned to roles, and permissions can be assbwiih
context constraints (see [13]). This basic model is showRigure
1. Each of the elements in the model is represented via cdasse
class hierarchy, and the definition of individual elementmdepen-
dent of the other classes and hierarchies. It is, howeveérrival
to achieve this goal since the context constraint concemssecut
the permission concerns, which again cross-cut role coscemd
the roles cross-cut concerns in the subjects. To avoid edngbde
in the DSL definition and in the code written in the DSL, we dntr
duce an aspect-oriented definition of the role-based aamsssol
DSL. From an aspect-oriented point of view, roles can bepméeted
as aspects of subjects, permissions as aspects of rolespatekt
constraints as aspects of permissions.

Context
assngned to a55|gned to Imked to \Constraint

Figure 1: High-level model for role-based access control ghts

1.

In this paper, we want to explore the combination of the DSh-co
cept and aspect-oriented programming concepts. We bedlieve-

1This is used as a running example in this paper.

quirements of the role-based access control DSL are quotealfor
an aspect-oriented DSL. Unfortunately, these requiresnarg hard
to implement with many existing AOP frameworks:

e The AOP framework must be able to depict “aspects of as-
pects”. In the access control example, and many other exam-
ples, the aspects are related to other aspects which must be
reflected by the AOP framework because the DSL user must
be able to define and control how the aspects interact.

e The pointcut language of the AOP framework must be exten-
sible, so that we can define new domain-specific pointcuts,
which can be exposed to the DSL.

e The AOP framework and its programming language must al-
low for the extension with new elements or to define new DSL
language elements, i.e. their syntax and semantics. Mergov
the AOP framework should be able to directly generate an exe-
cutable representation from a specification written in tigt D

e In the access control example, and many other examples, the
aspects must be dynamic. A recompilation for changing roles
permissions, or constraints is not feasible.

To meet these requirements we especially need an open aspect
language that is dynamic and able to handle “aspects of &Spec
In this paper, we will use the scripting language XOTcl [8]aas
open aspect language. Please note that we use XOTcl juskfor e
ploration of the concepts. The general concept of an agpeted
DSL is not depending on this specific language. In particular
will describe the aspect-oriented DSL that provides thees&mc-
tionality as the xoRBAC tool [5, 13]. Our aspect-orientedLD8r
RBAC, however, separates the different concerns in a mdi@esft
way and thus results in a more comprehensible and bettettanain
able implementation that allows for a straightforward etian of
X0RBAC.

2. EXTENDED OBJECT TCL (XOTCL) AS
AN OPEN ASPECT LANGUAGE

Before showing how to realize an aspect-oriented DSL, weflgri
explain how the scripting language XOTcl [8, 14] can be used a
an open, dynamic aspect language. Like most scripting koes)
XOTcl can be extended with new language elements. Thus, it is
a good starting point to rapidly define a DSL. In addition, XDT
supports the dynamic composition of aspects. That is, th&ckO
interpreter receives symbolic invocations that are irdid to the
actual implementations of all objects in the system. Therpreter
can dynamically intercept any message in the call flow whes it
dispatched. At this point, the aspect are applied.

The idea of applying aspects as dynamic message intersegor
top of a (given) interpreter architecture is quite simples gpecify



all calls that are in focus of an aspect as criteria for thesags inter-
ceptor, and let the interpreter execute this message eytocevery
time such messages are called. In this way we can implemegnt an
aspect that relies on message exchanges. To receive thesapce
information for dealing with the invocations, the messagerncep-

tor should be able to obtain the message context to find outhwhi
method was called on which object (the callee). Often théncal
object and the respective method are required as well. dp&ction
options are used to obtain structure information via reitbect

XOTcl providesmixin classe$6] as a dynamic message intercep-
tor implementation. In XOTcl any “ordinary” class can beistgred
as a mixin. The predefineidnst ni xi n> method accepts a list of
classes to be registered as per-class mixins, whereasetefpred
ni xi n method registers classes as per-object mixins.

XOTcl mixins may be dynamically added and removed at
any time. To keep track of these dynamic relationshipst o
instm xin andinfo m xi n provide introspection functions for
mixins. Thus, at runtime one can always determine the ctrren
mixins of an object or class (see also [8, 14]).

For instance, consider the following XOTcl code (corresfing
to one of the introductory AspectJ examples):

Cl ass Poi nt

Cl ass Poi nt Assertions

Poi nt Assertions instproc assertX x {
if {$x <= 100 && $x >= 0} {return 0}
return 1

}
Poi nt Assertions instproc setX x {
if {[my assertX $x]} {
puts "Illegal value for x"
} else {
next

}
}

Poi nt instm xin add Poi nt Assertions

At first, the corresponding code for the class and the aspere (
also implemented as a class) is defined. Then we dynamiegig-r

ter one of these classes as an instance mixin (a class-basshge
interceptor) for all points; thus all calls to the methsxt X are inter-
cepted by th€oi nt Asser ti on mixin’s same-named methaet X.

There are two common ways to ensure the non-invasiveness of

aspects (i.e. the obliviousness property in the terminotfd-ilman

and Friedman [2]) when using mixins:

e Mixins can be applied to a superclass or interface, and are
automatically applied to all subclasses in the class hibgar
Thus, developers of subclasses can be oblivious to thetaspec

e A mixin can be registered for a set of classes using introspec
tion options (aka reflection). For instance, one can apply a
mixin for all class names starting withoi nt . This way mix-
ins can be applied in a non-invasive way for any kind of ciéter
(pointcuts) that can be specified using the dynamic introspe
tion options of XOTcl.

The first variant was demonstrated in the previous code eb@amp
An example for the second variant is shown in the code beloe. W
use introspection options to get all classes defined in thiesyand
check whether they matdtoi nt «.

# Pointcut definition based on introspection
foreach p [ Obj ect getAll Subcl asses] {

if {[string match $p ::Point*]} {

# Mxin registrations for weaving the mxin aspect
$p instnmixin add PointAssertion

}
}

2please note that “instmixin” is a short form of “instance mfx
meaning that a corresponding mixin is applied for all insemof
the class the mixin was registered for. XOTcl uses a simieaning
convention for methods: a method applied to instances chssdb
called “instproc” which is a short form of “instance proceelu

The instructiomext is responsible for forwarding the invocation.
It thus handles (non-invasive) ordering of the messagedeftors
in a chain. Thus, the placement of thext instruction enables us
to implement before, after, or around behavior of the messaigr-
ceptor.

Besides mixin classes, XOTcl provides another messageage
tor, called thdfilter. In contrast to mixin classes which only intercept
specific methods, a filter can automatically intercept ampdation
sent to an object, class, or class hierarchy. Filters areritesl in
detail in [7].

In contrast to AspectJ, we do not have to “introduce” the roéth
assert XonPoi nt (in the example above) using an intertype decla-
ration, as the mixin shares its object identity with the slasobject
it extends. However, in other cases we might want to change th
class structure. In XOTcl a new method can be defined at arg/ tim
(because all XOTcl structures are fully dynamic). Such dyica
require introspection options to ensure that we do not téotmme
architectural constraints by re-structuring the architee. For in-
stance, in the example above we can first perform a runtimekche
that there is no methodsser t X defined forPoi nt yet, before we
introduce it:

if {[Point info instprocs assertX] "}
Poi nt instproc assertX x {
if {$x <= 100 && $x >= 0} {return 0}
return 1

}
}

3. TRANSITIVE MIXINS IN XOTCL

In XOTcl, “aspects of aspects” can be modeled using traesiti
mixins. For example, consider a situation in which a ck@¥.2 is
used as a per-class mixin, and we want to define an aspectior th
mixin class. The aspect is implemented in a clalsx_13. Con-
sider further that is aspe@M x_1 itself should have another aspect
TM x_2 (see Figure 2). The original composition of mixins should
stay unaffected by the addional aspects.

per
<--class-
mixin

TMix_2 TMix_1

per [ poM2 |
per -

<-class -
mixin | myMethod --
class

PCM 1 <~ Mixin _
myMethod

myMethod myMethod

MyClass

myMethod

Figure 2: Example of transitive per-class mixins

In XOTecl this is solved by adding the corresponding per<las
mixins to the method resolution order of the affected mixifter
weaving the mixins as aspects, the configuration in Figuseg2ner-
ated. This configuration means that all per-class mixins@fixin
itself (and their superclasses) are searched before tHeooheeso-
lution order proceeds to the next mixin, resulting in chaimixins
that is visited in a transitive fashion (see also Figure ZisBcheme
is applied recursively, because mixins might themselves Igger-
class mixins, which again might have per-class mixins, anos

4. ROLE-BASED ACCESS CONTROL DSL

The foundation of our aspect-oriented DSL for role-basembss
control (RBAC) consists of subjects, roles, permissions, eontext
constraints. Each of these basic elements is implemensegivbwn
class that defines the specific functions of the correspgrmbncept.
Some of these classes can be used as the root of a complex class
hierarchy. These classes represent orthogonal conceahw/éhlike

3Note that we use “TMix” as an abbreviation for “transitivexini’
in this example.



Per-object mixin relationships generated using dynam

( Context Constraint Aspect ) Permission Aspect Role Aspect
ContextConstraint Permission Role Subject
checkAccess checkAccess checkAccess checkAccess
A A A A A
instance-of 1 . ' . : . :
v instance-of instance-of instance-of
! instance-of ; i ;
constraint2 constraintl permissionl rolel
. L . L . - subjectl
checkAccess || checkAccess per-object-mixin | checkAccess per-object-mixin | checkAccess per-object-mixin
D R R e €-4--------d--- B e
7y T
\_ "=~ per-object-mixin "™~ 'J‘ *'\"\L """ ] \ \

ic pointcuts based on introspection options (reflection)

Figure 3: Example of an executable model generated form the 8L

to define independently from each other, and compose astasifec
each other (as outlined in the example in Section 1).

To implement an aspect-oriented DSL, we need to define a
domain-specific aspect weaver, which is capable to weavectsp
according to domain-specific constraints, and which realia
pointcut language offering domain abstractions. For thskt we
define the new clasRBACAspect Weaver. Below we show an
excerpt of the methods (“instprocs”) of this class, which mrapped
to DSL instructions:

Cl ass RBACAspect Weaver

RBACAspect Weaver instproc rol eSubjectAssign {r s}
RBACAspect Weaver instproc rol eSubj ect Revoke {r s}
RBACAspect Weaver instproc pernRol eAssign {p r}

RBACAspect W\eaver
RBACAspect W\eaver
RBACAspect Weaver

i nst proc
i nst proc
i nst proc

per nRol eRevoke {p r}
i nkCt xConst rai nt ToPerm {cc p}
unl i nkCt xConstrai nt FronPerm {cc p}

RBACAspect Weaver

i nstproc all Subj ectlnstances {}
RBACAspect Weaver instproc all Rol el nstances {}
RBACAspect Weaver instproc all Perm ssionlnstances {}
RBACAspect Weaver instproc all ContextConstraintlnstances {}
RBACAspect Weaver instproc all Subj ect sOmingRole {r}
RBACAspect Weaver instproc all Rol esAssi gnedToSubj ect {s}

i?iBACAspect Weaver instproc checkAccess {s op ob}

Our RBAC DSL weaver provides functions for weaving role
to subject assignment and revocatiorol(eSubj ect Assi gn and
rol eSubj ect Revoke), as well as corresponding weaving functions
for permission to role assignment and revocation, and iéarig and
unlinking permissions and context constraints. Moreoitesffers
different introspection options that allow to define domsjrecific,
dynamic pointcuts on all instances of the basic DSL elements
(al | Subj ect I nstances, al | Rol el nstances etc.), as well as
on specific DSL elements (e.gl | Subj ect sOani ngRol €). The
checkAccess function is applied to define pointcuts that check if
a certain access can be granted or must be denied, i.e. itaircer
subjects is allowed to perform operatiosp on objectob.

An example of a domain-specific weaving function
r ol eSubj ect Assi gn:

RBACAspect Weaver instproc rol eSubjectAssign {r s} {
if {[my existSubject $s]} {
if {[nmy existRole $r]} {
if {[my ssdConstraintsAllowRSA $r $s]} {
if {[nmy rol eMaxSubject CardinalityA low $r]} {
$s mi xin add $r
return 1
} else { return 0}
} else { return 0}
} else { return 0}
} else { return 0}

}

In the formal definition of this weaving function, first, we g
to make sure that the respective role and subject exists(cHll

is

exi st Subj ect andexi st Rol e). Subsequently, we check if the
assignment of this particular role to this particular sebjean be
granted with respect to the static separation of duty cairgs on
roles that are in effect at this very moment (for details s&)[ If

so, we further check that the maximum subject cardinalitiineel

on the role is not yet reached. In case all checks are passed, w
register the role as a new mixin for our subject.

Next, we give an example of an unweaving function, namely the
revocation of a permission from a role. Again, we first havagsure
that the corresponding role and permission exist. Then, heelc
that the minimum owner cardinality for this particular péssion is
not violated if we revoke the permission. Finally, we caretiethe
permission from the mixin list of the respective role (seearse code
below).

RBACAspect Weaver instproc pernRol eRevoke {p r} {
if {[nmy existRole $r]} {
if {[nmy existPermssion $p]} {
if {[my pernmM nOwner CardinalityAllow $p]} {
$r mixin delete $p
return 1

} else { return 0}
} else { return 0}
} else { return 0}

}

In addition to the weaving and unweaving functions, used for
assigments and revocations, our aspect-oriented DSL foh@RB
offers various introspection functions that are used asnetds
of pointcuts in the DSL. Below we exemplary describe the
al | Subj ect sOani ngRol e function which uses XOTcl reflection
options to determine all subjects that own a given role. Afte
checking if the respective role exists, the function chefckseach
subject if this particular role is assigned to the subjeet,if the role
is registered as a mixin on the corresponding subject. Aljestis
owning the role are written to a list which is returned as tiection
result.

RBACAspect Weaver instproc all SubjectsOmingRole {r} {
if {[my existRole $r]} {
foreach s [ny all Subjectlnstances] {
if {[$s ismixin $r]} {
| append rol eOmers $s
}

if {[info exists roleOaers]} {
return $rol eOwners
} else { return "" }
} else { return"" }

}

Now that we have defined our DSL's weaving functions and point
cut elements, we can use XOTcl as a dynamic pointcut language
to define domain-specific pointcuts based on the differamspec-
tion options (using XOTcl reflection). Below we show two exae



pointcuts. The first pointcut matches all permissions istgsvith an
“A’” and links the context constraintc_A to each of these permis-
sions. The second pointcut matches all roles of t$padent Rol e
and assigns the permissigat _examto each of these roles.

# Instantiate a domain-specific weaver
RBACAspect Weaver aw

# Instantiate two aspects
aw creat ePer m ssi on get _exam
aw creat eCont ext Constraint cc_A

# Pointcut definition
foreach p [$aw al | Permi ssionl nstances] {
if {[string match $p ::A«]} {
# Use the domai n-specific weaving function
# to weave the advice (inplenmented as a mxin)
aw | i nkCont ext Const rai nt ToPerm cc_A $p
}
}

# Pointcut definition
foreach r [$aw al | Rol el nstances] {
if {[$r isType StudentRole]} {
# Use the domain-specific weaving function
# to weave the advice (inplenmented as a mixin)
aw per nRol eAssi gn get _exam $r

Figure 3 depicts a composed class model (i.e. an executatgelm
in XOTcl generated from the DSL). In particular, the rolel el is
assigned to a subjestubj ect 1. Again, there is a permission as-
signed tor ol e1, and the permission is linked to two context con-
straintsconst r ai nt 1 andconst r ai nt 2. Each of these assignment
relations is realized through an XOTcl mixin relation. Insthivay,
we are not only able to define aspects on objects and clasgedsb
to define aspects on aspects. This specification of aspeetspatcts
is realized via transitive mixins as outlined in Section 3.

The user of the DSL only uses the domain-specific pointcutls an
weaving functions to compose the aspects. That is, the udgr o
sees the domain-oriented view, not the technical detailseofmixin
and introspection model used internally. The weaver auticaldy
realizes a mixin chain from these definitions.

5. RELATED WORK

JAC [10] provides a way to define DSLs for configuring aspects.
Like many other application server AOP frameworks, JAC nsake
use of metadata configurations. In JAC the metadata languege
be extended by the user: operations of the aspect compoaant ¢
be provided as Command implementations and invoked from the
configuration file. This way each aspect can define its own con-
figuration language. For instance, JAC predefines an autlaent
tion aspect component which offers domain-specific fumstitke
addTrust edUser to configure the aspect. In [9] Zhang et al. de-
scribe how they extended their role slice approach to susmone-
thing they call dynamic permissions. These dynamic pelioriss
consider certain runtime information, esp. the state aitesl class
instances, when making an access decision. However, theptdo
use an aspect-oriented RBAC DSL to define access contraigsli
nor do they use a dynamic pointcut language.

6. CONCLUSION

In this paper, we presented an aspect-oriented DSL forbated
access control that provides all functions of the xoRBAC pom
nent. However, in comparison to the xoRBAC component our DSL
is aspect-oriented in nature and offers a strict separatfi@oncerns
between the basic language elements of the DSL (especidily s
jects, roles, permissions, and context constraints). blag we
used XOTcl as a dynamic pointcut language to weave the difter
aspects.

Our approach allows for a straightforward evolution of th8LD
and all of its language features. The approach is not lintibetthe
domain of role-based access control, of course. In priegijlis
applicable to arbitrary application domains where we firsfirte a
domain-specific language which is then mapped to a conanete i
plementation, e.g. an XOTcl implementation. Subsequewiyuse
a dynamic pointcut language (for example XOTcl includirgrith
introspection/reflection features) to compose the diffestements.
Note that the XOTcl language was used primarily for dematisin
purposes and that the general approach can of course teedbalith
other dynamic languages.

7. REFERENCES

[1] S. Dmitriev. Language oriented programming: The next
programming paradigm. Onboard Magazine, http://
www.onboard.jetbrains.com/is1/articles/04/10/logér.html,
October 2004.

[2] R. Filman and D. Friedman. Aspect-oriented programmsng
quantification and obliviousness. ®OPSLA Workshop on
Advanced Separation of Concermdinneapolis, USA,
October 2000.

[3] M. Fowler. Language workbenches: The killer-app for dom
specific languages? http://www.martinfowler.com/aez|
languageWorkbench.html, June 2005.

[4] J. Greenfield and K. ShorEoftware Factories: Assembling
Applications with Patterns, Frameworks, Models & Todls
Wiley and Sons Ltd., 2004.

[5] G. Neumann and M. Strembeck. Design and Implementation
of a Flexible RBAC-Service in an Object-Oriented Scripting
Language. IrProc. of the 8th ACM Conference on Computer
and Communications Security (CC8lpvember 2001.

[6] G. Neumann and U. Zdun. Enhancing object-based system
composition through per-object mixins. Rroceedings of
Asia-Pacific Software Engineering Conference (APSEC)
Takamatsu, Japan, December 1999.

[7] G. Neumann and U. Zdun. Filters as a language support for
design patterns in object-oriented scripting languages. |
Proceedings of COOTS'99, 5th Conference on
Object-Oriented Technologies and Systepages 1-14, San
Diego, California, USA, May 1999.

[8] G. Neumann and U. Zdun. XOTcl, an object-oriented sanipt
language. IProceedings of Tcl2k: The 7th USENIX Tcl/Tk
ConferenceAustin, Texas, USA, February 2000.

[9] J. Pavlich-Mariscal, L. Michel, and S. Demurjian. Rolkc8s
and Runtime Permissions: Improving an AOP-based Access
Control Schema . IProc. of the International Workshop on
Aspect-Oriented Modelin@ctober 2005.

[10] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC
flexible framework for AOP in Java. IReflection 2001:
Meta-level Architectures and Separation of Crosscutting
ConcernsKyoto, Japan, Sep 2001.

[11] T. Stahl and M. VoelteModellgetriebene Software
Entwicklung D.Punkt, 2005.

[12] M. Strembeck. Conflict Checking of Separation of Duty
Constraints in RBAC - Implementation ExperiencesPhoc.
of the Conference on Software Engineering (SE 2004)
February 2004.

[13] M. Strembeck and G. Neumann. An Integrated Approach to
Engineer and Enforce Context Constraints in RBAC
EnvironmentsACM Transactions on Information and System
Security (TISSECY (3), August 2004.

[14] Extended Object Tcl (XOTcl) Homepage.
http://www.xotcl.org, 2006.



