
On the Impact of Fault Tolerance Tactics on Architecture
Patterns

Neil B. Harrison
University of Groningen
Utah Valley University

800 West University Parkway
Orem, Utah 84058 USA

+1 801 863-7312

neil.harrison@uvu.edu

Paris Avgeriou
University of Groningen

PO Box 407
9700 AK Groningen, the Netherlands

+31 50 3237057

paris@cs.rug.nl

Uwe Zdun
Vienna University of Technology

Information Systems Institute
Argentinierstrasse 8/184-1

A-1040 Wien, Austria
+43-1-58801-58406

zdun@acm.org

ABSTRACT
One important way that an architecture impacts fault tolerance
is by making it easy or hard to implement tactics that improve
fault tolerance. Information about how the implementation of
fault tolerance tactics affects the architecture patterns of a
system should be useful to architects during architectural design
in selecting optimal fault tolerance tactics and architecture
patterns. In order to understand more about how useful this
information can be, we performed an informal study of teams
designing fault tolerance tactics in an architecture. One group
used information about the interaction of tactics and architecture
patterns; the other did not. We observed that the group with the
information produced better quality architectures, and were able
to better estimate the difficulty of implementing the tactics. We
recommend that information about the interaction of tactics and
architecture patterns be made available to architects, particularly
those with less familiarity about fault tolerance tactics.

Categories and Subject Descriptors
D.2 [Software Engineering]; D.2.11 [Software
Architectures]: Patterns; D.4.5 [Reliability]: Fault-tolerance

General Terms
Reliability

Keywords
Patterns, Software Architectures, Fault-tolerance, Reliability
tactics

1. INTRODUCTION
Fault tolerance is not an afterthought. The design of fault
tolerance measures must be undertaken early, because fault
tolerance it tightly linked to the architecture of the system.
Indeed, the architectural components and connections among
those components may be highly compatible with certain fault

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SERENE 2010, April 13-16, 2010, London, UK.
Copyright 2010 ACM 978-60558-275-7/08/11…$5.00.

tolerance measures, or may be of no help whatsoever. Thus the
architecture selected influences the ease with which one can
implement certain fault tolerance measures.

Conversely, measures taken to improve fault tolerance can be
implemented with little or no change to the architecture, or may
require significant changes: addition of extra components and
connectors, or major modifications to the ones that are there.
Such changes, besides requiring significant effort to implement,
can obscure the original intent of the architecture.

Thus the architect faces the challenge of designing a fault-
tolerant system architecture. Ideally, the architecture supports
the fault tolerance measures, and they are implemented within
the architecture. However, reality always intervenes: other
functional and non-functional requirements also shape the
architecture, resulting in an architecture that does not perfectly
support fault tolerance. This forces the architect to make
tradeoffs; to select fault tolerance measures that are most
compatible with the architecture, or modify the architecture to
accommodate fault tolerance.

In order for architects to make these decisions correctly and
efficiently, they need information about how fault tolerance and
architecture interact. Some work has been done that identifies
how common fault tolerance measures (called tactics) impacts
common architectural structures (called architecture patterns).
We found that implementing these tactics affects patterns by
modifying their components, adding components and
connectors, and/or replicating components and connectors [16].
We identified the interactions of several of the most common
fault tolerance tactics with several of the most common
architecture patterns. The question now is how useful this
information can be to architects.

To this end we have begun to study how the information about
fault tolerance tactics and software patterns can be used to help
architects make proper decisions about system design. This
paper describes a study we conducted to give us more insight
into the topic. The research problem addressed in this study is
how can the knowledge of the interaction of fault tolerance
tactics and architecture patterns help architects to make choices
to optimally incorporate fault tolerant measures in the system
architecture? In order to answer these questions we performed
an exploratory study that is similar to a case study [25],
although less formal In this study we compared how architects
design with tactic-pattern interaction information against design
without that information.

The rest of this paper is organized as follows: Section 2 gives
background information about fault tolerance tactics and
software architecture patterns. Section 3 describes our research
questions. Section 4 describes the case study design and
execution. Sections 5 and 6 give the results and their
interpretation. Section 7 describes conclusions and future work.

2. BACKGROUND
The key concepts in this study are fault tolerance tactics and
software architecture patterns, and their interaction.

2.1 Fault Tolerance Tactics
Bass et al. [2] define measures to improve quality attributes as
tactics. There are two different types of tactics, designated as
design time and runtime tactics. Design time tactics are
measures that are applied across all parts of the system at design
and coding time. They often take the form of design or coding
rules, such as “check all return codes,” or “prevent buffer
overruns.” Each developer must apply these tactics when
designing and writing code. In contrast, runtime tactics are
specific actions the system will take to achieve the desired
quality attribute while the system is running.
An important set of runtime tactics are those to improve the
fault tolerance of the system. In particular, the system takes
certain actions to detect faults and errors in the running system,
prevent faults from impacting the integrity of the system, and
recovering gracefully from faults if they do occur. Typical
examples of fault tolerance runtime tactics include voting and
rollback. Bass et al. describe four categories of well-known fault
tolerance tactics. Within a category, the tactics are often
alternatives to each other.
1. Fault Detection: Measures to detect faults, including

incorrect actions and failure of components. The tactics are
Ping/Echo, Heartbeat, and Exceptions.

2. Recovery – Preparation and Repair: preparing for recovery
actions; in particular redundancy strategies so that
processing can continue in the face of a component failure.
The tactics are Voting, Active Redundancy, Passive
Redundancy, and Spare.

3. Recovery – Reintroduction: Tactics for repair of a
component that has failed and is to be reintroduced. The
tactics are Shadow, State Resynchronization, and Rollback.

4. Prevention: Preventing faults from having wide impact by
removing components from service or bundling actions
together so they can be easily undone. The tactics are
Removal from Service, Transactions, and Process Monitor.

Full descriptions of these tactics can be found in [2]. We worked
with these tactics because they are well known, and are
described and organized conveniently. There are other fault
tolerance techniques similar to tactics, such as are found in [12]
and [24]. Techniques for specific aspects of fault tolerance have
been proposed, including exception handling [8][10][11][18]. A
comprehensive list of works concerning architecting fault
tolerant systems can be found in [22].

In this paper, we refer strictly to the runtime fault tolerance
tactics in Bass et al. Throughout the rest of this paper, we will
refer to them as “tactics.”

Tactics are implemented much like features: each tactic has a
design, and is generally decomposed into components,
connectors between the components, and required behavior.
Thus it follows that the structure and behavior of a tactic
impacts the structure and the behavior of the system. This is an
important point at which fault tolerance (implemented via
tactics) and the architecture meet.

2.2 Software Architecture Patterns
Software patterns are proven solutions to software problems, in
a given context [9]. Architecture patterns are common
architectural structures, which are well understood and
documented [4][23]. These patterns describe the high level
structure and behavior of systems. Architecture patterns
describe the major partitions of a system in terms of components
and the connectors between them.

Many common architecture patterns are described in
[1][4][5][23]. Common architecture patterns include Shared
Repository, Layers, Pipes and Filters, Presentation Abstraction
Control, Model View Controller, Broker, Client-Server, and
State Transition.

In the study described in this paper, participants worked with a
system that employed the Broker and Pipes and Filters patterns;
short descriptions follow:

• The Broker pattern structures distributed software systems
with decoupled components that interact by remote service
invocations. A broker component coordinates
communication such as forwarding requests [4].

• The Pipes and Filters pattern structures systems that
process a stream of data. Each processing step is
encapsulated in a filter component. Data is passed through
pipes between adjacent filters [4]. Filters do not know the
identity of their upstream or downstream filters [23].

During architectural design, an architect may select one or more
architecture patterns to follow to produce a system structure.
The architect selects patterns based on their ability to support
the requirements of the system, including fault tolerance
requirements. Nearly all non-trivial systems employ more than
one architecture pattern in their architecture [13].

Patterns embody the high level structure and behavior of the
system. The structure and behavior of tactics is more local and
low level, and therefore must fit into the larger structure and
behavior of patterns applied to the same system.

2.3 Patterns and Tactics
The implementation of tactics in a system must, of course, be
done within the context of the architecture patterns used in the
system. In other words, architecture patterns describe the major
components of the system and their relationships with each
other (which involves the connections between the components
and their behavior with respect to each other). But the
implementation of tactics also involves components,
connections between the components, as well as behavior.
These may be to a greater or lesser degree compatible with
those of the architecture patterns of the system [14].
For example, the Ping-Echo tactic is commonly used for
detecting whether processes are operating sanely. Bass et al.

describe Ping-Echo as follows: “One component issues a ping
and expects to receive back an echo, within a predefined time,
from the component under scrutiny” [2] It is common that a
single component monitors the sanity of several components;
i.e., a central component is responsible for the health of much of
the rest of the system. (This allows a central component to kill
and restart any non-responsive processes.) This requires a
connector between the central component and each component
under scrutiny.
The Broker pattern has a central component which has
connectors to each service component. This component can
easily assume the role of the central component for Ping-Echo.
In addition, the necessary connectors to components under
scrutiny are already in place. Thus we find that the Broker
pattern is a very good match for implementing the Ping-Echo
tactic.
On the other hand, let us consider implementing Ping-Echo in
the Pipes and Filters architecture pattern. Pipes and Filters
consists of components that are connected and executed
sequentially, with one-way communication from one component
to another. The components operate autonomously; there is no
central control. In order to implement Ping-Echo, a new
component must be introduced. In addition, new connections
must be provided to each of the Filter components. This also
causes a change in the Filters’ behavior: they must now respond
to asynchronous messages from the control component in a
timely manner. These changes mean that significant work is
required to implement Ping-Echo in this pattern; Ping-Echo is a
particularly poor fit for the Pipes and Filters pattern.
Because systems typically include more than one architecture
pattern, one must consider all the architecture patterns when
implementing a tactic: the tactic may impact some or all of the
patterns. Architects must determine how and where in the
architecture a tactic should be implemented in order to achieve
the desired fault tolerance capability.

Tactic implementation can impact architectural patterns in a
number of ways. Table 1 from [16] shows the types of impact
on a pattern’s components, sorted from low to high impact.

Table 1. Types of changes to pattern components

Type of
Change

Description Impact

Implemented
in

Part of the tactic is
implemented within a
component, with no
external change to the
component. (A special
case of Modify)

Only the behavior
of the component
changes. Generally
the easiest to
implement.

Replicates A component is
duplicated, with little or
no change to its
behavior. Usually done
for redundancy.
(Specialization of Add.)

Usually easy to
implement.

Add, in the
Pattern

A new component is
added within the
structure of the pattern
(e.g., a layer is added in

Generally easy or
moderately easy to
implement.

the Layers pattern.)

Add, out of
the Pattern

A new component is
added that is not part of
the pattern structure,
causing the system to
deviate from the
original pattern (e.g.,
adding a monitor to
Pipes and Filters.)

Usually difficult to
implement. Makes
the pattern difficult
to find, making
maintenance more
difficult.

Modify The behavior and the
structure of the
component changes.

Impact varies:
some changes are
trivial, but others
are very difficult.

The impact of a tactic on the connectors is similar: it can use the
connector with no modifications, replicate the connector,
modify the connector or require completely new connectors to
be added.

Other examples of architecture patterns modified by the
implementation of fault tolerance tactics include the Layers
pattern [21], and the C2 architecture pattern [7].

The challenge to architects is to incorporate, in the system
design, the tactics needed to achieve the desired levels of fault
tolerance within the constraints of the architecture patterns. This
involves making tradeoffs by selecting one or more of the
following options:

1. Alternate tactics to achieve the same fault tolerance goal
may be selected to better fit in the architecture.

2. In some cases, mainly early in architectural design, a
different architecture pattern may be selected that better
accommodates the desired tactics.

3. Within an architecture that has multiple patterns, one will
naturally attempt to implement the tactic where it best fits –
where the components and connectors of the pattern(s) can
support the tactic with minimal changes. This, however, is
constrained by how the tactic will be used. For example, a
redundancy tactic may replicate a component of a
particular pattern; in this case the architect cannot choose
which pattern to use to implement the tactic.

4. Where no tradeoffs of patterns or tactics can be made, one
must understand how the tactic will be implemented, even
if it is not a good match. This helps one understand the
implementation of the tactic. It can also help future
developers understand why the architecture patterns will
have been changed – to accommodate the tactics.

In order for an architect to make these tradeoffs, the architect
uses information about how the desired tactics are implemented
in the architecture patterns – the interaction of the tactics with
the patterns. We designate this as “tactic-pattern interaction
information.” For a given tactic and pattern, it gives an
estimated degree of implementation difficulty (on a five-point
scale as described in [16],) as well as a description of how the
components and connectors of the pattern must change to
implement the tactic.

The tactic-pattern interaction information for the Broker and
Pipes and Filters patterns, two patterns that figure prominently
in this paper, are attached in an appendix.

3. RESEARCH QUESTIONS
The research question is whether the knowledge of the
interaction of fault tolerance tactics and architecture patterns
help architects to make choices to optimally incorporate fault
tolerant measures in the system architecture? More specifically,
we questioned whether the tactic-pattern interaction information
supports the architects in:
1. choosing tactics that satisfy the fault tolerance

requirements
2. designing the tactics correctly within the patterns in the

architecture? In other words are the necessary components
and connectors added or modified, and are there any
missing

3. choosing tactic-pattern combinations that have the least
impact on the architecture

4. understanding the effort required to implement the tactics

4. STUDY DESIGN
We wished to gain insight about these questions from
practitioners in order to begin to move beyond abstract
speculation and to set the stage for future empirical research on
the topic. Therefore, we performed exploratory research as
described by Kitchenham et al [20]. Our study venue limited the
size and composition of the participants, so we performed an
informal study that is similar to a case study as described by
Wohlin et al. [25]. We compared the effectiveness of
architectural design using tactic-pattern interaction information
against design without that information.

The study compared two groups of participants. The participants
were a group of attendees at the European Conference on
Pattern Languages of Programming (EuroPLoP) who agreed to
participate in the study. The ten participants were randomly
divided into two teams, a control team and a study team. The
participants did not know the purpose of the study or whether
they were placed in the control or the study group. A check of
the participants’ experience revealed that the experience with
software development, architecture, patterns, and fault tolerance
were roughly equal in each group. Participants had considerable
development experience, and were highly familiar with patterns.
They had limited experience with architecture patterns, and had
low experience with fault tolerant software. Table 2 summarizes
the experience of the participants.

Table 2. Participant Demographics

 Experience:
Industry/
Academia
(years)

Architecture
Experience

FT
Experience

11 / 0 Strong Little

10 / 0 Moderate None

0 / 2 Some Little

Study Team

5 / 8 Moderate None

1 / 4 Little Little

Average 5.4 / 2.8 Moderate Little

4 / 6 Some Little

3 / 2 Some Little

3 / 3 Little Little

9 / 0 Strong None

Control Team

4 / 14 Strong Little

Average 4.6 / 5.0 Moderate Little

Each team was given a specification of a hypothetical system
along with an initial architecture. The system represented
control of an automated manufacturing assembly line, and
involved managing numerous distributed robotic devices.
Control moved sequentially through the robots (Pipes and
Filters architecture pattern), while supplies were managed
through an application of the Broker pattern.

The teams were given four tasks to add specific fault tolerance
measures to the system. They were asked to design the fault
tolerance, and show the resulting architecture. The tasks were to
be performed in order. The fault tolerance tasks involved the
tactics from the following categories:

1. Detection of a failed component (Tactic: Ping-Echo)

2. Replacement of a failed component (Tactic: Spare)

3. Recovery from erroneous actions (Tactic: Transaction-
Rollback)

4. Detection and replacement of a failing component (Tactics:
Process Monitor and Passive Redundancy)

Other tactics might be used, such as Heartbeat instead of Ping-
Echo.

The teams were not told which tactics to use, or even which
category of tactics to use. However, each team was given
descriptions of all the fault tolerance tactics from [2]. They had
to choose which tactic best satisfied the task, and fit best in the
architecture.

The study team was also given descriptions of the interactions
of the tactics and common architecture patterns (taken from [16]
). They could use this additional information to find the tactics
that best fit the architecture

Each team was asked to create an architecture diagram that
showed the architecture that incorporated all the tactics they
used. The diagram should show all the necessary components
and connectors.

After the exercise, we analyzed the resulting architectures for
the appropriateness of the design. For a given task, we checked
to see whether the fault tolerance requirement was satisfied,
whether the tactics used were correctly designed, whether the
teams had selected the best tactics, and whether they showed
understanding of the impact of their decisions on the
architecture, as measured by the accuracy of their effort
estimates. For example, if the Ping-Echo tactic was selected in

the first task, the architecture must show a controlling
component (preferably in the existing Broker component), and a
communication link to each component, including those in the
Pipes and Filters part of the architecture.

We analyzed the results and compared our analyses for
agreement.

5. RESULTS
We compared the results of the two teams We begin by
discussing the overall design data. For each task, we analyzed
the tactics selected and how the tactics were inserted into the
architecture.

Task 1 (Recommended tactic: Ping-Echo or Heartbeat)

The study team used both Heartbeat and Exceptions. There may
be a bit of overlap between the two (see [2]), but they can be
complementary. The Heartbeat was controlled by the existing
monitor component. In addition, they replicated the monitor
component as well as the Broker component, using Active
Redundancy. They included the necessary connectors for the
Heartbeat, as well as for transmitting the Exceptions. The use of
active replication increases the likelihood of non-stop
processing (availability), and is recommended.

The control team used both Heartbeat and Ping-Echo, as well as
Exceptions. This is redundant. They created a monitor
component, but did not make it part of the existing Broker
component. Their connections to each component were not
explicit. They also used Voting, apparently to arbitrate between
results from the Heartbeat and the Ping-Echo. This is not a valid
use of Voting, and in fact, wouldn’t even work, since Voting
requires three or more voters. In addition, the design of the
Voting tactic was not clear in the architecture.

Task 2 (Recommended tactic: Spare)

Both the study and control teams used Spare, and used the
Broker component to manage it. This is a very good fit.

Task 3 (Recommended tactic: Transaction Rollback)

We note that implementing Transaction Rollbacks in a Pipes
and Filters architecture is particularly difficult and troublesome.

The study team used the Exceptions, which they already had
from Task 1. They considered Transaction Rollback, but
rejected it.

The control team also used Exceptions, which they added at this
time. However, they did not fully add the necessary connections
to make it work; it wasn’t clear what component was
responsible for handling the Exceptions. So although they used
the same tactic as the study team, their solution was incomplete.

Task 4 (Recommended tactics: Passive Redundancy and
optionally Process Monitor)

The study team used Passive Redundancy. Instead of using a
Process Monitor to manage it, they connected it directly to the
active component. In this scenario, the active component is
capable of assessing its own health, so it could notify the
redundant component. This is good and elegant.

The control team used an unnamed form of redundancy. The
biggest problem, though, was that the redundant component was
not connected to anything. Since the connections are the key
difficulties, their proposed architecture portends problems when
they actually implement this feature.

Table 3 summarizes the tactics used by each team for each task.
It includes notes about connections.

Table 3. Tactic Use Summary

Task Suggested
Tactics

Study Team Control Team

1 Ping-Echo
or Heartbeat

Heartbeat,
Exceptions, and
Active
Redundancy
(connections
good)

Heartbeat, Ping-
Echo, Exceptions,
and Voting
(connections
unclear)

2 Spare Spare, good
connection

Spare, good
connection

3 Transaction
Rollback

Exceptions
(already in use),
considered
Transaction
Rollback

Exceptions
(connections and
functionality
missing)

4 Passive Re-
dundancy,
Process
monitor
(optional)

Passive
Redundancy
(direct
connection;
process monitor
not needed)

Passive
Redundancy
(connections
unknown)

We follow this in the next sections with a discussion of the data
in light of the four research questions posed.

5.1 Satisfaction of FT Requirements
The question is whether the tactics selected satisfy the fault
tolerance requirements of each task. We can summarize the
results as shown in Table 4.

Table 4. Satisfaction of FT Requirements

Task Study Team Control Team

1 Yes Yes

2 Yes Yes

3 No, use of exceptions
does not easily meet
the need to roll back
operations.

No, use of exceptions does
not easily meet the need to
roll back operations.

4 Yes Probably: however, lack of
connection information made
it unclear whether the
requirements were
completely fulfilled.

Here we see that both teams were nearly identical in meeting the
fault tolerance requirements introduced in each task. In each
case except Task 3 they selected one or more tasks that fulfilled

the requirements. In Task 4, the control team did not show how
the passively redundant component would be triggered to take
control, so there is possibly a deficiency in meeting the
requirement. However, the main problem is in design
correctness, dealt with in the next question.

5.2 Design Correctness
The question concerns whether the tactics are designed correctly
within the context of the architecture patterns used and there are
no missing components or connectors. Strength in this area
indicates an understanding of how a tactic must be implemented
in the patterns used in the system. The following table
summarizes the correctness of each task by each team.

Table 5. Correctness of Tactic Design

Task Study Team Control Team

1 Correct Connectors for all tactics missing,
and Voting design is wrong.

2 Correct Correct

3 Correct Missing connectors for
Exceptions

4 Correct Connection to redundant
component entirely missing

Here we see that the study team generally did better than the
control team. Task 1 was particularly problematic for the control
team, and Task 4 had significant omissions.

5.3 Optimal Tactic Selection
Here we examine whether the tactics selected were the best
choices, given the architecture patterns used. Strength here
indicates an understanding of the impact of the tactics on the
patterns, and tradeoffs of tactics.

Table 6. Optimal Tactic Selection

Task Study Team Control Team

1 Heartbeat is
appropriate;
Exception is probably
not needed

Use of Heartbeat, Ping-Echo
and Exceptions is
unnecessary. Use of Voting
is not called for. Solution far
too complex.

2 Yes Yes

3 If Exceptions really
met the requirement,
it would be a good
alternative to rollback

If Exceptions really met the
requirement, it would be a
good alternative to rollback

4 Yes, in fact superior
to suggested solution.

Missed needed connections;
indicates lack of
understanding of tactic’s
implementation in the
patterns.

We see in table 6 that the study team was slightly better in Task
4, and significantly better in Task 1.

5.4 Understanding of Effort
This question relates to the participants’ understanding of how
the tactics are to be implemented in the patterns used in the
architecture. For this we asked the two groups to estimate the
difficulty of implementing the task, and compared it against
evaluators’ consensus of the difficulty. The groups scored the
difficulty on a scale of 1 to 5, with 1 being the easiest. We then
evaluated the difficulty of implementing the tactics that each
group selected for each task, and rate them on the same scale of
1 to 5. A small difference between a team’s estimate and the
evaluators’ estimate indicates a good understanding of what is
required to implement the tactics in this architecture.
The difficulty estimates for each team are shown in Table 7.

Table 7. Difficulty Estimates, Study Team

Task Evaluators’
Estimate

Study Team’s
Estimate

Difference

1 4 5 +1

2 1 5 +4

3 1 1 0

4 1 2 +1

Average
Magnitude

 1.5

We see that except for Task 2, the control teams’s estimates
were close to the evaluators’ estimates, although they were
consistently higher.
Table 8 shows the difficulty estimates for the control team.

Table 8. Difficulty Estimates, Control Team

Task Evaluators’
Estimate

Control Team’s
Estimate

Difference

1 5 3 -2

2 1 3 +2

3 2 4 +2

4 1 2 +1

Average
Magnitude

 1.75

The estimate of 5 for task 1 may actually be an understatement;
the proposed solution here would be very difficult and
troublesome to implement correctly. We see a somewhat larger
average difference than for the study team. This indicates they
understood the impact of implementing the tactics somewhat
better than the control team.
In all four questions, the study team did as well or better than
the control team did.

5.5 Limitations
We note that there are several limitations that either threaten the
validity of the study or limit its applicability. They are as
follows:

1. The sample size was too small to draw any statistically
significant conclusions. There were two groups. An

alternative would have been to have each person work
individually; however, software architecture of non-trivial
systems is generally a team effort. Individual architecture
work would have thus been less realistic. As a result, we
chose group assignments, and state our conclusions as
observations rather than statistically established trends.

2. Analysis of the data was performed by ourselves, and not
validated by independent researchers. Therefore, there may
be inadvertent bias in favor of a positive result.

3. The participants had limited experience with the design of
fault-tolerant systems. In fact, we observed that the lack of
fault tolerance experience behavior had some impact on
designs (noted in section 5). We therefore limit our
recommendations to those with limited experience in fault
tolerance.

6. INTERPRETATION OF RESULTS
In the designs, the first question is whether the tactics selected
meet the needs of the fault tolerance added in the task. We see
that for the most part, both groups selected tactics that would
satisfy the task. The one exception was Task 3, where both
groups used Exceptions rather than Transaction Rollback. This
may be because the system did not have natural transactions,
and therefore, Transaction Rollback did not seem like a good fit.
We note that the study team did consider it and rejected it. The
fact that both groups selected the same tactic supports the notion
that it was an artifact of the problem presented. Overall, the
success by both groups indicates that they understood how the
tactics would implement fault tolerance. This was notable in that
they had little fault tolerant design experience.

The second question is how well the tactics selected met the
architecture. Tactics used by both groups necessarily have the
same impact on the architecture, so we need examine only the
tactics uniquely selected by each team. The study team selected
Active Redundancy for Task 1. This is an acceptable match for
the architecture (and the group included it appropriately in the
architecture).The control team selected Voting. Voting can be a
good match for the Pipes and Filters architecture, but it was not
used correctly. In addition, it was not even a good fit for the
application under design. Its use demonstrated a lack of
understanding of how it would be implemented in the
architecture patterns present, and its impact on those patterns. It
appears that the control team suffered from lack of knowledge
of the tactic-pattern interaction that the study team was given.
This supports the hypothesis that such knowledge helps
architects come up with a correct design.

A related question is how well the architectures accounted for
the implementation of the tactics selected. In particular, how are
components modified or duplicated, are additional components
added, and are connectors between components either modified
or added as needed? Architecture diagrams generally do not
show changes in behavior within components or connectors, but
readily show new and replicated components, as well as new
connectors. Incorrect or missing components and connectors in
an architecture diagram are an indicator of trouble –
implementation is likely to be more troublesome than
anticipated. It may indicate that the architects did not consider
or even understand the components and their interactions.

In our study, the architecture produced by the study team
consistently showed all the components and connectors needed
to implement the tactics they selected. In contrast, the
architecture produced by the control team was missing several
connectors that were needed to implement their selected tactics.
This is a significant omission, as the connections require
changes to the all components involved in the connection. Such
changes can involve timing (such as ping-echo responses) or
synchronization (such as responses to exceptions), thus the
changes may be significant. It appears that the tactic-pattern
interaction information may have helped the study team
consider the required connections more thoroughly. This tends
to support the hypothesis that such knowledge helps architects
come up with a correct design.

One additional observation concerning the goodness of design
concerns “false paths” – design alternatives that were
considered but rejected. Jansen et al. consider this an important
part of architectural knowledge – it is part of the rationale for
making architectural decisions [19]. In our study, we attempted
to quantify the number of alternatives considered and rejected,
however we slipped up and did not measure it consistently. We
did observe, however, that the study team considered and
rejected numerous alternatives (such as their consideration of
transaction rollback in Task 3). This leaves an open question of
whether tactic-pattern interaction information can help
architects by helping them consider (and reject) many
alternatives. This is probably best understood through studies
that include interviews of the subjects, to learn how alternatives
were considered.

One additional observation was notable: Both groups tended to
over-engineer the solutions. They tended to use more tactics
than was really necessary. (For example, the control group used
both Ping-Echo and Heartbeat in the first task.) There are at
least two possible motivations for this behavior. First, the
experimental setting encouraged the participants to do the best
job they could; therefore, when in doubt, they added more
tactics. We saw evidence of this attitude in each group: the
study team added redundancy to a component that wasn’t really
needed in the first task. And the control team added the Voting
tactic more or less gratuitously. We surmise that this motivation
is significantly less in real project settings.

The second possible reason is that virtually all the participants
had little experience designing fault-tolerant software, and the
tactics were somewhat new to them. Therefore, they had a
tendency to use as many as they could. We have observed a
similar phenomenon with respect to software design patterns
before – when people are first introduced to design patterns [9],
they tend to overuse them, until they gain more experience with
the patterns. Similarly, as people gain fault tolerance
experience, they might avoid overuse of tactics.

7. Related Work
Various methods of architectural design (synthesis) have been
proposed; some of the most prominent methods have been
summarized by Hofmeister et al [17]. All these methods
consider important quality attributes including fault tolerance.
The Attribute-Driven Design method specifically focuses on
using important quality attributes as drivers for the architecture
[2]. The information of how fault tolerance tactics and

architecture patterns interact can be used in any of these
architecture design methods to help architects make informed
decisions. This study begins to explore how this can be done.

There are also several methods of architectural evaluation; such
as ATAM [6]. Most architectural evaluation methods consider
quality attributes, and the tactic-architecture interaction
information can also be useful to identify potential architectural
issues. This study does not concern itself specifically with
architectural evaluation, but may begin to establish the validity
of such data.

Architectures can be considered to be a set of design decisions
[3]. Tactic-pattern interaction information can enhance the
rationale information behind such decisions.

Hanmer has written a collection of patterns for developing fault-
tolerant software [12]. These are not architectural patterns, such
as are described above, but are more like the tactics described
here. Similarly, Utas describes various methods of achieving
fault tolerance [24]. These are analogous to the fault tolerance
tactics described here, and in fact, several are the same. The
measures described in these works also have architectural
implications. This work provides a model for understanding the
impact of these measures on architecture patterns.

In [16], we described the nature of the impact of fault tolerance
tactics on the architecture patterns in a system. We categorized
the types of impact, (e.g., modification of existing components,
replication of components, adding new components) and
propose a scale of impact of implementing tactics on the
architecture patterns. We suggested such information might be
useful to architects; this study begins to investigate how it can
be useful.

In the past we described a taxonomy of nearly all of the well-
known architecture patterns [1]. In it we show several patterns
that can be used as alternatives to each other. This information,
coupled with information about the impact of implementing
various tactics in these patterns, can potentially provide
architects with information about the benefits and liabilities of
using alternate architecture patterns. This study can help
establish its usefulness.

8. CONCLUSIONS AND FUTURE WORK
This limited exploratory study suggests several issues that are
worth further study.
The study suggests that the design of tactics can impact the
architectural design of a system, and perturb the architecture
patterns used therein. It appears that understanding of how they
interact is useful and important in architectural design. We
observed that architecture teams with this information appear to
be somewhat better at designing fault tolerance measures in a
system than those without the information. In particular, they
can better select tactics that are compatible with the architecture.
They also better understand the impact of the tactics in terms of
the structure as well as the expected difficulty of
implementation. Since this was a limited study of a small set of
people who have architectural experience, but have limited fault
tolerance experience, we recommend that further study be done
with individuals with more fault tolerance experience. It may be
particularly useful to study those who have fault tolerance

experience, but less architecture experience, to determine how
helpful this information is to neophyte architects.
We had positive results with a small set of patterns and fault
tolerance tactics. We propose that studies be undertaken with
large sets of fault tolerance measures (for example, [12] and
[24]), and patterns (for example, [5] and [1]). Ideally, this
should become a library of architecture patterns and fault
tolerance tactics, and how they interact. This could be a useful
reference for architects of fault tolerant software.

9. REFERENCES
[1] Avgeriou, P. and Zdun, U. Architectural Patterns Revisited

– a Pattern Language. In Proc. Of 10th European
Conference on Pattern Languages of Programs (EuroPLoP
2005), (Irsee, Germany, July 6-10, 2005).

[2] Bass, L., Clements, P., and Kazman, R. Software
Architecture in Practice,2nd ed. Addison-Wesley, Reading,
MA, 2003.

[3] Bosch, J.: Software architecture: The next step” Software
Architecture, First European Workshop (EWSA), volume
3047 of LNCS, Springer (May 2004) 194–199.

[4] Buschmann F. et al., Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, Chichester,
England, 1996.

[5] Buschmann F., Henney, K. and Schmidt, D, Pattern-
Oriented Software Architecture volume 4: A Pattern
Language for Distributed Computing. Wiley, 2007.

[6] P. Clements, R. Kazman, and M. Klein, Evaluating
Software Architectures: Methods and Case Studies,
Addison-Wesley , 2002.

[7] de Lemos,R., Asterio de Castro Guerra, R., and Rubira, C.
M. A Fault-Tolerant Architectural Approach for
Dependable Systems, in IEEE Software, 23,2, March/April
2006, 80-87.

[8] Ferreira, G. R., Rubira, C. M., and Lemos, R. d. 2001.
Explicit Representation of Exception Handling in the
Development of Dependable Component-Based Systems.
In the 6th IEEE international Symposium on High-
Assurance Systems Engineering: Special Topic: Impact of
Networking (October 24 - 26, 2001). HASE. IEEE
Computer Society, Washington, DC, 182-193.

[9] Gamma, E., et al.: ‘Design Patterns: Elements of Reusable
Object-Oriented Software’ (Addison-Wesley, 1995)

[10] Garcia, A. F., and Rubira, C. M. An Archietctural-based
Reflective Approach to Incorporating Exception Handling
into Dependable Software. In Advances in Exception
Handling Techniques, Springer-Verlag, LNCS-2022, 2001,
189-206.

[11] Garcia, A. F., Rubira, C. M. F., Romanovsky, A. B., and
Xu, J. A., A Comparative Study of Exception Handling
Mechanisms for Building Dependable Object-Oriented
Software, in Journal of Systems and Software 59, 2, 2001,
197-222.

[12] Hanmer, R. Patterns for Fault Tolerant Software, Wiley,
Chichester, England, 2007.

[13] Harrison, N., and Avgeriou, P. 2008. Analysis of
Architecture Pattern Usage in Legacy System Architecture
Documentation. In Proceedings of the Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA
2008) - Volume 00 (February 18 - 21, 2008). WICSA.
IEEE Computer Society, Washington, DC, 147-156.

[14] Harrison, N., and Avgeriou, P. Leveraging Architecture
Patterns to Satisfy Quality Attributes, In proc. First
European Conference on Software Architecture, Madrid,
Sept 24-26, 2007, Springer LNCS.

[15] Harrison, N., and Avgeriou, P. 2007. Pattern-Driven
Architectural Partitioning: Balancing Functional and Non-
functional Requirements. In Proceedings of the Second
international Conference on Digital Telecommunications
(July 01 - 05, 2007). ICDT. IEEE Computer Society,
Washington, DC, 21.

[16] N. Harrison, P. Avgeriou, Incorporating Fault Tolerance
Techniques in Software Architecture Patterns’,
International Workshop on Software Engineering for
Resilient Systems (SERENE ’08), Newcastle upon Tyne
(UK), 17-19 November, 2008, ACM Press.

[17] Hofmeister, C.;,Kruchten, P., Nord, R.L.; Obbink, H., Ran,
A. & America, P. Generalizing a Model of Software
Architecture Design from Five Industrial Approaches, In
Journal of Systems and Software, 30,1, Elsevier, 2007,
106-126.

[18] Issarny, V. and Banâtre J. 2001. Architecture-based
Exception Handling. In Proceedings of the 34th Annual
Hawaii international Conference on System Sciences (
Hicss-34)-Volume 9 - Volume 9 (January 03 - 06, 2001).

[19] Jansen, A., Bosch, J., and Avgeriou, P. 2008. Documenting
after the fact: Recovering architectural design decisions. J.
Syst. Softw. 81, 4 (Apr. 2008), 536-557.

[20] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones,
P. W., Hoaglin, D. C., Emam, K. E., and Rosenberg, J.
2002. Preliminary guidelines for empirical research in
software engineering. IEEE Trans. Softw. Eng. 28, 8 (Aug.
2002), 721-734.

[21] Laibinis, L. and Troubitsyna, E. 2004. Fault Tolerance in a
Layered Architecture: A General Specification Pattern in
B. In Proceedings of the Software Engineering and Formal
Methods, Second international Conference (September 28 -
30, 2004). SEFM. IEEE Computer Society, Washington,
DC, 346-355.

[22] Muccini, H., Pelliccione, P., and Romanovsky, A. 2007.
Architecting Fault Tolerant Systems. In Proceedings of the
Sixth Working IEEE/IFIP Conference on Software
Architecture (January 06 - 09, 2007). WICSA. IEEE
Computer Society, Washington, DC, 43.

[23] Shaw, M. and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline. Addison-Wesley,
Reading, MA, 1996.

[24] Utas, G. Robust communications Software: Extreme
Availability, Reliability and Scalability for Carrier-Grade
Systems, Wiley, Chichester, England , 2005.

[25] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C.,
Regnell, B., and Wesslén, A. Experimentation in Software
Engineering: an Introduction. Kluwer 2000.

10. APPENDIX
The following is the tactic data for the Pipes and Filters and
Borker patterns.

Pipes and Filters

1. Fault Detection

a. Ping/Echo: - -: A central monitoring process must be
added, which must communicate with each filter. Each
filter must be modified to respond in a timely manner to
the ping messages. This not only affects the structure of
the pattern, but may conflict with realtime performance.
(Add out of the Pattern, along with moderate changes to
each filter component)

b. Heartbeat: - -: Similar to ping/echo. It is a bit easier to add
the heartbeat generating code to the filters, because they
don’t have to respond to an interrupt. However, each filter
must still send the heartbeat in response to a timer. (Add
out of the Pattern, along with moderate changes to each
filter component.)

c. Exceptions: - -: The problem here is who should catch an
exception when one is thrown. If the exception can be
completely handled within a single filter component, then
there is no problem. However, if the filter cannot fully
handle the exception, who needs to know? Depending on
the application, it may be the subsequent filter (simple
modifications needed to the filters), or a central process
might need to know (Add out of the Pattern, along with
moderate changes to each filter component.)

2. Recovery – Preparation and Repair

a. Voting: + +: To implement voting, create different filters
as the voting components. Create the receiving component
(the voter) as a filter. To distribute the input to the
different voting filters, use a pipe that has one input and
multiple outputs (e.g., the Unix “tee” command.) (Add in
the Pattern, but the work besides using different
algorithms in the different filters is very straightforward;
almost trivial.)

b. Active Redundancy: + +: Replicate filter components.
Send the same stimuli to redundant filters. Use a pipe or a
final filter to receive the results from the redundant filters.
You can arrange it so you take the first one finished,
which improves performance; a common goal in Pipes and
Filters. (Replicate, plus add a trivial pipe or filter to
handle the results, as well as a distribution pipe, as noted
in Voting. As in voting, the adds here are trivial.)

c. Passive Redundancy: -: Replicate the filter you are
backing up. Then modify the primary filter to send
occasional updates to the backup filter. The backup filter
must be modified to receive the updates, rather than the
normal input data. A pipe or trivial filter is needed to
handle the results, just as in Active Redundancy. This can
be done within the pattern, but Active Redundancy is

generally a superior tactic, and it fits so well, that this
pattern is not recommended with Pipes and Filters.
(Replicate, plus significant changes to the filters.)

d. Spare: +: Set up a device as the spare, with the ability to
run as any of the different filters. Create a new filter that
handles distribution of work. It must detect when a filter
does not respond to sending work (e.g., did the data write
fail), and then initialize the spare as that kind of filter.
(Add in the pattern, but the new filter is not trivial.)

3. Recovery – Reintroduction

a. Shadow: +: In Pipes and Filters, Shadow is implemented
similarly to Voting. In this case, the receiving component
checks the results from the shadow against the results of
the primary filter to see if they are correct. It may be
necessary to communicate the state of the shadow filter
back to the filter that distributes the work. Note that the
shadow filter itself should need no changes. (Duplication
with simple Add in the Pattern, plus possible small
Modify to two filter components.)

b. State Resynchronization: - -: The biggest problem with
this tactic is filters should not have states except within
processing of one piece of data. And in that case, it
usually makes most sense to restart processing of that data
from the beginning. If you must to implement this tactic,
define states for each filter and create a mechanism to
restore a filter to the proper state when it comes back up.
That may require a monitoring process. (Major changes to
components, plus possible Add out of the pattern.)

c. Rollback: - -: Checkpointing is easy to do. However, once
the data passes to the next filter, it is extremely hard to
undo it -- it is gone. If you must use it, use a monitoring
process and a protocol of checkpoints to ensure the
integrity of the data at the end of each filter. (Add out of
the pattern, plus major changes to components.)

4. Prevention

a. Removal from Service: -: Use a monitoring process to
decide when to remove a filter from service. (Add out of
the pattern. Minor changes may be needed for
reconfiguration.)

b. Transaction: ~: The first filter might create the
transactions. However, filters work more naturally on
streaming data than on transaction-oriented data.

c. Process Monitor: -: Use a monitoring process to detect
when a filter fails, and reconfigure the system. (Add out of
the pattern. Minor changes may be needed for
reconfiguration.)

Broker

1. Fault Detection

a. Ping/Echo: + +: The Broker component can implement a
ping/echo and can even have a message serve double duty
as a request and as a ping message. This is both efficient
and easy to implement. (Implemented in the Pattern)

b. Heartbeat: +: As in ping/echo, the Broker is the monitor
component. The other components must implement a

heartbeat mechanism, with messages independent of the
normal control messages. (Minor modifications to
components needed.)

2. Recovery – Preparation and Repair

a. Voting: + +: The broker distributes work to multiple
servers, acts as the arbiter among them. (Implemented in
the pattern. Different voting components are implemented
as server components.)

b. Active Redundancy: + +: The broker component provides
a natural mechanism for distributing the same messages to
redundant servers, and management of the swap to the
redundant server. Servers might be replicated, or that
might be done already. (Implemented in the Pattern.)

c. Passive Redundancy: +: The Broker component manages
updating the spare with the active’s state. Active
Redundancy is such a good fit that it is recommended over
this tactic. However, it is a good fit for duplicating the
Broker component. (Minor modifications to the active and
backup components.)

d. Spare: + +: If the system has multiple servers with
different responsibilities, then the broker component
manages bringing in a spare for any of the failed servers.
(Implemented in the pattern; a few minor modifications
may be needed.)

3. Recovery – Reintroduction

a. Shadow: + +: The broker component is a natural place for
monitoring servers that return to service. The broker can
keep track of the health of the servers, and mark a server
as a shadow until it returns to full operation.
(Implemented in the pattern)

b. State Resynchronization: + +: When a server comes back
into service, the Broker component can send it state
information to synchronize it. (Implemented in the
pattern.)

c. Rollback: + +: Broker-controlled systems tend to be
transaction-oriented. The actual rollback happens within
the server components, while the control of rollback may
be within the server, or in the Broker, depending on the
application. (Implemented in the pattern.)

4. Prevention

a. Removal from Service: + +: The broker component can
act as an arbiter for the server, and remove it from service
if it detects error conditions. (Implemented in the pattern.)

b. Transaction: + +: Broker systems tend naturally to be
transaction-oriented. The units of transaction would be
defined in terms of work done on the server.
(Implemented in the pattern.)

c. Process Monitor: + +: It is natural for the broker
component to detect if a server fails and restart it.
(Implemented in the pattern.)

