
Domain-specific Languages for Service-oriented
Architectures: An Explorative Study

Ernst Oberortner, Uwe Zdun, Schahram Dustdar

Distributed Systems Group, Information Systems Institute,
Vienna University of Technology, Vienna, Austria

{e.oberortner|zdun|dustdar}@infosys.tuwien.ac.at

Abstract Domain-specific languages (DSLs) are an important software devel-
opment approach for many service-oriented architectures (SOAs). They promise
to model the various SOA concerns in a suitable way for the various technical
and non-technical stakeholders of a SOA. However, so far the research on SOA
DSLs concentrates on novel technical contributions, and not much evidence or
counter-evidence for the claims associated to SOA DSLs has been provided. In
this paper, we present a qualitative, explorative study that provides an initial anal-
ysis of a number of such claims through a series of three prototyping experiments
in which each experiment has developed, analyzed, and compared a set of DSLs
for process-driven SOAs. Our result is to provide initial evidence for a number of
popular claims about SOA DSLs which follow the model-driven software devel-
opment (MDSD) approach, as well as a list of design trade-offs to be considered
in the design decisions that must be made when developing a SOA DSL.

1 Introduction

Service-oriented Architectures (SOA) use platform-independent interfaces, or services,
for performing business processes [7]. A SOA, in which services realize individual
process steps or tasks, is called a process-driven SOA [27]. Process-driven SOAs deal
with multiple concerns, such as orchestration of business processes, information in
processes, collaboration between processes and services, data, transactions, human-
computer interaction, service deployment, and many more. Hence, many domains need
to be considered. Furthermore, a SOA has different stakeholders, including various do-
main experts and technical experts [25].

Using Domain-Specific Languages (DSL) for SOAs, based on Model-driven Soft-
ware Development (MDSD) [19,8], enables technical experts and domain experts to
work at higher levels of abstraction compared to using technical interfaces, executable
process models, or service interface descriptions, such as programming APIs, Business
Process Execution Language (BPEL) code, or interfaces described in the Web Service
Description Language (WSDL). Furthermore, MDSD can be used for separating con-
cerns. Hence, the multiple concerns of process-driven SOAs can be modeled indepen-
dently through MDSD.

This paper presents an explorative study in which we developed a number of
MDSD-based DSL prototypes, as well as a model-driven infrastructure to generate a
running process-driven SOA from the models expressed in the DSLs. We present three

experiments, in which we have focused on finding design decisions and/or trade-offs
for developing model-driven DSLs. DSLs for domain experts (from now on called
high-level DSL) and DSLs for technical experts (from now on called low-level DSL)
were designed and developed. Two of our experiments deal with model-driven DSLs
developed for process-driven SOAs, and the third one focuses on extending SOAs with
Web user interfaces (UI), i.e., non-process-driven SOA concerns.

An in-depth study of specific claims about model-driven DSLs for SOAs was con-
ducted. The claims target on (1) a systematic development approach for model-driven
DSLs for SOAs, (2) the multiple concerns of SOAs, (3) the different levels of abstrac-
tion presented to the different stakeholders, and (4) on providing facilities for exten-
sions. An analysis of the claims was made for each experiment in order to collect ev-
idences and counter-evidences for claims about model-driven DSLs for SOAs. Hence,
our results aim to help in making design decisions and considering the relevant design
trade-offs, when engineering a model-driven DSL for SOAs.

This paper is organized as follows: Section 2 gives some background information on
MDSD. Next, Section 3 describes our research method and discusses in detail the previ-
ously mentioned claims. Section 4 provides a description of our research experiments.
The observations and results of the experiments are discussed in Section 5. Section 6
compares to related work. Finally, Section 7 concludes the paper.

2 Background: DSLs in Model-driven Software Development

In the initial phase of our study we decided to focus on the MDSD approach to develop
DSLs for SOAs (details about the reasons can be found in Section 3). Before we go into
details of the technical parts of our study, we want to briefly explain the background.

MDSD is based on the notion of DSLs or specification languages for modeling
various types of models. DSLs are small languages that are tailored to be particularly
expressive in a certain problem domain. The DSL describes knowledge via a graphical
or textual syntax which is tied to domain-specific modeling elements through a pre-
cisely specified language model. That is, the DSL elements are defined in terms of the
language model that can be instantiated in concrete application model instances. The
application model instances are defined in the DSL’s concrete syntax which represents
the language model. The OMG’s MDA proposal [17] is one specific MDSD approach
that has some notable differences to our MDSD approach in general – especially in its
sole focus on interoperability and platform independence.

An MDSD tool introduces some way to specify transformations. There are different
kinds of transformations, such as model-to-model or model-to-code transformations.
Also, different ways to specify transformations, such as transformation rules, imperative
transformations, or template-based transformations, exist. In any case, the ultimate goal
of all transformations in MDSD tools is to generate code in executable languages, such
as programming languages or process execution languages. The MDSD tools are used
to generate all those parts of the executable code which are schematic and recurring,
and hence can be automated.

3 Research Method and Approach Overview

Many DSLs for specific aspects of SOAs have been designed (see for instance [16,12]),
but to the best of our knowledge, no study provides evidence for specific aspects and
claims associated to SOA DSLs. Hence, this research field is clearly of explorative na-
ture. For this reason, we have decided to use an explorative, qualitative research method
to get insights and evidences in this first study, following a similar approach to con-
structing a grounded theory [10,21]. Our plan is to use the results of this study in our
future research to conduct more detailed qualitative and quantitative studies about spe-
cific aspects of our results.

In our case, the initial analysis has been performed by developing a number of DSLs
in various projects (among others we considered those reported in [26,11]), as well as a
thorough literature review and discussions with both experienced and new DSL devel-
opers. There are many ways to implement a DSL, such as using MDSD or extending a
dynamic language (see [9] for details). Following our first results, we decided to inves-
tigate further on one specific kind of DSL development style: DSLs developed using
MDSD (as proposed in [19,12]). We have decided for this style because, in our expe-
rience, the explicit support for language models is useful for representing the various
concerns and stakeholders of a process-driven SOA. However, this decision limits the
generalizability of the results of our study: not necessarily the results are applicable
without modification for other styles of developing SOA DSLs.

After the initial investigation phase, we decided to conduct an in-depth study of
specific claims associated to MDSD-based SOA DSLs using a controlled series of three
prototyping experiments. In each experiment, we have developed a number of MDSD-
based DSL prototypes, as well as a model-driven infrastructure to generate a running
process-driven SOA from the models expressed in the DSLs. All three prototyping ex-
periments have been conducted in a project that has run for 12 month and included 4
developers. Two developers worked with approximately 50% of their time for the full
project duration, one contributed 20% of his time for the full duration, and one con-
tributed approximately 50% of his time for 5 month. The project did not only include
DSL development, but also development of other artifacts, such as models and transfor-
mations, needed to obtain a running prototype solution.

In particular, we investigated the following claims in-depth:

– Developing model-driven DSLs follows a systematic development approach
[19,12].

– A process-driven SOA encompasses multiple concerns, such as orchestration of
business processes, information in processes, collaboration between processes and
services, data, transactions, human-computer interaction, service deployment, and
many more. To express these concerns, it is claimed that using DSLs and language
models reduces the complexity of the overall system, compared to a system devel-
oped without DSL/MDSD support [4].

– Using DSLs and language models for expressing SOA concerns enables develop-
ers and other stakeholders to work at a higher level of abstraction compared to
using technical interfaces, such as programming APIs, executable process mod-
els expressed in BPEL code, or service interface descriptions such as WSDL (see

[25]). Hence, DSLs can be tailored by providing constructs that are common to
the domain the different stakeholders work in [5]. This enhances the readability
and understandability of each DSL for the different stakeholders. But, the different
levels of abstractions imply the definition of integration points or transformations
between the constructs of the DSLs from the different layers [6].

– Due to the different levels of abstraction, it is claimed that language models should
provide clear extension points for integrating new concerns [20].

In our study, we performed three controlled experiments, in which a number of DSL
prototypes have been developed:

– Realization of a number of DSLs for process-driven SOA basic concerns (basic
concerns)

– Extension with additional DSLs for supporting long-running transactions and hu-
man participation (extensional concerns)

– Realization of DSLs for non-process-driven SOA concerns: extensions of process-
driven SOAs with Web applications, especially Web UIs (external concerns)

Step-by-step we analyzed the various claims by reviewing and analyzing the design
decisions made in our project. Within each experiment, we compared the different DSLs
and their artifacts (such as DSL syntax, language models, transformations, and exten-
sion points) and used the results as input for our study. Also, the inputs led to refactor-
ing of the DSLs in order to improve them. In addition, with each additional experiment
stage, we compared the DSLs between the stages. That is, we followed a constant com-
parison method, as advocated by grounded theory approach [10,21], throughout our
study. For comparison, we used different methods, such as expert reviews of our DSLs
and models, student experiments with the models, and the application of the DSLs and
models in industrial case studies.

4 Study Details

Figure 1 outlines a systematic development approach of an MDSD-based DSL archi-
tecture, as proposed in [15,19,20]. High-level and low-level DSLs represent appropriate
language models. Language models can have multiple DSL syntaxes. Furthermore, lan-
guage models can have multiple language model instances, which are defined using the
DSL’s syntax. High-level DSL syntaxes, language models, and model instances extend
low-level DSL syntaxes, language models, and model instances respectively. Low-level
DSLs provide constructs that are tailored for technical experts, whereas high-level DSLs
are tailored for domain experts. A suitable separation of concerns can be established
by splitting the language model into high- and low-level models, where the high-level
model extends the low-level model. Hence, a separation of technical and domain con-
cerns can be established to present only the appropriate concerns to each of the different
groups of stakeholders.

In this approach, high-level concerns, relevant for non-technical stakeholders, are
distinguished from low-level technical concerns to achieve better understandability for
the different stakeholders. Due to the diverse backgrounds and knowledges of the dif-
ferent stakeholders, it makes sense to present to each group of stakeholders only the

High-level DSL
Syntax

High-Level
Language

Model

Low-level DSL
Syntax

extends

Low-Level
Language

Model

extends

represents

represents

*

*

1

1

High-Level
Model

Instance

Low-Level
Model

Instance

extends

instanceOf *

*

1

1 instanceOf

defined in

1 *

defined in

1 *

Domain Expert

Technical Expert

Figure 1. MDSD - DSLs

models they need for their work, and omit other details, as proposed in [25]. That is,
high-level DSLs, designed with support for the domain experts, enable to work in a lan-
guage in which domain concerns are depicted in or close to the domain’s terminology.
For instance, in the banking domain terms like account, bond, fund, or stock order are
used in the high-level DSL. Low-level DSLs, in contrast, are utilized by technical ex-
perts to specify the technical details missing in the high-level DSLs. These details are
needed by the model-driven code generator to turn the model instances, expressed in
the DSLs, into a running system. For instance, in the process-driven SOA domain, rel-
evant low-level concerns are service, service deployment, process variable, or database
connection.

In the field of this study, we tried to provide evidence or counter-evidence for the
claims summarized above. In particular, we evaluated the claims for three experiments.
The experiments deal with process-driven SOAs, as well as an extension of process-
driven SOAs with Web UIs. We focused in our experiments on the design decisions
made and on the design trade-offs that have been considered. At first we will to describe
the experiments in detail and after that in Section 5 our main results.

In the first experiment, the language models were designed together and at the same
time. The extension points were specifically designed for integrating the language mod-
els. The organization of the language models is shown in Figure 2(1). A Core language
model provides the extension points for modeling the basic concerns of process-driven
SOAs, such as collaboration, controlflow, and information. During the second experi-
ment, the extension points were used for introducing extensional concerns for which
the extension points in the basic models have not originally been designed for. The lan-
guage model structure of the second experiment is shown in Figure 2(2). In the third ex-
periment, we investigated in how far external extensions, i.e., non-process-driven SOA
concerns, can be integrated with the existing language models for process-driven SOAs.
In particular, we integrated Web UIs with the process-driven SOA models. The organi-
zation of the Web UI’s language models is depicted in Figure 2(3).

Process-driven SOA Basic Concern Language Models
The first experiment concentrates on basic concerns of process-driven SOAs, as well

C o r e
M o d e l

C o l l a b o r a t i o n
M o d e l

C o n t r o l f l o w
M o d e l

I n f o r m a t i o n
M o d e l

B P E L - W S D L
C o l l a b o r a t i o n

M o d e l

B P E L - W S D L
C o n t r o l f l o w

M o d e l

B P E L - W S D L
I n f o r m a t i o n

M o d e l

B P E L - W S D L
C o d e

h i g h - l e v e l

l o w - l e v e l

(1) V i e w - b a s e d M o d e l i n g F r a m e w o r k
B a s i c C o n c e r n s

C o r e
M o d e l

T r a n s a c t i o n
M o d e l

H u m a n
M o d e l

B P E L - W S D L
T r a n s a c t i o n

M o d e l

B P E L 4 P e o p l e /
W S - H u m a n T a s k

M o d e l

B P E L - W S D L
C o d e

(2) V i e w - b a s e d M o d e l i n g F r a m e w o r k
E x t e n s i o n s

U I - a n d P a g e f l o w
M o d e l

J S F
U I - a n d P a g e f l o w

M o d e l

J S F
W e b A p p l i c a t i o n

(3) N o n - p r o c e s s - d r i v e n S O A -
P a g e f l o w & U I o f W e b A p p l i c a t i o n

Figure 2. Experiments Overview

as providing high- and low-level DSLs for the different stakeholders [5]. The View-
based Modeling Framework (VbMF) [23,24] is a model-driven framework for reducing
the development complexity in process-driven SOAs, as well as to improve interop-
erability and reusability of models. It provides multiple language models, high-level
and low-level, each responsible for a different concern of process-driven SOAs (i.e.,
controlflow, collaboration, and information). The structure of high-level and low-level
language models is shown in Figure 2(1).

In this experiment, we used a systematic development approach as follows. First,
high-level language models were designed. A central Core language model provides
extension points for defining new language models for the appropriate concerns. Fur-
thermore, it provides extension points for various language models for basic and exten-
sional concerns. The following language models extend the Core language model for
modeling basic concerns of process-driven SOAs:

– The Controlflow language model offers constructs for modeling controlflows of
business processes, which consist of many activities and control structures. Ac-
tivities are process tasks, e.g., service invocations or data handling. The execution
order of activities is described through control structures, e.g., conditional switches.

– To compose the functionality provided by services or other processes, the Collab-
oration language model is used. This language model extends the Core language
model to represent interactions between a business process and its partners.

– The Information language model represents the flow of data objects inside the
business process. Furthermore, it provides a representation of message objects trav-
eling back and forth between the process and the external world.

For each high-level language model, except the Core language model, the low-level
language models were designed as an extension of the high-level language models.
Both the high-level and low-level language models are close to the concepts of BPEL
and WSDL. Finally, the DSL syntaxes were developed. The high-level DSL syntaxes
are based on the constructs of the high-level language models, whereas low-level DSL
syntaxes are based on the constructs of the low-level language models. Hence, domain

experts can – with the help of technical experts – use the high-level DSLs for modeling
domain concerns, and technical experts can model technical concerns with the low-level
DSLs.

Process-driven SOA Extensions of VbMF
In contrast to the first experiment, which analyzed the basic concerns of process-driven
SOAs, this experiment uses the introduced extension points of the Core language model
for integrating extensional concerns, such as transaction and human language models.
The goal of this experiment is to figure out if the systematic development approach,
used in the first experiment, can be applied for extensional concerns of process-driven
SOAs. The structure of the high- and low-level language models for both experiments
is shown in Figure 2(2).

To extend VbMF for long-running transactions, transactional concerns were inte-
grated into the VbMF through a newly defined language model [23,24]. In the same
way as the Controlflow, Collaboration, and Information language models were created,
the first step was to design a high-level Transaction language model which extends
the Core language model. Afterwards, a low-level Transaction language model was de-
signed which extends the high-level Transaction language model. Like the low-level
language models of the first experiment, the low-level Transaction language model is
based on BPEL and WSDL concepts too. Finally, high-level and low-level DSLs were
developed to support the modeling of transactions, based on the constructs of the ap-
propriate language model.

A second extension of VbMF is the support of human participation in SOA-based
business processes [22]. Again, a high-level Human language model was designed
which extends the Core language model. Human aspects are assigned to processes and
activities. A low-level Human language model extends the high-level Human language
model, and it is based on concepts from BPEL4People [3] and WS-HumanTask [2]. Fi-
nally, high- and low-level DSLs were implemented, based on the appropriate language
models, to support the modeling of human tasks for SOA-based business processes.

Non-Process-Driven SOA Extensions: Web User Interfaces
The third experiment followed again the systematic development approach, as adopted
in the first two experiments. The language model hierarchy is depicted in Figure 2(3).
The goal of this experiment is to figure out, if the systematic development approach can
also be applied to extensions of process-driven SOAs with non-process-driven SOA
concerns. The experiment deals with the modeling of Web UIs for Web pages, as well
as process-oriented modeling of the pageflow through Java-like IF-ELSE statements.
Web UIs contain the input and output components which are displayed to the user on
Web pages. The pageflow provides the basis for selecting the subsequent Web page that
should be displayed to the user, dependent on the current page and user interactions,
e.g., which link or button is pressed by the user.

First, the high-level language model is introduced for modeling the pageflow and
the UIs of the Web pages. A low-level language model for modeling the pageflow is
introduced which is based on the pageflow definition of JavaServer Faces (JSF) [1]
Web applications. The DSLs were implemented to provide suitable modeling of the
pageflow and the UIs. The developed DSLs provide constructs that are very similar to

the language model. In this experiment, there is no need for a mapping between the
constructs of the DSL and the constructs of the language model.

5 Study Results

In this section, we summarize the evidences and counter-evidences we found in our ex-
plorative experiments. First, the experiments provided some useful insights into design
decisions required during the design of model-driven DSLs for process-driven SOAs:

– A design decision for the relation between DSL syntax and language model con-
structs must be made. We observed that in all three experiments the relationship be-
tween the names used in the DSL syntaxes and the names of the constructs defined
in the language models was a concern. In all three experiments, we decided that
the DSL syntaxes provide constructs that are named equivalently to the constructs
in the language model. If the DSL syntax constructs are not named equivalently to
the language model constructs, a more complex mapping between DSL and lan-
guage model constructs is required, which means that extra efforts are required
to develop this mapping. The mapping might also make the relationships between
syntax constructs and models harder to understand. However, with a different nam-
ing in models and syntaxes, the syntax and modeling elements can be tailored more
easily.

– In all three experiments, the low-level language models are extensions of the high-
level language models. Hence, a relationship exists between them. A design deci-
sion must be made, in which order and dependency the high-level and low-level
models are designed. The high-level language models can be designed first, and af-
terwards the low-level language models. Hence, domain concerns can be expressed
close to their domain notions, such as compliance concerns in business processes.
Another possible design approach is to derive the high-level language models from
the low-level language models, which are based on technical concerns, e.g., con-
structs similar to BPEL (as done in our basic models). In this case, emphasis must
be put on the high-level design of technical concerns, in order to make them under-
standable to domain experts, too. This is often not easy. Yet another approach is to
design high- and low-level language models and DSLs in parallel. The main prob-
lem lies in the huge differences of the offered constructs between the languages.
An example are languages like the Business Process Modeling Notation (BPMN)
and BPEL. This approach requires a mapping between the often incompatible high-
level and low-level language models, with possible inconsistencies. A part of this
design decision is the development order of the high- and low-level language mod-
els and DSL syntaxes. If possible, the design of the high-level DSL syntax and
language models should be performed together with the domain experts.

– In the first two experiments, which deal with basic and extensional concerns of
process-driven SOAs, multiple language models where used. Multiple language
models reduce the complexity by separation of concerns. This leads to providing
tailored views for the different stakeholders. The main challenge of splitting lies in
finding appropriate extension points for merging models. Poor extension points can
lead to inconsistencies between the models. In addition, merging through extension

points is more complex than using modeling abstractions, such as associations. In
the third experiment, one language model is used for modeling the pageflow and
UIs of Web applications. Having only one language model does not provide a good
separation of concerns for the development team and other stakeholders, but, on
the other hand, there is no need for providing suitably designed extension and inte-
gration points, as well as possibly complex merging algorithms for the integration
of multiple models. The design decision is whether it makes sense to split one lan-
guage model into multiple models or not, and if splitting is chosen, where to split.
Trade-offs for this design decision concern the number of concerns, development
teams, and stakeholders.

Second, we found the following evidences for model-driven DSLs for claims asso-
ciated to Section 3:

– It is possible to follow a systematic development approach, such as the one de-
scribed in our three experiments in Section 4. In our case, this is not only valid for
process-driven SOAs but also for non-process-driven SOA concerns, such as in our
case Web applications.

– The systematic development approach used for the basic concerns of process-driven
SOAs, such as controlflow, collaboration, or information of process-driven SOAs,
can be followed for modeling extensional concerns, such as the transactional or
human concerns in our experiments.

– Through a separation in high- and low-level DSLs, it is possible to support different
stakeholders with different background and knowledge, i.e., domain experts and
technical experts.

– Model-driven DSLs can enhance the understandability and readability for the in-
dividual stakeholders of a process-driven SOA. Furthermore, MDSD-based DSLs
can reduce the complexity of process-driven SOAs.

Finally, the following counter-evidences, for the claims described in Section 3,
should be considered as design trade-offs for the development of model-driven DSLs
for SOAs:

– It is possible that the integration of high- and low-level concerns lead to DSL lan-
guage design issues, such as redundancy in languages, inconsistencies, and which
language should be chosen for overlapping concerns.

– Detailed separations of one language model into multiple ones can result in loose
coupling of the different language models. Thus, the result is: the more detailed the
separation, the more complex the model integration points for merging the differ-
ent application models. Possible ways to achieve model integration are name-based
matching, ontology-based matching, or inheritance. Hence, there is a trade-off be-
tween the complexity of the integration points and the degree of separation of con-
cerns achieved in the language models.

– We observed another trade-off between model integration point design for the dif-
ferent stakeholders and the understandability, as well as the readability. The more
complex the integration points are, the less understandable and readable the DSLs
and/or their language models get in many cases. Hence, enhancing understand-
ability and readability for one type of stakeholders increases the complexity of

integrating models for other stakeholders. That is, the complexity for stakeholders,
who need to integrate and understand all models at once, can rise even though the
complexity for individual stakeholders decreases.

6 Related Work

Pitkänen and Mikkonen [18] argue that well designed DSLs, modeling tools, and code
generators increase the productivity. They concentrate on lightweight and modular
DSLs instead of full-blown DSLs. Some situations of full-blown DSLs are described,
e.g., several different implementation platforms. The lightweight approach can be an
aid in defining the scope and concepts of DSLs before the implementation of a full-
blown DSL starts. In comparison to our study, the systematic development approach
can be applied to lightweight, as well as full-blown DSLs. The different design deci-
sions and/or trade-offs, described in Section 5, are also valid for developing lightweight
model-driven DSLs.

Bierhoff et al. [14] describe an incremental approach for developing DSLs. First,
they choose an application and develop a DSL which is expressive enough to describe
the application. Also, domain boundaries are defined. Then, the DSL grows until it is
too expensive to extend it more. The approach is demonstrated on CRUD applications,
i.e., create, retrieve, update, delete applications. The approach by Bierhoff et al. reflects
the evolution of our three experiments described in Section 4. Also, we started by an
initial experiment and extended it incrementally.

Maximilien et al. [16] developed a DSL for Web APIs and Services Mashups. A
number of interesting design issues for DSLs are mentioned: (1) levels of abstraction,
(2) terse code, (3) simple and natural syntax, and (4) code generation. These goals are
very similar to our proposed claims. The developed DSL is used for SOAs, and the
described approach and results are in line with our results.

Tolvanen [13] provides a guidance for defining and developing DSLs based on his
long-year experiences in building DSLs. The development process is divided into four
phases: (1) Identifying abstractions, (2) specifying the language models, (3) creating no-
tations for the language based on the language models, and (4) defining model validators
and code generators. The development phases are very similar to our observations. We
started by defining abstractions of the domain, designed high- and low-level language
models, developed a DSL with notations equivalent to the language models. Also, we
provide model validators and code generators. The proposed approach by Tolvanen is
similar to our systematic development approach for model-driven DSLs: (1) identifying
the concepts of the domain and their relations, (2) designing the language models, (3)
developing the DSLs based on the language models, and (4) generating code of valid
domain models through a code generator.

7 Conclusion

The scope of this paper is to provide an initial study on a systematic development ap-
proach for SOA DSLs based on MDSD. It is likely, but not necessary, that many of our
results are also valid for other implementation techniques for DSLs. We followed the

MDSD-based DSL approach quite closely. Hence, our results should be valid for a wide
range of DSL tools.

We have addressed a broad range of process-driven SOA concerns (including basic,
extensional, and external concerns). One result is that all of them can be expressed
relatively easy using a distinct language model and integrated with existing language
models using simple techniques such as inheritance or matching algorithms. However,
it is possible that other process-driven SOA concerns exist, for which this is not easily
possible.

Also, this paper discusses the design decisions and/or trade-offs we observed, as
well as evidences and counter-evidences for the claims around model-driven DSLs for
SOAs. Model-driven DSLs can enhance complexity, understandability, and readability
for the individual stakeholders of SOAs. Therefore, DSLs can be tailored for domain
experts and technical experts. But enhancing understandability and readability for do-
main experts, decreases understandability and readability for technical experts and vice
versa.

During our study, we have used only a limited number of comparison and analy-
sis techniques (such as code reviews, expert reviews, and student experiments). Other
comparison or analysis methods might reveal properties that have not been revealed so
far with our techniques used. Hence, we want to follow the systematic development
approach in more studies and analyze the results.

Acknowledgement
This work was supported by the European Union FP7 project COMPAS, grant no.
215175.

References

1. JavaServer Faces Technology. http://java.sun.com/j2ee/javaserverfaces.
2. A. Agrawal, M. Amend, M. Das, C. Keller, M. Kloppmann, D. König, F. Leymann, R.

Müller, G. Pfau, K. Ploesser, R. Rangaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I.
Trickovic, A. Yiu, and M. Zeller. Web Services Human Task (WS-HumanTask), version 1.0,
2007.

3. A. Agrawal, M. Amend, M. Das, C. Keller, M. Kloppmann, D. König, F. Leymann, R.
Müller, G. Pfau, K. Ploesser, R. Rangaswamy, A. Rickayzen, M. Rowley, P. Schmidt, I.
Trickovic, A. Yiu, and M. Zeller. WS-BPEL extension for people (BPEL4People), version
1.0, 2007.

4. Anton Jansen and Jan Bosch. Software Architecture as a Set of Architectural Design Deci-
sions. In WICSA ’05: Proceedings of the 5th Working IEEE/IFIP Conference on Software
Architecture, pages 109–120, Washington, DC, USA, 2005. IEEE Computer Society.

5. Arno Schmidmeier. Aspect oriented DSLs for business process implementation. In DSAL
’07: Proceedings of the 2nd workshop on Domain specific aspect languages, page 5, New
York, NY, USA, 2007. ACM.

6. Arturo J. Sánchez-Ruı́z, Motoshi Saeki, Benoı̂t Langlois, Roberto Paiano. Domain-
Specific Software Development Terminology: Do We All Speak the Same Language?
http://www.dsmforum.org/events/DSM07/papers/sanchez-ruiz.pdf.

7. D. K. Barry. Web Services and Service-oriented Architectures. Morgan Kaufmann Publish-
ers, San Francisco, CA, 2003.

8. M. Fowler. Language workbenches and model driven architecture. http://
www.martinfowler.com/articles/mdaLanguageWorkbench.html, June 2005.

9. M. Fowler. Language workbenches: The killer-app for domain specific languages? http://
www.martinfowler.com/articles/languageWorkbench.html, June 2005.

10. B. Glaser and A. Strauss. The discovery of grounded theory. Aldin, New York, 1967.
11. M. Goedicke, K. Koellmann, and U. Zdun. Designing runtime variation points in product

line architectures: three cases. Science of Computer Programming, 53(3):353–380, 2004.
12. J. Greenfield and K. Short. Software Factories: Assembling Applications with Patterns,

Frameworks, Models & Tools. J. Wiley and Sons Ltd., 2004.
13. Juha-Pekka Tolvanen. Domain-Specific Modeling: How to Start Defining Your Own Lan-

guage. http://www.devx.com/enterprise/Article/30550 (last accessed: July 2008).
14. Kevin Bierhoff and Edy S. Liongosari and Kishore S. Swaminathan. Incremental Develop-

ment of a Domain-Specific Language That Supports Multiple Application Styles. In OOP-
SLA 6th Workshop on Domain Specific Modeling, pages 67–78, October 2006.

15. Luoma, J., Kelly, S., Tolvanen, J.-P. Defining Domain-Specific Modeling Languages: Col-
lected Experiences. Proceedings of the 4th OOPSLA Workshop on Domain-Specific Model-
ing (DSM04), Vancouver, British Columbia, Canada, 2004.

16. E. M. Maximilien, H. Wilkinson, N. Desai, , and S. Tai. A domain specific-language for
web apis and services mashups. In Proceedings of 5th International Conference on Service
Oriented Computing (ICSOC), LNCS 4749, Springer-Verlag, pages 13–26, Vienna, Austria,
2007.

17. OMG. MDA Guide Version 1.0.1. Technical report, Object Management Group, 2003.
18. Risto Pitkänen and Tommi Mikkonen. Lightweight Domain-Specific Modeling and Model-

Driven Development. In OOPSLA 6th Workshop on Domain Specific Modeling, pages 159–
168, October 2006.

19. T. Stahl and M. Voelter. Model-Driven Software Development. J. Wiley and Sons Ltd., 2006.
20. Steve Cook. Domain-Specific Modeling and Model Driven Architectures.

http://www.bptrends.com, 2004.
21. A. Strauss and J. Corbin. Grounded theory in practice. Sage, London, 1997.
22. Ta’id Holmes and Huy Tran and Uwe Zdun and Schahram Dustdar. Modeling Human As-

pects of Business Processes - A View-Based, Model-Driven Approach. In ECMDA-FA, pages
246–261, 2008.

23. H. Tran, U. Zdun, and S. Dustdar. View-based and model-driven approach for reducing the
development complexity in process-driven SOA. In W. Abramowicz and L. A. Maciaszek,
editors, BPSC, volume 116 of LNI, pages 105–124. GI, 2007.

24. H. Tran, U. Zdun, and S. Dustdar. View-based integration of process-driven soa models at
various abstraction levels. In R.-D. Kutsche and N. Milanovic, Editors, Proceedings of First
International Workshop on Model-Based Software and Data Integration MBSDI 2008, pages
55–66. Springer, April 2008.

25. Vito Perrone and Davide Bolchini and Paolo Paolini. A Stakeholders Centered Approach for
Conceptual Modeling of Communication-Intensive Applications. In SIGDOC ’05: Proceed-
ings of the 23rd annual international conference on Design of communication, pages 25–33,
New York, NY, USA, 2005. ACM.

26. U. Zdun. Tailorable language for behavioral composition and configuration of software com-
ponents. Computer Languages, Systems and Structures: An International Journal, 32(1):56–
82, 2006.

27. U. Zdun, C. Hentrich, and W. van der Aalst. A survey of patterns for service-oriented archi-
tectures. International Journal of Internet Protocol Technology, 1(3):132–143, 2006.

