
Architectural Patterns Revisited – A Pattern
Language

Paris Avgeriou Uwe Zdun
CONCERT division Department of Information Systems

Fraunhofer IPSI Vienna University of Economics and BA
Darmstadt, Germany Vienna, Austria

paris.avgeriou@ipsi.fraunhofer.de zdun@acm.org

Architectural patterns are a key concept in the field of software architecture: they offer
well-established solutions to architectural problems, help to document the architectural
design decisions, facilitate communication between stakeholders through a common vo-
cabulary, and describe the quality attributes of a software system as forces. Regrettably,
finding and applying the appropriate architectural patterns in practice still remains largely
ad-hoc and unsystematic. This is due to the lack of consensus in the community with
respect to the “philosophy” and granularity of architectural patterns, as well as the lack
of a coherent pattern language. In this paper we attempt to establish common ground in
the architectural patterns community by proposing a pattern language that acts as a super-
set of the existing architectural pattern collections and categorizations. This language is
particularly focused on establishing the relationships between the patterns and performs a
categorization based on the concept of “architectural views”.

1 Motivation

The software architecture community has had many debates on various aspects like which de-
sign and evaluation methods, Architecture Description Languages, and views are best for which
case. Architectural patterns were one of the few points, where consensus was achieved in the
field of software architecture: their significance is well-established and they are essential to
an architecture description [SC97, SG96, BCK98, CBB+02, BMR+96, SSRB00]. Regrettably,
describing, finding, and applying architectural patterns in practice still remains largely ad-hoc
and unsystematic. This is due to several issues that are still not resolved: there is a semantic
gap concerning what architectural patterns really represent, what is the philosophy behind them;
moreover, there is much confusion with respect to what is the granularity of architectural pat-
terns; finally there is no accepted classification or cataloguing of patterns that can be used by
architects. The next paragraphs elaborate on these issues.

There are two different “schools of thought” in the literature with respect to the nature of ar-
chitectural patterns: one that uses the term “architectural pattern” (e.g. in [BMR+96, SSRB00,
VKZ04]) and another that uses the term “architectural style” (e.g. in [SG96, SC97, BCK98,
CBB+02]). Both terms refer to recurring solutions that solve problems at the architectural de-
sign level, and provide a common vocabulary in order to facilitate communication. They both

D3 – 1



also accept that patterns provide the means to reason for the quality attributes of a software sys-
tem and help to document the design decisions taken by the architect. But they have some key
differences in their underlying philosophy:

• In the architectural patterns perspective, patterns are considered as problem-solution pairs
that occur in a given context and are affected by it. Furthermore a pattern does not only
document “how” a solution solves a problem but also “why” it is solved, i.e. the rationale
behind this particular solution. In particular, the description of the problem pays much
attention to the forces that shape the problem, while the solution elaborates on how (and
if) those forces are resolved. The description of architectural patterns is based on the
context-problem-solution triplet and may be further elaborated with richer details, espe-
cially focusing on the rationale behind a solution. Moreover, patterns are meant to work
synergistically in the context of a pattern language, and have numerous inter-dependencies
among each other. Finally, there are a number of postulations for a solution to qualify as
a pattern. For instance, the pattern must capture common practice (e.g. have at least three
known uses) and at the same time the solution of the pattern must be non-obvious. Pat-
terns should provide aesthetic solutions, and in the pattern literature the human aspect of
software is accentuated [Cop96].

• In the architectural styles perspective, the problem does not receive much attention nor
does the rationale behind choosing a specific solution. In [SC97, BCK98] a style is looked
upon in terms of components, connectors, and issues related to control and data flow. In
[SG96] attention is drawn to architectural configurations, semantics of the styles, and po-
tential architectural analysis that can be performed on the systems built on the styles. In
[BCK98, CBB+02] the concept of architectural styles is treated as a set of constraints
on components, connectors, and their interactions. Similarly, in [MM03], an architectural
style is represented by components, connectors, their configurations, and constraints upon
all of them. In this viewpoint, patterns are not considered generic and “timeless” in the
Alexandrian sense [AIS+77, Ale79], but become much more concrete and focused. This
also leads to multiple variations of the same pattern in order to solve specialized design
problems [SC97]. Also, since the pattern’s implementation details can be pinpointed, Ar-
chitecture Description Languages [MT00] can be designed in order to support individual
architectural patterns.

As far as the granularity of architectural patterns is concerned, it is usually not clear when a
pattern is “big” enough to be considered architectural. In particular, the category of “design
patterns”, e.g. as described in [GHJV94], are often referred to, or used as architectural patterns.
In general it is hard to draw the line between architectural patterns and design patterns. In fact,
it depends heavily on the viewpoint of the designer or architect whether a specific pattern is
categorized as an architectural pattern or a design pattern. Consider for instance, a classical
design pattern, theINTERPRETERpattern [GHJV94]. The description in [GHJV94] presents it
as a concrete design guideline. Yet, instances of the pattern are often seen as a central elements
in the architecture of software systems, because anINTERPRETERis a central, externally visible
component – i.e. the pattern is treated like an architectural pattern (see [SG96]).

Finally, there is no single catalogue of architectural patterns for software architects to use. In-
stead there is a voluminous and heterogeneous literature of patterns, where the various patterns

D3 – 2



differ in their philosophy and way of description and are often not related in the context of
a pattern language. To make matters worse, many architectural patterns languages have been
developed since the earlier software patterns literature [SG96, SC97, BMR+96, GHJV94] has
been documented, but the former are not clearly related to the latter. Of course, there have been
attempts to classify architectural patterns: in [BMR+96] architectural patterns are categorized
according to the global system properties that they support; in [SC97, BCK98] architectural
patterns are classified with respect to a framework of features, like the types of components and
connectors, and control and data issues; a more recent classification scheme that has been pro-
posed is based on the concept of architectural views [CBB+02]. But again there is no consensus
on these classifications that could possibly lead to a single scheme.

2 Putting the pieces together: a pattern language

2.1 The approach

In this paper we attempt to findcommon groundin the architectural patterns community by
proposing a pattern language that acts as a superset of the existing architectural pattern collec-
tions and categorizations. This language, as a whole, is greater than the sum of its parts because
it particularly focuses on establishing the relationships between the patterns in order to present
the “big picture”. In particular this pattern language tackles the aforementioned shortcomings
in the following ways:

• We consider that both architectural patterns and architectural styles are in essence the
same concepts and that they only differ in using different description forms. Therefore, we
put both the “classical” architectural patterns such as those from POSA (see [BMR+96])
and the architectural styles from SEI (see [SC97, Sha96, SG96, BCK98, CBB+02]) in
the same pattern language, paying special attention on relating them with each other. For
the sake of simplicity, we shall use only the term “architectural pattern” for the rest of
this paper. Note that we are aware that some patterns described below, e.g.EXPLICIT

INVOCATION would not qualify as patterns in a strict interpretation of the pattern defini-
tion, because they may be considered as stating really obvious solutions. Naturally, the
obviousness of a solution is a matter of definition. We nevertheless include them in our
pattern language because they are important pieces of the architectural patterns puzzle and
substantially contribute in putting the individual architectural styles and patterns together
into a coherent pattern language.

• We consider a pattern to be architectural, if it refers to a problem at the architectural level
of abstraction; that is, if the pattern covers the overall system structure and not only a
few individual subsystems. Thus we have not included the classical “design patterns”
(e.g. [GHJV94]) in our pattern language except for one (INTERPRETER). However we
emphasize that these design patterns can potentially be used as architectural patterns, if
one applies them at the level and scope of a system’s architecture.

• We propose a classification of the architectural patterns, based upon architectural views,
that extends the one proposed in [CBB+02]. The next subsection elaborates on this clas-
sification scheme.

D3 – 3



This pattern language, as aforementioned, contains patterns from existing collections of archi-
tectural patterns. The emphasis of this language is therefore not on describing the individual
patterns; they have already been elaborately described before. For space restrictions we don’t
repeat these descriptions here. Instead emphasis is given only on the related pattern sections
that analytically describe the relationships between the patterns. Consequently, the intended au-
dience for this pattern language is comprised of architects that have a sound knowledge of these
patterns and can accordingly understand the “big picture” of the inter-related patterns.

2.2 Classification of architectural patterns according to views

The classification scheme for architectural patterns that we propose is based on the concept of
architectural views.

Architectural
Viewpoint

Architectural
View

Architectural
Pattern

* * Pattern
Implementation

Figure 1: Architectural views, viewpoints, and patterns

An Architectural View 1 is a representation of a system from the perspective of a related set of
concerns[IEE00] (e.g. a concern in a distributed system is how the software components are
allocated to network nodes). This representation is comprised of a set of systemelementsand the
relationshipsassociated with them [CBB+02]. Thetypesof the elements and the relationships
as well as other meta-information on the views are described by theViewpoint [IEE00] in
order to document and communicate views unambiguously. Therefore a view is an instance
of a viewpoint for a particular system, because the elements and relationships contained in the
View, are instances of the corresponding types of elements and relationships contained in the
Viewpoint.

An Architectural Pattern , on the other hand, also defines types of elements and relationships
that work together in order to solve a particular problem from some perspective. In fact, an
architectural pattern can be considered as a specialization of a viewpoint since it provides spe-
cialized semantics to the types of elements and relationships, as well as constraints upon them.

1We use the termview to describe the different perspectives of the architecture like “structural view” or “behav-
ioral view”, instead of “structural architecture” or “behavioral architecture”, in the spirit of [IEE00] which mandates
that a system hasonearchitecture, whose description can be organized in many views.

D3 – 4



An essential issue however is how architectural views relate to architectural patterns. There have
been two major approaches on this matter so far:

• The first considers that views are of large granularity in the sense that the elements and
relationships are generically defined. Therefore, in such a coarse-grained view, multiple
architectural patterns may be applied. For instance we can consider astructuralview, that
describes how a system is structurally decomposed into components and connectors. In
this view, we may apply theLAYERS and thePIPES AND FILTERSpatterns. Some well-
established examples of this approach are Kruchten’s “4+1 views” [Kru95], the so-called
“Siemens 4 views model” [HNS00], and the “Zachman framework” [Zac87]. The same
thesis is supported in the IEEE 1471 Recommended Practice for Architectural Descrip-
tion. Even though it does not prescribe any specific set of views, it considers views of
such granularity, e.g. structural and behavioral views.

• The second considers that each architectural pattern corresponds to a view in a one-to-
one-mapping, and is mainly advocated in [CBB+02]. This notion of a view is of course
far more fine-grained since it leads to elements and relationships of very specialized se-
mantics, e.g. consider a pipe-and-filter view or a client-server view. These views are cate-
gorized into classes, calledViewtypes, which are of the same granularity as the views of
the first approach. For example, in [CBB+02] the Components and Connectors viewtype
contains the pipe-and-filter and the client-server views.

We follow the middle path between the two aforementioned approaches. We consider that views
should be more fine-grained than the first approach in order to be useful. Therefore, instead of
generic structural or behavioral views, we consider views that show more specific aspects of the
system like the flow of data or the interaction of components. On the other hand we consider
views to be more coarse-grained than individual architectural patterns, since more than one
pattern can be either complimentary or alternatively applied in a given view. For example in a
view that shows how shared data is manipulated by a number of components, we could either
applySHARED REPOSITORYor ACTIVE REPOSITORY.

Figure 1 illustrates the relationships between views, viewpoints, and patterns, using the Unified
Modeling Language (UML). A viewpoint is related with a realization dependency with a view
so that, according to the UML semantics, the viewpoint represents a specification and a view
represents an implementation of the former. Our classification scheme for architectural patterns
is organized around a number of the most common views that are used in practice. Therefore an
architectural pattern is classified in a particular view if the pattern implementation is part of this
view; or in other words if the pattern is a specialization of the viewpoint that types the particular
view. Emphasis is given on the multiple and complex inter-relationships between the patterns.

In our classification scheme each pattern is assigned to one primary view, which is the most
suitable. However there are some cases where a single pattern could be used in a second or third
view. This can be derived as follows: when two patterns from different views are combined
on the same system, then they can be seen in both views. For example, consider the case
of a SHARED REPOSITORYwhich also implements aCLIENT-SERVER structure because the
repository plays the role of a server satisfying the clients-accessors requests. In this case each
of the two patterns is visible both in the data-centered and the component interaction views.

D3 – 5



The views that we have chosen for this classification scheme contain mainly two types of el-
ements:componentswhich are units of runtime computation or data-storage, andconnectors
which are the interaction mechanisms between components [PW92, CBB+02]. There are of
course other views that contain different kinds of elements, which we did not include in our
pattern language for the time being. For instance in [CBB+02] the “module” views deal with
implementation modules (e.g. Java or C++ classes), while the “allocation” views deal with
how software elements are allocated to environment elements (e.g. code units are allocated to
members of the development team).

2.3 Overview of the pattern language

The following pattern language is comprised of component and connector views, and the pat-
terns that are classified in each view. Note that we focus on “classical” architectural patterns
from both POSA (see [BMR+96]) and SEI (see [SC97, Sha96, SG96, BCK98, CBB+02]), be-
cause these have been well-established in the software architecture community. We have also
included a few patterns from other sources, in order to describe important links or gaps in the
realm of the “classical” architectural patterns. We also discuss some links to related pattern
languages inside the description of the patterns.

• The Layered View deals with how the system as a complex heterogeneous entity can be
decomposed into interacting parts.

– LAYERS [SC97, Sha96, SG96, BCK98, CBB+02, BMR+96]

– INDIRECTION LAYER [Zdu04, Zdu03] (a variant of this pattern is called “virtual
machine” in [CBB+02])

• The Data Flow View deals with how streams of data are successively processed or trans-
formed by components.

– BATCH SEQUENTIAL [SG96, SC97, BCK98]

– PIPES AND FILTERS[SC97, Sha96, SG96, BCK98, CBB+02, BMR+96]

• The Data-centered View is appropriate when the concerns involve how a central repository
of data is accessed by multiple components.

– SHARED REPOSITORY[VKZ04] (called “repository” in [SG96, Sha96, BCK98])

– ACTIVE REPOSITORY(called “blackboard” in [SC97, BCK98])

– BLACKBOARD [BMR+96, SG96]

• The Adaptation View deals with how the system adapts itself during evolution.

– MICROKERNEL [BMR+96]

– REFLECTION [BMR+96]

– INTERCEPTOR[SSRB00]

• The Language Extension View is concerned with how systems offer an abstraction layer
to the computation infrastructure.

D3 – 6



– INTERPRETER[SG96, Sha96, BCK98, GHJV94]

– VIRTUAL MACHINE [GMSM00]

– RULE-BASED SYSTEM[SG96, BCK98]

• The User Interaction View shows the runtime structure of components that offer a user
interface.

– MODEL-VIEW-CONTROLLER [KP88, BMR+96]

– PRESENTATION-ABSTRACTION-CONTROL [Cou87, BMR+96]

– C2 [TMA +96]

• The Component Interaction View focuses on how individual components exchange mes-
sages but retain their autonomy.

– EXPLICIT INVOCATION (called “communicating processes” in [SC97, Sha96, BCK98,
CBB+02])

– IMPLICIT INVOCATION [Sha96, BCK98, SG96] (also called “event systems” in
[SC97, SG96, BCK98])

– CLIENT-SERVER[SC97, SG96, BCK98, CBB+02]

– PEER-TO-PEER[CBB+02]

– PUBLISH-SUBSCRIBE[BCK98, CBB+02] (called “publisher-subscriber” in [BMR+96].

• The Distribution View tackles concerns about disseminating components in a networked
environment.

– BROKER [BMR+96, VKZ04]

– REMOTE PROCEDURE CALLS[VKZ04] (called “distributed objects” in [SC97])

– MESSAGE QUEUING(called “messaging” in [HW03, VKZ04])

The next sections elaborate on the various views and the patterns assigned to each view. The
description of each view, i.e. theviewpoint, is presented informally with respect to the types
of elements and relationships, as well as the concerns addressed by the view. Each pattern is
described using a brief summary, and a more elaborate discussion of its relationships to other
patterns.

3 Layered View

In the Layered View the system is viewed as a complex heterogeneous entity that can be decom-
posed into interacting parts. The concerns addressed by this view are:

• What are the parts that make up the whole system?

• How do these parts interact with each other?

• How do the parts perform their functionality and still remain decoupled from each other?

D3 – 7



• How are the quality attributes of modifiability, scalability, and integrability supported?

The individual parts of the system are components that are decoupled as much as possible from
one another. The interaction mechanisms between the components are implemented through
connectors that include appropriate interfaces, states, and interaction protocols. There is usually
an overall control mechanism that maintains an overall organization scheme by orchestrating
the various components.

Figure 2 illustrates patterns and their relationships from the Layered, Data Flow, and Data-
centered Views.

Layers

Pipes and Filters Shared Repository

alternative for separating
higher-level from lower-level

responsibilities, also used internally

alternative for separating
higher-level from lower-level
responsibilities, also used internally

can be used to allow
for data sharing
between filters

BlackboardActive Repository

variant when repository
needs to actively inform

subscribers

variant when no deterministic
approach to a solution is known
or feasible

can be used for
communication between layers

uses
Implicit Invocation

Batch Sequential

alternative when
stream-based

processing is needed

Indirection Layer

layer used for indirection
and add-on tasks

Figure 2: Overview: Patterns of the Layered, Data Flow and Data-centered Views

Pattern: Layers

Consider a system in which high-level components depend on low-level components to perform
their functionality, which further depend on even lower-level components and so on. Decoupling
the components in a vertical manner is crucial in order to support modifiability, portability,
and reusability. On the other hand components also require some horizontal structuring that is
orthogonal to their vertical subdivision.

To achieve these goals, the system is structured intoLAYERS so that each layer provides a set
of services to the layer above and uses the services of the layer below. Within eachLAYER all
constituent components work at the same level of abstraction and can interact through connec-
tors. Between two adjacent layers a clearly defined interface is provided. In the pure form of
the pattern, layers should not be by-passed: higher-level layers access lower-level layers only
through the layer beneath.

Each layer offers a dedicatedEXPLICIT INTERFACE [BH03] to the higher-level layers, which
remains stable, whereas internal implementation details can change. This way theLAYERS

D3 – 8



Layer 1

Layer 2

Layer 3

...

Layer N

Figure 3: Layers example

pattern allows the work to be sub-divided along clear boundaries, which enables the division
of labor. Two adjacentLAYERS can be considered as aCLIENT-SERVERpair, the higher layer
being the client and the lower layer being the server. Also, the logic behind layers is especially
obvious in theINDIRECTION LAYER where a special layer “hides” the details of a component
or subsystem and provides access to its services. An example ofLAYERS is shown in Figure 3.

LAYERS is useful for separating higher-level from lower-level responsibilities. On the contrary,
the patternsPIPES AND FILTERSandSHARED REPOSITORYplace all components at the same
level of abstraction. However, both of these patterns may use theLAYERS pattern for structuring
the internal architecture of individual architecture elements.

A MICROKERNEL is a layered architecture with threeLAYERS: external servers, the microker-
nel, and internal servers. Similarly thePRESENTATION-ABSTRACTION-CONTROL pattern also
enforcesLAYERS: a top layer with one agent, several intermediate layers with numerous agents,
and one bottom layer which contains the “leaves” agents of the tree-like hierarchy.

A special layered architecture, which allows for implementing many of the following patterns
(such asREFLECTION, VIRTUAL MACHINE , andINTERCEPTOR), is INDIRECTION LAYER:

Pattern: Indirection Layer

A sub-system should be accessed by one or more components, but direct access to the sub-
system is problematic. For instance, the components should not get hard-wired into the sub-
system, instead the accessors for the sub-system should be reused. Or the access should be
defined in a way that it can be flexibly adapted to changes. The same problem appears at
different levels of scale: it can happen between two ordinary components in one environment,
components in two different languages, components in two different systems (e.g. if a legacy
system is accessed).

An INDIRECTION LAYER is a LAYER between the accessing component and the “instructions”
of the sub-system that needs to be accessed. The general term “instructions” can refer to a whole

D3 – 9



programming language, or an application programming interface (API) or the public interface(s)
of a component or sub-system, or other conventions that accessing components must follow. The
INDIRECTION LAYER wraps all accesses to the relevant sub-system and should not be bypassed.
The INDIRECTION LAYER can perform additional tasks while deviating invocations to the sub-
system, such as converting or tracing the invocations.

The INDIRECTION LAYER can either be integrated to the sub-system (as in “virtual machine”
[CBB+02]) or be an independent entity (as inADAPTER or FACADE [GHJV94]) that forwards
the invocations to the sub-system. In both cases the accessing components are not aware of
this, since theINDIRECTION LAYER aims at exactly that: hiding whatever it is that provides the
services.

An example of anINDIRECTION LAYER architecture is shown in Figure 4. It shows a very sim-
ple form ofINDIRECTION LAYER, consisting of wrappers that are independent of the sub-system
providing the services. These wrappers forward the invocations to the hidden components of the
subsystem, and perform some actions before and after the invocations. They can also be used
to introduce add-on tasks such as logging. More complexINDIRECTION LAYERS, such asVIR-
TUAL MACHINES or INTERPRETERS, follow the same principle architecture, but perform more
complex tasks and hide more components to which they forward requests.

Client1

Client Layer

Client2

Sub-System

Comp2

Comp3

Comp4

Comp5

Wrapper2

Wrapper3

Comp1

Indirection Layer

1. invoke wrapper

2. "before" action

Wrapper1
4. "after" action

3. wrapped object invocation

Figure 4: Indirection Layer example: simple wrapper layer

The INDIRECTION LAYER pattern can be thought of as a system of two or threeLAYERS: the
INDIRECTION LAYER can be considered as Layer N which provides its services to Layer N+1,
without disclosing the implementation details of the services to the latter. Sometimes theIN-
DIRECTION LAYER provides all services itself, somethimes the services are provided by yet
another Layer N-1 (e.g. a subsystem that is hidden by theINDIRECTION LAYER).

The INDIRECTION LAYER pattern is a foundation for the architectures ofINTERPRETER, VIR-
TUAL MACHINE , and RULE-BASED SYSTEM. These patterns all provide an execution envi-
ronment for a language defined on some platform. TheINTERPRETER, VIRTUAL MACHINE ,

D3 – 10



or RULE-BASED SYSTEM interpose anINDIRECTION LAYER between the instructions of that
language and the instructions of the platform.

The REFLECTION pattern might also be implemented using anINDIRECTION LAYER, so that
the latter provides the reflective capabilities of the components defined on top of it. Specifically,
the INDIRECTION LAYER can intercept all invocations of the components, and thus can use this
information to record the current structure and behavior of the system. This information can
then be provided using a reflection API.

4 Data Flow View

In the Data Flow View the system is viewed as a number of subsequent transformations upon
streams of input data. The concerns addressed by this view are:

• What are the elements that perform the transformations?

• What are the elements that carry the streams of data?

• How are the two aforementioned types of elements connected to each other?

• How are the quality attributes of modifiability, reusability, and integrability supported?

The elements that perform the transformations are components that are independent of one an-
other, and have input and output ports. The elements that carry the streams of data are connectors
and similarly have data-in and data-out roles. The relationships between these elements are at-
tachments that connect input ports of components to data-out roles of connectors, and output
ports of components to data-in roles of connectors.

Pattern: Batch Sequential

Consider a complex task that can be sub-divided into a number of smaller tasks, which can be
defined as a series of independent computations. This should not be realized by one monolithic
component because this component would be overly complex, and it would hinder modifiability
and reusability.

In a BATCH SEQUENTIAL architecture the whole task is sub-divided into small processing steps,
which are realized as separate, independent components. Each step runs to completion and then
calls the next sequential step until the whole task is fulfilled. During each step a batch of data is
processed and sent as a whole to the next step.

BATCH SEQUENTIAL is a simple sequential data processing architectural pattern. It is useful
for simple data flows, but entails severe overhead for starting the batch processes and trans-
mitting data between them.PIPES AND FILTERSis more suitable for stream-oriented data-flow
processing, where the filters incrementally transform their input streams into output streams.

D3 – 11



Pattern: Pipes and Filters

Consider as inBATCH SEQUENTIAL the case where a complex task can be sub-divided into a
number of smaller tasks, which can be defined as a series of independent computations. Addi-
tionally the application processes streams of data, i.e. it transforms input data streams into output
data streams. This functionality should not be realized by one monolithic component because
this component would be overly complex, and it would hinder modifiability and reusability.
Furthermore, different clients require different variations of the computations, for instance, the
results should be presented in different ways or different kinds of input data should be provided.
To reach this goal, it must be possible to flexibly compose individual sub-tasks according to the
client’s demands.

In a PIPES AND FILTERSarchitecture a complex task is divided into several sequential sub-
tasks. Each of these sub-tasks is implemented by a separate, independent component, a filter,
which handles only this task. Filters have a number of inputs and a number of outputs and they
are connected flexibly using pipes but they are never aware of the identity of adjacent filters.
Each pipe realizes a stream of data between two components. Each filter consumes and delivers
data incrementally, which maximizes the throughput of each individual filter, since filters can
potentially work in parallel. Pipes act as data buffers between adjacent filters. The use ofPIPES

AND FILTERS is advisable when little contextual information needs to be maintained between
the filter components and filters retain no state between invocations.PIPES AND FILTERScan be
flexibly composed. However, sharing data between these components is expensive or inflexible.
There are performance overheads for transferring data in pipes and data transformations, and
error handling is rather difficult.

An example ofPIPES AND FILTERSis shown in Figure 5. Forks/joins as well as feedback loops
are allowed in this pattern, but there is also a variant referred to as apipeline, that forbids both,
i.e. has a strict linear topology.

Filter 1 Filter 2pipe
pipe

Filter 4 output

Filter 3

pipe
pipe

input

Figure 5: Pipes and filters example

In contrast toBATCH SEQUENTIAL, where there is no explicit abstraction for connectors, the
PIPES AND FILTERSpattern considers the pipe connector to be of paramount importance for the
transfer of data streams. The key word inPIPES AND FILTERSis flexibility in connecting filters
through pipes in order to assemble custom configurations that solve specific problems. Also in
PIPES AND FILTERSthere is a constant flow of data streams between the filters, while inBATCH

SEQUENTIAL, the processing steps are discrete in the sense that each step finishes before the
next step may commence.

D3 – 12



The pure form of thePIPES AND FILTERSpattern entails that only two adjacent filters can
share data through their pipe, but not non-adjacent filters. Therefore purePIPES AND FILTERS

is an alternative toLAYERS and SHARED REPOSITORIES, only if data sharing between non-
adjacent processing tasks is not needed. On the other hand, more relaxed forms of thePIPES AND

FILTERS pattern can be combined with data-centered architectures likeSHARED REPOSITORY,
ACTIVE REPOSITORY, or BLACKBOARD to allow for data-sharing between filters.PIPES AND

FILTERS can also be used for communication betweenLAYERS, if data flows through layers are
needed.

5 Data-centered View

In the Data-centered View the system is viewed as a persistent, shared data store that is accessed
and modified by a number of elements. The concerns addressed by this view are:

• How is the shared data store created, accessed, and updated?

• How is data distributed?

• Is the data store passive or active, i.e. does it notify its accessors or are the accessors
responsible of finding data of interest to them?

• How does the data store communicate with the elements that access it?

• Do the accessor elements communicate indirectly through the shared data or also directly
with each other?

• How are the quality attributes of scalability, modifiability, reusability, and integrability
supported?

The data store and the elements that access it are components. The data store is independent of
the components, and the components are usually independent of one another. It is possible that
there is more than one data store. The elements that transfer data written or read from the data
stores are connectors that are attached to the data store(s) and the accessors.

Pattern: Shared Repository

Data needs to be shared between components. In sequential architectures likeLAYERS or PIPES

AND FILTERS the only way to share data between the components (layers or filters) is to pass
the information along with the invocation, which might be inefficient for large data sets. Also it
might be inefficient, if the shared information varies from invocation to invocation because the
components’ interfaces must be prepared to transmit various kinds of data. Finally the long-term
persistence of the data requires a centralized data management.

In the SHARED REPOSITORYpattern one component of the system is used as a central data
store, accessed by all other independent components. ThisSHARED REPOSITORYoffers suitable
means for accessing the data, for instance, a query API or language. TheSHARED REPOSITORY

must be scalable to meet the clients’ requirements, and it must ensure data consistency. It must

D3 – 13



handle problems of resource contention, for example by locking accessed data. TheSHARED

REPOSITORYmight also introduce transaction mechanisms.

An example of aSHARED REPOSITORYarchitecture is shown in Figure 6.

Client

Repository

Client

Client

Client
Client

Figure 6: Shared repository example

A SHARED REPOSITORYalso might offer additional services, such as security. Some systems
offer higher-level access mechanisms, such as query languages or tuple spaces [GCCC85].

A SHARED REPOSITORYoffers an alternative to sequential architectures for structuring soft-
ware components, such asLAYERS andPIPES AND FILTERS, that should be considered, when
data sharing or other interaction between non-adjacent components is needed.SHARED REPOS-
ITORIES can be used in aPIPES AND FILTERSarchitecture to allow for data sharing between
filters.

A SHARED REPOSITORY, where all its clients are independent components, can be considered
asCLIENT-SERVER, with the data store playing the server part. Similarly it can be considered
as a system of twoLAYERS where the higher level of clients uses the services of the lower level
of theSHARED REPOSITORY.

A variant of theSHARED REPOSITORYpattern is theACTIVE REPOSITORYpattern2:

Pattern: Active Repository

A system needs to have aSHARED REPOSITORY, but it should not just bepassivelyaccessed
by accessor components. Clients need to be immediately informed of specific events in the
shared repository, such as changes of data or access of data. “Polling” (i.e. querying in frequent
intervals) theSHARED REPOSITORYfor such events does not work, for instance, because this
does not deliver timely information or inflicts overhead on the system performance.

2Note that this pattern is introduced as a style named “Blackboard” in [SC97, SG96, BCK98]. We renamed it for
this pattern language toACTIVE REPOSITORYto avoid confusion with theBLACKBOARD pattern from [BMR+96]
which we discuss below.

D3 – 14



An ACTIVE REPOSITORYis aSHARED REPOSITORYthat is “active” in the sense that it informs
a number of subscribers of specific events that happen in the shared repository. TheACTIVE

REPOSITORYmaintains a registry of clients and informs them through appropriate notification
mechanisms.

The notification mechanism can be realized using ordinaryEXPLICIT INVOCATIONS, but in
most casesIMPLICIT INVOCATIONS, such asPUBLISH-SUBSCRIBE, are more appropriate.

Another variant of theSHARED REPOSITORYpattern is theBLACKBOARD pattern, which is
appropriate when aSHARED REPOSITORYis used in an immature domain in which no deter-
ministic approach to a solution is known or feasible.

Pattern: Blackboard

Consider the case where aSHARED REPOSITORYis needed for the shared data of a computation,
but no deterministic solution strategies are known. Examples are image recognition or speech
recognition applications. However, it should be possible to realize a solution for these types of
applications.

In a BLACKBOARD architecture the complex task is divided into smaller sub-tasks for which
deterministic solutions are known. TheBLACKBOARD is a SHARED REPOSITORYthat uses
the results of its clients for heuristic computation and step-wise improvement of the solution.
Each client can access theBLACKBOARD to see if new inputs are presented for further process-
ing and to deliver results after processing. A control component monitors the blackboard and
coordinates the clients according to the state of the blackboard.

An example of aBLACKBOARD architecture is shown in Figure 7. Even though the control com-
ponent is designed as a separate component, it may as well be part of the clients, the blackboard
itself, or a combination of the above.

Knowledge
Source

Blackboard

Knowledge
Source

Knowledge
Source

Knowledge
Source

Control

Knowledge
Source

Figure 7: Blackboard example

D3 – 15



6 Adaptation View

In the Adaptation View the system is viewed as a core part that remains invariable and an adapt-
able part that either changes over time or in different versions of a system. The concerns ad-
dressed by this view are:

• How can a system adapt better to evolution over time or to multiple different versions of
a basic architecture?

• What is the system functionality that is more likely to change and what will possibly
remain invariable?

• How do the invariable parts communicate with the adaptable parts?

• How are the quality attributes of modifiability, reusability, evolvability, and integrability
supported?

The two basic types of elements in this view are the invariable components and the adaptable
components (these are often called variation points). These two kinds of components commu-
nicate with each other through connectors that have clearly-specified interfaces. Note that some
kinds of connectors are adaptable as well, i.e. they are also used as variation points.

Figure 8 summarizes the patterns and their relationships from the Adaptation View and the
Language Extension View.

Microkernel

Layers

uses layered architecture

Interpreter Rule-Based System Virtual Machine

Reflection
provided by/used in

alternative for
rule-based languages

alternative

alternative for
rule-based languages

provided by/used in

uses for reflection on component plugging

alternative for/uses for component plugging alternative for/uses for component plugging

InterceptorIndirection Layer
realized using

uses

Figure 8: Overview: patterns of the Adaptation and Language Extension View

Pattern: Microkernel

Consider a system family where different versions of a system need to be supported. In each
version, components can be composed in different ways and other details, such as the offered
services, public APIs, or user interfaces, might be different. Nonetheless, the system family
should be realized using a common architecture to ease software maintenance and foster reuse.

D3 – 16



A MICROKERNEL realizes services that all systems, derived from the system family, need and
a plug-and-play infrastructure for the system-specific services. Internal servers (not visible to
clients) are used to realize version-specific services and they are only accessed through theMI -
CROKERNEL. On the other hand, external servers offer APIs and user interfaces to clients by
using theMICROKERNEL. External servers are the only way for clients to access theMICRO-
KERNEL architecture.

The MICROKERNEL pattern promotes flexible architectures which allow systems to adapt suc-
cessfully to changing system requirements and interfaces. An example of aMICROKERNEL

architecture is shown in Figure 9.

Internal Server 1

GUI External
Server 3

API External
Server 1

Client
API External

Server 2
MicroKernel Internal Server 2

Internal Server 3

Figure 9: Microkernel example

MICROKERNELSare usually structured inLAYERS: the lowest layer implements an abstraction
of the system platform, the next layer implements the services (of the internal servers) used
by the MICROKERNEL, the next layer implements the functionality shared by all application
versions, and the highest layer glues the external and internal servers together. Apparently, the
lowest layer is in fact anINDIRECTION LAYER hiding the low-level system details from the
application logic.

In some areas, the patternsINTERPRETERandVIRTUAL MACHINE are alternatives toMICRO-
KERNEL since they all offer a way to integrate or glue components. TheMICROKERNEL can
integrate version-specific components, while mostINTERPRETERSand VIRTUAL MACHINES

also offer some way to be extended with components. Thus all three patterns can be used to
develop a plug-and-play environment for components. For instance, most scripting languages
use theirINTERPRETERto offer a gluing framework for components written in the language in
which the scripting language itself is implemented (e.g. C, C++, or Java). It is even possible to
combine anINTERPRETERor VIRTUAL MACHINE with a MICROKERNEL by implementing the
plug-and-play environment of the former as aMICROKERNEL.

A MICROKERNEL introduces an indirection that can be useful in certainCLIENT-SERVERcon-
figurations: a client that needs a specific service can request it indirectly through theMICRO-
KERNEL, which establishes the communication to the server that offers this service. In this sense
all communication between clients and servers is mediated through theMICROKERNEL, for rea-
sons of e.g. security or modifiability. To develop distributedMICROKERNEL architectures, the

D3 – 17



MICROKERNEL can be combined with theBROKER pattern to hide the communication details
between clients that request services and servers that implement them.

For all environments that support plug-and-play of components,REFLECTION is useful because
it allows to find out which components are currently composed in which way.

Pattern: Reflection

Software systems constantly evolve and change over the time, and unanticipated changes are
often required. It is hard to automatically cope with changes that are not foreseen.

In a REFLECTION architecture all structural and behavioral aspects of a system are stored into
meta-objects and separated from the application logic components. The latter can query the
former (that may have changed at any point of time) in order to execute their functionality. Thus
REFLECTION allows a system to be defined in a way that allows for coping with unforeseen
situations automatically.

The REFLECTION pattern is organized intoLAYERS: the meta-level contains the meta-objects
which encapsulate the varying structure and behavior; and the base level contains the application
logic components that depend on the meta-objects. However this is not the pureLAYERS pattern
since not only the base layer uses the services of the meta layer but also the opposite may
happen. This is useful for building a reflective system from scratch. TheREFLECTIONcan also
be realized with other architectures. For instance, many existingINTERPRETERSandVIRTUAL

MACHINES are reflective in the sense that the information in the implementations of the patterns
can be used to provideREFLECTION.

An example of aREFLECTIONarchitecture is shown in Figure 10.

Meta level

Base level

Modify meta-objects

Meta-object 1

App-logic
component 1

Meta-object 2 Meta-object 3

App-logic
component 4

App-logic
component 3

App-logic
component 2

Meta-object
Protocol

Figure 10: Reflection example

In [Zdu04, Zdu03] more detailed patterns about the realization ofREFLECTION in the context of
aspect-oriented composition frameworks are presented. The respective variant ofREFLECTION

is the patternINTROSPECTION OPTION(see Figure 12).

INDIRECTION LAYER is a more generic pattern thanREFLECTION. It can be used to build
a REFLECTION-infrastructure, but also other “meta-level” patterns, such asINTERPRETERor

D3 – 18



VIRTUAL MACHINE .

In cases where we need an adaptableframeworkto accommodate future services, theINTER-
CEPTORpattern is appropriate:

Pattern: Interceptor

A framework offers a number of reusable services to the applications that extend it. These
services need to be updated in the future as the application domain matures and they should still
be offered by the framework, so that the application developers do not need to re-implement
them. Furthermore, the framework developer cannot predict all such future services at the point
of time where the framework is created, while application developers may not be able to add
unanticipated extensions to the framework, in case e.g. that the framework is a black-box.

An INTERCEPTORis a mechanism for transparently updating the services offered by the frame-
work in response to incoming events. An application can register with the framework any num-
ber of INTERCEPTORSthat implement new services. The framework facilitates this registration
through dispatchers that assign events toINTERCEPTORS. The framework also provides the ap-
plications with the means to introspect on the framework’s behavior in order to properly handle
the events.

The INTERCEPTORpattern can be realized using anINDIRECTION LAYER or one of its variants,
such asINTERPRETERor VIRTUAL MACHINE . The incoming events are therefore re-routed
through theINDIRECTION LAYER that consists of severalINTERCEPTORS, before they are dis-
patched to the intended receiver.

INTERCEPTORcan use aREFLECTIONmechanism in order to query the framework and retrieve
the necessary information to process incoming events.

INTERCEPTORis defined in special variants: for aspect-oriented composition asMESSAGE IN-
TERCEPTORin [Zdu04, Zdu03]; for middleware architectures asINVOCATION INTERCEPTOR

in [VKZ04]. An example of anINTERCEPTORarchitecture is shown in Figure 11. In the figure
an invocation is intercepted automatically, and an interceptor manager is invoked, instead of the
original target component. Two interceptors are configured for the target component, which are
invoked before the invocation. After the interceptors, the target component itself is invoked.
When the invocation returns, the interceptors are invoked again, this time in reverse order.

7 Language Extension View

In the Language Extension View the system is viewed as a part that is native to the soft-
ware/hardware environment and another part that is not. The concerns addressed by this view
are:

• How can a part of the system that is written in a non-native language be integrated with
the software system?

• How can the non-native part be translated into the native environment?

D3 – 19



Client

Client Layer

Interceptor1

Comp

InterceptorManager

Indirection Layer

Interceptor2

3. before "aMethod"

6. after "aMethod"

5. after "aMethod"

2. before "aMethod"

1. invoke "aMethod" on Comp 4. invoke "aMethod"

Figure 11: Interceptor example

• How are the quality attribute of portability and modifiability supported?

The native part of the application and the non-native part are components. These communicate
indirectly through another type of component, an interpreter component that “translates” the lat-
ter into the former. The connectors between these components are data that contain the program
instructions in the non-native language, as well as the internal state of the non-native part.

Pattern: Interpreter

A language syntax and grammar needs to be parsed and interpreted within an application. The
language needs to be interpreted at runtime (i.e. using a compiler is not feasible).

An INTERPRETERfor the language is provided, which provides both parsing facilities and an
execution environment. The program that needs to be interpreted is provided in form of scripts
which are interpreted at runtime. These scripts are portable to each platform realization of the
INTERPRETER. For instance, theINTERPRETERcan define a class per grammar rule of the
language. The parser of the interpreter parses language instructions according to these rules and
invokes the interpretation classes. Many more complexINTERPRETERarchitectures exist.

SomeINTERPRETERSuse optimizations like on-the-fly byte-code compilers. They thus realize
internally elements of aVIRTUAL MACHINE . Note that anINTERPRETERis different to aVIR-
TUAL MACHINE because it allows for runtime interpretation of scripts, whereas theVIRTUAL

MACHINE architecture depends on compilation before runtime:

Pattern: Virtual Machine

An efficient execution environment for a programming language is needed. The architecture
should facilitate portability, code optimizations, and native machine code generation. Runtime
interpretation of the language is not necessarily required.

D3 – 20



A VIRTUAL MACHINE defines a simple machine architecture on which not machine code but
an intermediate form called the byte-code can be executed. The language is compiled into that
byte-code. TheVIRTUAL MACHINE can be realized on different platforms, so that the byte-code
can be portable between these platforms. TheVIRTUAL MACHINE redirects invocations from a
byte-code layer into an implementation layer for the commands of the byte-code.

An alternative toINTERPRETERSand VIRTUAL MACHINES , when rule-based or logical lan-
guages are needed, is aRULE-BASED SYSTEM:

Pattern: Rule-Based System

Logical problems are hard to express elegantly in imperative languages that are typically used in
INTERPRETERSandVIRTUAL MACHINES . Consider for instance an expert system that provides
the knowledge of an expert or a set of constraints. In imperative languages these are expressed
by nested if-statements or similar constructs which are rather hard to understand.

A RULE-BASED SYSTEM offers an alternative for expressing such problems in a system. It
consists mainly of three things: facts, rules, and an engine that acts on them. Rules represent
knowledge in form of a condition and associated actions. Facts represent data. ARULE-BASED

SYSTEMapplies its rules to the known facts. The actions of a rule might assert new facts, which,
in turn, trigger other rules.

As mentioned beforeINDIRECTION LAYER is the architectural foundation forINTERPRETER,
VIRTUAL MACHINE , andRULE-BASED SYSTEM, since either the instructions of the language
or the byte-code are re-directed dynamically (at runtime). We do not show component and
connector diagrams for these three patterns, since their structure is trivially similar to that of an
INDIRECTION LAYER.

In [Zdu04, Zdu03] a number of static alternatives for building language extensions are presented
in the context of aspect-oriented composition frameworks. These, for instance, manipulate the
parse tree (PARSE TREE INTERPRETER) or byte-code (BYTE-CODE MANIPULATOR) of a lan-
guage. The relationships to these patterns for aspect-oriented composition are shown in Figure
12.

8 User Interaction View

In the User Interaction View the system is viewed as a part that represents the user interface
and a part that contains the application logic, associated with the user interface. The concerns
addressed by this view are:

• What is the data and the application logic that is associated to the user interface?

• How is the user interface decoupled from the application logic?

• How are the quality attributes of usability, modifiability, and reusability supported?

D3 – 21



Patterns for Aspect-Oriented Composition

Interpreter

Rule-Based System
variant when language needs run-time interpretation

variant when rule-based
or logical languages
need interpretation

variant when
language needs
compile-time
interpretation

variant when isolating
evolving parts

Reflection

Parse Tree Interpreter

Byte-Code Manipulator

alternatives for static
language extension

Introspection Option

variant

Interceptor

Message Interceptor

variant

realized using

usesstatic alternative for
language extension

static alternative for
language extension

manipulates
bytecode of

Virtual Machine

Indirection Layer

Figure 12: Relationships between patterns in the Language Extension View, Adaptation View
and Aspect-oriented Composition View

The elements that present data to the user, accept the user input, and contain the application logic
and data are implemented as components. The components interact with each other through
connectors that pass data from one to another. This interaction is usually a message-based
change notification mechanism.

The relationships between the patterns of this view are shown in Figure 13.

Presentation-
Abstraction-Control

Model-View-
Controller

Agent uses MVC

Publish-
Subscribe

Inter-agent
notification

View & Controller
notification

Layers

Agent
structuring

Figure 13: Overview: patterns of the User Interaction View

Pattern: Model-View-Controller

A system may offer multiple user interfaces. Each user interface depicts all or part of some
application data. Changes to the data should be automatically and flexibly reflected to all the
different user interfaces. It should be also possible to easily modify any one of the user inter-
faces, without affecting the application logic associated with the data.

D3 – 22



The system is divided into three different parts: aModelthat encapsulates some application data
and the logic that manipulates that data, independently of the user interfaces; one or multiple
Viewsthat display a specific portion of the data to the user; aController associated with each
View that receives user input and translates it into a request to the Model. Views and Controllers
constitute the user interface. The users interact strictly through the Views and their Controllers,
independently of the Model, which in turn notifies all different user interfaces about updates.

The notification mechanism that updates all Views and Controllers according to the Model can
be based onPUBLISH-SUBSCRIBE. All Controllers and Views subscribe to the Model, which in
turn publishes the notifications. An example of aMODEL-VIEW-CONTROLLER architecture is
shown in Figure 14.

View Controller

Model
Modify data

User input

Get Data

Update

Update

Figure 14: Model-View-Controller example

Pattern: Presentation-Abstraction-Control

An interactive system may offer multiple diverse functionalities that need to be presented to the
user through a coherent user interface. The various functionalities may require their own custom
user interface, and they need to communicate with other functionalities in order to achieve a
greater goal. The users need not perceive this diversity but should interact with a simple and
consistent interface.

The system is decomposed into a tree-like hierarchy of agents: the leaves of the tree are agents
that are responsible for specific functionalities, usually assigned to a specific user interface; at
the middle layers there are agents that combine the functionalities of related lower-level agents
to offer greater services; at the top of the tree, there is only one agent that orchestrates the
middle-layer agents to offer the collective functionality. Each agent is comprised of three parts:
aPresentationtakes care of the user interface; anAbstractionmaintains application data and the
logic that modifies it; aControl intermediates between the Presentation and the Abstraction and
handles all communication with the Controls of other Agents.

The PRESENTATION-ABSTRACTION-CONTROL pattern is in essence based onMODEL-VIEW-
CONTROLLER, in the sense that every agent is designed according to MVC: the Abstraction
matches the MVC Model, while the presentation matches the MVC View and Controller.

D3 – 23



On a more macroscopic level, thePRESENTATION-ABSTRACTION-CONTROL patterns is struc-
tured according toLAYERS: The top layer contains the chief agent that controls the entire ap-
plication; the middle layer contains agents with coarse-grained functionality; the lower layer is
comprised of fine-grained agents that handle specific services, which users interact with. An
example of aPRESENTATION-ABSTRACTION-CONTROL architecture is shown in Figure 15.

PAC Agent

PAC Agent PAC Agent Middle level

Lower level

PAC Agent

Top level

Control Control

PAC Agent PAC AgentPAC Agent

Control

Figure 15: Presentation-Abstraction-Control example

The various agents usually need to propagate changes to the rest of the agent hierarchy, and this
can be achieved again through thePUBLISH-SUBSCRIBEpattern. Usually higher-level agents
subscribe to the notifications of lower-level agents.

An alternative to MVC and PAC for applications with extensive user interface requirements and
other particular requirements is the C2 architectural pattern.

Pattern: C2

An interactive system is comprised of multiple components such as GUI widgets, conceptual
models of those widgets at various levels, data structures, renderers, and of course application
logic. The system may need to support several requirements such as: different implementa-
tion language of components, different GUI frameworks reused, distribution in a heterogeneous
network, concurrent interaction of components without shared address spaces, run-time recon-
figuration, multi-user interaction. Yet the system needs to be designed to achieve separation of
concerns and satisfy its performance constraints.

The system is decomposed into a top-to-bottom hierarchy of concurrent components that interact
asynchronously by sending messages through explicit connectors. Components submit request
messages upwards in the hierarchy, knowing the components above, but they send notification
messages downwards in the hierarchy, without knowing the components lying beneath. Compo-
nents are only connected with connectors, but connectors may be connected to both components
and other connectors. The purposes of connectors is to broadcast, route, and filter messages.

D3 – 24



An example of aC2 architecture with four components in three layers, and two connectors that
delimit the layers, is shown in Figure 16.

CompA

ConnA

CompCCompB

ConnB

CompD

requests notifications

Figure 16: C2 example

TheC2top-to-bottom hierarchy resembles the form of aLAYERS architecture in an upside-down
order. AC2 component that belongs to a given layer, uses the services of the layers above it by
invoking services on them and provides services to the layers below it by sending notifications
to them.

Since theC2 pattern providessubstrate independence[TMA +96], isolating a component from
the components underneath it, the layer where a component is placed is in essence anINDIREC-
TION LAYER.

The interaction between theC2 components takes place through asynchronous message ex-
change, thus utilizing anIMPLICIT INVOCATION mechanism, and specifically callbacks, e.g.
PUBLISH-SUBSCRIBE.

9 Component Interaction View

In the Component Interaction View the system is viewed as a number of independent compo-
nents that interact with each other in the context of a system. The concerns addressed by this
view are:

• How do the independent components interact with each other?

• How are the individual components decoupled from each other?

• How are the quality attributes of modifiability and integrability supported?

D3 – 25



The components retain their independence, since they merely exchange data but do not directly
control each other. The components interact with each other through connectors that pass data
from one to another. This interaction can be performed synchronously or asynchronously and
can be message-based or through direct calls. This view is closely connected to the distributed
view, since the independent components might be distributed in various network nodes or pro-
cesses.

The two major patterns in this view differentiate whether the components interact through ex-
plicit or implicit invocations3:

Pattern: Explicit Invocation

Consider a component, the client, which needs to invoke a service defined in another component,
the supplier. Coupling the client with the supplier in various ways is not only harmless but
often desirable. For example the client must know the exact network location of the component
which offers the service in order to improve performance; or the client must always initiate
the invocation itself; or the client must block, waiting for the result of the invocation, before
proceeding with its business; or the topology of the interacting clients and suppliers is known
beforehand and must remain fixed. How can these two components interact?

An EXPLICIT INVOCATION allows a client to invoke services on a supplier, by coupling them in
various respects. The decisions that concern the coupling (e.g. network location of the supplier)
are known at design-time. The client provides these design decisions together with the service
name and parameters to theEXPLICIT INVOCATION mechanism, when initiating the invocation.
The EXPLICIT INVOCATION mechanism performs the invocations and delivers the result to the
client as soon as it is computed. TheEXPLICIT INVOCATION mechanism may be part of the
client and the server or may exist as an independent component.

An example of anEXPLICIT INVOCATION architecture is shown in Figure 17, where theEX-
PLICIT INVOCATION mechanism is implemented with the help of aBROKER and aPROXY, as
part of both the client and the supplier.

During theEXPLICIT INVOCATION the identification of the service supplier, can be realized, for
instance by using the patternOBJECT ID [VKZ04]. The client also knows the location of the
service supplier, and furthermore, in some systems, the service supplier needs to know about the
location of the client, so that the result can be sent back. This can be achieved byOBJECT IDS

enriched with location information, as mandated by the patternABSOLUTE OBJECT REFERENCE

[VKZ04].

There are two main variants ofEXPLICIT INVOCATIONS: synchronous, explicit invocations and
asynchronous, explicit invocations. In a synchronous invocation, the client blocks until the result
is available. In an asynchronous invocation, the client continues with its work immediately, and
the result is delivered at a later point, after it is computed. There are four patterns that describe
different variants of asynchronous invocations for distributed systems [VKZ04]:

3Note that in [BCK98] anEXPLICIT INVOCATION is given the opposite meaning as it is considered a sub-pattern
of the EVENT SYSTEMSpattern. However we have chosen this name to show the contrast between components
explicitly (e.g. direct method call) and implicitly (e.g. events) invoking each other.

D3 – 26



Node 1:
client

Node 2:
supplier

Client
Application

Logic

Supplier
Application

Logic

IServ

Client Proxy

IServ

Supplier Proxy

Client Broker
Supplier Broker

IProxyIBroker

IBroker
IBroker

Figure 17: Explicit Invocation example

• TheFIRE AND FORGETpattern describes best effort delivery semantics for asynchronous
operations but does not convey results or acknowledgments.

• TheSYNC WITH SERVERpattern describes invocation semantics for sending an acknowl-
edgment back to the client once the operation arrives on the server side, but the pattern
does not convey results.

• ThePOLL OBJECTpattern describes invocation semantics that allow clients to poll (query)
for the results of asynchronous invocations, for instance, in certain intervals.

• TheRESULT CALLBACK pattern also describes invocation semantics that allow the client
to receive results; in contrast toPOLL OBJECT, however, it actively notifies the requesting
client of asynchronously arriving results rather than waiting for the client to poll for them.

These four patterns for realizingEXPLICIT INVOCATIONS in distributed systems, can be hard-
coded, but this only makes sense, if specific aspects need to be optimized. Otherwise theBRO-
KER pattern can be applied, which provides a reusable implementation of the individual Remot-
ing Patterns [VKZ04] (those named above and others).

A general alternative toEXPLICIT INVOCATIONS are IMPLICIT INVOCATIONS, even though
they can be met together in a single system:

Pattern: Implicit Invocation

Consider the case where an invocation is needed, such as inEXPLICIT INVOCATION. Further-
more, the client must be decoupled in various ways from the supplier, during the delivery of the
invocation and of the result: the client might not know which supplier serves the invocation; or
the client may not initiate the invocation itself but is merely interested in the invocation result;
or the client does not need the result right away so it can be occupied with another task in the
meantime; or the supplier might not be ready to reply to the client until some condition has
been met; or clients may be added or removed dynamically during the system runtime; or the
client does not know that the supplier is up and running and, if the supplier is down, the system

D3 – 27



should suspend the invocation until the supplier is up again; or the client and the supplier are
part of dissimilar systems and thus the invocation must be transformed, queued, or otherwise
manipulated during delivery. How can such additional requirements during delivery be met?

In the IMPLICIT INVOCATION pattern the invocation is not performed explicitly from client to
supplier, but indirectly and rather randomly through a special mechanism such asPUBLISH-
SUBSCRIBE, MESSAGE QUEUING, or broadcast, that decouples clients from suppliers. All ad-
ditional requirements for invocation delivery are handled by theIMPLICIT INVOCATION mech-
anism during the delivery of the invocation.

An example of implicit invocation is the synchronization between Model, View, and Controller
in the MODEL-VIEW-CONTROLLER pattern, as depicted in Figure 15. The Model notifies its
Views and Controllers whenever its data have been changed, and so Views and Controllers
implicitly invoke the Model to get the updated data. The Views and Controllers are decoupled
from the Model, since they do not initiate the invocation, but the Model does it when it accepts
an certain event. Models and Controllers may also be added and removed dynamically.

IMPLICIT INVOCATION can be both synchronous and asynchronous as canEXPLICIT INVOCA-
TION, meaning that the client can either block or not, waiting for the invocation result. However
IMPLICIT INVOCATIONS are most often asynchronous, in contrast toEXPLICIT INVOCATIONS,
which are usually synchronous. Thus the aforementioned patterns for asynchronous result han-
dling should be used forIMPLICIT INVOCATION as well. An even more prominent contrast
between them is that inEXPLICIT INVOCATION the invocation is always deterministic from
client to supplier, while inIMPLICIT INVOCATION the trigger happens randomly (e.g. through
an event) and not necessarily initiated by a client (e.g. by the producer inPUBLISH-SUBSCRIBE).

Same as inEXPLICIT INVOCATION, distributedIMPLICIT INVOCATION usually uses aBRO-
KER to hide the details of network communication and allow the components to contain only
their application logic. Note that anIMPLICIT INVOCATION mechanism decouples clients from
suppliers, while theBROKER pattern decouples both from the communication infrastructure.

There are differentIMPLICIT INVOCATION variants, with respect to the tasks performed dur-
ing the delivery of the invocation. For instance, in a broadcast mechanism the location of the
invocation receiver is unknown to the client, since the invocation is broadcast through the net-
work. This variant is used, e.g. for looking up the initial reference in aPEER-TO-PEERsystem.
An event system realizesPUBLISH-SUBSCRIBE, in order to decouple producers and consumers
of data. TheMESSAGE QUEUINGpattern queues invocations and results to increase delivery
reliability, handle temporal outages of the supplier, and perform other tasks.

Among the implicit and explicit invocation patterns and their variants, only the synchronous
variant ofEXPLICIT INVOCATION can align a result unambiguously to an invocation, because
the client blocks on the result. For all other cases – when invocations are performed asyn-
chronously, it is possible that one client sends multiple invocations after another, and results
for these invocations arrive in a different order than the invocations. Because the same client
performs the invocations, theOBJECT ID of the client cannot be used for aligning a result to
an invocation. AnASYNCHRONOUS COMPLETION TOKEN[SSRB00] contains information that
identifies the individual invocation and perhaps also other information such as a behavior to be
executed in the client when the result is processed. TheASYNCHRONOUS COMPLETION TO-

D3 – 28



KEN is sent along with each asynchronous invocation of a client, and the service supplier sends
it back with the result. Thus the client can use this information to align the result to the invo-
cation. TheASYNCHRONOUS COMPLETION TOKENis used inIMPLICIT INVOCATIONS and
asynchronousEXPLICIT INVOCATION to align invocations to incoming results.

Figure 18 shows the relations ofIMPLICIT INVOCATION and EXPLICIT INVOCATION, while
Figure 19 gives an overview of all the patterns for component interaction as well as distribution.

Patterns for Networked Objects (POSA2)

Explict Invocation Implicit Invocation
alternatives

Asynchronous Completion Token

result alignment for
asynchronous variants result alignment

Remoting
Patterns

Fire and Forget Sync with Server Poll Object Result Callback

asynchronous variants
result handling

Messaging
Patternsmessaging

variant
Correlation Indentifier

Figure 18: Overview: patterns for basic component interaction

There are two variants of theEXPLICIT INVOCATION pattern:CLIENT-SERVERandPEER-TO-
PEER.

Pattern: Client-Server

Two components need to communicate, and they are independent of each other, even running in
different processes or being distributed in different machines. The two components are not equal
peers communicating with each other, but one of them is initiating the communication, asking
for a service that the other provides. Furthermore, multiple components might request the same
service provided by a single component. Thus, the component providing a service must be able
to cope with numerous requests at any time, i.e. the component must scale well). On the other
hand, the requesting components using one and the same service might deal differently with the
results. This asymmetry between the components should be reflected in the architecture for the
optimization of quality attributes such as performance, shared use of resources, and memory
consumption.

The CLIENT-SERVERpattern distinguishes two kinds of components: clients and servers. The
client requests information or services from a server. To do so it needs to know how to access the

D3 – 29



Explict Invocation Implicit Invocation

variant variant variant for event
producers and
consumers

Client-Server Peer-to-Peer
Publish-Subscribe

Broker

realized using

Layers

uses layered architecture

Remoting
Patterns

realized using

Messaging
Patterns

realized using

Remote Procedure Call Shared RepositoryMessage Queuing

Patterns for Resource
Management

Lookup

extended by extended by

alternatives

realized using

variant

Figure 19: Overview: patterns for component interaction and distribution

server, that is, it requires an ID or an address of the server and of course the server’s interface.
The server responds to the requests of the client, and processes each client request on its own. It
does not know about the ID or address of the client before the interaction takes place. Clients are
optimized for their application task, whereas servers are optimized for serving multiple clients.

Both client and server must implement collective tasks, such as security, transaction, and sys-
tems management – something that is more complex in aCLIENT-SERVERarchitecture than in
simpleEXPLICIT INVOCATIONS.

Sophisticated, distributedCLIENT-SERVERarchitectures usually rely on theBROKER pattern to
make the complexity of the distributed communication manageable. The same is true for the
PEER-TO-PEERpattern.

Using theCLIENT-SERVERpattern we can build arbitrarily complex architectures by introducing
multiple client-server relationships: a server can act itself as a client to other servers. The
result is a so-calledn-Tier-architecture. A prominent example of such architectures is the 3-tier-
architecture (see Figure 20), which consists of:

• a client tier, responsible for the presentation of data, receiving user events, and controlling
the user interface

• an application logic tier, responsible for implementing the application logic (also known
as business logic)

D3 – 30



• a backend tier, responsible for providing backend services, such as data storage in a data
base or access to a legacy system

It is also possible to combine theCLIENT-SERVER pattern withLAYERS in order to design a
system where the client and the server components individually are layered. For example the
ISO/OSI standard defines such an architecture, where there are seven layers in both the client
and the server side, and each client communicates with the server at the same layer addressing
a certain scope and responsibilities.

FurthermoreSHARED REPOSITORIESor BLACKBOARDS can be perceived asCLIENT-SERVER,
where the data store is the server and the data accessors are the clients.

Client

Client

Client

Client

Client

Client

Server

Tier 1: 
Clients

Tier 2:
Application

Logic

Tier 3:
Backends

Backend -
Server

Figure 20: 3-tier client-server architecture: example

WhenCLIENT-SERVER is used in a distributed fashion, it can be extended so that the location
of a remote component does not need to be hard-wired into the system. The patternLOOKUP

[KJ04, VKZ04] allows servers to register their remote components at a central service e.g. by
name or property. Using the patternLOOKUP, the client must only know the location of the
lookup service instead of the potentially huge number of locations of the remote components it
wants to communicate with. TheLOOKUP pattern is thus an alternative to broadcast messages
for getting initial references (e.g. usingIMPLICIT INVOCATIONS). The problem that remains
however is how to get the initial reference to the lookup component.

A general alternative toCLIENT-SERVERis PEER-TO-PEER:

Pattern: Peer-to-Peer

Consider a situation similar to that of aCLIENT-SERVER, but in contrast toCLIENT-SERVER,
there is no distinction between the components: each component might both provide services
and consume services. When a component provides a service it must perform well according

D3 – 31



to the demands of the requesting components. Each component must know how to access other
components.

In thePEER-TO-PEERpattern each component has equal responsibilities, in particular it may act
both as a client and as a server. Each component offers its own services (or data) and is able
to access the services in other components. ThePEER-TO-PEERnetwork consists of a dynamic
number of components. APEER-TO-PEERcomponent knows how to access the network. Before
a component can join a network, it must get an initial reference to this network. This is solved
by a bootstrapping mechanism, such as providing public lists of dedicated peers or broadcast
messages (usingIMPLICIT INVOCATION ) in the network announcing peers.

Once an initial reference of thePEER-TO-PEERnetwork is found, we need to find other peers in
the network. For this purpose, each peer (or each dedicated peer) realizes theLOOKUP pattern
[KJ04, VKZ04]. UsingLOOKUP peers can be found based on their names or their properties.
PEER-TO-PEERcan be realized internally usingCLIENT-SERVER, or other patterns. It usually
also uses aBROKER architecture.

WhereasCLIENT-SERVERandPEER-TO-PEERconcentrate onEXPLICIT INVOCATIONS, PUBLISH-
SUBSCRIBE4 is an interaction pattern that is heavily based onIMPLICIT INVOCATIONS:

Pattern: Publish-Subscribe

A component should be accessed or informed of a specific runtime event. Events are of different
nature than direct interactions as inCLIENT-SERVERor PEER-TO-PEER. Sometimes a number
of components should be actively informed (an announcement or broadcast), in other cases only
one specific component is interested in the event. In contrast toEXPLICIT INVOCATIONS, event
producers and consumers need to be decoupled for a number of reasons: to support locality of
changes; to locate them in different processes or machines; to allow for an arbitrary time period
between the announcement of interest in an event, and the actual triggering of the event. Still,
there must be a way to inform the interested components?

PUBLISH-SUBSCRIBEallows event consumers (subscribers) to register for specific events, and
event producers to publish (raise) specific events that reach a specified number of consumers.
The PUBLISH-SUBSCRIBE mechanism is triggered by the event producers and automatically
executes a callback-operation to the event consumers. The mechanism thus takes care of decou-
pling producers and consumers by transmitting events between them.

An example of aPUBLISH-SUBSCRIBEarchitecture, where thePUBLISH-SUBSCRIBEmecha-
nism is implemented as an independent subscription manager, is shown in Figure 21.

In the local context thePUBLISH-SUBSCRIBEcan be based on theOBSERVERpattern [GHJV94],
where thePUBLISH-SUBSCRIBE mechanism is implemented as part of the ‘subject’ (i.e. the
event producer). For instance, most GUI frameworks are based on aPUBLISH-SUBSCRIBE

model.

In the remote contextPUBLISH-SUBSCRIBEis used inMESSAGE QUEUINGimplementations or
as a remoting pattern of its own.PUBLISH-SUBSCRIBEmakes no assumption about the order of

4In [BMR+96] this pattern is calledPUBLISHER-SUBSCRIBERand in [BCK98] it is calledEVENT SYSTEM.

D3 – 32



Producer 1 Consumer 1

Subscription
Manager

Update

Publish

Producer N

Producer 2

Consumer M

...
...

Update

Update
Consumer 2

Figure 21: Publish-Subscribe example

processing events. This and other issues are solved by some messaging patterns [HW03] (see
MESSAGE QUEUINGexplained below).

The PUBLISH-SUBSCRIBEpattern can be used in the context of theACTIVE REPOSITORYpat-
tern, so that accessors of data subscribe to the repository, which in turn notifies them when the
data is updated.

PUBLISH-SUBSCRIBE is sometimes used to realizeCLIENT-SERVER and PEER-TO-PEER: for
instance, in distributed implementations ofCLIENT-SERVERandPEER-TO-PEERit is necessary
to bridge between the asynchronous network events and the synchronous processing model of
the server. This can be done using a localPUBLISH-SUBSCRIBEmodel, where event handlers
subscribe for the network events. This is described in detail in theREACTORpattern [SSRB00].

In a similar way,PUBLISH-SUBSCRIBEmodels are used for integration tools, to ensure database
consistency, and in user interfaces. For example, in theMODEL-VIEW-CONTROLLER pattern,
the view and controllers subscribe to the model which then publishes any updates to them. Sim-
ilarly in thePRESENTATION-ABSTRACTION-CONTROLpattern, higher-level agents subscribe to
lower-level agents that handle the user interface. In general,PUBLISH-SUBSCRIBEoffers a high
potential for reuse and evolution, because it offers a strong decoupling between event producers
and event consumers. There are also some potential problems, however: event consumers have
to register for events, which is in general more complex than for instance aCLIENT-SERVER

interaction. There is no guarantee that an event will be processed. Exchange of data is not as
simple as parameter passing. Often aSHARED REPOSITORYmust be used, which is slower than
parameter passing.

10 Distribution view

In the Distribution View the system is viewed as a number of components that are distributed
among network nodes (or different processes). The concerns addressed by this view are:

• How do the distributed components interact with each other?

D3 – 33



• How are the distributed components decoupled from each other?

• How are the quality attributes of interoperability, location-transparency, performance, and
modifiability supported?

The components are physically located in different network nodes or processes. They interact
with each other through connectors that pass invocations or data from one to another. The details
of these interactions can be better explained in the Component Interaction View.

Pattern: Broker

Distributed software system developers face many challenges that do not arise in single-process
software. One is the communication across unreliable networks. Others are the integration of
heterogeneous components into coherent applications, as well as the efficient use of networking
resources. If developers of distributed systems must overcome all these challenges within their
application code, they may lose their primary focus: to develop applications that efficiently
tackle their domain-specific problems.

A BROKER separates the communication functionality of a distributed system from its applica-
tion functionality. TheBROKER hides and mediates all communication between the objects or
components of a system. ABROKERconsists of a client-sideREQUESTOR[VKZ04] to construct
and forward invocations, as well as a server-sideINVOKER [VKZ04] that is responsible for in-
voking the operations of the target remote object. AMARSHALLER [VKZ04] on each side of
the communication path handles the transformation of requests and replies from programming-
language native data types into a byte array that can be sent over the transmission medium.

TheBROKER is a compound pattern that is realized using a number of remoting patterns [VKZ04].
The most foundational remoting patterns in aBROKER architecture are mentioned above:RE-
QUESTOR, INVOKER, and MARSHALLER. There are many others. Some important exam-
ples are: aCLIENT PROXY [VKZ04] represents the remote object in the client process. This
proxy has the same interface as the remote object it represents. AnINTERFACE DESCRIP-
TION [VKZ04] is used to make the remote object’s interface known to the clients.LOOKUP

[KJ04, VKZ04] allows clients to discover remote objects.

TheBROKERuses aLAYERS architecture. The layers ofBROKERare also described in [VKZ04].

Many well-knownBROKER realizations are based on theCLIENT SERVER pattern. However,
the other patterns for component interactions, such asEXPLICIT INVOCATION, PEER-TO-PEER,
MESSAGE QUEUING, andPUBLISH-SUBSCRIBE, can also use aBROKERto isolate communication-
related concerns, when used in a distributed setting. Only in very simple distributed systems or
in distributed systems with severe constraints (e.g. regarding performance and memory con-
sumption), it might be advisable not to use aBROKER.

An example for aBROKER realization is depicted in Figure 22.

TheBROKER can be seen as the general structure that utilizes the patterns from the Component
Interaction View in a distributed setting. The following remoting patterns [VKZ04] are a num-
ber of variants ofCLIENT-SERVER that usually operate in a distributed setting and are mutual
alternatives. They usually employ aBROKER architecture internally.

D3 – 34



Broker

Process A

Requestor

M
ac

hi
ne

 B
ou

nd
ar

y

Process B

Broker

Client
Remote
Object

Invoker

Request
Handler

Marshaller
Marshaller

Request
Handler

1. submit request

2. marshal request 3. send

4. forward

5. invoke
6. unmarshal

7. invoke operation

Figure 22: Example of a Broker architecture

Pattern: Remote Procedure Calls

Consider the case where you want to realize anEXPLICIT INVOCATION in a distributed setting.
The use of low-level network protocols requires developers to invoke the send and receive op-
erations of the respective network protocol implementations. This is undesirable because the
network access code cannot be reused, low-level details are not hidden, and thus solutions are
hard to maintain and understand.

REMOTE PROCEDURE CALLSextend the well-known procedure call abstraction to distributed
systems. They aim at letting a remote procedure invocation behave as if it were a local invoca-
tion. Programs are allowed to invoke procedures (or operations) in a different process and/or on
a remote machine.

REMOTE PROCEDURE CALLSleverage theCLIENT-SERVERpattern of interaction: a client in-
vokes operations, and a server provides a well-defined set of operations that the client can in-
voke. To the client developer, these operations look almost like local operations. A major
difference is that additional errors might occur during a remote invocation, for example because
the network fails or the requested operation is not implemented by the server. These errors must
be signaled to the client (see the patternREMOTING ERROR[VKZ04]).

Pattern: Message Queuing

Consider a situation similar to that ofREMOTE PROCEDURE CALLS, but it is necessary to de-
couple the sender from the receiver to realize queuing of invocations. Queuing is necessary,
for instance, when temporal outages of the receiver should be tolerated or when heterogeneous
systems should be integrated. For instance, when a legacy system usingBATCH SEQUENTIAL

D3 – 35



should be integrated into a distributed system, only one invocation can be handled at a time
by that system. Somewhere additional messages must be queued until the system is ready to
process the next message.

Messages are not passed from client to server application directly, but through intermediate
message queues that store and forward the messages. This has a number of consequences:
senders and receivers of messages are decoupled, so they do not need to know each other’s
location (perhaps not even the identity). A sender just puts messages into a particular queue
and does not necessarily know who consumes the messages. For example, a message might be
consumed by more than one receiver. Receivers consume messages by monitoring queues.

MESSAGE QUEUINGrealizesCLIENT-SERVERinteractions and implementsIMPLICIT INVOCA -
TION as the primary invocation pattern.

MESSAGE QUEUINGarchitectures are explained in detail in [HW03] using a pattern language
for messaging systems. An example of aMESSAGE QUEUINGarchitecture is shown in Figure
23.

Node 1queue Node 2queue queue Node Nqueue... queueClient Server 3

Server 1
Server 2

queue

queue

Figure 23: Message Queuing example

11 Epilogue

We have proposed to unite existing approaches of architectural patterns into a pattern language
so that practitioners can benefit from a single comprehensive source of patterns. We emphasized
on outlining the relations between the architectural patterns in order for them to acquire added
value as a language, rather than a set of individual patterns. We also referenced the original
sources for the patterns, so that interested parties can explore the rich details of each pattern.

Organizing the entire set of architectural patterns into a coherent pattern language is an immense
amount of work; therefore we limited this paper to including patterns from the initial and funda-
mental catalogues and categorizations that deal with components and connectors. We hope that
other members of the community can give us feedback so that we can at least reach a consensus
on these fundamental patterns.

Acknowledgments

We like to thank our EuroPLoP 2005 shepherd Lars Grunske.

D3 – 36



References

[AIS+77] C. Alexander, S. Ishikawa, M. Silverstein, M. Jakobson, I. Fiksdahl-King, and
S. Angel.A Pattern Language – Towns, Buildings, Construction. Oxford Univ.
Press, 1977.

[Ale79] C. Alexander.The Timeless Way of Building. Oxford Univ. Press, 1979.

[BCK98] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice.
Addison-Wesley Longman, Reading, MA, 1998.

[BH03] Frank Buschmann and Kevlin Henney. Explicit interface and object manager.
In Proceedings of 8th European Conference on Pattern Languages of Programs
(EuroPlop 2003), Irsee, Germany, July 2003.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.Pattern-
orinented Software Architecture - A System of Patterns. J. Wiley and Sons Ltd.,
1996.

[CBB+02] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed
Little, Robert Nord, and Judith Stafford.Documenting Software Architectures:
Views and Beyond. Addison-Wesley, 2002.

[Cop96] J. Coplien.Software Patterns Management Briefing. SIGS, 1996.

[Cou87] J. Coutaz. PAC, an Object Oriented Model for Dialog Design. InProceedings
Interact’87, Stuttgart, pages 431–436. IEEE Computer Society, 1987.

[GCCC85] D. Gelernter, N. Carriero, S. Chandran, and S. Chang. Parallel programming
in linda. InProceedings of the 1985 International Conference on Parallel Pro-
cessing, pages 255–263,, 1985.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GMSM00] J. Garcia-Martin and M. Sutil-Martin. Virtual machines and abstract compilers
- towards a compiler pattern language. InProceedings of EuroPlop 2000, pages
375–396, Irsee, Germany, July 2000.

[HNS00] Christine Hofmeister, Robert Nord, and Dilip Soni.Applied software architec-
ture. Addison-Wesley Longman Publishing Co., Inc., 2000.

[HW03] G. Hohpe and B. Woolf.Enterprise Integration Patterns. Addison-Wesley,
2003.

[IEE00] IEEE. Recommended Practice for Architectural Description of Software Inten-
sive Systems. Technical Report IEEE-std-1471-2000, IEEE, 2000.

[KJ04] M. Kircher and P. Jain.Pattern-Oriented Software Architecture, Volume 3:
Patterns for Resource Management. J. Wiley and Sons Ltd., 2004.

D3 – 37



[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view
controller user interface paradigm in smalltalk-80.J. Object Oriented Pro-
gram., 1(3):26–49, 1988.

[Kru95] Philippe Kruchten. The 4+1 view model of architecture.IEEE Softw., 12(6):42–
50, 1995.

[MM03] N. R. Mehta and N. Medvidovic. Composing architectural styles from archi-
tectural primitives. InProceedings of the 9th European software engineering
conference held jointly with 10th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 347–350, Helsinki, Finland, 2003.
ACM Press.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages.IEEE Trans.
Softw. Eng., 26(1):70–93, 2000.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture.ACM SIGSOFT Software Engineering Notes, 17(4), October 1992.

[SC97] Mary Shaw and Paul C. Clements. A field guide to boxology: Preliminary clas-
sification of architectural styles for software systems. InCOMPSAC ’97: Pro-
ceedings of the 21st International Computer Software and Applications Con-
ference, pages 6–13. IEEE Computer Society, 1997.

[SG96] M. Shaw and D. Garlan.Software Architecture: Perspectives on an Emerging
Discipline. Addison-Wesley, 1996.

[Sha96] Mary Shaw. Some Patterns for Software Architechture. In John Vlissides,
James Coplien, and Norman Kerth, editors,Pattern Languages of Program De-
sign, Vol 2, pages 255–269. Reading, MA: Addison-Wesley, 1996.

[SSRB00] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Patterns for Concurrent
and Distributed Objects. Pattern-Oriented Software Architecture. J. Wiley and
Sons Ltd., 2000.

[TMA +96] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, Jr.
E. James Whitehead, Jason E. Robbins, Kari A. Nies, Peyman Oreizy, and Deb-
orah L. Dubrow. A component- and message-based architectural style for gui
software.IEEE Trans. Softw. Eng., 22(6):390–406, 1996.

[VKZ04] M. Voelter, M. Kircher, and U. Zdun.Remoting Patterns. Pattern Series. John
Wiley and Sons, 2004.

[Zac87] John A. Zachman. A framework for information systems architecture.IBM
Syst. J., 26(3):276–292, 1987.

[Zdu03] U. Zdun. Patterns of tracing software structures and dependencies. InProceed-
ings of EuroPlop 2003, Irsee, Germany, June 2003.

D3 – 38



[Zdu04] U. Zdun. Pattern language for the design of aspect languages and aspect com-
position frameworks.IEE Proceedings Software, 151(2):67–83, April 2004.

D3 – 39


