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ABSTRACT 
One important way that an architecture impacts fault tolerance 
is by making it easy or hard to implement tactics that improve 
fault tolerance. Information about how the implementation of 
fault tolerance tactics affects the architecture patterns of a 
system should be useful to architects during architectural design 
in selecting optimal fault tolerance tactics and architecture 
patterns. In order to understand more about how useful this 
information can be, we performed an informal study of teams 
designing fault tolerance tactics in an architecture. One group 
used information about the interaction of tactics and architecture 
patterns; the other did not. We observed that the group with the 
information produced better quality architectures, and were able 
to better estimate the difficulty of  implementing the tactics. We 
recommend that information about the interaction of tactics and 
architecture patterns be made available to architects, particularly 
those with less familiarity about fault tolerance tactics. 

Categories and Subject Descriptors 
D.2 [Software Engineering]; D.2.11 [Software 
Architectures]: Patterns; D.4.5 [Reliability]: Fault-tolerance  

General Terms 
Reliability 

Keywords 
Patterns, Software Architectures, Fault-tolerance, Reliability 
tactics 

1. INTRODUCTION 
Fault tolerance is not an afterthought. The design of fault 
tolerance measures must be undertaken early, because fault 
tolerance it tightly linked to the architecture of the system. 
Indeed, the architectural components and connections among 
those components may be highly compatible with certain fault  
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tolerance measures, or may be of no help whatsoever. Thus the 
architecture selected influences the ease with which one can 
implement certain fault tolerance measures. 

Conversely, measures taken to improve fault tolerance can be 
implemented with little or no change to the architecture, or may 
require significant changes: addition of extra components and 
connectors, or major modifications to the ones that are there. 
Such changes, besides requiring significant effort to implement, 
can obscure the original intent of the architecture. 

Thus the architect faces the challenge of designing a fault-
tolerant system architecture. Ideally, the architecture supports 
the fault tolerance measures, and they are implemented within 
the architecture. However, reality always intervenes: other 
functional and non-functional requirements also shape the 
architecture, resulting in an architecture that does not perfectly 
support fault tolerance. This forces the architect to make 
tradeoffs; to select fault tolerance measures that are most 
compatible with the architecture, or modify the architecture to 
accommodate fault tolerance. 

In order for architects to make these decisions correctly and 
efficiently, they need information about how fault tolerance and 
architecture interact. Some work has been done that identifies 
how common fault tolerance measures (called tactics) impacts 
common architectural structures (called architecture patterns).  
We found that implementing these tactics affects patterns by 
modifying their components, adding components and 
connectors, and/or replicating components and connectors [16]. 
We identified the interactions of several of the most common 
fault tolerance tactics with several of the most common 
architecture patterns. The question now is how useful this 
information can be to architects. 

To this end we have begun to study how the information about 
fault tolerance tactics and software patterns can be used to help 
architects make proper decisions about system design. This 
paper describes a study we conducted to give us more insight 
into the topic. The research problem addressed in this study is 
how can the knowledge of the interaction of fault tolerance 
tactics and architecture patterns help architects to make choices 
to optimally incorporate fault tolerant measures in the system 
architecture? In order to answer these questions we performed 
an exploratory study that is similar to a case study [25], 
although less formal  In this study we compared how architects 
design with tactic-pattern interaction information against design 
without that information. 



The rest of this paper is organized as follows: Section 2 gives 
background information about fault tolerance tactics and 
software architecture patterns. Section 3 describes our research 
questions. Section 4 describes the case study design and 
execution. Sections 5 and 6 give the results and their 
interpretation. Section 7 describes conclusions and future work.   

2. BACKGROUND 
The key concepts in this study are fault tolerance tactics and 
software architecture patterns, and their interaction. 

2.1 Fault Tolerance Tactics 
Bass et al. [2] define measures to improve quality attributes as 
tactics. There are two different types of tactics, designated as 
design time and runtime tactics. Design time tactics are 
measures that are applied across all parts of the system at design 
and coding time. They often take the form of design or coding 
rules, such as “check all return codes,” or “prevent buffer 
overruns.” Each developer must apply these tactics when 
designing and writing code. In contrast, runtime tactics are 
specific actions the system will take to achieve the desired 
quality attribute while the system is running.  
An important set of runtime tactics are those to improve the 
fault tolerance of the system. In particular, the system takes 
certain actions to detect faults and errors in the running system, 
prevent faults from impacting the integrity of the system, and 
recovering gracefully from faults if they do occur. Typical 
examples of fault tolerance runtime tactics include voting and 
rollback. Bass et al. describe four categories of well-known fault 
tolerance tactics. Within a category, the tactics are often 
alternatives to each other. 
1. Fault Detection: Measures to detect faults, including 

incorrect actions and failure of components. The tactics are 
Ping/Echo, Heartbeat, and Exceptions. 

2. Recovery – Preparation and Repair: preparing for recovery 
actions; in particular redundancy strategies so that 
processing can continue in the face of a component failure. 
The tactics are Voting, Active Redundancy, Passive 
Redundancy, and Spare. 

3. Recovery – Reintroduction: Tactics for repair of a 
component that has failed and is to be reintroduced. The 
tactics are Shadow, State Resynchronization, and Rollback. 

4. Prevention: Preventing faults from having wide impact by 
removing components from service or bundling actions 
together so they can be easily undone. The tactics are 
Removal from Service, Transactions, and Process Monitor. 

Full descriptions of these tactics can be found in [2]. We worked 
with these tactics because they are well known, and are 
described and organized conveniently. There are other fault 
tolerance techniques similar to tactics, such as are found in [12] 
and [24]. Techniques for specific aspects of fault tolerance have 
been proposed, including exception handling [8][10][11][18]. A 
comprehensive list of works concerning architecting fault 
tolerant systems can be found in [22]. 

In this paper, we refer strictly to the runtime fault tolerance 
tactics in Bass et al. Throughout the rest of this paper, we will 
refer to them as “tactics.” 

Tactics are implemented much like features: each tactic has a 
design, and is generally decomposed into components, 
connectors between the components, and required behavior. 
Thus it follows that the structure and behavior of a tactic 
impacts the structure and the behavior of the system. This is an 
important point at which fault tolerance (implemented via 
tactics) and the architecture meet. 

2.2 Software Architecture Patterns 
Software patterns are proven solutions to software problems, in 
a given context [9]. Architecture patterns are common 
architectural structures, which are well understood and 
documented [4][23]. These patterns describe the high level 
structure and behavior of systems. Architecture patterns 
describe the major partitions of a system in terms of components 
and the connectors between them. 

Many common architecture patterns are described in 
[1][4][5][23]. Common architecture patterns include Shared 
Repository, Layers, Pipes and Filters, Presentation Abstraction 
Control, Model View Controller, Broker, Client-Server, and 
State Transition.  

In the study described in this paper, participants worked with a 
system that employed the Broker and Pipes and Filters patterns; 
short descriptions follow: 

• The Broker pattern structures distributed software systems 
with decoupled components that interact by remote service 
invocations. A broker component coordinates 
communication such as forwarding requests [4]. 

• The Pipes and Filters pattern structures systems that 
process a stream of data. Each processing step is 
encapsulated in a filter component. Data is passed through 
pipes between adjacent filters [4]. Filters do not know the 
identity of their upstream or downstream filters [23]. 

During architectural design, an architect may select one or more 
architecture patterns to follow to produce a system structure. 
The architect selects patterns based on their ability to support 
the requirements of the system, including fault tolerance 
requirements. Nearly all non-trivial systems employ more than 
one architecture pattern in their architecture [13]. 

Patterns embody the high level structure and behavior of the 
system. The structure and behavior of tactics is more local and 
low level, and therefore must fit into the larger structure and 
behavior of patterns applied to the same system. 

2.3 Patterns and Tactics 
The implementation of tactics in a system must, of course, be 
done within the context of the architecture patterns used in the 
system. In other words, architecture patterns describe the major 
components of the system and their relationships with each 
other (which involves the connections between the components 
and their behavior with respect to each other). But the 
implementation of tactics also involves components, 
connections between the components, as well as behavior. 
These may be to a greater or lesser degree compatible with 
those of the architecture patterns of the system [14]. 
For example, the Ping-Echo tactic is commonly used for 
detecting whether processes are operating sanely. Bass et al. 



describe Ping-Echo as follows: “One component issues a ping 
and expects to receive back an echo, within a predefined time, 
from the component under scrutiny” [2] It is common that a 
single component monitors the sanity of several components; 
i.e., a central component is responsible for the health of much of 
the rest of the system. (This allows a central component to kill 
and restart any non-responsive processes.) This requires a 
connector between the central component and each component 
under scrutiny. 
The Broker pattern has a central component which has 
connectors to each service component. This component can 
easily assume the role of the central component for Ping-Echo. 
In addition, the necessary connectors to components under 
scrutiny are already in place. Thus we find that the Broker 
pattern is a very good match for implementing the Ping-Echo 
tactic. 
On the other hand, let us consider implementing Ping-Echo in 
the Pipes and Filters architecture pattern. Pipes and Filters 
consists of components that are connected and executed 
sequentially, with one-way communication from one component 
to another. The components operate autonomously; there is no 
central control. In order to implement Ping-Echo, a new 
component must be introduced. In addition, new connections 
must be provided to each of the Filter components. This also 
causes a change in the Filters’ behavior: they must now respond 
to asynchronous messages from the control component in a 
timely manner. These changes mean that significant work is 
required to implement Ping-Echo in this pattern; Ping-Echo is a 
particularly poor fit for the Pipes and Filters pattern. 
Because systems typically include more than one architecture 
pattern, one must consider all the architecture patterns when 
implementing a tactic: the tactic may impact some or all of the 
patterns. Architects must determine how and where in the 
architecture a tactic should be implemented in order to achieve 
the desired fault tolerance capability. 

Tactic implementation can impact architectural patterns in a 
number of ways. Table 1 from [16] shows the types of impact 
on a pattern’s components, sorted from low to high impact. 

Table 1. Types of changes to pattern components 

Type of 
Change 

Description Impact 

Implemented 
in 

Part of the tactic is 
implemented within a 
component, with no 
external change to the 
component. (A special 
case of Modify) 

Only the behavior 
of the component 
changes. Generally 
the easiest to 
implement. 

Replicates A component is 
duplicated, with little or 
no change to its 
behavior. Usually done 
for redundancy. 
(Specialization of Add.) 

Usually easy to 
implement. 

Add, in the 
Pattern 

A new component is 
added within the 
structure of the pattern 
(e.g., a layer is added in 

Generally easy or 
moderately easy to 
implement. 

the Layers pattern.) 

Add, out of  
the Pattern 

A new component is 
added that is not part of 
the pattern structure, 
causing the system to 
deviate from the 
original pattern (e.g., 
adding a monitor to 
Pipes and Filters.) 

Usually difficult to 
implement. Makes 
the pattern difficult 
to find, making 
maintenance more 
difficult. 

Modify The behavior and the 
structure of the 
component changes. 

Impact varies: 
some changes are 
trivial, but others 
are very difficult. 

 

The impact of a tactic on the connectors is similar: it can use the 
connector with no modifications, replicate the connector, 
modify the connector or require completely new connectors to 
be added. 

Other examples of architecture patterns modified by the 
implementation of fault tolerance tactics include the Layers 
pattern [21], and the C2 architecture pattern [7].  

The challenge to architects is to incorporate, in the system 
design, the tactics needed to achieve the desired levels of fault 
tolerance within the constraints of the architecture patterns. This 
involves making tradeoffs by selecting one or more of the 
following options: 

1. Alternate tactics to achieve the same fault tolerance goal 
may be selected to better fit in the architecture. 

2. In some cases, mainly early in architectural design, a 
different architecture pattern may be selected that better 
accommodates the desired tactics. 

3. Within an architecture that has multiple patterns, one will 
naturally attempt to implement the tactic where it best fits – 
where the components and connectors of the pattern(s) can 
support the tactic with minimal changes. This, however, is 
constrained by how the tactic will be used. For example, a 
redundancy tactic may replicate a component of a 
particular pattern; in this case the architect cannot choose 
which pattern to use to implement the tactic. 

4. Where no tradeoffs of patterns or tactics can be made, one 
must understand how the tactic will be implemented, even 
if it is not a good match. This helps one understand the 
implementation of the tactic. It can also help future 
developers understand why the architecture patterns will 
have been changed – to accommodate the tactics.  

In order for an architect to make these tradeoffs, the architect 
uses information about how the desired tactics are implemented 
in the architecture patterns – the interaction of the tactics with 
the patterns. We designate this as “tactic-pattern interaction 
information.” For a given tactic and pattern, it gives an 
estimated degree of implementation difficulty (on a five-point 
scale as described in [16],) as well as a description of how the 
components and connectors of the pattern must change to 
implement the tactic.  



The tactic-pattern interaction information for the Broker and 
Pipes and Filters patterns, two patterns that figure prominently 
in this paper, are attached in an appendix. 

3. RESEARCH QUESTIONS 
The research question is whether the knowledge of the 
interaction of fault tolerance tactics and architecture patterns 
help architects to make choices to optimally incorporate fault 
tolerant measures in the system architecture? More specifically, 
we questioned whether the tactic-pattern interaction information 
supports the architects in: 
1. choosing tactics that satisfy the fault tolerance 

requirements  
2. designing the tactics correctly within the patterns in the 

architecture? In other words are the necessary components 
and connectors added or modified, and are there any 
missing 

3. choosing tactic-pattern combinations that have the least 
impact on the architecture 

4. understanding the effort required to implement the tactics 

4. STUDY DESIGN 
We wished to gain insight about these questions from 
practitioners in order to begin to move beyond abstract 
speculation and to set the stage for future empirical research on 
the topic. Therefore, we performed exploratory research as 
described by Kitchenham et al [20]. Our study venue limited the 
size and composition of the participants, so we performed an 
informal study that is similar to a case study as described by 
Wohlin et al. [25]. We compared the effectiveness of 
architectural design using tactic-pattern interaction information 
against design without that information. 

The study compared two groups of participants. The participants 
were a group of attendees at the European Conference on 
Pattern Languages of Programming (EuroPLoP) who agreed to 
participate in the study. The ten participants were randomly 
divided into two teams, a control team and a study team. The 
participants did not know the purpose of the study or whether 
they were placed in the control or the study group. A check of 
the participants’ experience revealed that the experience with 
software development, architecture, patterns, and fault tolerance 
were roughly equal in each group. Participants had considerable 
development experience, and were highly familiar with patterns. 
They had limited experience with architecture patterns, and had 
low experience with fault tolerant software. Table 2 summarizes 
the experience of the participants. 

Table 2. Participant Demographics 

 Experience: 
Industry/ 
Academia 
(years) 

Architecture 
Experience 

FT    
Experience 

11 / 0 Strong Little 

10 / 0 Moderate None 

0 / 2 Some Little 

Study Team 

5 / 8 Moderate None 

1 / 4 Little Little 

Average 5.4 / 2.8 Moderate Little 

 

4 / 6 Some Little 

3 / 2 Some Little 

3 / 3 Little Little 

9 / 0  Strong None 

Control Team 

4 / 14 Strong Little 

Average 4.6 / 5.0 Moderate Little 

 
Each team was given a specification of a hypothetical system 
along with an initial architecture. The system represented 
control of an automated manufacturing assembly line, and 
involved managing numerous distributed robotic devices. 
Control moved sequentially through the robots (Pipes and 
Filters architecture pattern), while supplies were managed 
through an application of the Broker pattern. 

The teams were given four tasks to add specific fault tolerance 
measures to the system. They were asked to design the fault 
tolerance, and show the resulting architecture. The tasks were to 
be performed in order. The fault tolerance tasks involved the 
tactics from the following categories: 

1. Detection of a failed component (Tactic: Ping-Echo) 

2. Replacement of a failed component (Tactic: Spare) 

3. Recovery from erroneous actions (Tactic: Transaction-
Rollback) 

4. Detection and replacement of a failing component (Tactics: 
Process Monitor and Passive Redundancy) 

Other tactics might be used, such as Heartbeat instead of Ping-
Echo. 

The teams were not told which tactics to use, or even which 
category of tactics to use. However, each team was given 
descriptions of all the fault tolerance tactics from [2]. They had 
to choose which tactic best satisfied the task, and fit best in the 
architecture. 

The study team was also given descriptions of the interactions 
of the tactics and common architecture patterns (taken from [16] 
). They could use this additional information to find the tactics 
that best fit the architecture 

Each team was asked to create an architecture diagram that 
showed the architecture that incorporated all the tactics they 
used. The diagram should show all the necessary components 
and connectors. 

After the exercise, we analyzed the resulting architectures for 
the appropriateness of the design. For a given task, we checked 
to see whether the fault tolerance requirement was satisfied, 
whether the tactics used were correctly designed, whether the 
teams had selected the best tactics, and whether they showed 
understanding of the impact of their decisions on the 
architecture, as measured by the accuracy of their effort 
estimates. For example, if the Ping-Echo tactic was selected in 



the first task, the architecture must show a controlling 
component (preferably in the existing Broker component), and a 
communication link to each component, including those in the 
Pipes and Filters part of the architecture.  

We analyzed the results and compared our analyses for 
agreement. 

5. RESULTS 
We compared the results of the two teams We begin by 
discussing the overall design data. For each task, we analyzed 
the tactics selected and how the tactics were inserted into the 
architecture. 

Task 1 (Recommended tactic: Ping-Echo or Heartbeat) 

The study team used both Heartbeat and Exceptions. There may 
be a bit of overlap between the two (see [2]), but they can be 
complementary. The Heartbeat was controlled by the existing 
monitor component. In addition, they replicated the monitor 
component as well as the Broker component, using Active 
Redundancy. They included the necessary connectors for the 
Heartbeat, as well as for transmitting the Exceptions. The use of 
active replication increases the likelihood of non-stop 
processing (availability), and is recommended. 

The control team used both Heartbeat and Ping-Echo, as well as 
Exceptions. This is redundant. They created a monitor 
component, but did not make it part of the existing Broker 
component. Their connections to each component were not 
explicit. They also used Voting, apparently to arbitrate between 
results from the Heartbeat and the Ping-Echo. This is not a valid 
use of Voting, and in fact, wouldn’t even work, since Voting 
requires three or more voters. In addition, the design of the 
Voting tactic was not clear in the architecture. 

Task 2 (Recommended tactic: Spare) 

Both the study and control teams used Spare, and used the 
Broker component to manage it. This is a very good fit. 

Task 3 (Recommended tactic: Transaction Rollback) 

We note that implementing Transaction Rollbacks in a Pipes 
and Filters architecture is particularly difficult and troublesome. 

The study team used the Exceptions, which they already had 
from Task 1. They considered Transaction Rollback, but 
rejected it. 

The control team also used Exceptions, which they added at this 
time. However, they did not fully add the necessary connections 
to make it work; it wasn’t clear what component was 
responsible for handling the Exceptions. So although they used 
the same tactic as the study team, their solution was incomplete. 

Task 4 (Recommended tactics: Passive Redundancy and 
optionally Process Monitor) 

The study team used Passive Redundancy. Instead of using a 
Process Monitor to manage it, they connected it directly to the 
active component. In this scenario, the active component is 
capable of assessing its own health, so it could notify the 
redundant component. This is good and elegant. 

The control team used an unnamed form of redundancy. The 
biggest problem, though, was that the redundant component was 
not connected to anything. Since the connections are the key 
difficulties, their proposed architecture portends problems when 
they actually implement this feature. 

Table 3 summarizes the tactics used by each team for each task. 
It includes notes about connections. 

Table 3. Tactic Use Summary 

Task Suggested 
Tactics 

Study Team Control Team 

1 Ping-Echo 
or Heartbeat 

Heartbeat, 
Exceptions, and 
Active 
Redundancy 
(connections 
good) 

Heartbeat, Ping-
Echo, Exceptions, 
and Voting 
(connections 
unclear) 

2 Spare Spare, good 
connection 

Spare, good 
connection 

3 Transaction 
Rollback 

Exceptions 
(already in use), 
considered 
Transaction 
Rollback 

Exceptions 
(connections and 
functionality 
missing) 

4 Passive Re-
dundancy, 
Process 
monitor 
(optional) 

Passive 
Redundancy 
(direct 
connection; 
process monitor 
not needed) 

Passive 
Redundancy 
(connections 
unknown) 

 
We follow this in the next sections with a discussion of the data 
in light of the four research questions posed. 

5.1 Satisfaction of FT Requirements 
The question is whether the tactics selected satisfy the fault 
tolerance requirements of each task. We can summarize the 
results as shown in Table 4. 

Table 4. Satisfaction of FT Requirements 

Task Study Team Control Team 

1 Yes Yes 

2 Yes Yes 

3 No, use of exceptions 
does not easily meet 
the need to roll back 
operations. 

No, use of exceptions does 
not easily meet the need to 
roll back operations. 

4 Yes Probably: however, lack of 
connection information made 
it unclear whether the 
requirements were 
completely fulfilled. 

 
Here we see that both teams were nearly identical in meeting the 
fault tolerance requirements introduced in each task. In each 
case except Task 3 they selected one or more tasks that fulfilled 



the requirements. In Task 4, the control team did not show how 
the passively redundant component would be triggered to take 
control, so there is possibly a deficiency in meeting the 
requirement. However, the main problem is in design 
correctness, dealt with in the next question. 

5.2 Design Correctness 
The question concerns whether the tactics are designed correctly 
within the context of the architecture patterns used and there are 
no missing components or connectors. Strength in this area 
indicates an understanding of how a tactic must be implemented 
in the patterns used in the system. The following table 
summarizes the correctness of each task by each team. 

Table 5. Correctness of Tactic Design 

Task Study Team Control Team 

1 Correct Connectors for all tactics missing, 
and Voting design is wrong. 

2 Correct Correct 

3 Correct Missing connectors for 
Exceptions 

4 Correct Connection to redundant 
component entirely missing 

 
Here we see that the study team generally did better than the 
control team. Task 1 was particularly problematic for the control 
team, and Task 4 had significant omissions.  

5.3 Optimal Tactic Selection 
Here we examine whether the tactics selected were the best 
choices, given the architecture patterns used. Strength here 
indicates an understanding of the impact of the tactics on the 
patterns, and tradeoffs of tactics. 
 

Table 6. Optimal Tactic Selection 

Task Study Team Control Team 

1 Heartbeat is 
appropriate; 
Exception is probably 
not needed  

Use of Heartbeat, Ping-Echo 
and Exceptions is 
unnecessary. Use of Voting 
is not called for. Solution far 
too complex. 

2 Yes Yes 

3 If Exceptions really 
met the requirement, 
it would be a good 
alternative to rollback 

If Exceptions really met the 
requirement, it would be a 
good alternative to rollback 

4 Yes, in fact superior 
to suggested solution. 

Missed needed connections; 
indicates lack of 
understanding of tactic’s 
implementation in the 
patterns. 

 
We see in table 6 that the study team was slightly better in Task 
4, and significantly better in Task 1. 

5.4  Understanding of Effort 
This question relates to the participants’ understanding of how 
the tactics are to be implemented in the patterns used in the 
architecture. For this we asked the two groups to estimate the 
difficulty of implementing the task, and compared it against 
evaluators’ consensus of the difficulty. The groups scored the 
difficulty on a scale of 1 to 5, with 1 being the easiest. We then 
evaluated the difficulty of implementing the tactics that each 
group selected for each task, and rate them on the same scale of 
1 to 5. A small difference between a team’s estimate and the 
evaluators’ estimate indicates a good understanding of what is 
required to implement the tactics in this architecture. 
The difficulty estimates for each team are shown in Table 7. 

Table 7. Difficulty Estimates, Study Team 

Task Evaluators’ 
Estimate 

Study Team’s 
Estimate 

Difference 

1 4 5 +1 

2 1 5 +4 

3 1 1 0 

4 1 2 +1 

Average 
Magnitude 

  1.5 

 
We see that except for Task 2, the control teams’s estimates 
were close to the evaluators’ estimates, although they were 
consistently higher. 
Table 8 shows the difficulty estimates for the control team. 

Table 8. Difficulty Estimates, Control Team 

Task Evaluators’ 
Estimate 

Control Team’s 
Estimate 

Difference 

1 5 3 -2 

2 1 3 +2 

3 2 4 +2 

4 1 2 +1 

Average 
Magnitude 

  1.75 

 
The estimate of 5 for task 1 may actually be an understatement; 
the proposed solution here would be very difficult and 
troublesome to implement correctly. We see a somewhat larger 
average difference than for the study team. This indicates they 
understood the impact of implementing the tactics somewhat 
better than the control team. 
In all four questions, the study team did as well or better than 
the control team did. 

5.5 Limitations 
We note that there are several limitations that either threaten the 
validity of the study or limit its applicability. They are as 
follows: 

1. The sample size was too small to draw any statistically 
significant conclusions. There were two groups. An 



alternative would have been to have each person work 
individually; however, software architecture of non-trivial 
systems is generally a team effort. Individual architecture 
work would have thus been less realistic. As a result, we 
chose group assignments, and state our conclusions as 
observations rather than statistically established trends. 

2. Analysis of the data was performed by ourselves, and not 
validated by independent researchers. Therefore, there may 
be inadvertent bias in favor of a positive result. 

3. The participants had limited experience with the design of 
fault-tolerant systems. In fact, we observed that the lack of 
fault tolerance experience behavior had some impact on 
designs (noted in section 5). We therefore limit our 
recommendations to those with limited experience in fault 
tolerance. 

6. INTERPRETATION OF RESULTS 
In the designs, the first question is whether the tactics selected 
meet the needs of the fault tolerance added in the task. We see 
that for the most part, both groups selected tactics that would 
satisfy the task. The one exception was Task 3, where both 
groups used Exceptions rather than Transaction Rollback. This 
may be because the system did not have natural transactions, 
and therefore, Transaction Rollback did not seem like a good fit. 
We note that the study team did consider it and rejected it. The 
fact that both groups selected the same tactic supports the notion 
that it was an artifact of the problem presented. Overall, the 
success by both groups indicates that they understood how the 
tactics would implement fault tolerance. This was notable in that 
they had little fault tolerant design experience. 

The second question is how well the tactics selected met the 
architecture. Tactics used by both groups necessarily have the 
same impact on the architecture, so we need examine only the 
tactics uniquely selected by each team. The study team selected 
Active Redundancy for Task 1. This is an acceptable match for 
the architecture (and the group included it appropriately in the 
architecture).The control team selected Voting. Voting can be a 
good match for the Pipes and Filters architecture, but it was not 
used correctly. In addition, it was not even a good fit for the 
application under design. Its use demonstrated a lack of 
understanding of how it would be implemented in the 
architecture patterns present, and its impact on those patterns. It 
appears that the control team suffered from lack of knowledge 
of the tactic-pattern interaction that the study team was given. 
This supports the hypothesis that such knowledge helps 
architects come up with a correct design. 

A related question is how well the architectures accounted for 
the implementation of the tactics selected. In particular, how are 
components modified or duplicated, are additional components 
added, and are connectors between components either modified 
or added as needed? Architecture diagrams generally do not 
show changes in behavior within components or connectors, but 
readily show new and replicated components, as well as new 
connectors. Incorrect or missing components and connectors in 
an architecture diagram are an indicator of trouble – 
implementation is likely to be more troublesome than 
anticipated. It may indicate that the architects did not consider 
or even understand the components and their interactions. 

In our study, the architecture produced by the study team 
consistently showed all the components and connectors needed 
to implement the tactics they selected. In contrast, the 
architecture produced by the control team was missing several 
connectors that were needed to implement their selected tactics. 
This is a significant omission, as the connections require 
changes to the all components involved in the connection. Such 
changes can involve timing (such as ping-echo responses) or 
synchronization (such as responses to exceptions), thus the 
changes may be significant. It appears that the tactic-pattern 
interaction information may have helped the study team 
consider the required connections more thoroughly. This tends 
to support the hypothesis that such knowledge helps architects 
come up with a correct design. 

One additional observation concerning the goodness of design 
concerns “false paths” – design alternatives that were 
considered but rejected. Jansen et al. consider this an important 
part of architectural knowledge – it is part of the rationale for 
making architectural decisions [19]. In our study, we attempted 
to quantify the number of alternatives considered and rejected, 
however we slipped up and did not measure it consistently. We 
did observe, however, that the study team considered and 
rejected numerous alternatives (such as their consideration of 
transaction rollback in Task 3). This leaves an open question of 
whether tactic-pattern interaction information can help 
architects by helping them consider (and reject) many 
alternatives. This is probably best understood through studies 
that include interviews of the subjects, to learn how alternatives 
were considered. 

One additional observation was notable:  Both groups tended to 
over-engineer the solutions. They tended to use more tactics 
than was really necessary. (For example, the control group used 
both Ping-Echo and Heartbeat in the first task.) There are at 
least two possible motivations for this behavior. First, the 
experimental setting encouraged the participants to do the best 
job they could; therefore, when in doubt, they added more 
tactics. We saw evidence of this attitude in each group: the 
study team added redundancy to a component that wasn’t really 
needed in the first task. And the control team added the Voting 
tactic more or less gratuitously. We surmise that this motivation 
is significantly less in real project settings. 

The second possible reason is that virtually all the participants 
had little experience designing fault-tolerant software, and the 
tactics were somewhat new to them. Therefore, they had a 
tendency to use as many as they could. We have observed a 
similar phenomenon with respect to software design patterns 
before – when people are first introduced to design patterns [9], 
they tend to overuse them, until they gain more experience with 
the patterns. Similarly, as people gain fault tolerance 
experience, they might avoid overuse of tactics. 

7. Related Work 
Various methods of architectural design (synthesis) have been 
proposed; some of the most prominent methods have been 
summarized by Hofmeister et al [17]. All these methods 
consider important quality attributes including fault tolerance. 
The Attribute-Driven Design method specifically focuses on 
using important quality attributes as drivers for the architecture 
[2]. The information of how fault tolerance tactics and 



architecture patterns interact can be used in any of these 
architecture design methods to help architects make informed 
decisions. This study begins to explore how this can be done. 

There are also several methods of architectural evaluation; such 
as ATAM [6]. Most architectural evaluation methods consider 
quality attributes, and the tactic-architecture interaction 
information can also be useful to identify potential architectural 
issues. This study does not concern itself specifically with 
architectural evaluation, but may begin to establish the validity 
of such data. 

Architectures can be considered to be a set of design decisions 
[3]. Tactic-pattern interaction information can enhance the 
rationale information behind such decisions. 

Hanmer has written a collection of patterns for developing fault-
tolerant software [12]. These are not architectural patterns, such 
as are described above, but are more like the tactics described 
here. Similarly, Utas describes various methods of achieving 
fault tolerance [24]. These are analogous to the fault tolerance 
tactics described here, and in fact, several are the same. The 
measures described in these works also have architectural 
implications. This work provides a model for understanding the 
impact of these measures on architecture patterns. 

In [16], we described the nature of the impact of fault tolerance 
tactics on the architecture patterns in a system. We categorized 
the types of impact, (e.g., modification of existing components, 
replication of components, adding new components) and 
propose a scale of impact of implementing tactics on the 
architecture patterns. We suggested such information might be 
useful to architects; this study begins to investigate how it can 
be useful. 

In the past we described a taxonomy of nearly all of the well-
known architecture patterns [1]. In it we show several patterns 
that can be used as alternatives to each other. This information, 
coupled with information about the impact of implementing 
various tactics in these patterns, can potentially provide 
architects with information about the benefits and liabilities of 
using alternate architecture patterns. This study can help 
establish its usefulness. 

8. CONCLUSIONS AND FUTURE WORK 
This limited exploratory study suggests several issues that are 
worth further study.  
The study suggests that the design of tactics can impact the 
architectural design of a system, and perturb the architecture 
patterns used therein. It appears that understanding of how they 
interact is useful and important in architectural design. We 
observed that architecture teams with this information appear to 
be somewhat better at designing fault tolerance measures in a 
system than those without the information. In particular, they 
can better select tactics that are compatible with the architecture. 
They also better understand the impact of the tactics in terms of 
the structure as well as the expected difficulty of 
implementation. Since this was a limited study of a small set of 
people who have architectural experience, but have limited fault 
tolerance experience, we recommend that further study be done 
with individuals with more fault tolerance experience. It may be 
particularly useful to study those who have fault tolerance 

experience, but less architecture experience, to determine how 
helpful this information is to neophyte architects. 
We had positive results with a small set of patterns and fault 
tolerance tactics. We propose that studies be undertaken with 
large sets of fault tolerance measures (for example, [12] and 
[24]), and patterns (for example, [5] and [1]). Ideally, this 
should become a library of architecture patterns and fault 
tolerance tactics, and how they interact. This could be a useful 
reference for architects of fault tolerant software. 
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10. APPENDIX 
The following is the tactic data for the Pipes and Filters and 
Borker patterns. 

Pipes and Filters 

1. Fault Detection 

a. Ping/Echo: - -: A central monitoring process must be 
added, which must communicate with each filter. Each 
filter must be modified to respond in a timely manner to 
the ping messages. This not only affects the structure of 
the pattern, but may conflict with realtime performance. 
(Add out of the Pattern, along with moderate changes to 
each filter component) 

b. Heartbeat: - -: Similar to ping/echo. It is a bit easier to add 
the heartbeat generating code to the filters, because they 
don’t have to respond to an interrupt. However, each filter 
must still send the heartbeat in response to a timer. (Add 
out of the Pattern, along with moderate changes to each 
filter component.) 

c. Exceptions: - -: The problem here is who should catch an 
exception when one is thrown. If the exception can be 
completely handled within a single filter component, then 
there is no problem. However, if the filter cannot fully 
handle the exception, who needs to know? Depending on 
the application, it may be the subsequent filter (simple 
modifications needed to the filters), or a central process 
might need to know (Add out of the Pattern, along with 
moderate changes to each filter component.) 

2. Recovery – Preparation and Repair 

a. Voting: + +: To implement voting, create different filters 
as the voting components. Create the receiving component 
(the voter) as a filter. To distribute the input to the 
different voting filters, use a pipe that has one input and 
multiple outputs (e.g., the Unix “tee” command.) (Add in 
the Pattern, but the work besides using different 
algorithms in the different filters is very straightforward; 
almost trivial.) 

b. Active Redundancy: + +: Replicate filter components. 
Send the same stimuli to redundant filters. Use a pipe or a 
final filter to receive the results from the redundant filters. 
You can arrange it so you take the first one finished, 
which improves performance; a common goal in Pipes and 
Filters.  (Replicate, plus add a trivial pipe or filter to 
handle the results, as well as a distribution pipe, as noted 
in Voting. As in voting, the adds here are trivial.) 

c. Passive Redundancy: -: Replicate the filter you are 
backing up. Then modify the primary filter to send 
occasional updates to the backup filter. The backup filter 
must be modified to receive the updates, rather than the 
normal input data. A pipe or trivial filter is needed to 
handle the results, just as in Active Redundancy. This can 
be done within the pattern, but Active Redundancy is 



generally a superior tactic, and it fits so well, that this 
pattern is not recommended with Pipes and Filters. 
(Replicate, plus significant changes to the filters.) 

d.  Spare: +: Set up a device as the spare, with the ability to 
run as any of the different filters. Create a new filter that 
handles distribution of work. It must detect when a filter 
does not respond to sending work (e.g., did the data write 
fail), and then initialize the spare as that kind of filter. 
(Add in the pattern, but the new filter is not trivial.) 

3. Recovery – Reintroduction 

a. Shadow: +: In Pipes and Filters, Shadow is implemented 
similarly to Voting. In this case, the receiving component 
checks the results from the shadow against the results of 
the primary filter to see if they are correct. It may be 
necessary to communicate the state of the shadow filter 
back to the filter that distributes the work. Note that the 
shadow filter itself should need no changes. (Duplication 
with simple Add in the Pattern, plus possible small 
Modify to two filter components.) 

b. State Resynchronization: - -: The biggest problem with 
this tactic is filters should not have states except within 
processing of one piece of data. And in that case, it 
usually makes most sense to restart processing of that data 
from the beginning. If you must to implement this tactic, 
define states for each filter and create a mechanism to 
restore a filter to the proper state when it comes back up. 
That may require a monitoring process. (Major changes to 
components, plus possible Add out of the pattern.) 

c. Rollback: - -: Checkpointing is easy to do. However, once 
the data passes to the next filter, it is extremely hard to 
undo it -- it is gone. If you must use it, use a monitoring 
process and a protocol of checkpoints to ensure the 
integrity of the data at the end of each filter. (Add out of 
the pattern, plus major changes to components.) 

4. Prevention 

a. Removal from Service: -: Use a monitoring process to 
decide when to remove a filter from service. (Add out of 
the pattern.  Minor changes may be needed for 
reconfiguration.) 

b. Transaction: ~: The first filter might create the 
transactions. However, filters work more naturally on 
streaming data than on transaction-oriented data. 

c. Process Monitor: -: Use a monitoring process to detect 
when a filter fails, and reconfigure the system. (Add out of 
the pattern.  Minor changes may be needed for 
reconfiguration.) 

Broker 

1. Fault Detection 

a. Ping/Echo: + +: The Broker component can implement a 
ping/echo and can even have a message serve double duty 
as a request and as a ping message. This is both efficient 
and easy to implement. (Implemented in the Pattern) 

b. Heartbeat: +: As in ping/echo, the Broker is the monitor 
component. The other components must implement a 

heartbeat mechanism, with messages independent of the 
normal control messages. (Minor modifications to 
components needed.) 

2. Recovery – Preparation and Repair 

a. Voting: + +: The broker distributes work to multiple 
servers, acts as the arbiter among them. (Implemented in 
the pattern. Different voting components are implemented 
as server components.) 

b. Active Redundancy: + +: The broker component provides 
a natural mechanism for distributing the same messages to 
redundant servers, and management of the swap to the 
redundant server. Servers might be replicated, or that 
might be done already. (Implemented in the Pattern.) 

c. Passive Redundancy: +: The Broker component manages 
updating the spare with the active’s state. Active 
Redundancy is such a good fit that it is recommended over 
this tactic. However, it is a good fit for duplicating the 
Broker component. (Minor modifications to the active and 
backup components.) 

d. Spare: + +: If the system has multiple servers with 
different responsibilities, then the broker component 
manages bringing in a spare for any of the failed servers. 
(Implemented in the pattern; a few minor modifications 
may be needed.) 

3. Recovery – Reintroduction 

a. Shadow: + +: The broker component is a natural place for 
monitoring servers that return to service. The broker can 
keep track of the health of the servers, and mark a server 
as a shadow until it returns to full operation. 
(Implemented in the pattern) 

b. State Resynchronization: + +: When a server comes back 
into service, the Broker component can send it state 
information to synchronize it. (Implemented in the 
pattern.) 

c. Rollback: + +: Broker-controlled systems tend to be 
transaction-oriented. The actual rollback happens within 
the server components, while the control of rollback may 
be within the server, or in the Broker, depending on the 
application. (Implemented in the pattern.) 

4. Prevention 

a. Removal from Service: + +: The broker component can 
act as an arbiter for the server, and remove it from service 
if it detects error conditions. (Implemented in the pattern.) 

b. Transaction: + +: Broker systems tend naturally to be 
transaction-oriented. The units of transaction would be 
defined in terms of work done on the server. 
(Implemented in the pattern.) 

c. Process Monitor: + +: It is natural for the broker 
component to detect if a server fails and restart it. 
(Implemented in the pattern.) 

 


