
Model-Driven and
Pattern-Based Integration of
Process-Driven SOA Models

Uwe Zdun and Schahram Dustdar
Distributed Systems Group
Information Systems Institute
Argentinierstrasse 8/184-1, A-1040 Wien
Austria
E-mail: {zdun|dustdar}@infosys.tuwien.ac.at

Abstract Service-oriented architectures (SOA) are increasingly used in the context
of business processes. However, the modeling approaches for process-driven SOAs
do not yet sufficiently integrate the various kinds of models relevant for a process-
driven SOA – ranging from process models to software architectural models to software
design models. We propose to integrate process-driven SOA models via a model-
driven software development approach that is based on proven practices documented
as software patterns. We introduce pattern primitives as an intermediate abstraction
to precisely model the participants in the solutions that patterns convey. To enable
model-driven development, we develop domain-specific modeling languages for each
kind of process-driven SOA model – based on meta-models that are extended with the
pattern primitives. The various process-driven SOA models are integrated in a model-
driven tool chain via the meta-models. Our tool chain validates the process-driven
SOA models with regard to the constraints given by the meta-models and primitives.

Keywords: SOA, Process-Driven SOA, Software Patterns, Services Modeling

Reference to this paper should be made as follows: . . .

Biographical notes: Uwe Zdun is an assistant professor at the Vienna University
of Technology. His research interests include software patterns, software architecture,
SOA, distributed systems, language engineering, and object orientation. He received
his doctoral degree in computer science from the University of Essen in 2002, and his
his habilitation degree (venia docendi) from Vienna University of Economics and BA
in 2006. He is coauthor of the books Remoting Patterns (John Wiley & Sons, 2004)
and Software-Architektur (Elsevier/Spektrum, 2005).

Schahram Dustdar is a Full Professor for Internet Technologies at the Distributed
Systems Group, Information Systems Institute, Vienna University of Technology (TU
Wien) where he is director of the Vita Lab and Honorary Professor of Information
Systems at the Department of Computing Science at the University of Groningen
(RuG), The Netherlands. He received his M.Sc. (1990) and PhD. degrees (1992) in
Business Informatics (Wirtschaftsinformatik) from the University of Linz, Austria. In
April 2003 he received his habilitation degree (venia docendi).

1 INTRODUCTION

Many service-oriented architectures (SOA) provide a ser-
vice composition layer that introduces a process engine as
the top-level layer (cf. Zdun et al. (2006)). Services real-
ize individual activities in the process. This kind of ar-
chitecture is called process-driven SOA. The main goal of
process-driven SOAs is to increase the productivity, effi-
ciency, and flexibility of an organization. This is achieved

by aligning the high-level business processes with the tech-
nical IT services. That is, the business goals get closer
integrated with the IT architecture.

One of the most important characteristics of SOAs
suggests heterogeneity of technologies and integration
across vendor-specific technologies (cf. Vinoski (2003)).
This, however, yields an important challenge for model-
ing process-driven SOAs: Many modeling domains need

Copyright c© 200x Inderscience Enterprises Ltd.

1

to be considered, and the different kinds of models need to
be integrated. Among many other modeling domains, we
need to consider component architectures, message flows,
transactions, security, workflows/business processes, pro-
gramming language (snippets), business object designs,
and organizational models. Application domains addition-
ally introduce domain models, such as banking or insur-
ance domain models. Also, implicit or explicit models for
integrating existing legacy systems are needed, sometimes
using different concepts than the rest of the SOA.

In other words, a central challenge for modeling process-
driven SOAs is that we generally need to integrate different
kinds of models and abstractions. This problem is chal-
lenging because so far there is no modeling approach for
integrating all these kinds of models.

In this paper, we propose a concept for a model-driven
tool chain that addresses these challenges through model-
driven software development (MDSD) (cf. Stahl & Voel-
ter (2006), Greenfield & Short (2004)). Our concept is
based on the precise specification of the models in domain-
specific languages (DSL) which are themselves precisely
specified by meta-models and constraints on them. The
code in the executable languages is generated from the
models expressed in the DSLs. That is, the integration
issues raised above are solved at the meta-model level.

Our tool chain and MDSD concepts break the integra-
tion issues down to the problem of finding adequate meta-
models for representing all concerns to be modeled in the
various modeling languages used in the modeling domains.
In this paper, we propose to develop the meta-models ac-
cording to proven practices that can be found in exist-
ing process-driven SOAs. Our assumption is that using
proven practices as a foundation for meta-modeling leads
to a close match between the modeling abstractions and
the real world requirements.

In our approach, software patterns are used to de-
scribe the proven practices. Software patterns capture
reusable design knowledge and expertize that provides
proven solutions to recurring software design problems that
arise in particular contexts and domains (cf. Schmidt &
Buschmann (2003)). A software pattern, however, is de-
scribed in an informal form and cannot easily be described
formally, e.g., by using a parameterizable, template-style
description. Hence, as such, patterns are not usable as el-
ements of meta-models. We remedy this problem by intro-
ducing an intermediate abstraction, called pattern primi-
tives. A pattern primitive is a fundamental, precisely spec-
ified modeling element in representing a pattern.

Our general approach to apply pattern primitives for
process-driven SOAs is to define meta-models for all kinds
of models that are needed, and specify the pattern primi-
tives as extensions of these meta-models. The connection
between the various kinds of models and the validation of
the models – with regard to model integrability and con-
sistency in and across the modeling domains – is the main
task of our model-driven tool chain concepts. To demon-
strate our approach, we use a precisely specified subset of
UML2 and OCL to depict the various refinements of pro-

cesses in process-driven SOA models. We use the precisely
specified subset of UML2 and OCL only for demonstra-
tion purposes. Any other precisely specified meta-model
can be used as well. “Precisely specified” means in this
context that no informal elements are part of the meta-
models or constraints (like the informal constraints used
in some parts of the UML standard) and the semantics
of the meta-model or constraint elements are specified in
the generator – to define precisely how models need to be
validated and how valid code can be generated.

In this paper, we first provide the background on MDSD
and patterns/pattern primitives in Section 2. Next, in Sec-
tion 3 we explain our model-driven tool chain to give an
overview of our approach. In Section 4 we explain how we
use meta-models to integrate process-driven SOA models.
In Section 5 we explain the pattern primitives approach for
process-driven integration of services using flow abstrac-
tions as the primary modeling domain. In Section 6 we
demonstrate how architectural abstractions – as one exam-
ple of another modeling domain – can be integrated with
the flow models. We explain all primitive models with run-
ning examples from a pattern language for process-driven
integration of services, which we have implemented in our
MDSD tool chain to validate our approach.

2 BACKGROUND ON MDSD

2.1 Model-driven Software Development

Our approach to model-driven software development
(MDSD) (cf. Stahl & Voelter (2006), Greenfield & Short
(2004))1 for process-driven SOAs is based on the notion of
domain-specific languages (DSL) for modeling the various
types of models. Domain-specific languages are “small”
languages that are tailored to be particularly expressive in
a certain problem domain. The DSL describes knowledge
via a graphical or textual syntax (the DSL’s concrete syn-
tax in the terminology of Greenfield & Short (2004)), which
is tied to domain-specific modeling elements through a pre-
cisely specified language meta-model (the DSL’s abstract
syntax in the terminology of Greenfield & Short (2004)).
The meta-model can be instantiated in concrete applica-
tion models. The semantics of the DSL are defined via un-
ambiguous specifications of model-to-model or model-to-
code transformations. There are different ways to specify
transformations, such as transformation rules, imperative
transformations, or template-based transformations.

The meta-models presented in this paper are based on
the UML2 meta-model (and extensions of it): For example
we use UML2 activity diagrams to model flow abstractions
and UML2 class/component diagrams to model object-
oriented design and architecture models. To make the
UML2 meta-models usable in our approach, we first spec-
ify a precise sub-set of the UML meta-model (using model

1Please note that the OMG’s MDA proposal is one specific MDSD

approach that has some notable differences to our MDSD approach –

especially in its focus on interoperability and platform independence.

2

elements, transformations, and constraints). We use the
UML only for demonstration purposes (and because it was
required in some of our projects); any other meta-models
can be used equally. For instance, if a project goal is to
generate BPEL code using the full BPEL specification, it is
advisable to use a DSL that is closer to BPELs constructs
to minimize potential transformation problems.

Application
Model

DSL
Concrete Syntax

Meta-Model
(DSL Abstract Syntax)

Meta-Meta-
Model

based on

defined in

based on

*

Transformation

1

*

1

represents

1

*

* 1

use defined using

**

Schematic
Recurring Code

produces

1..

1..* 1..*

Individual Code
uses

* *

Figure 1: Relations of Artifacts in MDSD

Meta-models are defined in terms of a meta-meta-model.
In UML (and the OMG’s MDA proposal), for instance, this
is MOF. Most MDSD tools support their own meta-meta-
model, which basically represents a mapping from meta-
model definitions to the implementation of the MDSD tool
chain. Below, in the examples from our prototype, we use
a simple meta-meta-model to define both the UML2 meta-
model and pattern primitives extensions. It is not particu-
larly important for our approach, which meta-meta-model
is used, there just must be some way to specify the rela-
tionships and transformations between a meta-model and
the target models/code of the transformations. The meta-
meta-model is not visible to developers who build applica-
tion models, but only to those who build meta-models.

The ultimate goal of the transformations in MDSD tools
is to generate code in executable languages, such as pro-
gramming languages or process execution languages. The
MDSD tools are used to generate all those parts of the exe-
cutable code which are schematic and recurring, and hence
can be automated. Of course, some code must be hand-
written either because it is individual code for a system
or the semantics of the code are not fully covered by the
DSLs (yet). The individual code and the generated code
use each other and interact through well defined interfaces.

Figure 1 summarizes the relations of artifacts in MDSD.

2.2 Software Patterns and Pattern Primitives

Software patterns and pattern languages have gained wide
acceptance in the field of software development, because
they provide systematic reuse strategies for design knowl-
edge (cf. Schmidt & Buschmann (2003)). A pattern en-
codes proven practice in form of a reusable design solution
to a recurring design problem. A pattern language is a
collection of patterns that solves the prevalent problems in
a particular domain and context. Patterns informally de-
scribe many possible variants of one software solution that
a human developer or designer can recognize as one and
the same solution.

Even though these properties of the pattern approach
are highly valuable in the software design process, they also
make pattern instances hard to trace in the models and im-
plementations. To overcome this problem, we introduced
an approach to document precisely specified primitive ab-
stractions that can be found in the patterns (cf. Zdun &
Avgeriou (2005)). Documenting pattern primitives means
to find precisely describable modeling elements that are
primitive in the sense that they represent basic units of
abstraction in the domain of the pattern. Our original
pattern primitives concept presented in Zdun & Avgeriou
(2005) is only targeted at modeling architectural patterns.
In this realm, basic architectural abstractions like com-
ponents, connectors, ports, and interfaces are used. An
interesting challenge in describing the pattern primitives
for the patterns of process-driven SOA is that this area
requires various design and architecture concepts, as well
as various design and implementation languages.

We specify an extension of a metaclass for each elicited
primitive, using the UML’s extension mechanisms: stereo-
types, tag definitions, and constraints. We use the Object
Constraint Language (OCL) to precisely specify the con-
straints of the primitives.

3 MDSD FOR PROCESS-DRIVEN SOA

3.1 Model-driven Tool Chain

Our approach requires a model-driven tool chain that
loosely follows an architecture similar to our tool chain
depicted in Figure 2. We mainly use UML2 models that
are extended with UML2 profiles for modeling the pattern
primitives as inputs. These UML2 models can either be
developed with UML tools (with XMI export) or directly
in the textual DSL syntax. If a UML tool is used, the XMI
export is transformed into the textual DSL syntax.

We use Frag (cf. Zdun (2006, 2005)) as the syntactic
foundation of the textual DSLs and for defining the meta-
models of the DSLs. Frag’s main goal is to provide a tai-
lorable language. Among other things, Frag supports the
tailoring of its object system and the extension with new
language elements. Hence, Frag provides a good basis for
defining a UML2-based textual DSL because it is easy to
define a meta-meta model on top of which we can define the
UML meta-classes. Frag automatically provides us with a
syntax for defining application models using the UML2
meta-classes. In addition, we have defined a constraint
language which follows the OCL’s constructs.

The model validator gets all input models and validates
the conformance of the application models to the meta-
models. It also checks all OCL constraints, in particular,
the constraints given by the pattern primitive definitions.

After the model is validated it is transformed into an
EMF model, which is understood by the code generator.
We then generate code in executable languages using trans-
formation specifications provided to the code generator.

3

UML2 Activity
Diagrams:

Process Flow

UML2 Activity
Diagrams:

Message Flow

UML2 Component
Diagrams:

Architecture

UML2 Class/Object
Diagrams:

Business Objects

Frag UML2
Meta-Model

Individual
Code

Frag Syntax-Based
DSLs

Frag UML2 Profile:
SOA Pattern Primitives

XMI2Frag
Transformation Plugin

Frag2EMF
Transformation Plugin

Frag Model Validator Code Generator

Transformation
Rules/Templates

System Code

Figure 2: Tool Chain Overview

3.2 Model Integration Concepts: Meta-meta-

model Based Integration

The model-driven concepts described in the previous sec-
tion only concentrate on the individual modeling domains.
For integration of the models, we propose further integra-
tion concepts that extend the general model-driven ap-
proach. Because they are independent of external tools,
languages, or models, in our concept, the central point of
integration are the meta-models that we need to define for
the DSLs. Also, they are located at the central place of the
model-driven architecture: at the point in the tool chain
where all different models are assembled.

We propose to define the meta-models on top of one com-
mon meta-meta-model. The meta-meta-model can be very
simple, or more elaborate like MOF. The most important
criterion for the meta-meta-model is that the elements of
the meta-meta-model allow the model validator to check
models against the meta-models. In addition, it should be
possible to define a constraint language using the meta-
meta-model, with which models can be constrained at the
meta-level and hence validated at the model level.

MMM

Frag

Object

ConstrainedClassConstraintChecker

Class

attribute

AssociationEnd

Association

ends

CompositionAggregation

EnumStereotype

FCL

FCL

Dependency

class

extends

supplier

client

«instanceOf»
«instanceOf»

«instanceOf»

«instanceOf»

«use»
«use»

Figure 3: Meta-meta-model Excerpt

As an example, Figure 3 shows the relevant excerpt of
the meta-meta-model that we use in Frag to define pre-
cisely specified sub-sets of the UML2 meta-model. This
meta-meta-model is very simple and reuses Frag’s language
features wherever possible. It is derived from the most gen-
eral class in the Frag object system: Object. The meta-
meta-model classes are sub-classes of ConstrainedClass

which allows us to add OCL-style constraints to classes.
The convenience class ConstraintChecker looks up all
ConstrainedClass instances via reflection and checks the
constraints. Constraints are specified in a language simi-
lar to OCL (defined using the class FCL). The meta-models
are defined using Class. We introduce also a number of
relationships between classes: Dependencies, Associations,
Compositions, and Aggregations. In addition, typed at-
tributes can be specified. Please note that we do not de-
fine the generalization relationship, because multiple inher-
itance is suitably predefined by Frag and we can reuse this
implementation. The Stereotype class defines the UML2
extends-relationship, which is used to extend meta-classes.
Enum is a convenience class to define Enumeration types.

3.3 Model Integration Concepts: Proven Prac-

tices Based Integration

Besides the common meta-meta-model concept, we use
proven practices descriptions as the second central model
integration concept: As explained above, we use software
patterns to describe proven practices of process-driven
SOAs. Patterns have two characteristics which make them
useful for model integration across modeling domains:

• Patterns describe recurring solutions in a particular
problem domain in an informal and holistic manner.
Hence, in contrast to most formal modeling notations,
they do not abstract away from details that go beyond
a specific modeling domain’s abstractions, but instead
explain the full solution. That is, if the solution has,
for instance, implications for the workflow, the orga-
nization, and the software architecture, all these solu-
tion elements are described.

• As proven practice descriptions, patterns encode the
recurring themes in the same kinds of models. Hence,
they are also a good basis for defining a common meta-
model for a modeling domain, because patterns typi-
cally describe the established, stable abstractions that
are used across different modeling approaches and ex-
ecution languages.

Because patterns are defined only informally, we use pat-
tern primitives as an intermediary abstraction to represent
the primitive concerns in the patterns precisely. At this
point, it is very important that we use a common meta-
meta-model and a common constraint language to define
the meta-models that represent the abstract syntaxes of
the DSLs: This way, the primitives can be connected via
constraints, and also primitives that cut across different
models can be defined. The model validator can check
all structural properties and constraints in the complete
model, even if modeling domains are crossed.

4 META-MODELS FOR SOA INTEGRATION

There are many modeling domains that play a role for a
process-driven SOA. In our tool chain we have so far con-

4

centrated on a sub-set of these domains that deals with
the integration of processes and services. In this con-
text, the following types of languages/models are typi-
cally used: component architectures, message flow specifi-
cations, workflow or business process languages, program-
ming languages and snippets written in programming lan-
guages, and business object design models.

For our tool chain, we model both, message flow specifi-
cations and workflow or business process languages, using
extensions of UML2 activity diagrams2.

Component architectures are modeled using UML2 com-
ponent diagrams. Business object design models are mod-
eled using UML2 class diagrams. In this paper, we will
concentrate on examples that illustrate the integration of
component architectures and flow abstractions, but the in-
tegration with business object design models can be done
analogously. Programming language snippets are intro-
duced as individual code (as explained in Section 3.1, cf.
Figure 2).

As an example for a meta-model definition let us con-
sider the central flow abstractions: The different models
that are relevant for a process-driven SOA come together
in various kinds of “flow” models. There are flow models
for long-running business processes, activity steps in long-
running processes, short-running technical processes, and
activity steps in short-running technical processes. Even
though these flow models have highly different semantic
properties, they share the same basic flow abstraction con-
cept, and at the same time they are a kind of glue for all
the other models that are involved in a process-driven SOA
(such as architecture and design models).

We can define meta-models by instantiating the meta-
meta-model classes from Figure 3. In addition to the
graphical DSL syntaxes that follow the UML’s symbols
(see the UML2 standard for details about the UML meta-
models and graphical syntax), we also introduce a textual
Frag syntax. To get a feel for these textual DSLs, here’s a
small excerpt of the Frag code specifying some classes and
relationships. In the remainder of the paper, we omit the
textual DSL syntaxes as they are pretty much defined in
the same way for the different kinds of meta-models. That
is, there is a 1:1 mapping between the textual syntaxes and
UML’s graphical syntaxes for the various model types.

MMM::Class create Activity

MMM::Class create ActivityNode

MMM::Composition create ActivityNodes -ends {

{Activity -roleName activity -multiplicity 0..1

-navigable 1 -aggregatingEnd 1}

{ActivityNode -roleName node -multiplicity * -navigable 1}

}

MMM::Class create ActivityEdge

MMM::Composition create ActivityEdges -ends {

{Activity -roleName activity -multiplicity 0..1

-navigable 1 -aggregatingEnd 1}

{ActivityEdge -roleName edge -multiplicity * -navigable 1}

}

...

2Please note that in both cases, long running business processes

and short running technical processes, the UML2 activity diagrams

must be extended to depict relevant additional information.

5 SOA Patterns and Pattern Primitives

We next discuss how to extend the meta-models with pat-
tern primitive extensions. Before we can go into detail, we
first give an overview of the pattern language from which
we derive the pattern primitives.

5.1 Overview: Patterns for process-oriented inte-

gration of services

PROCESS-BASED INTEGRATION ARCHITECTURE

CONFIGURABLE ADAPTER
REPOSITORY

PROCES INTEGRATION

ADAPTER

manages

MACROFLOW INTEGRATION

SERVICE

RULE-BASED DISPATCHER

is realized with

forwards
requests

delegates requests

offers

is composed of

MICROFLOW ENGINE
BUSINESS-DRIVEN SERVICE

CONFIGURABLE ADAPTER

is realized with

manages

MACRO-MICROFLOW

conceptual foundation

is specialization of

MACROFLOW ENGINE

sends requests for
activity execution

interdependent design

is realized with

MICROFLOW EXECUTION

SERVICE

same
service interface

Figure 4: Overview: Pattern language for process-oriented
integration of services

We have mined the pattern primitives from a pattern
language for process-oriented integration of services (for
details see Hentrich & Zdun (2006)). The patterns and
pattern relationships are shown in Figure 4. In the pat-
tern language, the pattern macro-microflow lays out
the conceptual basis to the overall architecture. The pat-
tern divides the flow models into so-called macroflows,
which describe the long-running business processes, and
microflows, which describe the short-running technical
processes. The process-based integration architec-

ture pattern describes how to design a layered architec-
ture, which is following the macro-microflow pattern.

The remaining patterns in the pattern language provide
detailed guidelines for the design of a process-based in-

tegration architecture. The automatic functions re-
quired by macroflow activities from external systems are
designed and exposed as dedicated macroflow inte-

gration services. process integration adapters

connect the specific interface and technology of the pro-
cess engine to an integrated system. A rule-based dis-

patcher picks up the (macroflow) activity execution re-
quests and dynamically decides based on (business) rules,
where and when a (macroflow) activity is executed. A
configurable adapter connects to another system in
a way that allows to easily maintain the connections, con-
sidering that interfaces may change over time. A config-

urable adapter repository manages configurable

adapters as components, such that they can be modified

5

at runtime without affecting the systems sending requests
to the adapters. A microflow execution service ab-
stracts the technology specific API of the microflow en-

gine and encapsulates the functionality of the microflow
as a service. A macroflow engine allows for configur-
ing business processes by flexibly orchestrating execution
of macroflow activities and the related business functions.
A microflow engine allows for configuring microflows
by flexibly orchestrating execution of microflow activities
and the related business-driven services. To define
business-driven services, high-level business goals are
mapped to to-be macroflow business process models that
fulfill these goals and more fine grained business goals are
mapped to activities within these processes.

Figure 5 shows an exemplary configuration of a
process-based integration architecture, in which
multiple macroflow engines execute the macroflows.
Process-integration adapters are used to integrate the
macroflows with technical aspects. A dispatching layer
enables scalability by dispatching onto a number of mi-

croflow engines. Business application adapters connect
to backends.

5.2 Pattern primitives for Process and Service In-

tegration

In this section, we present the pattern primitives for flow
abstractions that we have mined from the pattern language
explained in the previous section. We will concentrate only
on one detailed primitive example and summarize a few
other primitives that are needed for the examples in the
following sections in Table 1. The other primitives in the
full catalog of primitives have been defined in the same
way.

«stereotype»
MacroflowSteps

«stereotype»
MicroflowSteps

«metaclass»
Activity

+ refinedNodes : ActivityNode [0..*]

«stereotype»
ProcessFlowRefinement

«stereotype»
ProcessFlowSteps

«stereotype»
Macroflow

«stereotype»
Microflow

Figure 6: Stereotypes for Process Flow Refinements

Each primitive is precisely specified in the context of the
UML2 meta-model using OCL constraints. To illustrate
the precise specification of the primitives let us consider
the Macro-Microflow Refinement Primitive. This primitive
models the situation that Microflow Models are allowed
to refine Macroflow Models. In addition to macroflows
and microflows, we must consider the Macroflow Steps and
Microflow Steps models, introduced by the Process Flow
Steps primitive: A process activity node in a macroflow
or microflow can optionally be refined by a number of se-
quential steps that detail the steps performed to realize the
process activity.

To model this primitive, we first must introduce

UML2 stereotypes to distinguish the different kinds of
refined/refinement activities (see Figure 6) in the UML2
models. We can model the Macro-Microflow Refinement
primitive by constraining the Microflow Activities. In par-
ticular, if a Microflow activity refines another activity, then
this other activity must be itself stereotyped as Macroflow,
MacroflowSteps, or Microflow. This can be precisely spec-
ified using the following OCL constraint:
context Microflow inv:

self.refinedNodes->forAll(rn |

Macroflow.allInstances()->exists(a |

a.baseActivity = rn.activity) or

MacroflowSteps.allInstances()->exists(a |

a.baseActivity = rn.activity) or

Microflow.allInstances()->exists(a |

a.baseActivity = rn.activity))

We have also provided a textual Frag DSL for expressing
such constraints. The OCL constraints in UML models can
be automatically mapped to this constraint DSL. The task
of such constraints is basically to limit the use of the prim-
itives to the acceptable parameters – following the pattern
descriptions in which the primitives are used – but no fur-
ther. For each primitive we have hence described all such
constraints (the others are omitted here for space reasons).
Thus each primitive describes a precisely specified, param-
eterizable building block that can be used to specify the
corresponding patterns.

5.3 Modeling patterns using the pattern primi-

tives for process-driven service integration

The pattern primitives are not yet linked to the patterns.
The patterns cannot be themselves precisely specified, but
we can identify the pattern primitives that occur in indi-
vidual patterns. For instance, some of the primitives are
mandatory in a pattern, others are optional, still others
are only used in specific variants, etc. This mapping of
patterns to pattern primitives hence provides us with mod-
eling constructs that can be differently combined for dif-
ferent pattern instances, but must conform to the pattern-
to-primitive mapping. If a primitive is used in a pattern
instance, all constraints of the primitive must be fulfilled.
Hence, the primitives precisely specify the proven practices
documented in the patterns. In the remainder of this sec-
tion, we illustrate our approach using the example of mod-
eling the macro-microflow pattern. The other patterns
are modeled following the same approach.

The macro-microflow pattern strictly separates the
macroflow from the microflow, and uses the microflow
only for refinements of the macroflow activities. Both
in macroflows and microflows we can observe refinements.
The different kinds of refinement can be modeled using the
Process Flow Refinement primitive. Process Flow Refine-
ment is a generic primitive that can be used for modeling
all kinds of process refinements.

Figure 7 shows an example for Macro-Microflow refine-
ment. We describe all models in Figure 7 essentially in
the same way. The model integration of the short-running
message flow models and the long-running business mod-
els is done by extending the models with the respective

6

Process Integration Architecture

Process Integration
Adapter Repository

Rule-Based
Dispatcher

Microflow Execution Business Application
Adapter Repository

Process
Integration
Adapter A

Process
Integration
Adapter B

Process
Integration
Adapter C

Microflow Engine A
Business

Application
Adapter A

Business
Application
Adapter B

Business Application A

Business Application B

Macroflow Engine A

Macroflow Engine B

Macroflow Engine C

Microflow Engine B

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

Macroflow Composition
Layer

Macroflow Integration
Layer

Dispatching
Layer

Microflow Execution
Layer

Business Application Services Layer

Figure 5: Example Configuration of a Process-based Integration Architecture

Primitive

Name

Description Modeling Solution

Process Flow

Refinement

A macroflow or microflow is refined us-

ing another process flow.

The Activity metaclass is extended with the stereotype ProcessFlowRefinement,

which also introduces tagged values for identifying the refinement.

Process Flow

Steps

A macroflow or microflow is refined by

a number of sequential steps.

A specialization of the ProcessFlowRefinement stereotype, called ProcessFlow-

Steps, is introduced and constrained to be a strictly sequential flow.

Macroflow

Model

A macroflow can be refined by other

macroflows or macroflow steps.

Macroflows are modeled by a ProcessFlowRefinement stereotype, called

Macroflow, and macroflow steps are modeled as a specialization of ProcessFlow-

Steps, called MacroflowSteps.

Microflow Model A microflow can be refined by other mi-

croflows or microflow steps.

The microflow model is modeled analogous to the Macroflow Model primitive:

The Microflow and MicroflowSteps stereotypes are introduced.

Macro-Micro-

flow Refinement

Microflow Models are allowed to refine

Macroflow Models.

The Microflow Model primitive is extended: If refinedNodes of a Microflow is not

empty, the Microflow is a refinement of a Microflow, a Macroflow, or Macroflow-

Steps.

Table 1: Overview: Process Flow Refinement Primitives

«Macroflow»
Model1

A

[true]

[false]

C

«MacroflowSteps»
Model2B
{refinedNodes=B}

Y

O
B

X

«Microflow»
Model3X
{refinedNodes=X}

[false]

[true]

K

M

L

«MicroflowSteps»
Model4L
{refinedNodes=L}

F

E

Figure 7: Macro-Microflow modeling example

stereotypes and tag values. After these stereotypes have
been defined, the OCL constraints of the primitives en-
force that those four models can only be composed in a
way that is valid according to the Macro-Microflow Refine-
ment primitive. Figure 7 hence shows a model conforming
to the constraints. Again, the models can be mapped to
a textual DSL expressing models defined on top of the
DSLs for meta-models, primitives, and constraints intro-
duced earlier.

Numerous other variants of the macro-microflow

pattern are possible and can be modeled with the prim-
itives introduced. Please note that the flexibility of model
assembly through primitives is a very important charac-
teristic of our approach, because it enables us to represent
the inherent variability of software pattern solutions.

6 INTEGRATING ARCHITECTURAL MODELS

The macro-microflow pattern has implications for
short-running message flow models and the long-running
business models, and we were able to integrate the two
model types (and even add macroflow/microflow steps as
another kind of modeling abstraction). In our approach,
these two kinds of models are modeled with the same model
type: activity diagrams. The patterns, however, also have
implications for other model types, such as the architec-
tural components in the system or business object models.
To model those abstractions, we additionally need to con-
sider architectural abstractions and object-oriented design
abstractions. It is typical for patterns that they have impli-
cations for different kinds of models; hence the conceptual
integration approach, demonstrated in this section for one

7

pattern/primitive example, is also used to model the other
patterns and primitives, as well as other modeling domain
combinations.

In UML, business objects can be modeled using class
diagrams. Architectural abstractions can be modeled via
component diagrams. Component diagrams are a special-
ization of class diagrams. Therefore, our approach for in-
tegrating these models with flow models is very similar for
both class diagrams and component diagrams. Hence, we
demonstrate our approach only for one of those abstrac-
tions in depth: architectural components.

Our approach is to first find suitable pattern primitives
for modeling the architectural abstraction corresponding
to the patterns. Where further integration between model-
ing domains is needed, we model the flow model and archi-
tectural model with overlapping constraints and primitives
that cut across model boundaries.

6.1 Modeling Architectural Abstractions with

Pattern Primitives

Architectural modeling with pattern primitives follows the
same approach as introduced for the flow abstractions.
In the context of architectural abstraction, we have in-
troduced similar primitives for architectural patterns (see
Zdun & Avgeriou (2005)). Let us consider the Callback
primitive as an example: In a process-based integration
architecture, different kinds of components are connected.
Figure 5 shows an exemplary larger configuration, in which
multiple macro-/microflow engines and a dispatcher are
used. The components are typically connected via asyn-
chronous messaging. The modeling support for a process-
based integration architecture should allow for flexibly as-
sembling different kinds of architectural models.

The Callback primitive (cf. Zdun & Avgeriou (2005))
can be used to model the reactive behavior in this archi-
tecture: A callback denotes an invocation to a component
B that is stored as an invocation reference in a component
A. The callback invocation is executed later, upon a speci-
fied set of runtime events. Between two components A and
B, a set of callbacks can be defined. To capture the seman-
tics of a callback architecture properly in UML, we propose
five stereotypes: IEvent, ICallback, EventPort, Callback-
Port, and Callback. Again, we have precisely specified the
constraints using OCL (see Zdun & Avgeriou (2005) for
details), and defined the meta-model and constraints in
Frag, so that we can use the constraints on components
that represent the process-based integration architecture
components.

All components in a process-based integration ar-

chitecture are interconnected following the callback
style because they use asynchronous communication. The
event ports of each layer are listening to events from the
higher-level layer, and when an event arrives, they call into
the lower-level layer. Once a result is received, it is prop-
agated back into the higher-level layer using a Callback.
Figure 8 shows an example UML2 model for a Callback
configuration modeling the situation from Figure 5 in a

more precise way. For the architectural primitives we have
introduced textual DSLs, just like the ones for the flow
abstraction primitives introduced before.

6.2 Integrating Architectural and Flow Abstrac-

tion Models

In addition to the architectural flexibility of the process-

based integration architecture pattern, we need to
model the pattern’s constraints. If the pattern implemen-
tation follows the macro-microflow pattern, analogous
constraints to the macro-microflow refinement in the flow
models must be introduced, such as: components that rep-
resent the microflow should not invoke macroflow func-
tionality, macroflow adapters should not be used at the
microflow level and vice versa, the dispatcher should only
invoke short running microflows, etc.

In this situation, we can use another architectural primi-
tive from Zdun & Avgeriou (2005): Layering. Layering de-
scribes groups of components and further constrains them.
Specifically, it entails that group members from layer X

may call into layer X − 1 and components outside the lay-
ers, but not into layer X−2 and below. To model Layering
in UML2, we introduce the Layer stereotype, which spe-
cializes the Group stereotype (which itself is an extension
of the Package metaclass). We also impose the following
constraints: a component can only be member of one layer
and not multiple layers; components who are members of
layer X may call their fellow components in layer X , as
well as components in layer X − 1 but not in other layers
(e.g. X − 2 and below). Also, we introduce the tag defini-
tion layerNumber for Layers which represents the number
of the layer in the ordered structure of layers. Figure 9
shows an UML2 model that extends the model from Fig-
ure 8 using the Layering primitive.

«Layer»
Business

application
services

{layerNumber=1}

BA_Adapter

«Layer»
Microflow
execution

{layerNumber=2}

Microflow
Engine

«Layer»
Activity

dispatching
layer

{layerNumber=3}

Dispatcher

«Layer»
Macroflow

integration layer
{layerNumber=4}

PI_Adapter

«Layer»
Macroflow

Engine
{layerNumber=5}

Macroflow
Engine

Figure 9: Extending the Example Configuration with Lay-
ering

In this example, we have modeled the integration of the
macroflow-microflow refinements at the flow model level
with the architectural components by introducing OCL
constraints for the refinements between the flow mod-
els, and by adding similar constraints to the architectural
model. That is, the primitive Macro-Microflow Refinement
was used at the flow model level and Callback/Layering
were used at the architectural level.

Sometimes this is not enough, and it is necessary to ex-
tend this strategy and add a direct relationship between
the flow models and the architectural models. In such
cases, primitives and OCL constraints that contain ele-

8

:Macroflow
Engine

:PI_Adapter

:Dispatcher

:Microflow
Engine

:Microflow
Engine

:BA_Adapter

:BA_Adapter

:BA_Adapter

«Callback»

«CallbackPort»

«EventPort»

:Macroflow
Engine :PI_Adapter

«Callback»

«Callback
Port»

«Event
Port»

:Macroflow
Engine

:PI_Adapter

«Callback»

«CallbackPort»

«EventPort»

«CallbackPort»

«Callback
Port»

«Event
Port»

«CallbackPort»

«Callback»

«Callback
Port»

«Callback»

«EventPort»

«EventPort»

«EventPort»

«Event
Port»

«EventPort»

«Callback
Port»

«Callback
Port»

«Callback»

«Callback»

«Callback»

«Callback»

Figure 8: UML2 Model for the Example Configuration

ments from both model types need to be specified. That
is, the OCL constraints cut across the model types and
hence allow for validating that the models do not violate
integration concerns between the model types.

7 RELATED WORK AND EVALUATION

Our approach supports models for business processes, mes-
sage flows, OO design, and software architecture – and
programming language code/snippets provided as individ-
ual code in the MDSD tool chain. Our approach is ex-
tensible with new model types, especially domain-specific
models. We plan to extend our approach in additional rel-
evant modeling domains, such as organizational models or
human-interaction models. None of the related approaches
offers sufficient support for all these model types. Most re-
lated work focuses only on one type of modeling domain.

There are only a few exceptions: Zimmermann et al.
(2004) present a generic modeling approach for SOA
projects. As in our approach, the approach by Zimmer-
mann et al. is based on project experiences and distills
proven practices. The approach also integrates multiple
kinds of models for a SOA: object-oriented analysis and
design, enterprise architecture, and business processes.

Business process management tools, such as Adonis (cf.
BOC Europe (2006)) or Aris (cf. IDS Scheer (2006)), de-
scribe a holistic model of business process management,
ranging from strategic decisions to the design of business
processes. They are integrated with standard model types
and extensible with new model types. Such tools represent
important prior art in the field of model integration. But
they do not specifically focus on the field of process-driven
SOAs; they are more focused on the business processes.
However, an extensible tool suite like Adonis can be used
for providing input models for our approach or be extended
to model the DSLs.

There are many modeling approaches for business pro-
cesses, such as Event-Driven Process Chains (EPC) (cf.
Keller et al. (1992)) and the BPMN (cf. Object Man-
agement Group (2006)). Our approach has in common
with these approaches that we use the flow abstraction
as the central modeling abstraction. Unlike the BPMN,
our approach is based on a precisely specified meta-model.
Among others, Kindler (2006) has proposed formal se-
mantics for EPCs. In contrast to modeling approaches

for business processes, our approach allows to integrate
other model types of a process-driven SOA. That is, we
take a more “integrative” view than those more specific
approaches.

Our approach extends the MDSD concept proposed for
instance in Stahl & Voelter (2006), Greenfield & Short
(2004) with the idea to use one common meta-meta-model
for model integration, primitives as modeling constructs
based on proven practices, and model validation tools for
these concepts. In Greenfield & Short (2004), Chapter 13,
it is briefly discussed how typical MDSD concepts can be
used to support SOA modeling, but only with a focus on
Web services technology. Essentially, the process descrip-
tion, e.g. in BPEL, is seen as a platform for implementing
abstractions in a product line, and the services are seen
as product line assets for systematic reuse. This view does
not contradict our approach, but our approach goes beyond
this vision. Through the common meta-meta-model we can
integrate any kind of model types; hence, process descrip-
tions are not only a platform, but a first-class model type.
In this sense, our approach is also related to the OMG’s
MDA proposal, which is a specific MDSD approach focus-
ing on interoperability and platform independence through
the distinction of platform-independent models (PIM) and
platform-specific models (PSM). Again, our general ap-
proach can be used as an extension of MDA, even though
our concrete realization follows more closely the DSL-based
MDSD approach (cf. Stahl & Voelter (2006)).

Our approach is not the only approach that is based
on proven practices, but only our approach and the work-
flow patterns approach by van der Aalst et al. (2003) com-
bine proven practices and precisely specified models. The
workflow patterns are formalizable constructs (e.g., formal-
ized in the Petri-net-based language YAWL). In YAWL,
the workflow patterns are provided as language constructs;
hence in the workflow patterns approach the flexibility of
assembly of pattern primitives is not (yet) supported, be-
cause the variation points offered by the primitives are not
offered by the workflow patterns. To support a similar
approach as ours, it would be necessary to mine higher-
level patterns in workflows that provide guidance on how
to assemble the workflow patterns to larger structures.

Some other approaches define particular aspects of ser-
vice or business process composition using formal specifi-
cations, such as the activity-based finite automata based
approach by Gerede et al. (2004) or the interval tempo-

9

ral logic approach by Solanki et al. (2004). Desai et al.
(2005) propose to abstract business processes using inter-
action protocol components which represent an abstract,
modular, and publishable specification of an interaction
among different partner roles in a business process. These
approaches aim at model-based verification. Our approach
is not designed for this goal. Of course, it is possible to
define verifiable models through meta-models and extend
our approach, but this has not yet been the focus of our
work.

8 CONCLUSION

In this paper, we have introduced a concept for model-
driven development of process-driven SOAs that is based
on proven practices. We have especially focused on the
aspect of model integration by introducing an approach
that is based on a common meta-meta-model from which
concrete meta-models for DSLs are derived. In the differ-
ent DSLs and their respective meta-models, proven prac-
tices (described as software patterns) are precisely speci-
fied as modeling primitives, and their constraints can be
validated for all instances of all different meta-models. We
have shown in the examples how to integrate message flow
models, business process models, and architectural models.
The approach is, however, applicable for all other kinds of
process-driven SOA models for which a precise meta-model
is or can be specified. Our tools and DSLs can be flexibly
used in model-driven development for precisely specifying
process-driven SOAs, validating the models, and code gen-
eration for executable languages.

References

BOC Europe (2006), ‘Adonis’, http://www.boc-eu.com/.

Desai, N., Mallya, A. U., Chopra, A. K. & Singh, M. P.
(2005), ‘Interaction protocols as design abstractions for
business processes’, IEEE Transactions on Software En-

gineering 31(12), 1015–1027.

Gerede, C. E., Hull, R., Ibarra, O. & Su, J. (2004), Auto-
mated composition of e-services: Lookaheads, in ‘Pro-
ceedings of the International Conference on Service Ori-
ented Computing (ICSOC 2004)’, New York, NY, US,
pp. 252–262.

Greenfield, J. & Short, K. (2004), Software Factories: As-

sembling Applications with Patterns, Frameworks, Mod-

els & Tools, J. Wiley and Sons Ltd.

Hentrich, C. & Zdun, U. (2006), Patterns for process-
oriented integration in service-oriented architectures, in

‘Proceedings of 11th European Conference on Pattern
Languages of Programs (EuroPlop 2006)’, Irsee, Ger-
many.

IDS Scheer (2006), ‘Aris Platform’, http://
www.idsscheer.de/germany/products/53956.

Keller, G., Nuettgens, M. & Scheer, A.-W. (1992),
Prozessmodellierung auf der grundlage ereignisges-
teuerter prozessketten (EPK), Technical Report Veroef-
fentlichungen des Instituts fuer Wirtschaftsinformatik
(IWi), Heft 89, Universitaet des Saarlandes.

Kindler, E. (2006), ‘On the semantics of EPCs: Resolv-
ing the vicious circle’, Data & Knowledge Engineering

56(1), 23–40. Elsevier.

Object Management Group (2006), ‘Business Process
Modeling Notation (BPMN)’, http://www.bpmn.org/.

Schmidt, D. & Buschmann, F. (2003), Patterns, frame-
works, and middleware: Their synergistic relationships,
in ‘25th International Conference on Software Engineer-
ing’, pp. 694–704.

Solanki, M., Cau, A. & Zedan, H. (2004), Augmenting se-
mantic web service descriptions with compositional spec-
ification, in ‘WWW ’04: Proceedings of the 13th inter-
national conference on World Wide Web’, pp. 544–552.

Stahl, T. & Voelter, M. (2006), Model-Driven Software De-

velopment, J. Wiley and Sons Ltd.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B. &
Barros, A. (2003), ‘Workflow patterns’, Distributed and

Parallel Databases 14, 5–51.

Vinoski, S. (2003), ‘Integration with Web services’, IEEE

Internet Computing .

Zdun, U. (2005), ‘Frag’, http://frag.sourceforge.net/.

Zdun, U. (2006), ‘Tailorable language for behavioral com-
position and configuration of software components’,
Computer Languages, Systems and Structures: An In-

ternational Journal 32(1), 56–82.

Zdun, U. & Avgeriou, P. (2005), Modeling architectural
patterns using architectural primitives, in ‘Proceedings
of the 20th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages & Applications (OOP-
SLA 2005)’, ACM Press, San Diego, CA, USA, pp. 133–
146.

Zdun, U., Hentrich, C. & van der Aalst, W. (2006), ‘A
survey of patterns for service-oriented architectures’,
International Journal of Internet Protocol Technology

1(3), 132–143.

Zimmermann, O., Krogdahl, P. & Gee, C. (2004),
‘Elements of Service-Oriented Analysis and Design:
An interdisciplinary modeling approach for SOA
projects’, http://www-128.ibm.com/developerworks/
webservices/library/ws-soad1/.

10

