
Technical Report

Diman Todorov, Bernhard Schandl,

Small-Scale Evaluation of Semantic Web-based
Applications

July 2008TR-20080704



Small-Scale Evaluation of

Semantic Web-Based Applications

Diman Todorov, Bernhard Schandl
University of Vienna

Department of Distributed and Multimedia Systems
{diman.todorov|bernhard.schandl}@univie.ac.at

Abstract

The evaluation of user interfaces for Semantic Web-based applications
is hard: Often, such applications are designed on top of the very generic
triple model and can make only limited assumptions on the structure of
the data it operates on. Many concepts, like ontologies and resources,
are unfamiliar to users, and the resources for such evaluations are limited.
However to achieve a certain level of interface quality, user assessments are
a necessary step in UI design. In this paper we describe the experiences
we have made with a small-scale of such an application, which revealed
issues that can be applied to a wide class of applications.

1 Introduction

More and more applications use Semantic Web technology (mainly RDF(S),
ontologies, and reasoning) to express the information they process. Such appli-
cations can be found on the web, where they can make use of the increasing
amounts of data available and integrate them to infer new knowledge. Fur-
thermore, these technologies provide a sound basis for desktop applications, i.e.
applications that are executed and used on a user’s personal desktop machine.
In such environments, RDF and consortia are well suited to describe and an-
notate for instance personal user data, as the upcoming research area of the
Semantic Desktop indicates [16].

Most semantic systems have in common that the vocabularies used to de-
scribe data are extensible, and often they are not specified in a formal way.
While this fact is one of the greatest strengths of the RDF family, it also im-
poses severe consequences for application design and development: tools must
be designed so as to accommodate changing and developing data models and
data formats.

This issue becomes especially apparent in the context of user interfaces.
Most “traditional” applications use a closed-world data model: the processed
data is known at design time, and appropriate user interfaces can be designed,

1



evaluated, and optimized based on this model—a rigid data model is a solid
basis for user interface design. On the contrary, an application operating with
an open data model can only guess what the data it operates on will look
like. Often the only known factor is the underlying meta model of RDF; URIs,
resources, triples, and so forth. Thus the user interface for such an application
must be designed sufficiently generic, yet suitable and understandable for the
user.

Naturally such user interfaces are hard to evaluate for multiple reasons.
Semantic systems are not yet widespread, hence the average user is not familiar
with their inherent concepts. It is the task of the developer to deliver a usable
system, thus research in improving the surface of semantic systems is worth the
effort. However, UI research and development without evaluation is only one
half of the journey. Often user interfaces are designed by the developers of the
system and undergo only a very restricted evaluation, if any. The problems and
obstacles that hinder a proper UI evaluation process are well known, thus we
seek for small-scale evaluation methods that do not claim to cover all aspects,
but still yield valuable results and help to improve the system’s interface.

We have developed the Semplorer, a generic interface for browsing, search-
ing, and manipulating repositories of unstructured digital objects that can be
accessed via SemDAV [18]. SemDAV can be regarded as an extension to tra-
ditional hierarchical file systems, where files are enriched with metadata de-
scriptions based on RDF. In the following we give a short system overview and
describe important aspects of this user interface. Then the approach we applied
for evaluating the interface is outlined, followed by a discussion of the concrete
findings that we gained. We conclude this paper with a brief overview of related
work.

2 Application Description

2.1 SemDAV: Semantic Data Asset Management

SemDAV can be seen as a semantic extension to file systems. It disbands their
strictly hierarchical structure and combines the basic characteristics of files with
a variety of description metaphors based on RDF. The basic idea of SemDAV is
to provide a rich storage infrastructure for desktop applications that takes over
the functions of the file system, but additionally enables rich data annotation
and application interoperability through its extended information model. Sem-
DAV defines the sile as a basic information unit. As the detailed description of
the sile data model is out of the scope of this paper, we give a short introduction.

Instead of a path and a file name, siles are uniquely identified by a URI.
Similar to a file, a sile is an object with content of arbitrary kind and size.
However, instead of placing it into a hierarchy of directories, it can be described
(annotated) by various means: user-defined tags (keywords) can be attached
to siles. They can be described using categories that are similar to ontology
classes, and attributes, which consist of a name and a typed value. Finally, siles

2



can be connected by typed relationships.
All annotations are represented using RDF triples, an example is given in

Listing 1. The depicted sile’s content is described in lines 3 to 5, and it is
annotated by a category (line 6), attributes (lines 7–9) and relationships (lines
10 and 11).

Listing 1: Java source code represented as sile
1 <urn:uuid:2a7d71a4 -...-9d47a8cd1c6c >
2 rdf:type sw:Sile ;
3 sw:content -size "2942"^^xsd:nonNegativeInteger ;
4 sw:content -type "text/java"^^xsd:string ;
5 sw:content "cGFja2F...fQ0K"^^xsd:base64Binary ;
6 sw:cattype java:Class ;
7 java:name "WebDAVServlet"^^xsd:string ;
8 svn:revision "772"^^xsd:positiveInteger;
9 java:comment "to be optimized"^^xsd:string ;

10 java:defines <urn:uuid:3a1970f8 -...-c9ac23936ef5 > ;
11 java:package <urn:uuid:006ea420 -...-ed692052e2f0 > .

The representation of siles and their annotations using RDF has certain
implications. On the one hand, sile metadata can be handled by every RDF
processor without further adoptions. Query languages like SPARQL can be
used to query sile data, and generic RDF browsers represent siles in a decent
manner.

The opposite—converting arbitrary RDF data to the sile model—is also
possible. Although not every RDF graph can be mapped to the sile model, most
of the annotations described above are based on standard RDF functionality.
For example, datatype properties are mapped to sile attributes, and object
properties can be mapped to sile relationships. Thus, existing RDF data can
be translated to siles with practicable effort.

One benefit of this representation format is that this makes it possible to in-
tegrate data from external sources into SemDAV. For instance, messages stored
on an IMAP server can be translated to RDF [5] and can then be displayed as
siles. These can then be further annotated or brought into relationship with
siles from other sources. Consequently, SemDAV can be regarded as a semantic
data integration solution.

We have implemented a SemDAV prototype as a client-server application
in Java, cf. Figure 1. The repository acts as the server component and hosts
siles with their content and annotations. Additionally the server can integrate
data from external sources, as described above. Finally, it performs reasoning
and logging on the data, which is used to gain further information about the
stored siles [19]. The server exposes its functionality via two interfaces. First,
it provides access to the raw data via a combination of a REST interface and
the SPARQL protocol, allowing access to the sile content and to the RDF store,
respectively. Second, it exposes high-level operations (like CreateSile, AddTag,
or DeleteAnnotation) via an XML-RPC based interface. The server can use
different RDF stores to host the data; currently we have developed adapters for
Jena and Sesame.

A comprehensive API for the development of SemDAV client aplications is
provided. This interface can be used by applications to store data. It is mapped

3



API

SemDAV Repository

Triple 
Store

Content 
Store

Application
Application

Application

External 
SystemExternal 

SystemExternal 
System

XML-RPC Interface

Figure 1: SemDAV Architecture

1

2

3

4

Figure 2: The Semplorer interface: active filters (1), spects/tags (2), siles (3),
sile details (4)

4



either to a repository running on the local machine, or to a remote instance,
in which case the API wraps the necessary XML-RPC calls. As a first demon-
stration application we have developed a user interface for the management of
siles called Semplorer which resembles similarity to file browsers like Windows
Explorer or Apple Finder. This user interface was the subject of the small-scale
evaluation and is described in more detail in the following.

2.2 Semplorer: The SemDAV User Interface

The Semplorer is a user interface that allows to browse, search, and manipulate
siles and their annotations. It is the counterpart of a file browser: it does not
provide functionality for specific content types (this is delegated to correspond-
ing applications, like text processors), but provides a generic interface to access
the annotations as described in the previous section.

The GUI (Figure 2) is split into four major parts. In the center of the
screen, siles are displayed. Their representation is oriented towards the usual
file representation, using an icon and a text label. The icon is selected based on
the sile’s content type; for later versions we plan to use a designated relationship
type for the icon; thus any picture (e.g. a thumbnail preview) can be used as
visual representation. The label is derived from the rdfs:label attribute of
the sile.

When a sile is selected by the user, its annotations are displayed in the
right section of the window. Below the sile’s label and information regarding
the content, all annotations are displayed using widgets with different shape
and color. We use the different widget styles to indicate different types of
annotations (see Figure 3): tags are displayed using blue widgets with round
borders. Attributes are represented by yellow boxes, and categories are green
boxes where the right edge is rounded. Finally, relationships are displayed by
magenta widgets with arrow-like left and right borders.

(a) (b) (c) (d)

Figure 3: Representation of sile annotations: (a) Tag, (b) Attribute, (c) Cate-
gory, (d) Relationship

On the left hand side of the window, various organizational metaphors are
displayed. In the screenshot, the elements of a small project management on-
tology are displayed; these can be used to annotate and relate siles. Using the
buttons in the top section of this area, users can switch between ontologies, or
to an alternate view that displays all tags present in the repository.

Searching for siles is done by applying filters. Filters are entities that re-
strict the set of displayed siles to those that match certain criteria. To apply a
filter, any annotation can be dragged into the top area of the window (in the
screenshot, the attribute/value pair creator=bs and the tag www2008 are used

5



for filtering). Every widget present on screen can be used for filtering, regardless
of its origin. For instance, tags can be dragged from the left pane, where all
available tags are displayed, or from the right pane, where the tags of a specific
sile are displayed. Also, siles from the center pane can be used as filters: in this
case, the filter is restricted to siles that have a relationship with the dragged
sile. Elements can be removed from the filter by moving the mouse over them
until a minus sign appears—clicking on this sign removes the filter element.

All active filter elements are AND-combined; for the sake of simplicity more
complex queries that include OR and NOT operators have not been considered.
However we plan to implement an advanced interface for such queries in the
future.

After every modification of the filter, the set of siles displayed in the center
area is updated accordingly. There is a small area on the bottom of this area;
any widget (siles or annotations) can be placed here. This area is not affected
by changes to the filter or the selected sile; it allows the placement of frequently
used items for later reference.

Annotation operations can be performed as simple as applying a filter. Any
annotation widget present on screen can be dragged on any available sile; the
corresponding annotation is then written to the repository. Siles can be related
by dragging one sile onto another one, after which a context menu appears.
From this menu the user can select the type of the relationship based on the
object properties defined in the loaded ontologies. Annotations can be removed
by clicking on the minus sign that appears when the mouse is moved over a
widget. By clicking into the text area of an annotation widget, it can be edited:
in this manner, the value of attributes or the label of tags can be modified.

As far as it is possible in the Java language the Semplorer is also integrated
into the user desktop. Files can be dragged into the Semplorer’s central area, the
files are then converted to siles and stored into the SemDAV repository. Also,
web links can be dragged into this area and are then stored as references to these
web resources. By doing so, one can define relationships between files on the
desktop and arbitrary web resources. For certain types of files and web resources,
the Semplorer additionally tries to extract further information: for instance,
when a link to an HTML page is dropped, the application tries to extract RDFa
data, if present, and stores the embedded triples as sile annotations.

3 Evaluation

In the SemDAV project the resources for usability evaluation are limited. Aquir-
ing an external usability expert was not an option, so cheap evaluation methods
that could be performed by inexperienced evaluators were needed. There are
not many methods that fulfill these constraints; we considered heuristic evalua-
tion [11–13], think aloud evaluation [13] and paper prototyping [20]. Nielsen [13]
advises to apply at least two methods for acceptable accuracy. We have chosen
to combine a heuristic evaluation and a think aloud evaluation because of their
simplified administration in comparison to that of a paper prototyping evalu-

6



ation. In the following we outline the three methods as well as the rationale
behind our selection.

3.1 Evaluation Methodologies

Historically, heuristic evaluation has evolved from guideline reviews [10]. Re-
viewing a user interface with respect to a potentially very large set of guidelines
is one of the earliest methods of usability assessment. The main problem of a
guideline review is that the number of guidelines easily goes into the thousands.
Reviewing a user interface for its conformance to a large set of very specific
guidelines is not only a tedious task but, in consequence, also a very expensive
process. Molich and Nielsen [10] have distilled 10 heuristics by consolidating
guidelines from various sources.

Originally, the think aloud method was a method for psychological research.
In such an evaluation users are asked to continuously verbalize their thoughts
while they are using the application being evaluated. The result of a think aloud
evaluation is information on what users are doing and why they are doing it.
The particular value of this information stems from the fact that it is collected
while the user performs the tasks she is verbalizing. Because of its qualitative
nature and its relatively informal structure the think aloud method has several
pitfalls, one of which is that an evaluator may find it hard to distinguish between
information on what the user is doing and rationalization theories of the user.
An example described in [13] is a user spending more time than expected looking
for an input field in a form. When she finally finds the field she might suggest
to place the field elsewhere. While users are good at demonstrating usability
issues, they are not experts in solving them. For this reason their suggestion for
the new location of the field should be taken with a grain of salt.

Another caveat is that an evaluator may have to frequently prompt a user to
continue thinking aloud. Thinking aloud is unnatural and may seem strange to
users, consequently it may happen that the verbalization stream stops. In such
a situation the evaluator has to prompt the user to continue talking. However it
requires a certain level of experience to prompt for further information without
influencing the evaluation result. If, for example, a user is hesitating while
looking at some message, the evaluator might ask her to explain why. If the user
has not yet noticed the message, the prompt would influence her attention focus.
Other misconceptions and difficulties with this method have been described by
Boren and Ramey [3].

A more traditional evaluation method for investigation of user interface de-
sign questions is paper prototyping. This method is well described in literature
(most notably in [20]), so we will only briefly outline it and compare it to the
two other techniques we have discussed. In the most general form of paper pro-
totyping, all possible user interface states are sketched on sheets of paper. The
evaluator asks a test subject to manipulate the paper interface and imitates a
computer by presenting sequences of user interface states to the test subject.
The whole process is logged by a second evaluator and may also be videotaped.

7



One of the advantages of paper prototyping is that it can be applied with-
out extensive theoretical background; of course the quality increases with the
evaluator’s experience since more elaborate and more detailed scenarios and
questions can be used. Another strength of this method is that it does not
require a running prototype, hence it can support the design process before the
user interface is actually implemented.

3.2 Heuristic Evaluation of the Semplorer

Because the team involved with the development of the SemDAV application
had no prior experience with a heuristical evaluation, the obvious first step was
to introduce the method. The evaluators were acquainted to the guidelines and
their interpretation in a tutorial session, and the interpretations encompassed
by every guideline were elaborated. The understanding of each guideline was
ensured by the demonstration of a violation in commonly available software.
Finally, a heuristic evaluation exercise [10] was discussed. The questions that
were asked during this discussion anticipated the biggest difficulties the evalu-
ators had during the evaluation. One question was how much time to spend on
the evaluation, another question was how many problems the evaluators were
expected to find. The third big problem was the format of the evaluation proto-
col. Care was taken to leave the answers to these questions as open as possible
in order to ensure that the evaluators were not influenced by constraints.

In retrospect this may not have been an optimal decision. We recommend
to not only present and describe an example of an evaluation, but to actually
perform a simple evaluation in the course of the introductory tutorial. While this
makes the preparation and administration of the tutorial more time consuming,
the extra effort has manifold returns in terms of a common understanding of
the method that is shared by all participators.

The most critical part of a heuristic evaluation is the neccessary familiar-
ization of the assessment team with the evaluation method. The guidelines by
themselves are worded in a very general manner which is prone to misunder-
standing. For example, consider Nielsen’s first guidline:

Simple and natural dialogs: Dialogs should not contain information
that is irrelevant or rarely needed. Every extra unit of information
in a dialog competes with the relevant units of information and di-
minishes their relative visibility. [13]

We discovered that several of our evaluators misunderstood what was meant
by the word “dialog”. Nielsen’s intended meaning of this term is the way the user
interface communicates with the user to help her achieve a goal. Some evaluators
however assumed that this guideline only applies to dialog boxes. A good way
to aleviate problems like this is a short discussion of possible interpretations in
the tutorial session.

Even with a good instruction, detecting conflicts with the heuristics is a
difficult task. Studies performed by Nielsen and Molich [11] have shown that,

8



depending on their experience and knowledge of user interfaces, single evaluators
discover about 20% of all usability problems. Thus the method only yields
acceptable results if several persons independently perform the evaluation. The
overlap of discovered problems between individual evaluations is very low: the
cumulative results of 3 to 5 evaluators account for about 50 to 80 percent of
all evaluation problems [11]. Still, the quality of the results highly depends on
previous experience with usability inspection methods. It is unclear however
whether this estimation also holds for more complex applications that require a
longer time to familiarize.

In our evaluation, we found 50 issues with 5 overlaps. This amounts to
45 issues among 4 evaluators. Comparing it to heuristic evaluations of other
applications, there is a reason to believe that the real number of issues is larger.
A rough interpolation on benchmark results of the method [11] make it safe to
assume that we have found between 50 and 75 percent of all usability problems.
Nevertheless, the evaluation yielded considerable results considering the low
volume of invested effort.

4 Usability Challenges

In the following we outline difficulties we have met while designing the Semplorer
user interface, most of which were also reflected by the evaluation results. The
scope of the problems varies—some apply specifically to the sile model and its
user interface, while others have a more general validity. All of the identified
difficulties can be derived from the attempt to provide a method for communi-
cation between users and semantic applications: as with any novel technology,
the interface has to be based to the greatest possible extent on concepts with
which users are already familiar, while at the same time it must introduce new
data manipulation possibilities in order to harness the new technology to its full
extent.

4.1 Navigating Large Data Sets

Siles are a semantically enriched version of the file concept, but the sile model
does not include a counterpart of hierarchical directories. If we imagine a file
system and subtract from it its directory structure, we end up with a number of
information entities that easily goes into the tens of thousands [1]. Hierarchical
directories are an efficient method for bringing a certain amount of order into
this information cloud, they are however often too restrictive to depict all facets
of relations between data. When the large numbers of objects in a semantic
repository are annotated with an even larger number of attributes, organiza-
tional means have to be provided that are comparable to traditional approaches
in terms of responsiveness, but excel them in expressive power. This challenge
applies to any attempt to organize information, although its severity depends
on the domain of the application.

Devising a high-performance information storage and retrieval model is much

9



easier for applications with a narrow domain. Such applications benefit from
the fact that their users already own a mental model of the information they are
working with, which designers can attempt to translate into the application’s
data model. The mental model for browsing arbitrary information in a semantic
paradigm is not understood, and probably not even shaped yet. This thesis is
supported by research such as the evaluation of the merits of numerical volume
indicators in the mSpace user interface [24].

4.2 Designing for Diversity

The SemDAV user interface tries to be as generic as possible. It is designed to
be a suitable tool for tasks that cope with information organization. Sauermann
et al. claim that users are unwilling to adopt a generic interface [17], but the
success of projects such as Haystack [15] make this claim disputable. When
only one generic application is developed, it is possible to experiment with many
different extentions at a relatively low implementation overhead. Enabling the
development of low cost functional prototypes is important and beneficial at the
current, mostly experimental stage of semantic applications research.

The genericity of an application is not limited to technological aspects: it
should also encompass the intended user group. An information retrieval ap-
plication should make as few assumptions about its users as possible. It should
address not only e.g. scientists from any domain, but also users with varying
computer expertise, handicapped users, children and older people. Even users
from the same category may exhibit different search behaviors that must be
accommodated. An existing type information system which fulfills these re-
quirements (next to playing a role in forming a cultural identity and being a
social center) are libraries. Stephanidis et al. [23] further elaborate the analogy
between libraries and information systems. They argue that the foundational
paradigm of user interface design, knowing the users, is not directly applicable
in applications with a large audience. He also provides insights into the chal-
lenges faced in information system user interface design as well as methods to
overcome them [22].

4.3 Visualization and Navigation of Ontologies

The majority of tools (Protege, Swoop, TopBraid, etc.) visualize ontologies
using a tree view; however, in general ontologies are not trees. A graph G is a
tree if it is connected and it is not connected if any edge is removed from G. If
a class U is a subclass of both classes, X and Y , which in turn are a subclass
of owl:Thing then the resulting class hierarchy graph is not a tree. The graph
will remain connected regardless which edge is removed. Tools utilizing the tree
view circumvent this problem by rendering two nodes for the class U , one which
appears as a subclass of X and one which appears as a subclass of X. This node
ambiguity may not be an obstacle for a user who is familiar with the structure
of an ontology, but it may be confusing for less experienced users [4].

10



Figure 4: Browsing spects.

In the Semplorer we experimented with a different approach for ontology
navigation, the spect viewer. The spect viewer displays all children nodes of
the current node slightly indented. Beyond the current node a trail of already
visited nodes is displayed. Every time the user clicks on a child node, the viewer
navigates to that node and expands its children. If the user clicks on a node in
the trail, the viewer steps back to the selected node. Figure 4 shows three spect
viewers showing different hierarchy levels of the same ontology. The viewer on
the left shows the spect as it initially appears to the user. The second pane shows
the state after the user has clicked on the Document category—the category is
now in the trail, and the viewer displays the sub-categories of Document. The
third viewer shows the next level; here a trail of two categories has been walked
and the sub-categories of Technical Document are displayed. Clicking on the “i”
symbol resets the viewer back to the root node. If the interface is in the state
depicted on the right and a user clicks on the Document node, the interface
traverses up the hierarchy to the node representing the Document class, as
shown in the middle screenshot.

The results of the usability evaluation however have been divergent with
regard to this aproach. The two problems pointed out by evaluators were firstly
that the parent/child relationship is not made sufficiently explicit, as e.g. the
relation between the categories Document and Technical Document is not clear
from the visualization. Secondly there exists no “bird eye view” of the ontology:
searching for a particular category is difficult because the user has to remember
the trail she had to walk to reach it.

4.4 Visualizing Queries

Instead of navigating through directory hierarchies, siles are managed using
filters, which are dynamically evaluated and used to narrow down the user’s
view to their current context. A filter abstracts over the complexity of the query
language. The most natural abstraction over the query language are boolean
expressions, which are easier to formulate than a complex query. However it has
been shown that users who are unfamiliar with boolean algebra find it difficult to

11



Symbol Referent

Reference

Figure 5: Semiotic triangle [14]

formulate boolean queries [2]. The filter component of the Semplorer is limited
to connecting concepts, such as attributes or tags, with an AND relation. We
have decided in favor of this restriction because AND is the easiest operator to
use [25]. A similar method of information retrieval is mSpace [24], where also
only the AND operator is used, despite the user interface is designed differently
to the Semplorer.

While there has been some effort to visualize boolean queries in a user
friendly manner [8, 25] there is no convincing solution known to the authors.
We plan to survey and evaluate alternative abstractions over SPARQL which
have more intuitive user interface translations, and we will also introduce a
mechanism to persist queries between sessions, which reduces the need to re-
member and to manually reconstruct frequently used filter constellations. A set
of reasonable default queries may alleviate initial problems with the formulation
of boolean queries.

4.5 Semantics of Resource Names

The relation of a name to the thing it names is both, problematic and well
researched [9]. There are several theories that attempt to model the relation-
ships between symbols, concepts and concrete things, all of which agree upon
the idea that a symbol and its referent are two different things. Ogden and
Richards have introduced the semiotic triangle as a model of meaning (Figure
5). This metaphor expresses the idea that a symbol refers to a referent by the
means of a reference, or, more concretely, an expression in a natural language
uses a thought or an idea to refer to an object: When someone uses the word
“horse” she is communicating a thought which entails a possibly real horse. The
exact way of how the angles of the triangle refer to each other has been subject
of a very large scoped linguistic and philosophical research.

The semantics of the sile model, and the meta models of the Semantic Web
as a whole, fit well into this construct. The symbol is represented by the name
of a sile, the referent is the URI which references to the content of a sile (Figure
6). The only flaw in this translation is that a sile does not necessarily have
a content—it is possible that the meaning of the syle is entirely stored in the
metadata attached to the sile. Thus an optimal reference model for siles has yet
to be devised.

Even this incomplete model shows that the relation between siles (or re-

12



Sile Content

URI

Figure 6: Semiotic triangle, applied to the sile model

sources) and their names (or labels) is of great interest to a user interface de-
signer. This edge of the triangle is the bridge between the mental model of a
user and the machine representation of the semantically enriched data, and a
reference without a human readable name would be of little value.

If we consider siles as concepts in the linguistic sense, it is natural to assume
that siles and their names should not have implications on each other. In a
natural language the word “horse” can refer not only to a specific horse but to
every animal of that species. Following the analogy of natural languages, several
siles can thus have the same name, and one name can symbolize several siles.

One question which arises is whether two things denoted by the same name
have anything in common. There are two competing reference theories which
answer this question differently; the theory of realism and the theory of nomi-
nalism. The former assumes that two things bearing the same name share more
than just their name. In its most simple, traditional form the theory of nomi-
nalism assumes that the only thing referrents have in common are their names.
The semantics of siles adhere to the latter model: it is perfectly legal for siles
to have common names but share no further properties or characteristics.

The ambiguity of meaning has been treated only very recently for Semantic
Web issues by Garcia et al. [6]. Their research however only deals with synonyms
in ontology mappings. The authors of this paper are not aware of any works
treating problems of ambiguous labels for semantic resources.

4.6 Introduction of New Vocabulary

Semantic technology is described in domain specific terminology, and—unfort-
unately—the vocabulary used by semantic systems researchers is only under-
stood by semantic researches. One of the reasons is that many of the terms
have been adopted from other fields of research but their meaning was changed.
The word “ontology”, for example, originally meant “the study of being”. In
the field of Semantic Web research however an ontology is best described as a
special form of a taxonomy, or as a formalized conceptualization.

It can be assumed that the majority of the users of semantic applications are
not familiar with the language used by the scientists who created the applica-
tion. An average user will be hopelessly overwhelmed by a message saying that
the ontology currently in use does not allow the class Person to have a 1 : n
cardinality for the property name. The user’s situation would be even worse if

13



she had background knowledge in philosophy.
In cases where a system has a well-defined application domain an obvious way

to circumvent this wording problem is to reformulate messages: For example,
the application might translate the message to “A person may only have one
name”. Downey has recognized this problem in the evalution of the SEEK user
interface [4]: during the evaluation one of the test subjects noted that the term
“annotation” was too overloaded and thus not appropriate. If the application
however targets towards more than one domain the approach of explicit wording
becomes infeasible.

A pragmatic solution for applications with a universal purpose is to translate
as much terminology as possible into a language understood by the majority of
the intended audience. In cases where this is not possible, there are two options.
The first option is to introduce new terms which are consistent with the rest
of the application, in which case users will have to learn only the new terms:
having to learn n − k new words (where n is the total number of words and
k is the number of known words) is still an improvement over having to learn
n new words. The second option is to omit functionality which requires the
understanding of foreign terms. As often, any solution for this problem will be
a tradeoff between the expressive power of the application on the one hand, and
the steepness of the learning curve for new users on the other hand.

The choice of terminology in the SemDAV user interface follows this para-
digm. The application uses terms that are used in common language, such as
“category” or “filter”. In some cases it was safe to assume that users were fa-
miliar with very similar concepts to the ones we employed, hence we tried to
choose words that are phonetically similar to the concepts already known to
users but still accentuate the difference. The word “sile”, for example, is very
similar to “file”, and “slink” is very similar to a “link” on the web, but never-
theless, slightly different. Unfortunately there are still more concepts which are
unknown to the majority of the intended user population, like for example the
word “ontology”. In such cases we have deliberately used neologisms in order
to avoid ambiguities.

5 Related Work

5.1 The EPOS Project

In the course of the EPOS project [17], a semantic user interface was evaluated.
Over a longer period of time, qualitative and quantitative was collected: the for-
mer data was collected using a structured questionnaire, which users were asked
to fill out on a daily basis; the latter was collected in the form of clickstream
traces and quantized explicit user feedback. However, the claim that “partic-
ipants agreed that the PIMO reflects their personal mental models” stands in
certain contradiction to the theory that mental models are seldom conscious
and users are not explicitly aware of them [21].

14



5.2 ESWC 2006 evaluation

The organizers of the 3rd European Semantic Web Conference1 decided to use
the state of the art in the field of semantic web applications for the local in-
formation infrastructure. The rationale behind was that by using their own
applications the conference participants would gain more insight into practi-
cability problems of semantic technologies. Although not being a small-scale
evaluation, this scenario is particularly interesting because practically all of the
users could be safely assumed to have a clear understanding of the concepts un-
derlying the applications. Heath et al. [7] have assessed the practicability of the
installed infrastructure by asking conference participants to answer open-ended
questions on a local website. The authors remark however that their evaluation
was more akin to a formative feedback than to a traditional UI evaluation, and
they are aware that this approach is not a substitute for formal usability testing.

5.3 The SEEK project

Usability issues in the Scientific Environment for Ecological Knowledge (SEEK)
project were assessed using a paper prototype [4]. This method was favored
because it is known to yield good results at a low cost. Paper prototypes are
easy to make, and evaluating them requires only a few test subjects from the
intended user population. The SEEK project is very domain specific, which
means that the user population was very small: the evaluation team had access
to three potential users.

In contrast to the paper prototyping evaluation method known from liter-
ature [20], the author uses it as a mean of providing common ground between
users and developers, which is necessary to discuss the shape of the user in-
terface. While this approach may have its own merits, the standard method
focuses on observing users rather than discussing the interface with users. The
rationale behind favoring observing over involving is the assumption that users
rarely have the expertise to make valuable constructive suggestions. Observing
users of an application provides thorough insight into the usability weaknesses.

Some users may even be able to voice usability problems, whereas their
suggestions for improvement are often inadequate. An example supporting this
claim can be found in the result section of the SEEK evaluation: one user
remarked that the term “annotation” was too ambiguous, and he suggest using
“keywords” or “descriptors” instead. The authors point out that “keywords”
is an unfortunate choice, because it is used elsewhere in a different meaning
(see [4], page 9).

5.4 Numeric Volume Indicators in mSpace

mSpace is a domain specific information browser, intended to become a generic
information navigation tool. Its interface is based on a multi-column view;
every column represents one aspect of an information space. If the user browses

1http://www.eswc2006.org

15



information about movies, one column might show all directors and allow users
to discriminate results but chosing a director. The order of columns can be
rearranged.

The study performed with the mSpace interface [24] investigates the inter-
pretation of numeric volume indicators (NVIs). Numeric volume indicators are
numbers printed after every category indicating the volume of the category. As
mentioned before, the mSpace user interface discriminates search results by ap-
plying a conjunction of category membership constraints. For example, when
browsing music the user might first select an era, which would display all com-
posers of this era. Subsequently the user can chose a composer to find out
which pieces this composer has written. The composer constraint however may
be omitted so that a selection of an era yields all pieces composed in this era.
This flexibility makes it unclear what the most obvious interpretation of an NVI
might be: is the volume of an era the number of composers or the number of
pieces in this era?

The authors administrated an evaluation to answer two questions: first, what
is intuitive interpretation of NVIs?, and second, how can this interpretation
be influenced with various cues?. They designed the experiment to answer
these two particular questions. The 20 participants of the study were matched
in groups of 5 based on their computer experience. Each of the groups was
presented with one of four interface conditions and was asked to interpret an
NVI. After the users had given their answer they were engaged in a discussion
introducing the other three interface conditions.

While the concrete outcome of the study is undecisive, the study presents a
very valuable finding: the mental model for NVIs is not completely understood.
The mental model for NVIs in the context of Semantic Web applications may
not even be formed yet. The authors of the study recommend that user inter-
face designers allow the users themselves to chose an interpretation for numeric
volume indicators.

6 Conclusions

In this paper we have discussed our experience with a small-scale evaluation
of a Semantic Web-based application. This application is designed as a generic
information browser for annotated resources, called siles, and is designed similar
to file browsers known from desktop operating systems. This evaluation, even
if it was carried out at very low cost, greatly improved the design process as it
revealed a number of design issues that we consider as relevant for a larger class
of applications.

We plan to continue development of our application based on the evaluation
results and will extend our evaluation by publishing a prototype for download.
In this software we will integrate mechanisms for implicit feedback, that we
can gain from analyzing anonymzed activity logs, and explicit feedback through
online evaluation forms.

16



7 Acknowledgements

Parts of this work are funded by FIT-IT grant 812513 from Austrian Federal
Ministry of Transport, Infrastructure, and Technology.

References

[1] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch.
A Five-Year Study of File-System Metadata. In Proceedings of the 5th
Conference on File and Storage Technologies (FAST ’07), San Jose, CA,
2007.

[2] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information
Retrieval. ACM Press / Addison-Wesley, 1999.

[3] M. Ted Boren and Judith Ramey. Thinking Aloud: Reconciling Theory and
Practice. IEEE Transactions on Professional Communication, 43:261–278,
2000.

[4] Laura Downey. Designing Annotation Mechanisms with Users in Mind: A
Paper Prototyping Case Study from the Scientific Environment for Eco-
logical Knowledge (SEEK) Project. In Proceedings of the Semantic Web
Personalization Workshop at the ESWC 2006, 2006.

[5] Davide Eynard, John Recker, and Craig Sayers. An IMAP Plugin for
SquirrelRDF. Technical report, HP Labs, 2007.

[6] Jorge Gracia, Vanessa Lopez, Mathieu d’Aquin, Marta Sabou, Enrico
Motta, and Eduardo Mena. Solving Semantic Ambiguity to Improve Se-
mantic Web based Ontology Matching. In Proc. of the 2nd Ontology Match-
ing Workshop (OM’07) at the 6th International Semantic Web Conference
(ISWC 2007), November 2007.

[7] Tom Heath, John Domingue, and Paul Shabajee. User Interaction and
Uptake Challenges to Successfully Deploying Semantic Web Technologies.
In Proceedings of the 5th International Semantic Web Conference (ISWC
2006), 2006.

[8] Steve Jones, Shona McInnes, and Mark S. Staveley. A Graphical User
Interface for Boolean Query Specification. Int. J. on Digital Libraries, 2(2-
3):207–223, 1999.

[9] John Lyons. Semantics, volume 5 of Handbücher zur Sprach- und Kommu-
nikationswissenschaft, chapter General Foundations, pages 1–24. Walter de
Gruyter Berlin New York, 1991.

[10] Jakob Nielsen. Improving a human-computer dialogue. Communications
of the ACM, 33:338–348, 1990.

17



[11] Jakob Nielsen. Finding Usability Problems Through Heuristic Evaluation.
In CHI ’92: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 373–380, New York, NY, USA, 1992. ACM Press.

[12] Jakob Nielsen. The usability engineering life cycle. Computer, 25:12–22,
1992.

[13] Jakob Nielsen. Usability Engineering. Academic Press, 1993.

[14] C. K. Ogden and I. A. Richards. The Meaning of Meaning. Harcourt, 1989.

[15] Dennis Quan, David Huynh, and David R. Karger. Haystack: A Platform
for Authoring End User Semantic Web Applications. In Proceedings of the
2nd International Semantic Web Conference (ISWC 2003). Springer, 2003.

[16] Leo Sauermann, Ansgar Bernardi, and Andreas Dengel. Overview and
Outlook on the Semantic Desktop. In Stefan Decker, Jack Park, Den-
nis Quan, and Leo Sauermann, editors, Proceedings of the 1st Semantic
Desktop Workshop, volume 175, Galway, Ireland, November 2005. CEUR
Workshop Proceedings.

[17] Leo Sauermann, Andreas Dengel, Ludger van Elst, Andreas Lauer, Heiko
Maus, and Sven Schwarz. Personalization in the EPOS Project. In Proceed-
ings of the Semantic Web Personalization Workshop at the ESWC 2006,
2006.

[18] Bernhard Schandl. SemDAV: A File Exchange Protocol for the Semantic
Desktop. In Proceedings of the Semantic Desktop and Social Semantic
Collaboration Workshop, volume 202, Athens, GA, USA, November 2006.
CEUR Workshop Proceedings.

[19] Bernhard Schandl and Ross King. The SemDAV Project: Metadata Man-
agement for Unstructured Content. In CAMA ’06: Proceedings of the 1st
International Workshop on Contextualized attention metadata: collecting,
managing and exploiting of rich usage information, pages 27–32, New York,
NY, USA, 2006. ACM Press.

[20] Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Design
and Refine User Interfaces. Morgan Kaufmann, 2003.

[21] Rick Spencer. The Streamlined Cognitive Walkthrough Method, Working
Around Social Constraints Encountered in a Software Development Com-
pany. CHI Letters, 2:353–359, 2000.

[22] Constantine Stephanidis, editor. User Interfaces For All — Concepts,
Methods, and Tools. Lawrence Erlbaum Associates, 2001.

[23] Constantine Stephanidis, Demosthenes Akoumianakis, and Alex
Paramythis. User Interaction in Digital Libraries: Coping with Di-
versity through Adaptation. Lecture Notes In Computer Science, 1513:717
– 735, 1998.

18



[24] Max L. Wilson and m.c. schraefel. mSpace: What do Numbers and Totals
Mean in a Flexible Semantic Browser. In Proceedings of the Semantic Web
Personalization Workshop at the ESWC 2006, 2006.

[25] Degi Young and Ben Shneiderman. A Graphical Filter/Flow Represen-
tation of Boolean Queries: A Prototype Implementation and Evaluation.
Journal of the American Society of Information Science, 44(6):327–339,
1993.

19


