Object System Layer

Michael Goedicke™ Gustaf Neumann* Uwe Zdun™

+ Specification of Software Systems * Department of Information Systems
University of Essen, Germany Vienna University of Economics, Austria
{goedicke|uzdun}@cs.uni-essen.de gustaf.neumann@wu-wien.ac.at

Often a project is faced with non-object-oriented languages or with object sys-
tems that are not powerful enough for the project’s purposes. But nevertheless
we want to apply advanced object-oriented techniques in these languages. There-
fore, build or use an object system as a language extension in the target language,
and then implement the design on top of this OBJECT SYSTEM LAYER.

Application Example: Document Archive System

A document archive system allows users to archive a large number of documents on optical
storage devices and retrieve them through several search criteria that are stored in a database.
The system was originally designed and implemented in C on a Unix platform supporting
only one (Oracle) database management system. It was ported to several Unix variants and
finally to Windows NT. Later, support for the Informix database management system was
added. The system used optical storage devices with proprietary interfaces. On Unix and
Windows the archive server and retrieval server were written in C, while clients on Windows
were developed in C++, and the original Unix clients were written in C.

Retrieval Client UNIX (C)

Jukebox
Server

Archive Client UNIX (C)

Jukeboxes

“ Retrieval Client Windows (C++)

N . ; - e
Proprietary Protocol “ Archive Client Windows (C++)
Connection
or

Oracle Databases Informix Databases

N2 U N Ny

Figure 1. Document Archive System — Overview

During maintenance and evolution of the software system, the company faced several prob-
lems:

e It was hard to change the mechanisms with which clients and servers communicated,
because they used a proprietary protocol based on sockets.

e |t was hard to maintain the database code, because the system used two DBMS that
were accessed by different protocols and that had different SQL dialects.

e |t was hard to support the system on several platforms and with several versions of the
programming language.

e It was hard for the company to configure the system for the customer requirements,
since the document archive system has to be tightly integrated with the customer’s IS
infrastructure. No two installations of the document management system are exactly
the same. The adaption of the system was programmed by hand during deployment
using low-level C APIs.

e It was hard to replace cache management strategies for archival/retrieval, because they
were not encapsulated in distinct components with well-defined interfaces.

e |t was hard to integrate new storage technologies, because the system directly accesses
the proprietary low-level interfaces to interact with the storage devices.

During a reengineering project, the forces in this software system led to adoption of an
OBJECT SYSTEM LAYER, because the firstly envisioned solution of migrating the whole code
base to C++ or Java would have required considerable costs in (useless) legacy migration, an
additional concept for stepwise migration of the legacy parts, and a considerable redesign
effort. The existing software is functioning and efficient. As far as possible existing parts
should be reused in the reengineered solution.

Foreseeable future changes, like replacement of the existing proprietary communication
infrastructure with a middleware, like CORBA, introduce other OBJECT SYSTEM LAYERS.
An overall object-based structuring of the system would ease combination with such object
systems. The system should benefit from the efficiency of system programming languages
[25], like C or C++, but it should also be flexibly adaptable to new requirements with as little
effort as possible. Document archiving is a very important part of the information system
of several customers. The importance makes several customers suspicious about “new” and
unproven technologies. Therefore, the new technologies should be wrapped in the appearance
of the well-known and reliable technology.

Context

Obiject-orientation helps in the design and implementation of complex software systems. Of-
ten object-oriented approaches can be used throughout the design, but (parts of) the imple-
mentation have to be done in a language that does not support object-orientation, like C or
Cobol. Or the implementation has to be done in an object system that does not support “ad-
vanced” object-oriented techniques. For instance C++ or Object Cobol do not natively support
reflection or interception techniques.

Problem

Suppose you want to design with object-oriented techniques and use the benefits of advanced
object-oriented language constructs, but you are faced with target programming languages
that are non-object-oriented, or with legacy systems that cannot quickly be rewritten, or with
target object systems that are not powerful enough or not properly integrated with other used
object systems (e.g. when COM or CORBA is used). But the target language is chosen for
important technical or social reasons, such as integrating with legacy software, reusing knowl-
edge of existing workers, and customer demands, so it cannot be changed. One solution is to
translate the design into a non-object-oriented design, and then to implement that design. If
this mapping is manual, then it will be error-prone and will have to be constantly redone as
the requirements change.

Forces

e Legacy Integration: Legacy applications are often written in procedural languages, like
C or Cobol. A complete migration of a system to an object-oriented language often
makes the integration with the existing legacy components difficult and forces a re-
implementation of several well functioning parts. The costs of such an evolution (that
are very hard to estimate) are often too high to consider the complete migration to object
technology at all.

e Efficiency: The execution speed of applications or application parts written in efficient
system programming languages [25], like C or C++, is typically superior to higher
level languages, like scripting languages. Higher level languages, in turn, are easier
maintainable, and provide language constructs that ease adaptions. Runtime critical
parts should be (or sometimes must be) written in system programming languages.

e Integration of Several Object Systems: In order to use third-party software, the object
and component concepts of these technologies have to be integrated or adapted. Espe-
cially for key technologies, like middleware approaches, databases, transaction mon-
itors, etc. the concepts of several technologies that are used have be integrated. E.g.
usually in an enterprise context not all requirements are fulfilled by one middleware
product [9]. Distributed object systems, application servers, transaction monitors, re-
lational and object-oriented databases, etc. have to work in concert. For integration
one OBJECT SYSTEM LAYER can be chosen by the company (which may be the object
system of one of the technologies or a different one).

Often foreign OBJECT SYSTEM LAYERS are even used in an object-oriented language.
E.g. the CORBA or COM object systems are not exactly the same as the object systems
of object-oriented languages, like C++ or Java, in which they are used. An OBJECT
SYSTEM LAYER can provide an abstraction over the different object systems. But as
a liability an additional OBJECT SYSTEM LAYERS also adds complexity to the system
and it takes time to design, implement, and maintain it.

e Adoption of Enhanced Object-Oriented Techniques: Often an application uses an object
system, like C++, Java, or Object Cobol, that only implements standard object-oriented
techniques. These do not provide powerful adaptation and interception techniques,

reflection and introspection, role concepts, or support for implementation of object-
oriented design patterns (as in [19]) and framework parts. In these and similar cases the
used object system can be combined with an OBJECT SYSTEM LAYER that implements
such techniques.

e Usage of Object-Oriented Design Concepts with Other Paradigms: Most object-
oriented software systems are not only designed with the object-oriented paradigm,
but are combined with multiple other paradigms, like the functional, imperative, or
logical. If other paradigms are more suitable for the implementation of a system part
or other forces, like legacy integration, impose that parts of the application are imple-
mented in another paradigm, but the main part of the system is object-oriented, the
other paradigms have to be integrated with the object-oriented paradigm. Often other
paradigms are only mapped onto objects instead of real integration, as for instance
when a logical Prolog interpreter is wrapped by an object system.

e Company’s Politics and/or Customer Demands: Company’s politics may restrict de-
velopers to a certain set of programming languages, technologies, etc. Customers may
demand that certain “new” or unproven technologies should not be used. An OBJECT
SYSTEM LAYER that is wrapped behind well-known, reliable, or trusted technologies
can be the only way to introduce certain techniques for such “political”” reasons.

Solution

Build or use an object system as a language extension in the target language, and then imple-
ment the design on top of this OBJECT SYSTEM LAYER. Provide a well-defined interface to
components that are non-object-oriented or implemented in other object systems. Make these
components accessible through the OBJECT SYSTEM LAYER, and then the components can
be treated as black-boxes. The OBJECT SYSTEM LAYER acts as a layer of indirection for
applying changes centrally.

Architecture Overview

There are several implementation variants of the OBJECT SYSTEM LAYER pattern. In Fig-
ure 2 a conceptual, high-level architecture is shown with architectural collaborators that can
similarily be found in the most instantiations of the pattern. However, often OBJECT Sys-
TEM LAYERS do not have a distinct implementation component, but just rely on a program-
ming/design convention.

e A Base Language, like C or C++, is extended with an object system.

e A Base Language Component implements a reusable system part as a black-box com-
ponent in the base language.

e The Object System Layer is a special base language component that implements an
object system in the base language. It comprises two sorts of objects:

— Implementation Objects implement the object-oriented parts of the application in
the OBJECT SYSTEM LAYER.

— Wrapper Objects are COMPONENT WRAPPERS that wrap base language compo-

nents behind an object interface, so that they can be used from within the object
system.

The Object System Layer Implementation contains the intrinsic implementation of the
object system, as for instance object and class implementations, and a MESSAGE REDI-
RECTOR (see the Design and Implementation section for more details).

e Outboard Paradigm Wrappers are base language components that incorporate compo-
nents implementing outboard paradigms, such as the relational or logical paradigm.

e The Main Program may be a shallow interpreter main loop, but it can also be a large
application that embeds the object system.

Base
Language

Base .

Object System

Language | " Message Redirector Layer Implementation
Component

Object System
Layer

Implementation Objects|

Comgonent

Wrapper
Component
Wrapper
Comgonent
Wrapper A

Base Base Outboard N "
. » Relational
Language Language Paradigm T RIER
Component| |Component Wrapper P

Figure 2. OBJECT SYSTEM LAYER — Architecture

Usually, the message dispatch from the using main program (or from a using component)
to the implementation objects is handled by the MESSAGE REDIRECTOR pattern [7]. The
pattern maps symbolic (i.e. usually string-based) calls to object/method implementations in
the OBJECT SYSTEM LAYER. However, the usage of MESSAGE REDIRECTOR is optional,
implementations objects can also be called directly.

When several components have to be integrated into the object system, they usually should
be integrated in a unique way, despite different paradigms, object systems, programming
languages, etc. This problem is resolved by the COMPONENT WRAPPER pattern [8] which
can be used as part-of the OBJECT SYSTEM LAYER.

Design and Implementation

Class-Based Design and Implementation

In this section we discuss a simple, hypothetical internal design of an OBJECT SYSTEM
LAYER. Inthe presented small example, as in Figure 3, a dynamic object system with objects,
classes, class-objects, inheritance, and object-/class-nesting is built from a set of classes. Such
a system can, for instance, be implemented as an extension of an existing scripting language,
such as Tcl, or as an extension to an object-oriented language, such as C++.

Interpreter
CallStack | content 0..* | CallStackContent

[method

top

self class
callstack l 0..* O..*{
order
MessageRedirector super Class nsPtr
instances
sub
3 objects 0..* classobject children
class|
A Y varTable \
o] Object nsPtr__ | Namespace [cmdtable HashTable
dispatcher [
parent

Figure 3. Object System Design (Excerpt)

The Ooj ect class maintains a reference to its class, and each Cl ass knows its class-
object. Moreover, classes store their instances in a hash table. Each class and each object in
the OBJECT SYSTEM LAYER has a namespace, where it stores its local variables and methods
(the object system is object-specific, thus it allows objects to carry object-specific methods).
Each method implementation is referenced by a function pointer. The inheritance hierarchy
is maintained by a list of super-classes and sub-classes on the Cl ass class. The linearized
inheritance order is maintained for fast and unambiguous computation of the inheritance hi-
erarchy.

A call stack is stored with an interpreter and maintains the runtime call stack information
of the object system. Besides several other information, the call stack stores the current
object, class, and method (all can be introspected at runtime). On the foundation of the object
system an interpreter evaluates the code call by call. The interpreter part is optional, and often
an existing implementation can be reused, because it is already implemented by a scripting
language implementation. Each object-oriented message is mapped by a central MESSAGE
REDIRECTOR to the actual implementations in the OBJECT SYSTEM LAYER. The mapping of
symbolic messages to implementations can be done by the following (simplified) algorithm:

i nt Obj Di spatch (object Name, net hodNane, arguments, ...) {
if (<callstack->top is not located in inheritance hierarchy>)
met hod = <find met hodName on current object>;
i f (<nethod not found>) {
class = <search class hierarchy for nethodNane>;
if (<class found>) nethod = <get nethod from cl ass>;

i f (<nethod found>) {

result = <call method>;

if (<result> == ERROR) <handle the error or raise runtime error>;
} else {

<rai se 'proc not found error>;

result = ERROR
}

return result;

}

Firstly, we try to find an object-specific method on the current object. If it is not found, we try
to find the method in the inheritance hierarchy. The call stack carries the information which

method of which class was executed before. From this class we search the linearized class
order until we find another method with the given method name. If no method is found, an
error is raised. Otherwise the method information is determined, and the method is invoked.
The function for method invocation enters the information for the call stack. If the result is an
error, it is handled or returned as a runtime error accordingly. Otherwise the result is returned.

This object dispatch mechanisms, implemented in the MESSAGE REDIRECTOR, can be
used as a central place to introduce high-level language constructs that rely on message ex-
changes. E.g. the interception mechanisms filter [19] and per-object mixin [18] of the lan-
guage XOTcL check at the beginning of the dispatch function for every message whether
it has to be intercepted or not. If a filter or per-object mixin is registered, the message is
redirected to the interceptor that can handle the message arbitrarily.

Document Archive System Example Resolved

In Figure 4 the architecture of the document archive system with an embedded OBJECT Sy s-
TEM LAYER in form of the scripting language XOTcL is shown. The C/C++ interface libraries
of the CORBA ORB implementation, the two databases, and the proprietary jukebox access
protocol implementation are mapped to TcL commands in C extensions of TcL. In a set of
XOTcL scripts we give these extensions object-oriented WRAPPER FACADES [28] that en-
capsulate the TcL commands in a set of interacting objects. On top of these scripts, we write
various XOTcL scripts which are used in hot spots [26] of the design. The document archive
clients and servers themselves are C/C++ components which embed XOTcL as a C library.
These components are at the same time able to use C/C++ legacy parts that are not yet (or
will never be) migrated to XOTcL scripts.

' % Cdigmpongntsi:
! Document Management Document Management embedding XOTcl,
Jukebox Server ' Soner Client !

XOTcl Scripts |
Archive Retrieval !
Storage Device Component Component
Interface l><l
Jukebox Access CORBA Rel. Database
Object Wrapper Object Wrapper Object Wrapper

Tcl Extensions i
(dynamically loadable !
C components),

'

'
1 | Jukebox Access CORBA Rel. Database Rel. Database
Extension XOTcl Extension Access Oracle Access Informix
—
- ./x/ _/,/_..’1 ____________ e - '
Jukebox Proprietary Tl CORBA Oracle Informix
Access Protocol @ ORB Database Database

Figure 4. Document Management System with an Embedded OBJECT SYSTEM LAYER
(XOTcL)

There are several advantages of the new architecture. The communication subsystem was
incrementally migrated from the proprietary protocol to an implementation based on the stan-
dard CORBA. The database connection becomes independent from the used database man-
agement system. The OBJECT SYSTEM LAYER can be used as an integration base for various

involved technologies, extensions, other OBJECT SYSTEM LAYERS, and for connections to
other systems, like B2B systems, SAP R/3, etc. If the system is accordingly structured into
components of the OBJECT SYSTEM LAYER, development and deployment processes may be
simplified. Storage devices, archive server, and retrieval server are shielded by unique inter-
faces that stronger decouple clients from their internal implementation. Introduction of new
storage technologies or cache strategies can be performed without interfering with clients.

The abstraction into COMPONENT WRAPPERS [8] for DBMS and communication access
subsystems allows us to use the adaptive and reflective environment of the scripting language
for adaptations to new products or new versions of the products. XOTcL offers us an integrat-
ing component concept for the various object systems involved in this application. Frequently
changing parts of the system can be kept in scripts, so that they can be rapidly changed, while
stable and performance sensitive parts are used as C/C++ components. All clients of the
DBMS and communication access subsystems rely on the central COMPONENT WRAPPER
abstractions, and changes in the products or to a new product do not affect the clients at all.
These changes can be introduced in the wrappers, written in the scripting language, which
supports powerful means for adaptation, like the interception mechanisms of XOTcL, and of-
fers powerful string manipulation commands of TcL (e.g. useful for adaptation between the
two different SQL dialects).

Disadvantages are sometimes reduced performance, because of interpretation/byte-code
compilation, additional indirection, and method lookup. Furthermore, the described tech-
niques forces the development organization to have experts in all the involved languages
(here: TcL, XOTcL, C, and C++). This may result in costs for additional training to learn
the object-oriented abstractions/language constructs, and/or to learn the conventions how to
emulate object-orientation in a non-object-oriented language. Some might see the additional
training as a benefit of the pattern.

Consequences

+ The flexibility of the appliction can be dramantically improved, since the OBJECT Sy s-
TEM LAYER allows us to introduce many flexibility hooks and to implement high-level
language constructs, such as interception, reflection, and adaptation techniques.

+ “High-level” language constructs, like runtime class creation, meta-classes, dynamic
object-class relationships, and dynamic class-class relationships can be “language sup-
ported” by the pattern in languages that do not offer such functionality natively.

+ Classes can become runtime entities and can be manipulated with the same ease as
objects.

+ The complexity of the application can be dramatically reduced, because techniques,
like dynamic classes, per-object mixins, filters, and class objects, enable us to avoid
unnecessary class definitions. Thus we avoid an explosion of the number of necessary
subclasses.

— Complexity of the application can also rise, if the client has to maintain the OBJECT
SYSTEM LAYER. Then issues like garbage collection, object destruction, relationship
dynamics, reflection, etc. have to be programmed by hand. But this problem can be
avoided by using an existing OBJECT SYSTEM LAYER as a library.

— Performance can be decreased through additional indirections and through flexibility
hooks. However, performance problems can be avoided to a high degree by carefully
designing the OBJECT SYSTEM LAYER. l.e. offering too many flexibility options that
are not required by the application case is a serious design flaw.

— The OBJECT SYSTEM LAYERS conventions and interfaces have to learned by the devel-
opers. If the OBJECT SYSTEM LAYERS is a whole scripting language, a new language
has to learned.

Pattern Variants

e Object-Oriented Scripting Language: Scripting languages are based on a two-level con-
cept of components written in efficient system languages (like C) and components writ-
ten in the scripting language [25]. The scripts glue various components together and
are used in parts of the application that tend to change often. Often they come with lan-
guage constructs, like dynamics, introspection, etc. that ease the glueing process and
adaptations. This pattern variant is normally implemented with an explicit MESSAGE
REDIRECTOR that interacts with the interpreter of the base language. There are sev-
eral different object-oriented scripting languages that mainly enhance existing scripting
languages with different forms of object-orientation:

— XOTcL [21] is a TcL extension and implements powerful message interception
techniques, dynamic object aggregations, nested classes, assertions, and several
other high-level language constructs on top of the dynamic and introspective en-
vironment of OTcL. XOTcL (like all TcL extensions) can be easily embedded in
C applications and can therefore also be used as a library implementing an object
system for C programs.

— [incr Tcl] is another object-oriented extension of TcL. It is also implemented in
C and can also be used as a object library in C, but it only implements object-
orientation in the style of C++.

— Python is an object-oriented language that implements basic object-oriented
means and also provides a C API. Like the TcL variants it is extensible by and
embed-able in C/C++ applications.

— Perl provides an object-oriented encapsulation mechanism as well, but is more
famous for its string processing facilities and its operating system interfaces.

e Library Implementing an Object System: Non-object-oriented languages can be en-
hanced by a library that implements an object system on top of the non-object-oriented
language. This pattern variant uses various implementation techniques, that are char-
acterized by passing a state of the object system to the functions implementing the
object-oriented methods. Two common techniques are:

— A simple technique is to associate functions with objects by a convention. E.g.
the first argument of each method in the object system can be interpreted as the
object ID of the current object. Similarly, enhanced features, like inheritance,
construction/destruction, or data hiding can be implemented by such conventions.
This style requires a certain amount of discipline of all involved programmers.

— In C a function pointer can be associated with a structure representing the ob-
ject. General classes implement more sophisticated behavior, like object cre-
ation/destruction, inheritance, etc. An example implementation may have the fol-
lowing form:
typedef struct O ass {

/* classes’ state */
HashTabl e* i nstances;

/* classes’ nethods */

int (*createlnstance) (char* nane);
int (*destroyl nstance) (char* nane);
int (*superclass) (char* nane);

} Ciéss;

The task of the object system in the library is to define the general classes and/or objects,
define the basic behavior of the object system on top of these classes/objects, and give
initialization routines for the object system.

e Enhancement of Object-Oriented System Programming Language: Often even pro-
gramming languages that have an object concept lack certain desired features. Then
the usage of an OBJECT SYSTEM LAYER can add these feature. E.g. C++ does not of-
fer reflective abilities. The REFLECTION pattern [1] enhances non-reflective languages
with reflection. The PROTOTYPE-BASED OBJECT SYSTEM pattern [23] adds dynamic
slots and methods to an object system. The TYPE OBJECT pattern [12] adds meta-
level objects that contain type information. OBJECT SYSTEM LAYER combines such
patterns in a distinct layer that is often loadable as a component. This variant has the
drawback that the additional OBJECT SYSTEM LAYER adds complexity to the system
and that it takes resources to design, implement, and maintain it.

e Object System of a Key Technology: Many systems, designed/implemented in functional
or imperative style, have a partly object-oriented structure, simply because they use a
certain key technology, like a database or a middleware, that imposes an object-oriented
structuring of the system. E.qg. if a large C application is combined with CORBA, the
developers can adopt an object-oriented structuring (though it is not necessary), if they
design the code for implementation of the methods declared in the IDL in an object-
oriented way. At least the system gets an object-oriented interface.

Some instances of the pattern are combinations of the variants, e.g. XOTcL [21] is an object-
oriented scripting language, a library implementing an object system, and it includes compo-
nents for integration of key technologies.

Known Uses

Object-oriented scripting languages and libraries implementing an object systems are widely
used. Here we just give a few examples of systems that explicitly use them for purposes as
described in the Forces section.

e Some known uses of object-oriented scripting languages are:

— The presented document archive system is a system which was reengineered with
an OBJECT SYSTEM LAYER as basis for a piecemeal, component-oriented way
of reengineering (see [10] for details).

— xoComm [20] is a highly flexible and adaptive web server implementation
that uses XOTcL to integrate the system’s components, to access low-level
network functionalities with object-oriented abstractions, and to provide flexibil-
ity/extensibility hooks.

— NeoWebScript [17] is a server-based interactive programming environment for
HTML code in web pages. It’s interface uses OTcl’s object system to allow the
user to define classes for generating blocks of hypertext flexibly. A query class is
used as an interface to integrate a database backend.

— The Network Simulator (NS) [30] supports network simulation including TCP,
routing, multicast, network emulation, and animation. It allows flexible configu-
ration using scripts in OTcl.

— The object system in the Graphics Notation (Gn) implementation [15] is imple-
mented using OTcl. Every Gn class is an OTcl class with a number of subcom-
mands implemented with C callbacks (in reusable blackbox components).

— libsrm [27] is a framework for reliable multicast transport that uses an OTcl API
wrapping a C interface for flexible access/configuration of the protocol.

— Zope [31] is a popular application server that uses Python for integration of the
involved paradigms and for flexible/adaptive development for web applications.

— Caldera, a prominent Linux distribution, is developing the Caldera Open Admin-
istration System (COAS) [2], to provide a comprehensive and coherent framework
for implementation of system administration mechanisms. COAS provides a plug-
in framework for modules which are written in Python or C++ (or both). COAS
integrates the Python object system with C++ by an embedded Python interpreter
in order to benefit from C++’s efficiency and Python’s flexibility at the same time.

— In [29] the usage of scripting languages for the flight software of the mars
pathfinder mission is discussed. The project uses the object-oriented scripting
language [incr Tcl].

e Three popular libraries implementing an OBJECT SYSTEM LAYER are:

— The X Toolkit [24] is a C library that handles the management of widgets
(graphical objects for development of user interfaces) by exploration of a set
of C structs and functions which are associated with these st r uct s by their
first argument. A general (intrinsic) widget management handles widget cre-
ation/destruction, setting of attributes, interoperability, etc. This layer is an
OBJECT SYSTEM LAYER for the language C. Widget sets, like Motif or Athena,
are built on top of the intrinsic library. The X Toolkit abstracts from the low-level
details of the underlying XLib (that implements basic windowing functionalities).
The Xt intrinsic library distinguishes between objects and classes. New widget
classes can be sub-classed from existing widgets. Widgets may have attributes
(called resources), associated methods, and can exploit the event system of X11
by means of callback methods. Each widget has an inner state which is readable
through its methods.

— libwww is the reference implementation of the W3C for common Web protocols,
like HTTP/1.1. It is a highly modular, general-purpose web API written in C. It
uses similar techniques as the X ToolKkit to provide object-oriented abstractions in
C. The libwww style guide [22] gives examples how the object-oriented concepts
of construction/destruction, data hiding, namespaces, t hi s pointer, and inheri-
tance should be emulated in libwww.

— KA9Q NOS [13] isa general TCP/IP implementation that is originally designed for
packet radio transmition. It uses similar object-oriented techniques as the libwww.

e The integration of various middleware standards, like CORBA or DCOM, with non-
object-oriented languages, like C or Tcl, or the object systems imposed by transaction
monitors, like Tuxedo, are just a few examples of key technologies implementing an
OBJECT SYSTEM LAYER. These technologies are used in countless projects, and they
force the applications to use their object systems/models to a certain degree. Often a
distinct OBJECT SYSTEM LAYER is used for integration.

Related Patterns

MESSAGE REDIRECTORS [7] are often part of the OBJECT SYSTEM LAYER pattern, since
object calls must be mapped from symbolic calls to implementations in the OBJECT SYSTEM
LAYERS. Sometimes their functionality is scattered over the code. COMPONENT WRAPPERS
[8] are often used in OBJECT SYSTEM LAYERS for component integration.

There is a set of patterns which implement partial OBJECT SYSTEM LAYERS for limited
purposes. E.g. the PROTOTYPE-BASED OBJECT SYSTEM pattern [23] implements clone-
able objects with slots and methods to introduce modifiability and flexibility for variables and
methods into object-oriented languages, like C++ or Java. In the same style reflective abilities
are attached to object-oriented languages (with a distinction into meta- and base-level) by the
REFLECTION pattern [1]. The style of division into base- and meta-level is similar to the
CLOS meta-object protocol [14].

The technique to attach special objects carrying meta-level information to other objects,
is explored by David Hay in several data model patterns [11], like PRODUCTS that are em-
bodied in PRODUCT TYPES. Both are classed later on into PRODUCT CATEGORIES. Similar
techniques are used in Martin Fowler’s Analysis Patterns [4], e.g. for ACCOUNTABILITY and
PARTY TYPES (here: the division into two levels is done with an operational and a base level).
The TypPE OBJECT pattern [12] generalizes this approach of dividing the object system into
implementational base-level and a meta-level that carries meta-information, like type or other
reflective information.

OBJECT SYSTEM LAYER induces the usage of several other object-oriented (general-
purpose) design patterns that fulfill the integration of different system parts. OBJECT SYSTEM
LAYERS provide only a foundation for integration, they do not integrate system parts them-
selves. WRAPPER FACADES [28] are used to give procedural system parts an object-oriented
interface. Since one main purpose of OBJECT SYSTEM LAYERS is to be an indirection layer,
patterns can be applied that use the message dispatch within the OBJECT SYSTEM LAYER
as a flexibility hook. ADAPTERS [5] are used to flexibly adapt to various different imple-
mentations of the same service (e.g. adaption to another database interface in the example).
Central FACTORIES [5] abstract over object creation process, and let us introduce changes in

creations, like object sharing through FLYWEIGHTS. FACADES [5] are used to shield sub-
systems from direct access, thus avoiding strong coupling between clients and sub-system.

See Also

Meyer [16] discusses common techniques for object system implementation in languages
without an object system. He compares the languages’ abilities to implement the underlying
concept of abstract data types. Various languages offer concepts that enable encapsulation of
modules, like Ada (package), Modula-2 (module), or CLU (cluster). These modules are free
associations of program elements, e.g. for abstract data type implementation. In C st ruct s
can be used for data structure encapsulation, while a set of embedded function pointers refer-
ence the implementation of behavior. Each instance of a class references its type. The type
is a special run-time class structure that contains pointers to the method of the class. All
these techniques are very low-level implementation techniques and require a lot of efforts in
order to keep away from violating the concepts. A library that handles these low-level issues
helps to avoid these problems and to automate advanced features, like inheritance, relations,
interceptors, etc.

In [6] various design and language concepts are compared regarding the implementation of
component concepts, encapsulation aspects, and lifecycle issues. The discussion incorporate
imperative languages, like Modula-2 and Ada, functional approaches, like ML and Z, and
object-oriented languages, like Smalltalk, Eiffel, and CLOS. In [3] Cox describes the design
of the language Objective C and compares to other object-oriented approaches. Furthermore,
a discussion of C techniques for implementation of object-oriented concepts can be found.

In [22] the techniques for implementing the concepts of construction/destruction, data
hiding, name spaces, t hi s pointer, and inheritance in the libwww are discussed. Con-
struction/destruction is emulated in form of two functions obj ect Nanme _new and obj ect -
Nane_del et e. Object data is protected in libwww by declaring a structure in a header file,
but not defining it. Member functions of the class — giving the object a namespace induced
by its class — are called explicitly in libwww, e.g. G assNane nmenber Functi on. Thet hi s
pointer is achieved by understanding the first parameter to any method as the object ID. Inher-
itance is mostly handled through explicit pointer casting and a first element in classes, called
i sa. Similar techniques of the X Toolkit are described in [24].

Acknowledgements

We would like to thank Ralph E. Johnson and Andreas Riping for their helpful comments
during the shepherding process. Additionally we would like to thank the members of the
EuroPlop 2000 writers workshop for their constructive feedback.

References

[1] F. Buschmann. Reflection. In J. Vlissides, J. Coplien, and N. Kerth, editors, Pattern Languages
of Program Design 2, pages 271-294. Addison-Wesley, 1996.

[2] Caldera, Inc. COAS: Caldera open administration system. http://www.coas.org, 2000.

[3] B. Cox and A. Novabilsky. Object-Oriented Programming: An Evolutionary Approach.
Addison-Wesley, 1990.

[4]
[5]

[6]

[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
(18]

[19]

[20]
[21]

[22]
[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

M. Fowler. Analysis Patterns. Addison-Wesley, 1997.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

M. Goedicke. On the Structure of Software Description Languages: A Component Oriented
View. Habilitation Thesis, Research Report 473/1993, University of Dortmund, 1992,

M. Goedicke, G. Neumann, and U. Zdun. Message redirector. to appear., 2001.

M. Goedicke, G. Neumann, and U. Zdun. A pattern language for introduction of flexiblity into
black-box component architectures. to appear., 2001.

M. Goedicke and U. Zdun. A key technology evaluation case study: Applying a new middleware
architecture on the enterprise scale. In 2nd Int. Workshop on Engineering Distributed Objects
(EDO 2000), Davis, USA, Nov 2000.

M. Goedicke and U. Zdun. Piecemeal migration of a document archive system with an architec-
tural pattern language. In 5th European Conference on Software Maintenance and Reengineering
(CSMR’01), Lisbon, Portugal, Mar 2001.

D. Hay. Data Model Patterns — Conventions of Thought. Dorset House Publishing, 1997.

R. Johnson and B. Woolf. Type object. In R. C. Martin, D. Riehle, and F. Buschmann, editors,
Pattern Languages of Program Design 3. Addison-Wesley, 1998.

P. Karn. The KA9Q NOS TCL/IP package. http://people.qualcomm.com/karn/code/ka9gnos/,
1996.

G. Kiczales, J. des Rivieres, and D. Bobrow. The Art of the Metaobject Protocol. MIT Press,
1991.

M. D. McCool. Gn - a graphics notation: Introduction, specification, and implementation.
http://www.cgl.uwaterloo.ca/ mmccool/gn.HTML/gn.html, 2000.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edition, 1997.

NeoSoft. neoWebScript. http://www.neosoft.com:6969/neowebscript/, 2000.

G. Neumann and U. Zdun. Enhancing object-based system composition through per-object mix-
ins. In Proceedings of Asia-Pacific Software Engineering Conference (APSEC), Takamatsu,
Japan, December 1999.

G. Neumann and U. Zdun. Filters as a language support for design patterns in object-oriented
scripting languages. In Proceedings of COOTS’99, 5th Conference on Object-Oriented Tech-
nologies and Systems, San Diego, May 1999.

G. Neumann and U. Zdun. High-level design and architecture of an http-based infrastructure for
web applications. World Wide Web Journal, 3(1), 2000.

G. Neumann and U. Zdun. XOTcL, an object-oriented scripting language. In Proceedings of
Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas, February 2000.

H. F. Nielse. C programming style in libwww. http://www.w3.org/Library/User/Style/, 1998.

J. Noble. Prototype-based object system. In N. Harrison, B. Foote, and H. Rohnert, editors,
Pattern Languages of Program Design 4. Addison-Wesley, 2000.

A. Nye and T. O’Reilly. X Toolkit Intrinsics Programming Manual. OReilly & Associates, Inc.,
1993.

J. K. Ousterhout. Scripting: Higher level programming for the 21st century. IEEE Computer,
31(3):23-30, March 1998.

W. Pree. Design Patterns for Object-Oriented Software Development. ACM Press Books.
Addison-Wesley, 1995.

S. Raman and Y. Chawathe. libsrm: A framework for reliable multicast transport. http://Amww-
mash.CS.Berkeley.EDU/mash/software/srm2.0/, 2000.

D. C. Schmidt. Wrapper facade: A structural pattern for encapsulating functions within classes.
C++ Report, SIGS, 11(2), February 1999.

D. Smyth. Tcl and concurrent object-oriented flight software: Tcl on mars. In Proc. of 2nd
Tcl/Tk Workshop, June 1994.

UCB Multicast Network Research Group. Network simulator - ns (version 2). http://www-
mash.cs.berkeley.edu/ns/ns.html, 2000.

Zope: Z object publishing environment. http://www.zope.org, 1999.

