
Piecemeal Migration of a Document Archive System with an Architectural
Pattern Language

Michael Goedicke, Uwe Zdun
Specification of Software Systems

University of Essen, Germany�
goedicke � uzdun � @cs.uni-essen.de

Abstract

Large applications that have evolved over the years, are
often well-functioning and reliable, but have severe prob-
lems regarding flexibility and reuse. It is hard to migrate
such systems to a more flexible architecture or to new tech-
nologies. The document archive/retrieval system discussed
in this paper is an example system, that has these problems.
We will present a reengineering case study based to compo-
nent technology based on an architectural pattern language.
The patterns aim at the introduction of flexibility into black-
box component architectures in a piecemeal way.

1 Document Archive/Retrieval System

The document archive/retrieval system in focus of this
work, is a large C application that has evolved over the
years. The system has a suitable large-scale architecture for
its tasks and it is working well in several customer installa-
tions. But with growing complexity extensions and changes
became more and more problematic. Moreover, deployment
at the customer requires a certain amount of customizations.
Moreover, the system suffers from minimal reuse of existing
software components.

In general a document archive and retrieval system allows
users to archive a large number of documents on several de-
vices. The primary devices used in the application area are
optical storage devices, but there are also other media types,
such as hard drives or remote storage devices. Users can
retrieve archived documents with different text- and GUI-
based clients.

The system was originally designed and implemented in
C on a Unix platform supporting only one database man-
agement system. It was ported to several Unix variants and
finally to Windows NT. At some later time support for other
database management systems was added. The archive and
retrieval server were on Unix and Windows written in C,

while Unix clients were C written and Windows clients were
developed in C++ and Java.

The system consists of three distinct system layers. The
Client Layer hosts the different customer clients. More-
over, there exists a number of system and administration
clients. All clients access the system via a set of propri-
etary protocols and interfaces based on sockets. A System
Layer hosts the system demon as a central access point man-
aging a archive, retrieval and database query handler pro-
cesses. A scheduler, a cache, and document handlers im-
plement the actual archive/retrieval tasks. An administra-
tion demon implements the server-side of the administration
tasks. Finally, the Storage Device Layer hosts several differ-
ent storage device drivers, like optical disk jukebox driver,
hard disk driver, network access protocols, etc. These are
unified in this layer behind a RPC interface API.

The company faced several problems with the legacy ap-
plication. It was hard to change how clients and servers com-
municated, because they used a proprietary protocol based
on sockets. Only the access to storage devices was using
an RPC standard protocol. Support of the system on sev-
eral platforms with several versions became a severe main-
tenance problem. Moreover, similar problems occurred in
maintenance of the database code, because the system used
different DBMS products/versions that were accessed by
different protocols and that had different SQL dialects.

Both problems led to a reduced understandability of the
code, since it was full of pre-processor directives for dif-
ferent versions. For the database code, a dynamic change
to the other database was impossible. Instead a complete
re-compilation was necessary. Since many dependencies
in the different parts of the code existed, it was hard to
exchange implementations against other implementations.
Thus a piecemeal migration seemed to be hard to accom-
plish.

The overall architecture of the system has proven to be
reliable and the involved entities seem to match the modeled
real world situation well. Therefore, the basic architecture
of the system does not necessarily have to change. In a first

1

idea of reengineering, a solution of migrating the whole code
base to a rewritten solution in C++ or Java was envisioned.
But this would have led to considerable costs in (useless)
legacy migration. Moreover, it would require an additional
concept for stepwise migration of the legacy parts. And pre-
sumably such a major reengineering step would have led to
another architecture. This would require a considerable re-
design effort, but the value of such an effort is questionable.

The reengineering case study presented in this paper
presents a concept for piecemeal migration of the application
to a solution that avoids the sketched problems, is based on
reusable black-box components, and shows a significantly
increased flexibility. There were the following basic con-
cepts behind the restructuring:

� Component-Oriented Structuring: But even though
the system is almost structured according to the
component-oriented paradigm, there is no further sup-
port for component-orientation. Language support and
accompanying services, as they can be found in com-
ponent frameworks of scripting languages [13, 6] or in
modern middleware architectures (see [15]), are miss-
ing. But these are a central reasons why the system is
inflexible and hard to understand. The C subsystems
have nearly no clear interfaces on which clients can
rely. Thus they are not changeable without interference
with their clients.

� Multi-Paradigm Development: A central observation
for the case study is that most software systems of the
presented application scale are structured with multiple
paradigms. In general a paradigm is a set of patterns
and rules for abstractions, partitioning, and modeling
of a system. Even though the document archive and re-
trieval system is written entirely in the C language, we
can observe system parts that are structured according
to the procedural, object-oriented, component-oriented,
functional, relational, etc. paradigms. But not all of
these paradigms are explicitly supported by program-
ming languages and used technologies.

� An Architectural Pattern Language for Piecemeal
Legacy Migration: For piecemeal component migration
we have used the pattern language from [8, 7]. The aim
of the pattern language is to generate flexible black-box
architectures in a piecemeal way. Here, for space rea-
sons, we can only give thumbnails of the new patterns
with problem and solution. The interdependencies of
the introduced patterns among each other and with sev-
eral popular object-oriented software patterns are intro-
duced implicitly in the reengineering examples of the
next section. It is important to note that the pattern lan-
guage contains several smaller popular object-oriented
software patterns, including WRAPPER FACADE [14],
PROXY [4], DECORATOR [4], ADAPTER [4], and FA-
CADE [4].

2 Component Integration

In a first step we use the distinct C written subsystems,
that form the processes of the system, as components. Af-
terwards, we will refine these components in a piecemeal
effort. Firstly, we have to choose an object system (in or-
der to apply OBJECT SYSTEM LAYER) and have to wrap the
components with this object system. We have the following
choices: We can use C++ (or Java with JNI) and integrate
the C components. Or we can build an object system as a
library in C, as discussed in [7]. Or we can use an existing
OBJECT SYSTEM LAYER implementation, as for instance
the object-oriented scripting language XOTCL [12].

Here, we propose to use an object-oriented scripting lan-
guage, like XOTCL, because it language supports several
of the patterns: It is itself an OBJECT SYSTEM LAYER,
it implements a DISPATCHER, and it has three language
constructs implementing BEFORE/AFTER INTERCEPTORS.
However, in this paper we present the reengineering with the
pattern language independent of the used object system.

After choosing the object system, we provide all existing
components with an export interface in the object system
(which resemble mainly the existing header files). Now we
connect the export interfaces with the existing implementa-
tions, as in the COMPONENT WRAPPER pattern (the wrap-
pers firstly just forward to the implementations). Now we
have a first class representation of all components in the ob-
ject system, which defines their export part for the EXPLICIT

EXPORT/IMPORT pattern. The COMPONENT WRAPPER

can be used for changes, while the components are indepen-
dent black-boxes.

These components are in a first step just plugged together
again. A minimal implementation in the object system steers
the components with the DISPATCHER. Now we want to
extract the hot spots of the application, i.e., the parts which
are likely to change often, stepwise into the object system. In
this paper, we present two such hot spots and their migration:
the communication and database subsystems.

3 Communication Subsystem Reengineering

For communication within the system and with the client
layer a proprietary protocol based on sockets was used. For
communication with the storage devices it was partially re-
placed by an RPC mechanism, that defines some interfaces.
But all used communication protocols were hard-wired into
the code. Therefore, the communication subsystem was hard
to replace or change or extend.

Moreover, explicit interfaces were only partially given.
Support for other programming languages (as for instance
a Java client) had to be programmed by hand. There was
no component- or object-model for communication and only

2

Name Problem Solution
COMPONENT WRAPPER How can we solve the problem that black-box

components are hard to customize beyond param-
eterization?

Provide a COMPONENT WRAPPER to the black-
box as a central place for component access. The
COMPONENT WRAPPER is a white-box for the
component’s client and enables to bring in changes
and customizations, e.g. with DECORATORS and
ADAPTERS.

DISPATCHER How can we implement control tasks over the mes-
sage flow, like interception, modifications of mes-
sages, or traces, in a programming language that
does not support such techniques natively?

Build an explicit DISPATCHER instance. Let the
calls in the subsystem and the calls to the sub-
system pass the DISPATCHER, that redirects to the
original receiver.

OBJECT SYSTEM LAYER [7] How can we apply advanced object-oriented tech-
niques in non-object-oriented languages or in ob-
ject systems that are not powerful enough?

Build or use an object system as a language exten-
sion in the target language and then implement the
design on top of this OBJECT SYSTEM LAYER.

EXPLICIT EXPORT/IMPORT How can we ensure that internal changes in the ex-
ported component do not affect the exporting com-
ponent and vice versa (especially when both sides
of a component connection tend to change)?

Provide explicit interfaces for both, export and im-
port of a component. Component describe the ser-
vices they provide and that they require.

BEFORE/AFTER INTERCEPTOR How can we avoid the problem that customizations
through (class-based) ADAPTERS and DECORA-
TORS split up one conceptual entity into several
entities leading to a loss of transparency?

Provide a mechanism to introduce before/after in-
terception. All decorations/adaptations can be per-
formed transparently by this mechanism.

Table 1. Architectural Pattern Language for Piecemeal Reengineering: Pattern Thumbnails

a few basic services. Therefore, several service, as known
from popular middleware systems (like messaging service
or transaction service) were partially programmed and main-
tained by the development team. It was nearly impossible to
exchange the communication subsystem of the system itself
against another technology.

There were several possible solutions to these problems:
The RPC mechanism could be used for the whole system
and combined with a component model. Or one of the dif-
ferent middleware technologies could be used with its com-
ponent model, services, etc. Or a web-based solution on top
of HTTP could be used.

E.g., a middleware enables a company to have a single
framework for development, integration, and extension of
distributed applications. It provides interoperability through
platform and programming language independence. Most
middleware approaches come with a component-model and
concepts for legacy integration. Moreover, they provide a
comprehensive set of services, like messaging service, nam-
ing and directory service, transaction service, security ser-
vice, etc.

The task for reengineering of the document archive and
retrieval system’s communication was to find an architec-
ture, that lets the system make use of modern middleware
technologies and benefit from their services. Furthermore,
the resulting system should not depend on one technology.
The communication subsystem itself should be exchange-
able as a component. But since the existing system is well-
functioning, we should find a way for piecemeal migration
to the new communication technology.

Through the existing application we already know the
required communication facilities of the system. Thus
we can extract the calls to the communication subsys-
tem, that are scattered over the code. And we can build
an equal, generic import interface with EXPLICIT EX-
PORT/IMPORT. Firstly, the communication classes, like Ad-
minComm, ArchiveComm, RetrievalComm, and SQLComm,
are nearly identical with the structure of the proprietary com-
munication protocol. Later on we will refine the implemen-
tations to more generic interfaces. E.g., the archive and re-
trieval communication classes are unified to one class, but
the ArchiveComm and RetrievalComm classes are main-
tained as Adapters [4] to this class for piecemeal legacy mi-
gration.

We simply build for each type of communication func-
tion an abstract method in the interface classes. Afterwards
we have an abstract view onto the communication of the sys-
tem in the OBJECT SYSTEM LAYER. We can replace calls
to the proprietary protocol stepwise with calls to the import
interfaces of the archive/retrieval system’s communication
component. But we still have to realize the communication
component with the middleware of choice (here: CORBA).

In order to obtain a piecemeal migration, we have to cre-
ate an IDL interface and stub/skeleton classes in the CORBA
implementation language (here: C++) several times until the
reengineering effort is completed. At least for this time pe-
riod import, export, and IDL interface carry the same infor-
mation redundantly. Therefore, we propose to use an auto-
matic generation of export interface and IDL from the im-
port, as in shown Figure 1.

3

The import interface is written by hand. A generation tool
produces corresponding export and IDL interfaces. With an
introspective scripting language, as XOTCL, we can use the
introspection facilities to retrieve the interface from the im-
port interface implementation automatically. Otherwise we
have to write a small parser. Then the C++ CORBA com-
munication implementations are adapted to the changes, if
necessary.

Finally, we have to integrate the sightly different object
system of CORBA with the object system of the chosen OB-
JECT SYSTEM LAYER. Such paradigm integration tasks can
be fulfilled in the COMPONENT WRAPPER object. Most of-
ten a set of DECORATORS and ADAPTERS on a COMPO-
NENT WRAPPER, that only forwards messages, are suffi-
cient. A more convenient way for such interface adaptations
is to register a BEFORE/AFTER INTERCEPTOR on the COM-
PONENT WRAPPER object. The export implementations of
these components in the OBJECT SYSTEM LAYER, there-
fore, are COMPONENT WRAPPERS to the C++ implementa-
tions of CORBA stubs/skeletons.

ImportInterface

ImportImpl

IDL

C/C++
Stub

C/C++
Skeleton

Object System Layer
Importing Component

CORBA IDL
C/C++

Components

ExportInterface

ExportImpl

uses

Object System Layer
Exporting Component

Automatic Generation

IDL compiler

Component Wrapper
to C/C++ implementations

Figure 1. Automatic Generation of IDL from
Interface Class

3.1 Database Interface Reengineering

The database management system integration faced simi-
lar problems as the communication subsystem. The code for
DBMS access of the two used DBMSs was scattered over
the code. A re-compilation of the system was necessary in
order to exchange the used DBMS. Central adaptations, e.g.
in the used SQL dialects, were nearly impossible, but had to
be propagated through the code. Therefore, the system was
not independent of implementation details of the DBMS.

In addition to these problems, it is explicitly required
that different database products and especially different ver-
sions of the same products, have to be supported. Often
customers already have a DBMS installation. Since the

costs of DBMS are quite high in comparison to the doc-
ument archive/retrieval system, it is undesirable that cus-
tomers have to buy another version of the DBMS, just be-
cause the archive/retrieval system can not work with the ex-
isting version. That imposes the maintenance requirement,
that new DBMS versions have to be rapidly adopted by the
archive/retrieval system. Thus the connection to a database
has to be extremely flexible.

The former solution consists mainly of ifdef pre-
processor directives of the following style that were scat-
tered through the code:

#ifdef INFSQL
$SELECT clu_name
...

#endif /* INFSQL */
#ifdef ANSISQL

returnValue = archiveSelect(&sql_code, ...
#endif /* ANSISQL */

This solution was inelegant, hard to read, and hard to change.
Changes could not be made centrally, but had to be propa-
gated through the code. Therefore, errors were hard to trace.

In Figure 2 we can see the architecture with the pattern
language. Again we build a generic interface to database ac-
cess. Then we build COMPONENT WRAPPERS to C/C++
implementations of different DBMS products/versions in
the OBJECT SYSTEM LAYER. Thereby we have simu-
lated a small object-oriented database on top of the rela-
tional databases. The COMPONENT WRAPPERS seamlessly
integrate and adapt the relational paradigm to the object-
oriented paradigm. The different SQL styles of different
DBMS products/versions can be handled on the COMPO-
NENT WRAPPERS with BEFORE/AFTER INTERCEPTORS

that modify the calls, if necessary. Thus we have to
pass all calls through a DISPATCHER that invokes the BE-
FORE/AFTER INTERCEPTORS.

DBExport

OracleImpl

C-DBClient

Object System Layer

C/C++
Component

init
cleanup
alter table/user
create table/user
drop table/user
delete
insert
select
update

InformixImpl

DBImport for C client

C Oracle
Impl

C Informix
Impl

C/C++
Components

Component
Wrapper

OSL
Dispatcher

Component
Wrapper

Figure 2. Database Interface With an Object
System Layer

The database interface is mainly used by the C com-
ponents. Therefore, we write import interfaces for the C
clients, that are called through a C API (as if the OBJECT

4

SYSTEM LAYER would be a native C library). The DIS-
PATCHER maps these string-based calls to the export of the
database interface. The clients can rely on these interfaces
despite changes in the realization. BEFORE/AFTER INTER-
CEPTORS in the DISPATCHER can adapt the calls to the
changes.

4 Related Work

Here, we sketch some approaches that are known uses of
the pattern language. There are several patterns, which im-
plement object systems in other languages. Thus they build
partial OBJECT SYSTEM LAYERS. The Type Object Pattern
[9] documents a general approach of enhancing an object
system with a foreign object system.

In [15] the (mainly black-box) component models of cur-
rent standards, like CORBA, COM, or Java Beans are dis-
cussed. As discussed before, these approaches offer the
benefits of black-box component reuse, but have problems,
when the internals of a component have to changed or
adapted. All approaches have enhancements in the direction
of the presented pattern language. The IDLs can be seen as
a variant of EXPLICIT EXPORT/IMPORT. Stub and skele-
ton are a special form of COMPONENT WRAPPERS. Several
approaches, like COM interceptors or Orbix Filters, imple-
ment BEFORE/AFTER INTERCEPTOR for distributed object
systems.

A more general form of such object-oriented abstractions
of the message passing mechanisms in distributed systems
are composition filters [1]. Abstract communication types
represent abstractions over the interaction of objects. Thus
they are a variant of BEFORE/AFTER INTERCEPTOR, which
may be used to implement COMPONENT WRAPPERS and/or
EXPLICIT EXPORT/IMPORT. Roles as in [11], meta-object
protocols [10], or meta-classes [3], and several similar ap-
proaches to express multiple concerns, impose meta-level
behavior over an object. Therefore, these approaches can
be used to implement BEFORE/AFTER INTERCEPTOR.

In [2] a component adaption technique based on layers
is proposed, which is similar to the presented interceptors:
it is also transparent, composable and reusable, but it is not
introspective, not dynamic and a pure black-box approach.
Layers are given in delegating compiler objects, that are stat-
ically defined before compilation time. This makes it hard to
use the approach for expressing runtime dynamics in compo-
nent composition, since changes in layer definitions require
recompilations.

The architecture description language
�

[5] offers sup-
port for EXPLICIT EXPORT/IMPORT. In a process of com-
ponent configuration the imports can be mapped to exports.
But in this concept configurations can not be changed at run-
time.

5 Conclusion

We have presented an approach for piecemeal migration
of large existing software systems to component technology
and a more flexible architecture. An architectural pattern
language was used to migrate the existing C implementa-
tions to components in an object system.

The existing C implementation is split in a piecemeal
process to black-box components wrapped behind COMPO-
NENT WRAPPERS. BEFORE/AFTER INTERCEPTORS let us
bring in customizations decomposed and transparent to the
component and its clients. An OBJECT SYSTEM LAYER

with an explicit DISPATCHER provides a suitable way to
implement and maintain the combination of COMPONENT

WRAPPER and BEFORE/AFTER INTERCEPTORS. Through
EXPLICIT EXPORT/IMPORT components define their re-
quired environment. Thus it becomes easy to exchange im-
plementations without interference with clients or imported
components. All changes induced by the patterns can be ap-
plied in a piecemeal process and existing implementations
can be reused.

However, if we do not use an existing OBJECT SYSTEM

LAYER implementation, like XOTCL [12], it has to be pro-
grammed by hand. This adds more complexity and higher
maintenance efforts to the system. Performance can be de-
creased slightly. The OBJECT SYSTEM LAYERS conven-
tions and interfaces have to learned by the developers.

The presented pattern language is language supported in
the scripting language XOTCL. In this paper, we have pre-
sented a case study for the pattern language in language-
neutral way.

References

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting object interactions using composi-
tion filters. In R. Guerraoui, O. Nierstrasz, and M. Riveill, ed-
itors, Object-Based Distributed Processing, pages 152–184.
LCNS 791, Springer-Verlag, 1993.

[2] J. Bosch. Superimposition: A component adaptation tech-
nique. Information and Software Technology, 41, 1999.

[3] I. R. Forman and S. H. Danforth. Putting Metaclasses to
Work – A new Dimension to Object-Oriented Programming.
Addison-Wesley, 1999.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[5] M. Goedicke, J. Cramer, W. Fey, and M. Groe-Rhode. To-
wards a formally based component description language a
foundation for reuse. Structured Programming, 12(2), 1991.

[6] M. Goedicke, G. Neumann, and U. Zdun. Design and
implementation constructs for the development of flexible,
component-oriented software architectures. In Proceed-
ings of 2nd International Symposium on Generative and

5

Component-Based Software Engineering (GCSE’00), Erfurt,
Germany, Oct 2000.

[7] M. Goedicke, G. Neumann, and U. Zdun. Object system
layer. In Proceeding of EuroPlop 2000, Irsee, Germany, July
2000.

[8] M. Goedicke, G. Neumann, and U. Zdun. A pattern language
for introduction of flexiblity into black-box component archi-
tectures. to appear., 2000.

[9] R. Johnson and B. Woolf. Type object. In R. C. Martin,
D. Riehle, and F. Buschmann, editors, Pattern Languages of
Program Design 3. Addison-Wesley, 1998.

[10] G. Kiczales, J. des Rivieres, and D. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[11] B. B. Kristensen and K. Østerbye. Roles: Conceptual ab-
straction theory & practical language issues. Theory and
Practice of Object Systems, 2:143–160, 1996.

[12] G. Neumann and U. Zdun. XOTCL, an object-oriented
scripting language. In Proceedings of Tcl2k: The 7th
USENIX Tcl/Tk Conference, Austin, Texas, USA, February
2000.

[13] J. K. Ousterhout. Scripting: Higher level programming for
the 21st century. IEEE Computer, 31, March 1998.

[14] D. C. Schmidt. Wrapper facade: A structural pattern for
encapsulating functions within classes. C++ Report, SIGS,
11(2), February 1999.

[15] C. Szyperski. Component Software – Beyond Object-
Oriented Programming. ACM Press Books. Addison-
Wesley, 1997.

6

