
Content Conversion and Generation on the
Web: A Pattern Language

 Oliver Vogel Uwe Zdun
eBusiness Integration New Media Lab

IBM Business Consulting Services Department of Information Science
Switzerland Vienna University of Economics and BA

mail@ovogel.de
Austria

 zdun@acm.org

Abstract. Content conversion and generation is required by many
interactive, web-based applications. Simplistic implementations of content
converters, creators, and templates often cannot satisfy typical requirements
such as high performance, end-user customizability, personalization,
dynamic system updates, and integration with multiple channels. We present
a pattern language resolving central forces in this context. A GENERIC
CONTENT FORMAT can be used to integrate content from different supported
content sources. PUBLISHER AND GATHERER are central instances to trigger
back and forth conversion to the GENERIC CONTENT FORMAT, and to handle
other central content management tasks such as cache lookup and storage.
Conversions are performed by CONTENT CONVERTERS. The patterns
CONTENT CREATOR, CONTENT FORMAT TEMPLATES, and FRAGMENTS generate
content on request. A CONTENT CACHE is used to store and retrieve the
content in a central repository, and FRAGMENTS are the basic elements stored
in the cache.

1 Introduction

Interactive, web-based applications generate formatted content on request. That
is, the content is not or only partially available in pre-built files. In typical
application scenarios, the generated content has to be formatted in different
markup languages, such as HTML, WML, and XML, and other formats, such
as graphical user interfaces or textual representations, are supported as well.
The content might be provided to different channels with different protocols,
such as HTTP, COM, CORBA, MMS, and WAP.

In first place, interactive, web-based applications represent their services
using HTML pages. An HTTP server transfers HTML pages with the HTTP
protocol. A web user agent, such as a browser, communicates with a web
server, and the web server “understands” that certain requests are handled
interactively.

©opyright 2002 by Oliver Vogel and Uwe Zdun – Submission to EuroPLoP 2002

Thus, it forwards the request and all its information to another module,

thread, or process. This handler may handle the request solely and generate an
HTML page in response. Or it may translate and forward the HTTP request to
a legacy system’s API, and then the response has to be decorated with HTML
markup.

On the first glance, content creation on the web seems to be a simple effort,
especially when a given legacy system with a distinct API should be
reengineered to the web. In our experience, this naive view is fundamentally
wrong, and it leads to severe problems when the resulting system have to be
further evolved later on (see [Zdun02b] for a detailed discussion). In many
systems HTML pages are simply generated by string concatenation:

StringBuffer htmlText = new StringBuffer();
String name = legacyObject.getName();
...
htmlText.append("
 Name: ");
htmlText.append(name);

Such hard-coding of HTML markup in the program will inevitably lead to
problems because central requirements of modern web engineering are
violated. Such central requirements for interactive, web-based applications are:

• Content, representation style, and application behavior should be
changeable ad hoc.

• Web-based applications typically have to represent the business logic
on the web in a coherent way, say, in a common representation style.

• In many cases, the same content is presented to other channels, possibly
with different representation formats than HTML, as well.

• Often rapid integration of new functionality is required, perhaps within
a few hours, and it should be possible to evolve the system
incrementally.

• In many cases, the running system cannot be stopped during changes.
• Many (large-scale) web applications have very high performance and

memory demands.
• Many applications require highly personalized presentations of content.
• Customization of content and behavior by non-programmers, such as

content editors, domain experts, and end-users, might be required.
• Content, content structure, and content presentation should be

separated.
These requirements are met by many different web architectures. In this paper
we discuss a pattern language that documents “successful” solutions in the
realm of converting and generating content on the web. These patterns lead, in
a mostly technology neutral form, to flexible and generic software architectures
for web applications. The pattern’s consequences and variants lead to the
decision which technological choices are appropriate. During the stepwise and
sequential application of the patterns different consequences and forces have to

be compared with the technological options and the concrete application’s
requirements.

1.1 Intended Audience

This paper is intended to software and information architects faced with the
development of highly dynamic, personalized, and content-centric web
applications. The patterns within this paper can be used as a roadmap for
building architectures capable of serving clients with dynamic web pages in a
consistent and efficient manner. This is a living document and therefore your
input and participation is very much appreciated. Thus, if you harvest new
patterns, variants or can supply known uses feel free to contact any of the
authors.

1.2 A Note on the Form

For convenience and clarity each of our patterns has the same format. In this
paper we use a modification of a form called Alexandrian form that is inspired
by the writings of Christopher Alexander, especially “A Pattern Language”
[AIS+77]. Each of our patterns begins with a name. This is followed by an
introductory paragraph, which sets the context of the pattern and its basic
relations to other patterns in the pattern language. Then, there are three
diamonds to mark the beginning of the problem, and, in bold type, the problem
is summarized in one or two sentences. The following body of the problem
explains the problem in more detail, and discusses the set of forces in focus of
the pattern. Then, again in bold type, the solution is given in form of an
instruction. In the following paragraphs, the solution is discussed in more
detail, diagrams visualize the solution, dependencies to contained patterns are
introduced, and consequences of applying the pattern are discussed. Another
three diamonds show that the main body of the pattern is finished. And finally,
there is a discussion of variants of the pattern and variations in relationships to
other patterns.

2 Pattern Language Overview

The pattern language consists of the patterns summarized in Table 1 as
thumbnails. As some of the pattern descriptions reference later described
patterns, we give a thumbnail table here as an initia l overview of our pattern
language.

Pattern Name Problem Solution

GENERIC CONTENT
FORMAT

How can we use content from different
sources like legacy systems, DBMS, or web
services in a system without having to
know its concrete representation in
advance?

Provide a generic representation which is used
to represent content from any anticipated
content source. Along with the generic
representation provide a class structure
representing the elements of the generic
representation. Convert the content from its
concrete representation into the generic
representation before you process it within
your web application.

PUBLISHER AND
GATHERER

How can we convert to and from a GENERIC
CONTENT FORMAT (semi-) automatically,
provide access to all content required on the
target platforms centrally, and integrate
other content management tasks such as
caching?

Provide central instance(s) for publishing and
gathering of content. The content is given
either in the GENERIC CONTENT FORMAT(s), or
in other formats delivered to target platforms.
The PUBLISHER AND GATHERER trigger
conversions, lookup in the cache, and other
central content management tasks.

CONTENT
CONVERTER

How can we automatically convert content
in one format to a different format, and/or
update the content according to a set of
change rules?

For each required conversion type, provide a
converter that has callback methods to be
called when a conversion should take place.
Content conversion includes input processing
of the input format, data conversion and
manipulation, and output processing to the
target format.

CONTENT CREATOR How can we build up content in different
content formats dynamically and reuse the
same code for different content formats?
How do we avoid hard-coding content
format specifics in the business logic code?

Provide an abstract class that determines the
common denominator of the used interfaces.
Build special classes that implement that
interface for each supported content format,
as well as special methods (e.g. as callbacks)
for required specialties.

CONTENT FORMAT
TEMPLATE

How can we build up content in target
content format and allow the content editor
to add highly dynamic content parts in a
simple way that yields a high performance?

Provide a template written in the content
format that contains special code in a template
language to be substituted by a template
engine.

FRAGMENTS How can web pages be designed in order to
allow the generation of web pages
dynamically by assuring the consistency of
its content? Moreover, how do you provide
these dynamic web pages in a highly
efficient way?

Provide an information architecture which
represents web pages from smaller building
blocks called FRAGMENTS. Connect these
FRAGMENTS so that updates and changes can
be propagated along a FRAGMENTS chain.

CONTENT CACHE How can you increase the performance of
web page delivery and thereby increase
efficiency of the underlying web
architecture?

Provide a central cache for caching already
created dynamic content. Consider the life
time of the content and cache them as long as
it is still valid in the application’s context.

Table 1. Pattern Thumbnails

In Section 2 these patterns are presented in our variant of the Alexandrian
form. In Section 3 we will give integrated examples in Java, and in Section 4
we discuss Known Uses of the pattern language.

Figure 1 illustrates the most important pattern dependencies in the pattern
language. GENERIC CONTENT FORMAT is used to represent content from any

supported content source. Usually, the pattern language is applied
incrementally. Typically, at first, an initial GENERIC CONTENT FORMAT is
defined to start off, and it is refined as the application evolves.

Fragments

Publisher and Gatherer

Content Creator Content Format Template Content Converter

Service Abstraction LayerMessage Redirector

Publisher can act
as a Message

Redirector

Message Redirector for
symbolic servive abstraction

Service-based
abstraction for

integrating
multiple
channels

Publisher and
Gatherer provide

content management
tasks on top of

Generic Content
Format

Fragments are
basic cache

elements

Triggers content
conversion

Builders/Templates
create Fragments

Publisher and Gatherer
is a Facade for the

conversion, generation, and
caching components

Internal
information
architecture

elements

Facade

Publisher and Gatherer
triggers content

generation

Generic Content Format

Content Cache

Triggers content
caching

Figure 1. Pattern Interactions in the Pattern Language

PUBLISHER AND GATHERER are central instances triggering conversion to and
from the GENERIC CONTENT FORMAT. They also handle other central content
management tasks. Therefore, it is quite usual to design and build PUBLISHER
AND GATHERER very early in a project. There are some external patterns that are
often integrated with the pattern language:

• PUBLISHER AND GATHERER have to integrated with the mapping of
URLs (or other document/service IDs) to service implementations. This
task is often handled by the MESSAGE REDIRECTOR pattern [GNZ01].

• If multiple channels have to be served, often the PUBLISHER AND
GATHERER is integrated with a SERVICE ABSTRACTION LAYER [Vogel01]
as well.

• Usually, PUBLISHER AND GATHERER trigger the content conversion,
generation, and caching components, and they are FACADES to this
subsystem.

Conversions are performed by CONTENT CONVERTERS. Converters are triggered
by PUBLISHER AND GATHERER. For each supported content format, one
converter has to be written for conversion to and from the GENERIC CONTENT
FORMAT. These may be hand-built or one can use one of the patterns for
content generation.

Concerning the patterns CONTENT CREATORS, FRAGMENTS, and CONTENT
FORMAT TEMPLATES, we want to introduce a major distinction of content
generation models into templa te-based approaches, generating pages by
substituting certain elements in template files, and constructive approaches,
constructing a web page on the fly. CONTENT CREATORS are implementing the
constructive approach. They are highly flexible and programmable, but not the

fastest alternative and not well-suited for end-user customization. FRAGMENTS
and CONTENT FORMAT TEMPLATES are template-based approaches. Potentially,
FRAGMENTS offer a very high performance but can only assemble pre-built
parts. A compromise are CONTENT FORMAT TEMPLATES that integrate program
elements in the content source. Thus they are customizable with behavior and
offer a sufficient performance, but they are less flexible and less well-
integrated with the programming model than CONTENT CREATORS. There are
several systems supporting more than one of the approaches in different
combinations.

FRAGMENTS, CONTENT CREATORS, and CONTENT FORMAT TEMPLATES can be
seen alternatives for implementing dynamic content generation. However,
FRAGMENTS are acting at a different abstraction level than the other two
patterns, because they used as elements of the content cache. Therefore, often
the patterns are integrated. For instance, CONTENT CREATORS and CONTENT
FORMAT TEMPLATES create FRAGMENTS as results that are stored in the cache.
The information architecture of the GENERIC CONTENT FORMAT pattern can be
implemented with FRAGMENTS.

A CONTENT CACHE is used to store and retrieve the content in a central
repository. Content caching is a central document management task, therefore,
the CONTENT CACHE is usually triggered by the PUBLISHER AND GATHERER.
Besides complete documents, FRAGMENTS are the primary information
elements stored in the cache.

2 Patterns for Converting and Generating Content on the
Web

In this section, we present seven individual patterns that we have mined for
content conversion and generation on the web.

GENERIC CONTENT FORMAT

You are developing a web application that provides content in different formats
to different types of clients over different channels, like HTTP and WAP.

♦♦♦
Each channel has its own presentation format that requires you to convert
content into the channel-specific format before publishing it on the
channel. Moreover, content can be retrieved from different backend
systems characterized by their own content formats. This can lead to an
N*M combination problem as potentially N source formats (backend
formats) have to be converted into M target formats (channel formats).
How can we integrate content from different sources like legacy systems,
DBMS, or web services?

The code for conversion to and from different formats should be reusable,
and the number of conversion should be minimal.

Often different programming languages and programs should be able to
access the same information base. Suppose you are developing a web
application, which retrieves content from a RDBMS and displays it using
HTML. Usually the logic necessary to generate the HTML page operates
directly on the content. Therefore it has to know its concrete format (the
database schema in this case). This approach works well, if the number of input
formats (N) and the number of output formats (M) are very small as there is a
N*M conversion between the different formats.

If there is a large number of different formats or if new formats shall be
supported in the future, changes in any content format might influence the
channel-specific presentation logic directly. This prohibits the straightforward
integration of new content sources as a change in one of the N formats might
require changes in all M output formats.

A simple and straightforward mapping of content formats and information
architecture representation is necessary for efficient content conversion and
generation.

Therefore:
Provide a generic representation which is used to represent content from
any anticipated content source. Typically, this generic representation uses
a (textual) markup format that represents at least the common
denominator of all known input formats. Along with the generic

representation provide a class structure representing the elements of the
generic representation closely (i.e. one class for each representation format
element type). Convert the content from its concrete representation into
the generic representation before you process it within your web
application.

When choosing a generic representation, often it is important that it is
readable and changeable easily, so that, for instance, end users can manipulate
it without programming experience. Nowadays XML is often used to represent
the GENERIC CONTENT FORMAT. Note that other (e.g. binary) formats may as
well be chosen, if for instance the overhead of processing XML is a problem.

The GENERIC CONTENT FORMAT should enable the representation of arbitrary
content models including primitive types like String, Integer, and Double as
well as compound types like Address, Customer, or Account. Furthermore
binary data such as images and multimedia formats should be supported. By
using a GENERIC CONTENT FORMAT new content sources can be integrated
without having to modify the presentation logic responsible for generating
output formats like HTML and WML. The number of potential conversions
from the input to the output formats is thereby reduced to N+M.

The GENERIC CONTENT FORMAT represents the application-specific superset
of content types. Thus, the ontological problem of integrating content from any
source is not tackled by the pattern. Each content type is described by one class
of the information architecture.

Content

String name
String type

CompoundContentPrimitiveContent

<GenericContent>
 <PrimitiveContent name="Firstname" type="String">John</PrimitiveContent>
 <PrimitiveContent name="Lastname" type="String">Doe</PrimitiveContent>
 <PrimitiveContent name="Income" type="Income">100000</PrimitiveContent>

 <CompoundContent name="Address">
 <PrimitiveContent name="Street" type="String">
 Edgware Road
 </PrimitiveContent>
 <PrimitiveContent name="Number" type="String">2A</PrimitiveContent>
 <PrimitiveContent name="City" type="String">London</PrimitiveContent>
 <PrimitiveContent name="ZipCode" type="String">NW4</PrimitiveContent>
 <PrimitiveContent name="Country" type="String">
 United Kingdom
 </PrimitiveContent>
 </CompoundContent>
</GenericContent>

PrimitiveContentString PrimitiveContentDouble PrimitiveContentIncome

Figure 2. Generic Content Format Representation Using the Composite

Pattern

Figure 2 illustrates a possible generic structure of an information architecture
following the GENERIC CONTENT FORMAT pattern concept. Here, we use
dynamic typing with a string-based type property. Of course, static types can as
well be used. Often content is represented using a XML vocabulary expressing
the abstractions necessary to model a GENERIC CONTENT FORMAT. In the
example, we can see that there is a one-to-one correspondence of types in the
XML vocabulary and the class hierarchy. In the example, compound types in
the XML vocabulary are modeled as COMPOSITE [GHJV94] classes.

A PrimitiveContent class is used to represent primitive data types like Integer,
String, and Double as well as Images or arbitrary binary content.
CompoundContent can contain other content like PrimitiveContent or other

CompoundContent. An Address may consist of a PrimitiveContent Street of type
String and a PrimitiveContent Number of type String.

The GENERIC CONTENT FORMAT pattern offers a set of benefits: GENERIC
CONTENT FORMAT serves as a “data glue” for integrating content from
heterogeneous sources. It reduces the necessary number of converters to N
input format converters plus M target format converters. Automatic
conversions with CONTENT CONVERTERS often rely on a GENERIC CONTENT
FORMAT as a central conversion (and storage) format. a GENERIC CONTENT
FORMAT helps us to implement an efficient content conversion and generation
architecture, which is a primary intent of the pattern language.

The GENERIC CONTENT FORMAT pattern can also incur the following
liabilities: a GENERIC CONTENT FORMAT has to be defined centrally; thus, as
applications evolve, it may be hard to evolve the GENERIC CONTENT FORMAT
non-centrally (in a distributed and collaborative working environment).
Therefore, initial formats have to be well designed for the particular domain,
and extension processes have to be defined. Most GENERIC CONTENT FORMATS
are domain-dependent. Conversion can mean to loose information if the
expressive power of other supported formats and the GENERIC CONTENT
FORMAT are significantly different. It may be hard to guess automatically in
unknown documents, which parts of the GENERIC CONTENT FORMAT conform to
which part of the unknown document.

♦♦♦
The COMPOSITE [GHJV94] pattern can be applied to model the information
architecture required to support GENERIC CONTENT FORMAT in the software
architecture of a web application system. However, the GENERIC CONTENT
FORMAT does not mandate the use of the COMPOSITE pattern. The COMPOSITE
pattern is just a convenient and proven way to model tree structures.

The pattern also occurs in non-hierarchical structures. For instance, RDF
[LS99] is a graph-based GENERIC CONTENT FORMAT that can be linearized to
hierarchical XML structures.

Usually, if a Fragments architecture is supported, the FRAGMENTS
architecture is also used as the information architecture of the GENERIC
CONTENT FORMAT pattern.

We have discussed typed data for the GENERIC CONTENT FORMAT. In some
variants types are omitted, and a central data conversion type such as a string is
used for all data. then, each supported type must be convertible to and from
Strings.

PUBLISHER AND GATHERER

In the context of a GENERIC CONTENT FORMAT, several issues with regard to
central content management are important: delivering content to clients,
receiving incoming content, content conversion and generation in different
formats, content caching, ensuring content consistency, and other content
management tasks.

♦♦♦
In a content conversion and generation architecture we have to handle
incoming and outgoing requests. How can we integrate central content
management task with request handling?

Multiple different clients need to access content in a GENERIC CONTENT
FORMAT. Somehow these different kinds of requests have to be handled.
Clients should access different devices on which the content is stored, such as
disk drives, network devices, databases, optical devices, etc., via a unique
interface so that clients can abstract from the storage devices used.

Sometimes, multiple GENERIC CONTENT FORMATS have to be created. For
instance, in the web context, often web content is converted to XML,
unsupported image formats are converted to GIF or JPEG, and proprietary text
formats are converted to PDF. Some a web application has to coordinate what
should be converted to what.

Some content is delivered statically, some other content is dynamically
processed on-the-fly. Content change detection and content change propagation
can also induce dynamic changes in already processed static content. A web
application has to handle and integrate static and dynamic content (and
possibly handle caching of content).

Central access points to web portals and services often have very high hit
rates; therefore, high scalability is required.

Therefore:
Provide central instance(s) for publishing and gathering of content. For
content gathering, the content is provided either in the GENERIC CONTENT
FORMAT(s), or in other formats delivered to target platforms. Then it is
converted to the GENERIC CONTENT FORMAT and (perhaps) cached.
Published content can be requested by clients in any supported content
format. Upon a request, the content is looked in the cache, perhaps the
content parts are dynamically created, and content conversion to the
requested channel is triggered. All these central content management tasks
are fulfilled by the PUBLISHER AND GATHERER.

PUBLISHER AND GATHERER are usually two entities like objects, threads, or
processes. Sometimes, say in smaller systems, they are represented by the same
entity. Usually, there are distinct access points on these entities for each
specific type of content, say, PUBLISHER AND GATHERER are two objects with

handler methods for each request type or they are realized as two daemons that
fork handlers for each individual request. The content may be stored in a cache
and/or on different devices, say, on the disk, in the memory, in a database, on
optical devices, or on a network device. A CONTENT CACHE is used to abstract
from these storage device specifics.

For each specific content type supported, the PUBLISHER AND GATHERER can
access CONTENT CONVERTERS for back-and-forth conversion to the GENERIC
CONTENT FORMAT. The CONTENT CONVERTERS may have to operate on the fly.
Once the content is converted to the GENERIC CONTENT FORMAT, it is stored in
the PUBLISHER AND GATHERER’S CONTENT CACHE. FRAGMENTS of the CONTENT
CACHE are the basic internal information entity used by the PUBLISHER AND
GATHERER.

Content consistency issues are central content management tasks as well. For
instance, content changes and updates may be induced by content change
detection and content change propagation.

As central access points, the PUBLISHER AND GATHERER handle integration
with other channels than the web, if it is required. Depending on the URL
different channels can be served. Usually the publisher is triggered by a
MESSAGE REDIRECTOR [GNZ01] used for indirecting URL calls to
implementations. Each of these implementations is a service that should be
published to the web (and other channels). The URL usually denotes which
document or service is requested, which format is required, and which protocol
is used. One or more publishers can be integrated as services into this
architecture (see Figure 3), or the MESSAGE REDIRECTOR can be part of the
publisher, if the publisher is the only service supported. The presented structure
is a SERVICE ABSTRACTION LAYER [Vogel01]. It is quite common for
PUBLISHERS AND GATHERERS to be combined with a SERVICE ABSTRACTION
LAYER if multiple services are offered to a number of channels.

PUBLISHER AND GATHERER architecturally integrate the other patterns of the
pattern language, and they also integrate other related services and channel
abstractions.

Content
Editing Tools

Content
Editing Tools

HTML Content
CachePublisher

WML

...

Service
Abstraction

Layer

Gatherer

...

C
on

te
nt

C
on

ve
rte

r

C
on

te
nt

C
on

ve
rt

er

Content
Source

Content
Source

Figure 3. Content Converters, Publisher and Gatherer, Content Cache,

and Service Abstraction Layer

the PUBLISHER AND GATHERER pattern offers a set of benefits: PUBLISHER AND
GATHERER are central instances that enable service access from different

platforms and with different protocols. Correct content conversion and
generation is triggered automatically, and caching is handled. PUBLISHER AND
GATHERER can be easily integrated with sophisticated service abstraction
architectures.

the PUBLISHER AND GATHERER pattern can also incur the following liabilities:
Using a central instance means that we have to care about scalability and
performance issues. The converters are stateless, so they can be replicated.
Only the caches must be shared. To enable automatic conversion means that all
converters have to be written and maintained, whereas hand-built architectures
can only rely on the relevant converters.

♦♦♦
PUBLISHERS AND GATHERERS can be implemented in different variants. first, we
can decide whether PUBLISHER AND GATHERER are implemented as two separate
entities or as one entity of the programming language. In many more advanced
server architectures PUBLISHER AND GATHERER are separated. Often they can be
forked or redirect to other servers to provide a higher scalability of the
architecture. Often there is a central instance to receive requests, and multiple
workers to handle individual requests. Of course, this is only an issue if they
run in different threads or processes. This architecture is actually quite typical
for PUBLISHERS AND GATHERERS in systems with high hit rates.

In SERVICE ABSTRACTION LAYERS [Vogel01] the publisher can either be used
as a service or as a MESSAGE REDIRECTOR [GNZ01] for resolving URLs.

CONTENT CONVERTER

Content has to be represented in multiple different formats. Typical target
formats for the web include XML, WML, HTML. Sometimes formats, such as
PDF, are required as well. Often pictures in formats, such as GIF, JPEG, PNG,
have to be generated.

♦♦♦
How to automatically convert content in one format to a different format,
and/or update the content according to a set of change rules?

Content in different formats has to be generated for an interactive web
application. Important consideration in this context are performance and
scalability issues: for high-performance web applications (typically with high
hit rates) generating all content on-the-fly is usually costly in terms of memory
and performance, and this imposes severe requirements on the scalability of the
application.

In the context of migrating legacy applications to the web (or other new
media platforms), usually the original format has to be supported as well. Thus,
we cannot change the legacy application to directly support web-enabled
output as its primary output format. It is necessary to convert either the legacy
format or the web format.

Converting one content format to another often means to reduce the
expressiveness of the application to the common denominator of all target (and
input) formats involved. Otherwise we have to live with lossy conversions.

Usually, conversions should take place either on request or upon certain
events.

Therefore:
For each required conversion type, provide a converter class that has
callback methods to be lazily called when a conversion should take place.
In general, content conversion includes input processing of the input
format, data conversion and manipulation, and output processing to the
target format.

A CONTENT CONVERTER is constructed from three elements that are ordered
in a CHAIN OF RESPONSIBILITY [GHJV94], each of them is optional:

1. Input processing creates a representation in memory from a given input
format. As a result an intermediate representation is created. Usually,
this is a representation in memory. In exceptional cases, such as
operating on very large data sets (that do not fit into memory), we may
use different intermediate representations. If the conversion is very
simple, we can also directly operate on the input format.

2. Data conversion and manipulation routines on the intermediate
representation (i.e. most often in memory) apply a set of change rules.
The result is manipulated data in the intermediate format. Of course,
this step can be repeated multiple times.

3. Output processing is used to create and convert the intermediate format
to the target format.

the CHAIN OF RESPONSIBILITY and the produced data formats of a CONTENT
CONVERTER are depicted in Figure 4. All parts of the CHAIN OF RESPONSIBILITY
are optional, however, most often all parts are present. For instance, if steps 2
and 3 are performed on the input format, input processing is not required. If
there is only a one-to-one conversion from one format to another one without
any manipulations (e.g. to adapt the differences of the two formats) then step 2
is obsolete. If the intermediate format is equal to the target format then step 3 is
not required.

Client

Document
in Input
Format

Input
Processing

Converter Chain of Responsibility

Data Conversion &
Manipulation

Output
Processing

Document in
Intermediate

Format

Document in
Intermediate Format

(Manipulated)

Document
in Target
Format

Data Formats Produced in Each Processing Step
Figure 4. CONTENT CONVERTERS: CHAIN OF RESPONSIBILITY and

Produced Data Formats

There are different events that trigger CONTENT CONVERTERS. The CONTENT
CONVERTER can be triggered on demand, say, when an HTTP request is
coming in. The conversion can also be caused by events like content changes.
Finally, the content can be pre-processed when the system is idle or has a low
work- load.

The converter may be able to operate back and forth. It unifies all different
conversions to and from the target format. Therefore, usually the converter has
two TEMPLATE METHODS on an abstract converter class that call the three
CHAIN OF RESPONSIBILITY methods for input processing, conversions, and
output processing. One TEMPLATE METHOD handles conversion to the target
format, and one handles conversion to the GENERIC CONTENT FORMAT such as
XML. Special converter classes implement the hook methods for the target
format that they represent (such as HTML). Figure 5 illustrates this design.

Often static and dynamic content FRAGMENTS have to be combined to create
one page. CONTENT FORMAT TEMPLATES and FRAGMENTS can be used for
specifying in a static page where dynamic parts have to be inserted. CONTENT
CREATOR can be used to build up content dynamically in a specific format
using a generic interface. Thus, of course, it can be used to build up the target
format processed by the CONTENT CONVERTER.

Document convertFromXML(Document d)
Document convertToXML(Document d)
InternalRep inputProcessingXML(Document d)
void conversionsXML(InternalRep ir)
Document ouputProcessingXML(InternalRep ir)
InternalRep inputProcessingTarget(Document d)
void conversionsTarget(InternalRep ir)
Document ouputProcessingTarget(InternalRep ir)

ContentConverter

InternalRep inputProcessingXML(HTMLDocument d)
void conversionsXML(InternalRep ir)
HTMLDocument ouputProcessingXML(InternalRep ir)
InternalRep inputProcessingTarget(HTMLDocument d)
void conversionsTarget(InternalRep ir)
HTMLDocument ouputProcessingTarget(InternalRep ir)

HTMLConverter ...

InternalRep ir =
 inputProcessingXML(d)
conversionsXML(ir)
return ouputProcessingXML(ir)

InternalRep ir =
 inputProcessingTarget(d)
conversionsTarget(ir)
return ouputProcessingTarget(ir)

Figure 5. Generic XML and Special HTML CONTENT CONVERTER

Classes

The CONTENT CONVERTER pattern offers a set of benefits: It unifies different
APIs for data transformation and manipulation to one abstract converter
interface. Thus, in a content management environment different converters can
be applied in an automated fashion. Automatic data conversion is required for
automatically updating dynamic data in CONTENT CACHES and for dynamically
applying conversion in PUBLISHER AND GATHERER. Moreover, the pattern
allows for combining different content conversion approaches such as the
event-based, tree-based, and rule-based processing models. Content conversion
is an efficient way to (re-)construct FRAGMENTS when new or changed input
arrives.

The CONTENT CONVERTER pattern can also incur the following liabilities:
content conversion offers only a limited expressiblity compared to fragments,
templates, or creators. Therefore, higher- level manipulations of content should
be implemented using these patterns. However, they can be triggered by a
CONTENT CONVERTER. In many problem settings there are certain exceptional
conversions that should be handled differently. Here, the CONTENT CONVERTER
offers only limited diversity of conversions because it does not make much
sense to produce a new converter for each exception. Better solutions are to
provide a BEFORE/AFTER INTERCEPTOR [GZ01] or other callback mechanisms
on the converter object for these cases.

♦♦♦
There are different CONTENT CONVERTER variants. Since all three parts of a
CONTENT CONVERTER are optional all parts can be omitted. The internal
creation of content can be hand-built, or it can use CONTENT CREATOR,
TEMPLATES, or FRAGMENTS.

In some variants, the CONTENT CONVERTER object is also used to store the
internal (generic) and the target format (instead of using an external CONTENT
CACHE). This especially makes sense in some automatic type conversion
systems, such as the scripting language Tcl (with Tcl_Objs as CONTENT
CONVERTERS) or some SOAP implementations. Here, the CONTENT
CONVERTER object potentially “knows” the two representations in the two
supported formats. However, at any time one of them may be undefined, if it is
possible to create the content without loosing information in both directions.

The conversion is performed when the typed or untyped object is requested the
next time. When the information changes in one of the representations, the
other representation is automatically invalidated. This variant is especially
useful for integrating FRAGMENTS objects and a GENERIC CONTENT FORMAT.
At any time, only one of the representations has to be valid, and the other one
can be lazily created on demand. Lazy resource acquisition is also the focus of
the LAZY ACQUISITION pattern [Kircher01].

CONTENT CREATOR

In interactive web applications, dynamically generated content in HTML
format and most often in multiple others formats is required. Sometimes the
same application supports the same format in different variants. For instance,
HTML may be delivered pretty-printed in a debugging version and compressed
for optimizing file size in the released version. CONTENT CONVERTERS require
a facility to build up a representation in a target format dynamically.

♦♦♦
How can we build up content in different content formats dynamically and
reuse the same code for different content formats? How do we avoid hard-
coding content format specifics in the business logic code?

Different content formats have different characteristics and specialties;
however, the requirement for supporting multiple formats exists in many
systems. As an example of this diversity, consider for instance classical widget
sets and markup formats, such as HTML and XML. Moreover, format types
are heterogeneous in different incarnations. For instance, some widget sets
have highly static and monolithic programming interfaces (such as Swing,
AWT, or MFC), whereas other interfaces are highly dynamic (such as TK).
Some markup formats such as XML are well- formed and can be validated with
a DTD or schema, whereas HTML, for instance, is only loosely defined.

Converting one content format to another often means to reduce the
expressibility of the application to the common denominator of all target (and
input) formats involved. Otherwise we have to live with lossy conversions.

Often, we have to create the same content in the same format in different
ways. Consider, for instance, generation of HTML text. Ideally, we would like
to have pretty printed and indented HTML output that is easily readable.
However, for larger pages this may become problematic: pretty printing HTML
text means to insert a lot of white space and carriage returns. Therefore, in such
cases, we require a more compressed output. When different platforms have to
be supported, often we want to leave away marked parts of the content, such as
leaving away larger pictures in HTML text for supporting mobile devices.
Another common example is stripping out comments.

Therefore:
Provide an abstract CONTENT CREATOR class that provides operations to
build up content incrementally in the memory. These operations support
at least the common denominator of the used content formats. Build
special classes that implement that interface for each supported content
format, as well as special methods (e.g. callbacks) for required specialties
of the respective content formats.

The classes’ instances enable the application to incrementally build up pages
in the user interface and to retrieve the result. Usually for each user interface
element we have methods for starting and ending the element, so that elements
may be placed in between.

Sometimes, the CONTENT CREATOR builds up a string, say, for generating
XML or HTML directly. The CONTENT CREATOR’S internal data representation
can also be a COMPOSITE that is built up incrementally from the content format
elements (which are then represented as objects). This variant has the
advantage that the content representation in memory can be changed. That is, if
the internal format of a CONTENT CREATOR and a CONTENT CONVERTER are
identical (e.g. a DOM tree), we do not have to perform input processing in the
CONTENT CONVERTER after generating content on the CONTENT CREATOR, but
we can directly use the internal format generated. Those objects may also be of
the internal FRAGMENTS structure.

CONTENT CREATORS let us abstract specialties and characteristics of different
user interfaces. However, we have to “simulate” the more advanced formats in
the less advanced ones, or reduce the output to the common denominator.
Another variant is to live with lossy conversions.

Sometimes, living with lossy conversions is intended, say, if we want to
provide a rich web interface, and reduced content for smaller mobile devices or
settop boxes. In such cases, we can either leave certain parts of the content
away during the building process or use different CONTENT CREATOR objects as
STRATEGIES [GHJV94]. Note that it is often easier and less memory and
performance consuming to use CONTENT FORMAT TEMPLATES to create multiple
different variants of the same content in the same format. Here, the content to
be provided only on some platforms can be marked in the template definition.

In Figure 6 a typical design of a CONTENT CREATOR is shown. An abstract
CONTENT CREATOR class determines the common interface for all derived
creators. Here, four special Creator classes are derived: the GENERIC CONTENT
FORMAT XML, HTML pages on the web, MMS pages for mobiles, and DVB-J
Java classes that represent pages on interactive digital television platforms such
as the Multimedia Home Platform.

Document getDocument()
void clearDocument()
void addDocument(Document d)
void startDocument(...)
void endDocument(...)
void startParagraph(String attributes)
void endParagraph(String attributes)
void addString(String s)
...

AbstractContentCreator

HTMLBuilderWeb ...MMSBuilder DVBJPageBuilderXMLBuilder

Figure 6. Example of Abstract and Special Content Creators

The CONTENT CREATORS pattern offers a set of benefits: The CONTENT
CREATOR allows for abstracting multiple target formats. Compared to
implementing each target format by hand, the CONTENT CREATOR result in
shorter code that is easier to maintain, say in cases of changing web standards,

new features, etc. CONTENT CREATOR avoid scattering format specifics
throughout the business logic code. In comparison to template or fragment
approaches, the constructive approach of the CONTENT CREATOR is more
flexible. Syntax errors in the target format can be detected a priori, say, the
creator can raise an error, if a content element is opened but not closed.

The CONTENT CREATORS pattern can also incur the following liabilities: In
comparison to template or fragment approaches, the constructive approach of
the CONTENT CREATOR is rather slow. Problems of lossy conversions and
reducing all inputs to the common denominator of the target formats can only
be avoided by programming specialties of target formats for all other formats
by hand. CONTENT CREATORS require programming efforts to create and
customize content; thus, they are hardly applicable at the end-user level
without tool support.

♦♦♦
CONTENT CREATORS let us generically program how to build up the content
format; thus, they are a generic constructive approach. In contrast, CONTENT
FORMAT TEMPLATES and FRAGMENTS are template-based approaches for the
same problem (but both have a different set of forces in focus).

CONTENT CREATORS can be structured as class hierarchies with methods for
each content element, as discussed above, or as alternative variants other
descriptive structures can be chosen. As a runtime structure an object can be
created for each content element. Sometimes simpler list structures are
appropriate as well.

CONTENT FORMAT TEMPLATE

In interactive web applications, content in HTML format and most often in
multiple others formats has to be dynamically generated. CONTENT
CONVERTERS need a facility to build up a representation in a target format
dynamically.

♦♦♦
How can we build up content in a target content format and allow the
content editor to add highly dynamic content parts in a simple way that
yields a high performance?

An important limitation of CONTENT CREATOR is that it requires
programming to create and customize the content created. End-user- level
customizability, however, is important for many web applications since web
developers are easier to hire (and less costly) than qualified programmers.

Compared to static HTML content, CONTENT CREATORS are rather slow. For
high-performance systems a performance closer to using static content is
required. Most often only small parts of a page are dynamic, and others are
given statically. In suitable cases, we should not build up the whole page
dynamically, but use static content where possible.

The same content in the same format may be presented in different ways. For
example, when different platforms are supported, often we want to leave away
marked parts of the content, such as leaving away larger pictures in HTML text
for supporting mobile devices.

FRAGMENTS solve both of these issues to a certain extent. However, for
highly dynamic content elements we still have to create these Fragments e.g.
using CONTENT CREATORS. Therefore, in such cases the problems appear again
during construction of the FRAGMENTS.

Therefore:
Provide a template written in the content format that contains special code
in a template language to be substituted by a template engine. This way
content editors can work directly in the (familiar) content format and add
dynamic elements to it. As large parts of the content do not have to be
processed dynamically, such a CONTENT FORMAT TEMPLATE provides a
potentially high performance.

A CONTENT FORMAT TEMPLATE enriches the content with meta-information.
A (little) language is needed for specifying the substitutions to be performed by
the template engine. In some variants this is a whole scripting language.

A typical example structure are AOLServer’s ADP templates that are using
Tcl. For instance, in the following example a web page is created dynamically
in which the user’s browser type and the time is displayed:

<%
 set header [ns_conn headers]
 set browser [ns_set iget $headers User-Agent]
 set time [clock seconds]
%>
<html>
 <body>
 Time: <%= $time %>
 Browser: <%= $browser %>
 </body>
</html>

The template engine replaces the embedded Tcl code and produces proper
HTML output.

The CONTENT FORMAT TEMPLATE pattern offers a set of benefits: For simple
scenarios, template production is very simple and straightforward. That is, web
page design can be separated from program development, and it is possible for
web designers to create dynamic pages. In general, the approach is more
efficient then purely constructive approaches on top of CONTENT CREATORS. In
contrast to FRAGMENTS more high- level dynamic interactions can be supported
in the content format. Simple behavioral customizations can be performed by
the end-user.

The CONTENT FORMAT TEMPLATE pattern can also incur the following
liabilities: In many approaches such as JSP and ASP the promise to be simple
and straightforward turns out to be unrealistic in practice, because complex
programming language elements have to be understood by the web designers.
Real applications have complex interdependencies. Since templates only act at
the local level of a single document they can hardly cope with these issues. A
second liability results from this problem: recurring elements often have to be
recoded for every use in a template; that is, there is only limited reuse of
template code. The page design and business logic of the application are
usually not separated.

♦♦♦
CONTENT CREATORS operate in the same context as CONTENT FORMAT
TEMPLATE. But they build up the content in a programmatic and constructive
approach. In some domains, this can lead to significant liabilities regarding
end-user customizability and performance compared to static HTML content.
The CONTENT FORMAT TEMPLATE can internally be realized using CONTENT
CREATORS. Other combinations of the patterns are also possible. For instance,
templates may be embedded in CONTENT CREATOR’S client code. It is also
useful to reference FRAGMENTS or CONTENT CREATORS directly from the
embedded template code written in the content format.

A FRAGMENT is another template-based approach. It codes only the fragment
ID into the document, but it does not inc lude the dynamic content itself. Thus,
dynamic behavioral aspects of content that can be coded into the documents
themselves is limited.

There are many CONTENT FORMAT TEMPLATE variants based on popular
programming languages that are embedded in HTML code. We can generally
distinguish between approaches aiming at the end-user and web designer level,
and more complex approaches. Another aspect to distinguish the approaches is
caching and interpretation. Some approaches always compile pages, some
approaches cache pages once they are created, and other approaches always
interpret the pages.

FRAGMENTS

Instead of providing static web pages only, today’s web sites offer dynamically
generated web pages, enriched with real time information like stock quotes in a
sometimes highly personalized manner. Examples of such web sites are
financial, news and sports sites. You are developing a web application serving
web pages containing various dynamic content.

♦♦♦
The different parts of your web page can have a different life time, be
highly personalized, or be redundant. You have to assure that the content
presented is consistent. You have to provide these dynamic web pages in a
highly efficient manner.

Generating web pages from dynamic content is an expensive task as content
has to be fetched from data stores like RDBMS, XMLDBMS or even from
other web systems by accessing web services. This leads to increased I/O
operations and often network overhead as backend systems are incorporated
over the intranet or even the interne t.

Furthermore, assembling of the retrieved content to web pages results in a
processing overhead. Content might have to be converted into a GENERIC
CONTENT FORMAT and web pages are regenerated completely as no means are
available to determine which parts of a web page have changed. Often web
pages as a whole are the most fine grained building blocks of web systems.
Therefore, web pages cannot be served in an efficient manner if the whole web
page is regenerated.

The consistency of the content displayed on the web page is another key
challenge. Different parts of a web page should be consistent. Consider a web
page showing stock quotes belonging to the user’s portfolio. To get more
detailed information on a specific stock the user can click on a hyperlink
bringing up a details page. The information on that page may not be older or
inconsistent with the one displayed on the former page. To assure that web
pages are generated consistently, intelligent means must be available to
identify that underlying content has changed. This enforces a flexible and
intelligent information architecture.

Therefore:
Provide an information architecture which represents web pages from
smaller building blocks called FRAGMENTS. Connect these FRAGMENTS so
that updates and changes can be propagated along a FRAGMENTS chain.

FRAGMENTS are pieces of information that have an independent meaning
and identity. A single stock quote, news, or user profile information are
examples of FRAGMENTS. These independent parts can be assembled to
compound parts like whole web pages. Thus FRAGMENTS can contain other
FRAGMENTS and reference others. FRAGMENTS can thereby build a dependency
chain or object dependency graph. If FRAGMENTS lower in the chain change,
the higher FRAGMENTS have to be revalidated and regenerated. Thus, only the

parts of a web page which have actually changed are regenerated leading to a
decreased processing overhead.

As FRAGMENTS have an independent meaning in the user’s conceptual model
they can build the basic entities for caching strategies. It is important to
understand that FRAGMENTS are a concept of the used information architecture
and are completely independent of base technologies like J2EE or .NET.
Therefore the same information architecture can be used on different
technology platforms [Kriha01]. A FRAGMENTS based information architecture
fits nicely into the overall software architecture of a web application system as
they can be represented by conventional means like classes.

Web Page

Portal Logo
Navigation Menu (Contact, Customize, Filter,

Logoff etc.)

Not Customized Stock Quotes View

Stock Quote 1,
Stock Quote 2,
Stock Quote 3,
.
.
Stock Quote N,

Customized News View

Company X invests in Company Z.
Company Y has new CEO.,
.,
.,
.,
Company W released new version of its core
product.,

Figure 7. An Example Web Page Containing Personalized and Non-

Personalized Parts

The illustration in Figure 7 shows a web page of a financial portal site
constructed from smaller building blocks. The portal logo and the navigation
menu are user independent and thus appear on every portal page. The
uncustomized stock quotes view is build upon dynamic content but not
personalized. Therefore, it can be reused across different portal pages.

In contrast, the customized news view is personalized by the user and is
specifically generated for that particular user. However, several users could
have the very same configuration; or different news items could appear on
different web pages as well. Thus, there is a reuse potential for the news view
and news items. Furthermore the stock quotes view and the news view are
themselves build from smaller building blocks, namely stock quotes or news
items respectively.
Using the FRAGMENTS concept the web page is a compound FRAGMENT
containing the portal logo FRAGMENT, the navigation menu FRAGMENT, the
stock quotes FRAGMENT and the news FRAGMENT. The stock quotes and news
FRAGMENT are compound FRAGMENTS as well build from stock quote and news
item FRAGMENTS. Like the GENERIC CONTENT FORMAT a FRAGMENTS
architecture can be designed using the COMPOSITE pattern.

PrimitiveFragment CompoundFragment

Fragment

String name
String identifier

consists of

Figure 8. Generic Fragments Structure Using the COMPOSITE Pattern

Using the COMPOSITE pattern arbitrary FRAGMENT trees can be assembled, as
shown in Figure 8. In order to tell which FRAGMENTS make up which other
FRAGMENT’S FRAGMENT Definition Sets (FDS) are used. FRAGMENT Definition
Sets are FRAGMENTS themselves and build an object dependency graph
necessary to invalidate FRAGMENTS and to detect which parts of a FRAGMENT
have to be regenerated. The FRAGMENT Definition Sets can themselves be
modeled using the COMPOSITE pattern (see Figure 9).

PrimitiveFragmentDef CompoundFragmentDef

Fragment

String name
String identifier

FragmentDef

String name
String identifier

fragment definition set

consists of

Figure 9. Generic Structure of a FRAGMENT Definition Set

FRAGMENTS are defined by FRAGMENT definitions. Combining the definition
and the instance level of the information architecture leads to a dynamic object
model system as described in [RTJ00].

Besides using FRAGMENTS to structure web pages, FRAGMENTS are also
ideal candidates to model dependencies between different formats of the same
content.

Stock Quote in
RAW Format
(e.g. row in

database table)

Domain Object of
Stock Quote
(e.g. JDBC

representation of
RAW format)

Stock Quote in
Generic

ContentFormat
(e.g. company,
buy, sell, stock,

number of stocks
in portfolio)

Stock Quote in
Personalized

GCF (e.g.
company name
and price only)

Stock Quote in
Personalized

Rendered
Format (e.g.

HTML)

Stock Quote in
Personalized

GCF (e.g. buy/
sell overview)

Stock Quote in
Personalized

Rendered
Format (e.g.

WML)
Figure 10. FRAGMENT Dependency Graph of the same Content

In Figure 10 we can see a typical FRAGMENTS dependency graph of the same
content. If any part of the FRAGMENTS dependency graph changes, its successor

has to be revalidated and regenerated. The upper part in the dependency graph,
the rendered FRAGMENT, is usually part of a web page dependency graph
triggering the revalidation of the affected parts of the web page after its
regeneration. To detect and to propagate fragment changes special algorithms
can be used. For example, a Data Update Propagation (DUP) algorithm can be
used to propagate changes along the FRAGMENT dependency graph by assuring
consistent updates as described in [CIW00]. Another approach is to include
special validator objects containing the logic necessary to determine if
FRAGMENTS have become invalid and therefore have to be updated. The
validators can either be configured using a rule based approach or be created
programmatically [Kriha01]. Moreover, caching can be integrated within the
FRAGMENTS architecture as explained in CONTENT CACHE.

The FRAGMENTS pattern offers a set of benefits: Compared to the other content
generation patterns, FRAGMENTS potentially offer the highest performance.
Fragments offer a good integration with a layered CONTENT CACHE. The other
content generation patterns can be combined with the FRAGMENT approach.

The FRAGMENTS pattern can also incur the following liabilities: FRAGMENTS
only assemble pre-built parts. They are not highly programmable and do not
offer behavioral abstractions. However, these problems can be eliminate by
combining them with the other content generation patterns. In pre-built
FRAGMENTS content changes have to be detected and propagated to ensure
content consistency.

♦♦♦
In their internal structure, FRAGMENTS can be atomic, chained, COMPOSITES, or
cascaded COMPOSITES. Fragments can only have an object representation or
they can also cache the GENERIC CONTENT FORMAT representation that
corresponds to their internal representation. Then only one of these
representations has to be valid, and the other one can be computed lazily.

CONTENT CACHE

You are developing a web application system targeting many users that has to
support dynamic content in an efficient way. You are using FRAGMENTS to
structure your content. The processing time required to render web pages
should be reduced.

♦♦♦
How can you increase the performance of web page delivery and thereby
increase efficiency of the web architecture?

Dynamic web application systems often lack in providing web pages in an
efficient way. A FRAGMENTS architecture can be used to reduce the amount of
parts of a web page having to be regenerated every time a new request enters
the system. However, the performance of the overall web architecture might
still be insufficient.

Content changes that affect already created content have to be detected and
propagated to avoid content inconsistencies.

Therefore:
Provide a central cache for caching already created dynamic content. Let
the PUBLISHER AND GATHERER enter newly created or updated FRAGMENTS
in the cache. When the content changes, invalidate the respective content
entries in the cache. When a client wants to access some content, let the
PUBLISHER AND GATHER ER check the cache before dynamically creating
the requested content.

The main reason for caching is to increase throughput and thereby
performance. According to a report by Yahoo [MPR00], 80% of all users do
not customize their homepage. This means that besides the welcome message,
everything appearing on the individual’s portal page stays the same. Caching
these parts truly increases the performance of the overall web site
tremendously.

However, enabling caching in a consistent way is challenging as accurate
cache invalidation algorithms have to be applied. Moreover, client and server
side caching has to be considered. Whereas server side caching enables cache
invalidation by introducing validator objects containing the knowledge when a
cached piece of content becomes invalid, client side caching is often quite
cumbersome.

First of all, clients, in most cases web browsers, must adhere to a protocol
supporting the control of client side caching from the server side. Although, the
common protocol HTTP allows for setting certain caching parameters most
popular web browsers still do not implement the HTTP specification
accurately. This makes caching of dynamic content on the client side unreliable
as it is not clear how the client’s browser implements the specification. One
can limit access to web sites to certain, tested browsers only. But the next
version or the same version on another platform might still behave differently.

Thus, often the only choice is to turn off client side caching completely leading
to a decrease of performance.

Server side caching is an effective means to speed up overall request
satisfaction. To support efficient server side caching an information
architecture must be in place which decomposes the information space along
the dimensions time and personalization and which distinguishes clearly
between global pieces, individual selections of global pieces and really
individual pieces [Kriha01]. An information architecture based on FRAGMENTS
can be used to classify content. Moreover validator objects can be applied to
determine, if a piece of information is still valid according to time and
personalization constraints. The validator objects can either be configured
using a rule-based approach or implemented programmatically. Different
validator algorithms can be supplied using the STRATEGY pattern.

Assuming that hundreds of requests for the same stock quote are entering the
system, the same number of requests to the backend system, requesting the
same information, would be required. Thus, system performance would heavily
reduced. Only the first request should trigger the retrieval of the information all
subsequent request should receive the information from the server side cache
as long as it is valid. For most types of information an accuracy of a few
seconds is acceptable. Therefore, every request should go through a CONTENT
CACHE. The CONTENT CACHE checks if the requested piece of information is in
the cache and if it is valid. If not, the content is loaded from the backend
system and stored in the cache. Afterwards it is returned to the client. This
applies for whole web pages as well for parts of web pages.

Content can be gathered and published by using the PUBLISHER AND
GATHERER pattern. Typically CONTENT CONVERTERS are triggered before and/or
after the content is placed in the CONTENT CACHE. The PUBLISHER AND
GATHERER checks whether the CONTENT CACHE contains a valid entry before it
re-creates content dynamically.

Content Cache

Fragment FragmentDef FragmentValidator

defined by

used for validation

Figure 11. Internal Structure of Content Cache

The ContentCache itself contains Fragments as well as FragmentDefs and uses
associated FragmentValidators to validate Fragments of certain types (see Figure
11).

Chains or dependency graphs of FRAGMENTS, representing the same content
in different formats, can be cached in the ContentCache too. Because of the
behavior of FragmentChains, the ContentCache is not the only active component
within the caching process. FRAGMENTS within a chain automatically notify its

successors upon content change triggering their revalidation and probably
leading to the invalidation of the ContentCache. Thus, FRAGMENTS play an active
role in the caching process as well.

The CONTENT CACHE pattern offers a set of benefits: In combination with
FRAGMENTS the patterns allows for a highly efficient information architectures.
Together with a PUBLISHER AND GATHERER it integrates well with CONTENT
CONVERTERS.

The CONTENT CACHE pattern can also incur the following liabilities: Possible
inconsistencies in the CONTENT CACHE have to be resolved. In exceptional cases
change detection and propagation can be more costly than the performance
gain of caching. In multi- threaded environments a CONTENT CACHE requires
mutex locks which can result in lock contention. Therefore, it is important to
monitor hit rates and contention closely.

♦♦♦
There are different variants of CONTENT CACHES. A cache can be supplied as
one central instance. As a variant, there can also be multiple caching instances,
one for each content element. For instance, in Tcl, Tcl_Objs use this style of
caching: each Tcl_Obj is one cached element plus a CONTENT CONVERTER
to/from a generic, string-based representation.

A CONTENT CACHE can support automatic invalidation of all dependent
objects, or invalidation has to be handled by hand. Moreover, CONTENT CACHES
can also support more advanced forms of content change detection and
propagation such as object dependency graphs [CIW00].

If personalized FRAGMENTS are supported, an important variant is a layered
CONTENT CACHE. Each caching layer than reflects one personalization layer in
the FRAGMENTS.

3 Implementation Example in Java

In this section, we provide a few Java code examples to illustrate the practical
use of the patterns. In the pattern language, the PUBLISHER AND GATHERER
pattern is used as the central pattern for architecturally integrating the other
patterns of the language. Let us consider PUBLISHER AND GATHERER realized as
two separate Java classes with methods for each type of source content. In a
simple publisher class methods for retrieving each individual content type are
provided. A document in the GENERIC CONTENT FORMAT (here: XML) can
directly be delivered with getXml, if it is found in the cache. Each document has
a unique document ID, for instance denoted by an URL. We would have to
trigger building a page from FRAGMENTS here as well, if this functionality is
supported. Internally, the document FRAGMENTS consist of an object tree
corresponding with the GENERIC CONTENT FORMAT’S information architecture.
XML and HTML text are just views on this generic representation; however,
the XML view has a one-to-one correspondence.

Other formats, such as HTML, are either already converted and stored in the
generic cache, or they have to be converted from XML. If a conversion took
place, we can put the generated HTML document into the cache.

 class Publisher {
 CacheHandler xmlCache;
 CacheHandler htmlCache;
 ContentConverter htmlConverter;
 ...
 public XmlDocument getXml (DocumentID docID) {
 return xmlCache.get(docID);
 }
 public HtmlDocument getHtml (DocumentID docID) {
 HtmlDocument htmlDoc = htmlCache.get(docID)
 if (htmlDoc == null) {
 XmlDocument xmlDoc = getXml(docID);
 htmlDoc = htmlConverter.convertFromXml(xmlDoc);
 if (htmlDoc != null)
 htmlCache.enter(docID, htmlDoc);
 }
 return htmlDoc;
 }
 ...
 }

Similarly, a gatherer can directly store XML input into the document cache (or
on any other storage device), and entries for the document in depending caches,
such as the HTML cache, are invalidated. If HTML input is received, the XML
and HTML cache entries are invalidated, and the new document is converted to
XML.

 class Gatherer {

 CacheHandler xmlCache;
 CacheHandler htmlCache;
 ContentConverter htmlConverter;
 ...
 public void storeXml (DocumentID docID, XmlDocument xmlDoc)
{
 xmlCache.store(xmlDoc);
 xmlCache.propagateChangeToDependingCaches(xmlDoc);
 }
 public void storeHtmlAsXml (HtmlDocument htmlDoc) {
 invalidateAllCaches(docID);
 xmlCache.store(docID,
htmlConverter.convertToXml(htmlDoc));
 }
 ...
 }

CONTENT CONVERTERS are triggered by the PUBLISHER AND GATHERER. We will
now discuss code examples for input processing with the tree-based model on
basis of the Document Object Model (DOM). The CONTENT CONVERTER has to
wrap and trigger a DOM CONTENT CREATOR. Before parsing, we have to
instantiate a document tree creator object first. Then we have to parse the file
as well:

 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 factory.setValidating(false);
 DocumentBuilder builder = factory.newDocumentBuilder();
 ...
 Document document = builder.parse(file);

A tree structure is generated in memory. DOM provides a low-level API to
traverse this tree as an intermediate format in memory, e.g.:

 NodeList nodes_i =
document.getDocumentElement().getChildNodes();
 for (int i = 0; i < nodes_i.getLength(); i++) {
 Node node_i = nodes_i.item(i);
 if (node_i.getNodeType() == Node.ELEMENT_NODE &&
 ((Element) node_i).getTagName().equals("A")) {
 handleElementA();

 }
 ...
 }

A CONTENT CONVERTER wraps these low-level details of XML processing and
generates the appropriate GENERIC CONTENT FORMAT with its corresponding
information architecture. Usually, only the Java FRAGMENT objects are created
from the DOM tree and the corresponding XML text and other content formats
are created lazily on demand.

Alternatively, we can use event-based XML processing models, such as
SAX or Expat, or rule-based processing models, such as XSLT.

CONTENT CREATORS can be used in this architecture to generate XML and
HTML text from the FRAGMENTS that are created after input processing. Here,
the FRAGMENTS are ordered hierarchically in a COMPOSITE structure. For each
element of the content format, the CONTENT CREATOR has methods for starting
the element and ending it. For instance, a paragraph in an HTML creator may
have children; thus, it has to be started and ended:

 void startParagraph(String attributes) {
 addStringIncr(“<P ”);
 addString(parseArguments(attributes));
 addStringIncr(“>\n”);
 }
 void endParagraph() {
 addStringDecr(“</P>”);
 }

Leafs, such as strings, have only a method for adding the leaf. In startParagraph
and endParagraph we have used the methods addStringIncr, addString, and
addStringDecr for adding the leafs that markup the paragraph. Only addString is
a method supported by the abstract CONTENT CREATOR. addStringIncr and
addStringDecr are methods for increasing and decreasing the indent level of
HTML text before adding a string. Thus, they represent a specialty of the
HTML format.

An XML CONTENT CREATOR usually has a one-to-one mapping of content
FRAGMENTS and CONTENT CREATOR methods, as there is a one-to-one
correspondence between those elements in the GENERIC CONTENT FORMAT
pattern. A mapping method for each FRAGMENT type defines the
correspondence between the semantic content in the FRAGMENTS and basic
content layout, such as HTML or WML. Further layout refinements can be
added with different means, such as Cascading Style Sheets and XSLT
processing.

As an alternative, we can enhance given content with CONTENT FORMAT
TEMPLATES. A simple example of CONTENT FORMAT TEMPLATE are JSPs that
contain Java code to be substituted. The substitution rules can also be applied
with XML. The template engine finds special tags containing the Java code and
executes this code before delivering the pages. Here the data for date and time
is computed dynamically:

<%@page import="java.util.*" %>
<HTML>
...
<BODY>
<H2>Date and Time</H2>
 Today’s date is: <%= new Date() %>
</BODY>
</HTML>

Of course, CONTENT FORMAT TEMPLATES are especially valuable if they are
combined with the other patterns in the language. For instance, the called
methods can refer to FRAGMENTS that are dynamically computed and/or
cached. This computation can be done with CONTENT CREATORS.

4 Known Uses and Related Work

There are different commercial web service and portal architectures that are
based on parts of the pattern language. For instance, BEA WebLogic
Integration uses a GENERIC CONTENT FORMAT to receive and send data from and
to clients connected to its integration platform. ORACLE’s PortalToGo uses a
SimpleResult data structure to represent content in a device independent
manner. It generates device-specific pages based on the content represented in
the GENERIC CONTENT FORMAT. The Java Connector Architecture (JCA)
provides ResultSets, MapResultsSets and other generic formats to represent data
coming from different backend systems.

Different web standards and their implementations are also based on parts
of the pattern language: SOAP [BEK+00] is an XML-based remote procedure
call (RPC) protocol. SOAP envelopes are a typed GENERIC CONTENT FORMAT.
RDF [LS99] is a graph-based GENERIC CONTENT FORMAT for providing meta-
data on the web.

Servers that allow for putting and retrieving data (and programs) are
simplistic implementation variants of the PUBLISHER AND GATHERER pattern
with one entity: examples are FTP servers and HTTP PUT/POST-enabled
HTTP servers.

There are numerous XML-based CONTENT CONVERTERS, based on the
different processing standards: SAX [Megginson99] parsers and Expat are the
basics for numerous event-based parsing architectures, DOM [W3C00] is the
basics for numerous tree-based parsing architectures, and XSLT [Clark99] is
the basics for numerous rule-based parsing architectures.

xoComm [NZ00] is a extensible web server architecture that has a worker
object for each request, and a central server for handling incoming and
outgoing HTTP requests. Thus, this web server architecture is also a PUBLISHER
AND GATHERER variant. xoComm provides a CONTENT CACHE structure on the
client side. Actiweb [NZ01] is a web object and mobile code system based on
xoComm. It uses the “events” generated by the corresponding worker of the
web server. It translates the URLs in an invoker component. Depending on the
URL, either normal web pages are delivered, an agent immigration or RPC
invocation is handled, or a web object is triggered. In this framework, xoRDF
[NZ02] is a tree-based CONTENT CONVERTER architecture for RDF data that is
extensible with multiple other interpretations using a VISITOR framework. Antti
Salonen’s Htmllib is a CONTENT CREATOR written in XOTcl for the HTML
target format that is integrated in Actiweb. It builds up a Tcl list dynamically
on the creator object and supports the most important parts of HTML’s
functionality. The conference management system, described in [Zdun02a],
uses these HTML creator objects extensively.

The Credit Control Platform has been developed for a leading Swiss bank.
The platform stores credit control information coming from different credit
control systems in GENERIC CONTENT FORMAT and uses it to render HTML
pages. Credit Control Platform uses efficient, format specific, code generated
CONTENT CONVERTERS to convert credit reports from different credit control
systems into a GENERIC CONTENT FORMAT [Vogel00]. A modeling tool can be
used to describe the schema of the input format. Based on the schema-specific

CONTENT CONVERTERS are created. Credit Control Platform supports different
CONTENT FORMAT TEMPLATES. Data Visualizers can be specified on a meta
level using a special modeling tool [BIV00]. concrete CONTENT FORMAT
TEMPLATES can be generated for different technologies like JSP, ASP and
XSLT.

The document archiving system in [GZ01] provides a GENERIC CONTENT
FORMAT in form of a data capsule format for document archiving. The capsules
contain the document plus metadata. In future system versions, the capsule
format should be XML. The system provides central GATHERER entities for
archiving of different content formats, and a document retrieval handler. All
handlers are daemons that are provided for initial access only. Upon a request,
a PUBLISHER handler is forked from the central instance and handles the
request. The system supports CONTENT CONVERTERS for converting all inputs
into an archive capsule format.

In the document management system DocMe a central gatherd and publishd
are provided. Internally, all gathered information is converted. Here, different
constructive CONTENT CONVERTERS are provided, e.g. from MS Word format
and similar formats used by end users as content editors. The system
approximates how the documents should look like in different formats, such as
HTML, TV broadcasted data, etc. Using the central PUBLISHER AND GATHERER
the system caches the information, handles multiple document versions in the
CONTENT CACHE, change detection and propagation, user and rights
management, and document classification issues.

AOL Digital City, based on AOL Server [Davidson00], has an architecture
with a central Pub server and multiple front end servers as a variant of
PUBLISHER AND GATHERER. A switch server multiplexes a client onto one of the
front end servers. AOL Server’s SOB (small objects) is an interface for
dynamic publishing editorial content. SOBs can be placed as FRAGMENTS in
templates. They are aggressively cached in a CONTENT CACHE, e.g. in AOL
Movie Guide. AOL Server implements a CONTENT CACHE in a multi- threaded
environment. Here, the cached data has to be mutex-protected during writing.
AOL Digital City and Movie Guide use this functionality for central content
caching servers. AOLServer’s ADP templates are CONTENT FORMAT
TEMPLATES that integrate HTML, Tcl, and the AOL Server interfaces. They are
used on numerous high-performance web sites, including AOL Digital City
and Movie Guide.

The Olympic Games 2000 Web Site [CIW00] is build by IBM us ing a
FRAGMENTS-based system for dynamic creation of web content. It uses a
server side CONTENT CACHE to cache dynamic content [CIW00].

Edge Side Includes are a new evolving FRAGMENT technology used to
describe cacheable and non-cacheable Web page components. These
components can be aggregated, assembled, and delivered at runtime [ESI02].

WebShell [Vckovski01] uses Tcl procedure to implement each part of the
construction of a web page as a CONTENT CREATOR. These are combined in a
special method that assembles and delivers the web page. The code of this
procedure already resembles the document to be created, but actually Tcl
commands and lists are used.

In the EC project TPMHP we are building a Java-based CONTENT CREATOR
for the Multimedia Home Platform which should support DVB-J, HTML, and
MMS pages.

There are several different languages and platforms that support CONTENT
FORMAT TEMPLATES natively. ASP and JSP are approaches that use tags to
allow embedded code in an HTML page. ASP pages are written in Visua l
Basic, and JSP pages are written in Java. ASPs offer a CONTENT CACHE for all
created pages. As a disadvantage, both approaches require “low-level”
programming and are therefore hardly applicable at the end-user level.
Scripting approaches for building templates on the web are often easy to
customize. PHP introduces a new language for web page templates. It is small,
light-weight, efficient, and easy to use for non-programmers. However, as a
disadvantage the language is only created for one use: on the web. The Apache
modules mod_perl, mod_tcl, and WebShell [Vckovski01] allow for combining
templates, written in Tcl and Perl, with the Apache web server. Zope is a rather
complex and powerful system for integrated web development that resides on
the Python language, and also allows for templates.

Some approaches provide combinations of CONTENT FORMAT TEMPLATES
and CONTENT CREATORS: WebShell [Vckovski01], ActiWeb [NZ01], and Brent
Welch’s TclHttpd can construct pages dynamically, and embedded template
elements in the HTML code used to construct an HTML page.

5 Conclusion

In this paper we have presented patterns for dynamic content conversion and
generation on the web. The patterns are used in many different web
architectures, and, to a certain extent, different available technological
instances can be exchanged. For instance, different models of CONTENT
CONVERTERS or different content generation techniques can easily be
exchanged. However, the base- line architecture stays the same, despite such
important technological decisions. Since most basic technologies are based on
XML, and since components, such as parsers and processors, are widely
available for many different programming languages, we can assert that the
patterns can be used for architectural decisions apart from concrete
technological realizations. Therefore, they provide a good communication
means with different stakeholders of the system in focus.

In our experience, the patterns yield architectures with a set of benefits and
liabilities that vary slightly for different used implementation technologies, for
different combinations of the patterns, for different sequences through the
language, and for different variants of the patterns.

The patterns strongly encourage architectures that provide a separation of
concerns between content, styles, formats, and channels. That is the reason,
why different technological choices can relatively easily be exchanged against
each other. MESSAGE REDIRECTORS [GNZ01] can be used to implement the
indirection to the channels, and add-ons for the channels can be transparently
provided, such as logging or authentication.

With a SERVICE ABSTRACTION LAYER [Vogel01] multiple representation
channels may be supported. CONTENT CREATOR and CONTENT FORMAT
TEMPLATE can be used to abstract from different content formats. Thus, a
common denominator can be implemented with minimal programming effort.
Both patterns provide a programmable alternative to using FRAGMENTS alone,
and both can be integrated with FRAGMENT approaches.

Generational aspects in the pattern language can be handled at runtime.
Therefore, introducing changes into a running program is natively supported by
many architectures based on the pattern language. However, since generation is
always more performance- intensive than delivering static HTML pages (e.g.
stored in files or in a database), performance may be influenced negatively.
Therefore, the balance between CONTENT CREATORS, CONTENT FORMAT
TEMPLATES, and static content often has to be considered very carefully. In
different applications, performance impacts may significantly vary. Thus often
combinations of the patterns and caching architectures are necessary to reach
acceptable results. These forces are primarily resolved by the FRAGMENT and
CONTENT CACHE patterns.

If CONTENT CREATORS are used exclusively, the user interfaces are reduced
to the common denominator defined in the abstract creator. Of course, certain
CONTENT CREATORS may also ignore certain formatting instructions, say, like a
WML CONTENT CREATOR that does not fully support the HTML subset.

On first sight, the complexity of architectures based on the pattern language
is higher then simple architectures, such as template-based approaches or CGI
scripts. However, for larger tasks, the complexity of the simpler models usually
grows exponentially, say, because of cut-and-paste code and missing
integration models. Therefore, in our experience, in real-world, large-scale web
applications the complexity, and thus the maintainability and understandability,
is rather influenced positively by applying the pattern language.

Acknowledgements

We wish to thank our EuroPLoP shepherd Markus Voelter for his valuable
comments during the shepherding process. Also we wish to thank the
participants of the EuroPLoP 2002 writer’s workshop, who also provided
substantial feedback that helped us to improve the paper.

References

[AIS+77] C. Alexander, S. Ishikawa, M. Silverstein, M. Jakobson, I. Fiksdahl-King, and S.
Angel. A Pattern Language – Towns, Buildings, Construction. Oxford Univ. Press,
1977.

[BEK+00]

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S.
Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP/, 2000.

[BIV00] A. Bredenfeld, E. Ihler, O. Vogel, GENVIS, Model Based Generation Of Data
Visualizers, In Proceedings of Technology of Object Oriented Languages and
Systems Conference, France, 2000, http://www.ovogel.de/publications/GENVIS.pdf

[CIW00] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, P. Reed. A Publishing System for
Efficiently Creating Dynamic Web Content, In Proceedings of IEEE INFOCOM
2000, Tel Aviv, Israel, March 2000.

2000, Tel Aviv, Israel, March 2000.
[Clark99] J. Clark. XSL transformations (XSLT). http://www.w3.org/TR/xslt, 1999.
[Davidson00] J. Davidson. Tcl in AOL digital city the architecture of a multithreaded high-

performance web site. In Keynote at Tcl2k: The 7th USENIX Tcl/Tk Conference,
Austin, Texas, USA, February 2000. http://www.aolserver.com/docs/intro/tcl2k/.

[ESI02] Edge Side Includes (ESI) Overview, http://www.esi.org, 2002.
[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1994.
[GZ01] M. Goedicke and U. Zdun. Piecemeal Legacy Migrating with an Architectural

Pattern Language: A Case Study. In: Journal of Software Maintenance and
Evolution: Research and Practice, 14:1-30, 2002.

[GNZ01] M. Goedicke, G. Neumann, and U. Zdun. Message redirector. In Proceedings of
EuroPlop 2001, Irsee, Germany, July 2001.

[Kircher01] M. Kircher. Lazy Acquisition. In Proceedings of EuroPlop 2001, Irsee, Germany,
July 2001.

[Kriha01] W. Kriha. Advanced Enterprise Portals, http://www.kriha.org, 2001.
[MPR00] U. Manber, A. Patel, and J. Robison. Experience with Personalization on Yahoo!.

Communication of ACM, Aug.2000, Vol.43 (8), pages 107-111.
[LS99] O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model and

Syntax Specification. http://wwww3.org/RDF.
[Megginson99] D. Megginson. SAX 2.0: The simple API for XML. http://www.megginson.com/

SAX/index.html, 1999.
[NZ00] G. Neumann and U. Zdun. High-level design and architecture of an http-based

infrastructure for web applications. World Wide Web Journal, 3(1), 2000.
[NZ01] G. Neumann and U. Zdun. Distributed web application development with active

web objects. In Proceedings of The 2nd International Conference on Internet
Computing (IC’2001), Las Vegas, Nevada, USA, June 2001.

[NZ02] G. Neumann and U. Zdun. Pattern based design and implementation of a XML and
RDF parser and interpreter: A case study. Accepted for ECOOP 2002, 2002.

[RTJ00] D. Riehle, M. Tilman, and R. Johnson. Dynamic object model. In Proceedings of
7th. Pattern Languages of Programs Conference (Plop 2000), Monticello, Illinois,
USA, August 2000.

[Vckovski01] Andrej Vckovski. TclWeb. In Proceedings of 2nd European Tcl User Meeting,
Hamburg, Germany, June 2001.

[Vogel00] O. Vogel, Usability of XML, Generation of efficient XML Content Converters,
Speech at XML for Business, Switzerland, Zuerich / Regensdorf, 2000,
http://www.ovogel.de/publications/XML4Business.pdf

[Vogel01] O. Vogel. Service abstraction layer. In Proceedings of EuroPlop 2001, Irsee,
Germany, July 2001. http://www.ovogel.de/publications/ServiceAbstraction-
Layer.pdf

[W3C00] W3C. Document object model. http://www.w3.org/DOM/, 2000.
[Zdun02a] U. Zdun. Dynamically generating web application fragments from page templates.

In Proceedings of Symposium of Applied Computing (SAC 2002), Madrid, Spain,
2002.

[Zdun02b] U. Zdun. Reenginering to the Web: Towards a Reference Architecture. In
Proceedings of 6th European Conference on Software Maintenance and
Reengineering, Budapest, Hungary, 2002

