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Abstract
Cross-language method invocations are commonly used for inte-
grating objects residing in different programming language envi-
ronments. In this experience report, we evaluate the performance
and the design impact of alternative implementations of cross-
language method invocations for the object-oriented scripting lan-
guage Frag, implemented and embedded in Java. In particular,
we compare reflective integration and generative integration tech-
niques. For that, we present a performance evaluation based on a
large set of test cases. In addition, we propose a new method for
quantifying and comparing the implementation efforts needed for
cross-language method invocations based on cross-language refac-
torings. We report on the lessons learnt and discuss the conse-
quences of the implementation variants under review.

Categories and Subject Descriptors D.1.5 [Software]: Pro-
gramming Techniques—Object-oriented Programming; D.3.2
[Language Classifications]: Object-oriented languages; D.2.8
[Software Engineering]: Metrics—Complexity measures, Perfor-
mance measures

General Terms Languages, Measurement, Performance

Keywords Reflection, cross-language method invocation,
domain-specific languages, refactoring, design science

1. Introduction
Object-oriented (OO) language systems and derivatives thereof,
such as component-oriented systems and systems built using dis-
tributed object systems, regularly need to be integrated. In all of
these cases, forms of language interoperation are needed. Typical
scenarios of language interoperation are, for instance, the two-way
interactions between language-specific components written in two
different languages (e.g., using Java and C++ in one system [34]),
multi-language virtual machines [11, 28], and implementations of
one language by means of another. This is the case for dynamic,
scripting, and domain-specific languages (DSLs) which are imple-
mented on top of host languages such as Java, C#, C++, or C.

In this paper, we are concerned with the latter area of language
interoperation: We provide an empirical evaluation of integrating
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two object-oriented languages with one serving as the host (imple-
menting) and with the other being the embedded (implemented)
language. When creating an embedded language, its core and its
runtime environment are implemented in the host language. As our
evaluation artifact, we review the case of the Frag language [13].
Frag is a dynamic, object-oriented scripting language implemented
in Java, and it provides for developing internal and external DSLs
on top of it [35]. While, in general, this kind of language inte-
gration is motivated by providing seamless access to components
implemented in the host language, the Frag case presented here is
also about facilitating the process of refactoring embedded into host
code, especially in support of DSL prototyping.

Integrating two OO languages can cover different kinds of lan-
guage features to varying extents. In particular, two language mod-
els and execution environments must be aligned [11, 15, 28]. This
includes, for instance, different schemes of object creation and ob-
ject life-cycling, object-type handling and type systems, divergent
kinds of classification and inheritance relationships, as well as dif-
ferences in message passing and distinct reflection facilities. In the
following, we limit ourselves to the issue of cross-language method
invocations [11, 29]. That is, we put emphasis on evaluating de-
sign choices when bridging message passing, method lookups, and
method dispatching between the embedded and the host language.
For implementing cross-language method invocations, forms of re-
flective and non-reflective integration are available. For the scope
of this paper, reflective integration means runtime reflection. More
precisely, we look at the Java-specific forms of runtime introspec-
tion and meta-level reification, as available through the Java Re-
flection API. By non-reflective integration we refer to generative
integration techniques. These include kinds of static code genera-
tion, i.e., source-to-source transformation, while excluding runtime
kinds of code generation [7]. We selected Frag [13] because it uses
cross-language method invocations in a ubiquitous manner, turning
the adoption of appropriate Java implementation techniques into a
critical design decision.

Whatever features are aligned and integrated, language interop-
eration aims at representing data structures of one language in the
realm of the other and at calling from one language into the other.
Ideally, cross-language data representation and cross-language in-
struction calling are implemented in a symbiotic manner [15]. This
requires the data and protocol integration between two languages
to be transparent (e.g., avoiding explicit, language-level wrapper
structures) and symmetric (e.g., transparent method calls are avail-
able in both directions). Also, if available at all, a language’s meta
level is to be exposed to the other language (e.g., message reifica-
tion as provided in some meta-object protocols). The integration
scenario studied in this paper is partially symbiotic. We focus on
one-way, asymmetric cross-language method invocations, that is,
invocations from within the embedded into the host language and



not vice versa. Also, we do not reflect on meta-level integration
for cross-language method invocations. That is, we do not expose
reifications as provided by the Java Reflection API (e.g., instances
of the java.lang.reflect.Method class) to the embedded lan-
guage.

Despite our not perfectly symbiotic and thus relaxed integration
scenario, we could not identify substantial guidance on making de-
sign and implementation decisions for cross-language method in-
vocations in related work on cross-language integration. From the
viewpoint of developers of embedded languages or DSL develop-
ers considering a DSL development platform for adoption, there is
a lack of documented and systematic evaluations of existing lan-
guage designs and language implementations. This is problematic
because of the considerable variety of reflective and non-reflective
techniques available for implementing cross-language method in-
vocations in Java (and beyond).

The contributions of this paper are twofold: On the one hand,
we propose a new method for quantifying and comparing the ef-
forts needed for cross-language method invocations based on cross-
language refactorings. On the other hand, we present a perfor-
mance evaluation of two cross-language method invocation imple-
mentations for the Java implementation of the Frag [13] language
core. Our familiarity with Frag’s implementation and the availabil-
ity of a large test suite covering the entire feature set of this lan-
guage (e.g., garbage collection, string and list manipulation, call-
stack management) permit us to compare cross-language method
invocations quantitatively in a benchmark setting. We report on the
lessons learnt and discuss this approach for evaluating the adop-
tion of different implementation variants of cross-language method
invocations. Our findings shall help both developers and adopters
of embedded languages to conduct similar evaluation studies in the
context of their decision-making processes.

The remainder of this paper is organized as follows. Section
2 reiterates over the implementation strategies available and high-
lights the shortcomings of the related work when it comes to sup-
port a decision making on realizing cross-language method invo-
cations. In Section 3, we introduce our design artifact, the Frag
language. Details of the alternative frameworks for cross-language
method invocation realized for two different versions of the Frag
core are given. Sections 4 and 5, then, discuss the comparative
evaluation based on cross-language refactorings and on profiling
the runtime performance, respectively. In Section 6, we compare
with related work. Section 7 summarizes major findings and we
conclude in Section 8.

2. Cross-Language Method Invocations
There are different implementation options for realizing cross-
language method invocations. Either, one introduces method
dispatch code written or generated in the host language or one re-
verts to reflection-based message bridging between the embedded
and the host language (see [7, 29, 34]). We briefly review these two
approaches and selected implementation variants thereof. Then,
we look at the state of closely related work on evaluating these
options.

2.1 Implementation Options
A first approach to implement cross-language method invocations
is to provide hand-written wrappers for cross-language method dis-
patch using a dedicated API of the host language. Such APIs offer
to register the host language methods with an embedded method
dispatcher and provide for basic wrapping and unwrapping of pa-
rameters and return values. Available implementation variants are
dispatchers based on switch control structures (i.e., switch thread-
ing) or types of method objects. The downside of hand-written
wrappers is that they require similar development actions to be per-

formed for each and every host method that should be exposed.
In addition, depending on the implementation variant, the wrapper
code has to be maintained at multiple locations to manage single
host methods (see Section 3 for an actual implementation).

Code generation can be used to automate these recurring tasks
by transforming interface descriptions into dispatch wrappers at de-
sign (or compile) time. In the middleware context, you may think of
code generators for client proxies and invokers based on interface
description languages such as the Interface Description Language
(IDL) or the Web Service Description Language (WSDL). In the
programming language integration context this involves wrapper
generators and their interface description format (such as SWIG
[32]). Code generation does not need to be performed at design
time only; for example, embedded compilers such as Janino [20]
allow us to generate code at runtime, too. Using generated dis-
patch wrappers, however, requires developers to put in additional
development efforts and to understand yet another language arti-
fact ([33]). Alternatively, we might need to devise forms of static
reflection (i.e., design or compile time reification and introspection
of host language code) to feed code generators. For both, hand-
written and generated dispatch wrappers, the runtime behaviour
(e.g., regarding performance and scalability) is comparable, once
the generation has been performed.

A general alternative to the above solutions are reflective wrap-
pers. A runtime method reflection infrastructure provides applica-
tion meta-data to construct and perform invocations (i.e., invocation
target, parameters, parameter types, etc.) at runtime. The methods
of a class are reified into runtime (meta-)objects, which themselves
can receive messages. For most kinds of reflective method calls,
introspective access to host methods is sufficient (as in the Java
Reflection API; see Section 3). Method-reflective integration offers
certain advantages. First, runtime reconfiguration becomes possi-
ble (e.g., dynamic switching between different embedded method
implementations and method delegation; [7]). Second, method im-
plementations may be injected at different binding times specific to
the embedded language (e.g., module import and initialization, in-
terpreter setup, or evaluation time of scripts). Third, reflective dis-
patch wrappers permit more direct access to host language con-
structs, avoiding glue code to wrap host methods [29]. However,
reflective method calls cause a certain runtime overhead compared
to non-reflective dispatch wrappers, both in terms of extra exe-
cution time and memory consumption. Depending on the imple-
mentation of reflective method invocations in the host language
(e.g., “out-of-line” branching to the physical method memory lo-
cations vs. bytecode injection for JVMs [27]) and the interactions
between reflective methods calls and the method dispatch scheme
(e.g., static vs. dynamic dispatch), there is a penalty to the method
execution time [6, 28]. These timing costs relate to reification (i.e.,
method and meta-data look-up, generating a reflection wrapper ob-
ject), invocation setup (i.e., bytecode or machine code generation
and injection), parameter handling (in particular, signature adapta-
tion involving representation mapping and type conversions), and
invocation processing (i.e., method access restrictions are checked
based on the caller object). In addition, such a reified layer of in-
direction undermines certain forms of runtime optimization. As for
the JVM, performing inline caching is hindered by, e.g., indirec-
tion calls clouding inlining prediction and by static references to
the wrapper objects ruling out inline caches (see [28] for details).

2.2 Motivating Problems in Detail
Unfortunately, in a design project such as the Frag language, it turns
out difficult to decide for a cross-language method invocation vari-
ant from an analytical evaluation based on literature reviews and
on harvesting related language implementations. This is because
the consequences of such a design decision for a language system



as a whole remain unclear. The closely related work presents the
following shortcomings:

• Missing or incomplete documentation of design decisions and
quantitative evaluations: The designs of embedded languages
with respect to cross-language method invocations are largely
undocumented, especially the underlying rationale of the
decision-making. While reflective mechanisms are widely
used, these uses also include aspects such as cross-language
object generation, as well as cross-language interface and
implementation inheritance [5, 11]. Little has been reported
on cross-language message passing and method invocations as
such. Quantitative design evaluations (e.g., quantification of
runtime profiles) are often incomplete and are not reproducible
(see, e.g., [5]). This limits the applicability of such findings to
informed design decisions in other development projects.

• Lopsided design evaluations: The usage of reflection in cross-
language designs is only considered in terms of its time and
space overhead (see, e.g., [5, 9]). An integrated view of require-
ments and the forces between these requirements and perfor-
mance costs are not discussed. Possible requirements are the
lack of runtime reflection infrastructures or code refactorings
after phases of rapidly prototyping domain-specific languages
(DSLs).

• Only micro-profiling of performance overhead: Embedded
languages based on reflection and reflective wrappers are com-
monly evaluated based on atomic and synthetic execution time
profiling and benchmarking. This includes control structure
performance [23] and limited method dispatch scenarios (e.g.,
throughput measurements for empty methods; [5]). Results
from macro-profiling studies, which are based, for instance, on
test suites covering entire features of the embedded language
(e.g., garbage collection), are not available. The relative reflec-
tion overhead describes the time costs created by a reflective
method setup and dispatch relative to the time costs of the core
behaviour implemented by a method. Macro-profiling, how-
ever, would allow to assess the relative overhead of reflective
techniques in the context of the embedded language execution
environment.

• Impact of the embedded language model on assessing reflec-
tion: The reflection overhead must be considered in view of the
method binding and object lifetime model as implemented by
the embedded language. Reflective method invocations often
align to the lifecycle of the embedded objects and their meth-
ods so that major overheads do not become effective at critical
times, i.e., the actual method invocation. Hence, the overhead
implied for the whole system remains unclear. This aspect is
not covered by the related work under review.

3. The Case of the Frag Language
In this paper, we report on a design science research project [17]
in which we have built a language infrastructure for dynamic
programming and domain-specific language (DSL) development,
called Frag [13]. Frag is implemented in Java. Cross-language
method invocations are an important aspect of Frag because they
facilitate rapid prototyping of DSLs. In many cases, a DSL is first
implemented as a Frag script and, as the implementation matures,
it is incrementally moved to a Frag/Java implementation (e.g., to
improve its performance profile). This kind of rapid prototyping
is hindered by the risk of a high-effort refactoring into Frag/Java.
This risk is caused by a possible lack of tool support for automated
Frag/Java code generation and, therefore, by the need for excessive
hand-coding. Hence, the flexibility and the efforts required for
refactoring Frag into their Frag/Java equivalents was a major
design issue. In our decision-making process for the Frag language

design we faced two design questions, which were difficult to
answer from a literature and implementation review alone (see also
Section 2):

1. How can we minimize the developer effort needed to implement
a cross-language method invocation when a scripted Frag object
is refactored into a compiled Frag/Java object?

2. Provided that a reflection-based approach is adopted, what is
the trade-off in terms of the runtime performance due to the
reflective method calls?

For the remainder of this section, consider a simple Frag script.
This code snippet illustrates declaring a class AnObject and an
operation foo owned by this class:

# 1 . D e f i n i n g a Frag c l a s s ’ AnObject ’
Object c r e a t e AnObject
# 2 . D e f i n i n g a method on t h e c l a s s ’ AnObject ’
AnObject method foo a r g s {

# . . . do some th ing . . .
}
# 3 . C r e a t i n g an i n s t a n c e o f t h e c l a s s ’ AnObject ’
AnObject c r e a t e a n I n s t a n c e
# 4 . Send ing a message ’ foo ’ t o t h e i n s t a n c e
a n I n s t a n c e foo

This scripted Frag object is now to be refactored into an equivalent
Frag object definition in Java. That is, while the method use (i.e.,
the invocation of foo) remains unchanged, the method definition of
foo is to be realized in Java. Porting the method definition to Java
should be transparent to the Frag developer, i.e., referring to and
using AnObject should be possible as it was defined at the script
level alone, without causing changes to its observed behaviour.
Looking at the above listing, creating anInstance and sending
a message foo to this object should still be realizable as shown.
However, behind the scenes, the object handle AnObject and the
message foo must be matched by corresponding Java structures,
i.e., the message receiver would be an instance of a Java class
providing a method definition for foo. This is a case in point for
a cross-language Frag-to-Java method invocation.

To address the two design questions raised above, we imple-
mented two different Frag-Java integration schemes in the Frag
runtime environment. For Frag 0.6, we employed switch-threaded,
non-reflective Frag/Java method wrappers (see Section 3.1). In Frag
0.7, we adopted Frag/Java method wrappers based on Java method
introspection (see Section 3.2). In the following, we introduce these
two implementation variants in more detail.

3.1 Switch-Threaded Wrapper
The first alternative is the integration based on a switch-threaded,
non-reflective wrapper. Figure 1 shows this implementation vari-
ant when used for refactoring AnObject into its Frag/Java equiv-
alent. To realize a wrapper with one method, a Java wrapper class
and a set of auxiliary structures must be created. This structure has
been chosen because it can easily be generated from an interface
description. The wrapper class refines the JavaFragObject class
(1), the general superclass of all classes wrapping Java code ex-
posed in Frag. An int constant (FOO) is used to realize the switch
block (2). In the javaMethods array such constants are mapped
to Java method names (3). The Frag dispatcher resolves a method
identifier (i.e., the method name foo) to the switch constant via this
method array. The resolved index is given to the dispatch handler,
i.e., invokeJavaMethods (4), which invokes the corresponding
Java method (e.g., fooMethod) (5). The Java method obtains in-
vocation and context information from the Frag dispatcher, i.e., the
parameter list, the interpreter object, and the receiving Frag object.

3.2 Method-Introspective Wrapper
The second implementation variant is the reflective integration
based on method-reflective wrappers. This variant is based on the



Figure 1. Switch-threaded, non-reflective implementation of a
Frag/Java object

Figure 2. Method-reflective implementation of a Frag/Java object

Java Reflection API, i.e., the java.lang.reflect.Method class.
This Java built-in form of runtime reflection is based on the reifica-
tion of Java language elements (e.g., methods) as runtime objects,
which can be interacted with through method invocations [6]. Inter-
nally, intercession is achieved by generating and injecting bytecode
[27].

Figure 2 depicts the Frag/Java definition of the previously
scripted AnObject in Frag 0.7. The wrapper class (AnObject)
is a subclass of JavaFragObject (1), which provides the same
services as in the non-reflective implementation. However, it was
assigned the responsibility of registering and reifying Java methods
to be exported as Frag methods at the setup time of the wrapper
class. The possible setup times correspond to the initializations
phase of the Frag interpreter and to later, on-demand class loading.
The Java method (e.g., foo) to be accessible as a Frag method is
automatically and directly exposed using the Java method name
by convention as the Frag method identifier (2). Hence, the Java
method (due to its reification as a java.lang.reflect.Method
instance) does not require the mapping between an external handle
and an internal method call. Also, the wrapper-specific dispatch
handler (i.e., invokeJavaMethods) turns obsolete.

4. Refactoring Complexity
To compare the two implementation variants for Frag-to-Java
method invocations regarding their design and refactoring com-
plexity, we introduce the notion of cross-language refactoring.
We report on four examples of cross-language refactorings which
were frequently observed in the Frag rapid prototyping context.
Then, we quantify the transformation steps involved in these four
cross-language refactoring scenarios for both the non-reflective
and the reflective implementation approaches.

4.1 Cross-Language Refactorings
A refactoring is a principled modification to a program’s code rep-
resentation without changing its external behaviour with the objec-
tive to improve the program’s design [12]. A refactoring is charac-
terized by a number of behavioural invariants (to be preserved by
a refactoring) and a set of source-code transformations. A cross-
language refactoring [24] translates single or collaborations of ob-
jects of the embedded, interpreted language (i.e., Frag) into their
behaviourally equivalent implementations in the host language (or,
vice versa). In this evaluation study, we are interested in convert-
ing implementations in the Frag embedded language into Java. This
kind of cross-language refactoring follows various objectives:

• Frag programs as results of rapid prototyping (e.g., in the DSL
context) turn mature and their production-grade deployment
requires the performance increment offered by a host language
implementation of their behaviour.

• Scripted language extensions are considered for integration into
the core of the embedded language. This adoption into the lan-
guage core is facilitated by providing the extension implemen-
tation in the host environment. Lower-level facilities are made
available to the extension developer as well as points of intro-
spection and of intercession can be specified.

• Functional extensions to the library (e.g., application frame-
works for I/O and network connectivity) have been scripted
based on platform-level controls offered by the language core.
Now, specialized and highly optimized components in the host
language are considered for integration. The scripted Frag ex-
tension is then turned into a mere wrapper around these compo-
nents, and we aim at providing a Frag language binding to this
Java component.

We consider different kinds of refactorings in the context of our
Frag experience. Partly, they have been reported as relevant refac-
toring in object-oriented designs in general [12]. We observed the
following refactorings for cross-language method invocations to be
frequently used in Frag rapid prototyping projects:

• REPLACE EMBEDDED WITH HOST OBJECT: Adding a Frag/-
Java class definition to re-implement the behaviour described
by a scripted Frag object.

• REPLACE EMBEDDED WITH HOST METHOD: Realizing Frag
methods as Frag/Java methods owned by a Frag/Java class.

• RENAME HOST METHOD: Renaming a Frag/Java method on a
Frag/Java class.

• REMOVE HOST METHOD: Removing a Frag/Java method from
the owning Frag/Java class.

4.2 Refactoring Complexity in Frag
Table 1 provides an overview of the transformation complexity
caused by each of the two integration strategies. Figure 3 shows an
example specification of the 8 transformations needed for REPLACE
EMBEDDED WITH HOST METHOD for the non-reflective case, as
well as the 2 transformations needed for the reflective case. We
have compared all other refactorings in the same manner.



Refactoring Switch-
threaded
wrapper

Method-
introspective

wrapper

REPLACE EMBEDDED WITH HOST OBJECT 7 3

REPLACE EMBEDDED WITH HOST METHOD 8 2

REMOVE HOST METHOD 5 1

RENAME HOST METHOD 4 1

Table 1. Number of transformation steps needed under either inte-
gration strategy

For the refactoring REPLACE EMBEDDED WITH HOST OBJECT,
7 transformations are needed using the non-reflective integration
case. In contrast, the reflective integration requires only 3 trans-
formations. For the refactoring REPLACE EMBEDDED WITH HOST
METHOD, we counted 8 transformations for the non-reflective
compared to 2 for the reflective integration; for RENAME HOST
METHOD, we counted 5 transformations for the non-reflective
compared to 1 for the reflective integration; and for REMOVE HOST
METHOD, we counted 4 transformations for the non-reflective
compared to 1 for the reflective integration (see also Table 1).

These transformation counts illustrate that even fairly basic
modifications entail relatively complex sequences of primitive
refactoring steps in the cross-language setting. In particular, the
non-reflective approach entails more steps than the reflective
one, yielding an increased number of potential sources of failure.
However, the non-reflective approach can certainly benefit from
generative techniques (e.g., forms of guided code generation in
the IDE). Hence, when using generative techniques, the number
of transformations is only relevant for tasks such as writing trans-
formation templates for the generator or inspecting the generated
results.

Composite refactorings, which involve multiple atomic trans-
formations, add further complexity in the non-reflective approach.
An example would be the MOVE METHOD [12] refactoring, quite
common in realigning object-oriented designs. Moving methods
from one to another owning Frag/J̃ava object might be justified
because the method in question exhibits more usage dependen-
cies on object members of the target than the source object. Or,
Frag/J̃ava methods are moved up the inheritance hierarchy in an
act of generalization (i.e., a PULL UP METHOD refactoring [12]). A
MOVE METHOD refactoring consists of a combined REMOVE HOST
METHOD and REPLACE EMBEDDED WITH HOST METHOD refac-
torings, requiring at least 13 steps in the non-reflective and only 3
in the reflective integration strategy.

Let us consider a recent cross-language refactoring completed
for a Frag-based component. Frag features a template editor which
provides for creating authoring environments for DSLs developed
on top of Frag. A component of the template editor realized in
Frag was ported over into a Frag/Java class through a REPLACE
EMBEDDED WITH HOST OBJECT and multiple REPLACE EMBED-
DED WITH HOST METHOD refactorings. The target class owned 11
methods. According to Table 1, these refactorings required a total
of 95 transformations (i.e., 11∗8+7) for the non-reflective integra-
tion compared to just 25 (i.e., 11 ∗ 2 + 3) in the reflective case. In
other words, the transformation using the non-reflective approach
takes approximately 74 % more development effort than using a
reflective approach.

5. Runtime Performance
Usually, the biggest disadvantage reported for the reflective integra-
tion approach is its inferior performance (see Section 2; [6, 7]). In
this section, we compare the performance of the two cross-language

Non-reflective integration (8 transformation steps):

1. Create (or duplicate) a constant field on the target JavaFragObject.
2. Rename the constant to reflect the intended method name (e.g., FOO for the

method name foo).
3. Increase the enumeration index number assigned to the new constant field.

Make sure it matches the method name’s position in the javaMethods array.
4. Insert the method name string (e.g., foo) into the javaMethods string array.
5. Add a method-specific case statement to the switch block in invokeJava-

Methods. Use the constant field as matching expression for the case branch.
6. Create (or duplicate) the skeleton for the implementing Java method.
7. Rename the implementing Java method to reflect the target Frag method

name (e.g., fooMethod).
8. Create (or duplicate and rename) the method call to the new Java method in

the case branch previously inserted.

Reflective integration (2 transformation steps):

1. Create a bare Frag/Java method definition, e.g., by copying an existing
method block from the owning Frag/Java object.

2. Adjust the method name.

Figure 3. A REPLACE EMBEDDED WITH HOST METHOD refactor-
ing in Frag

integration approaches. We contrasted the Frag versions 0.6 and
0.7 [13], with 0.7 adopting the reflective integration approach. For
0.6, the Java code base representing the language core amounts to
10,413 source lines of Java code (SLOC), for 0.7 to 9,579 SLOC.
We adapted the two language versions for this study so that they
differ only in their cross-language method invocation implementa-
tion. All other changes between Frag 0.6 and 0.7 have been fac-
tored out. The reduction in the code base size is exclusively due to
the reflection-based refactoring.

The Frag project [13] is well-suited for our performance eval-
uations because it provides a large test suite, covering all lan-
guage features. That is, in contrast to benchmarks specifically de-
veloped to measure a feature or simplistic examples, a holistic test
suite offers insights on how the reflective implementation of cross-
language method invocations affects the performance of the entire
Frag core. Our test suite consists of 17 test components, testing dif-
ferent features of the language, ranging from 8 to 418 test cases
each. In total, Frag comes with 1243 test cases. These are realized
in 9,463 source lines of Frag code (SLOC). Each test component
involves numerous method calls. While complex test cases define
method call sequences, single method calls usually involve nested
evaluations and string substitutions (e.g., for assembling parameter
values) which, in Frag, also result in method calls.

We measured the performance on a rather weak desktop ma-
chine, as our approach will usually need to run on the local ma-
chine of developers. The machine had an Intel Core2 Duo CPU,
1.60 GHz processor with 1.96 GB RAM and was running under
Windows XP. We used the Java JRE 1.6.0 07. All test runs were
performed under the JVM’s default memory and garbage collec-
tion configuration. Each of the 17 test components was measured
10 times. Each run was performed as a first iteration. Therefore,
the execution times recorded imply JVM setup and initial compila-
tion times. For the same reason, the timing probes do not reflect the
effects of possible dynamic optimizations achievable in follow-up
iterations. We report the averages and the standard deviations for
these test component runs (see Table 2).

With exception of some outliers, we learn from Table 2 that the
standard deviation across the test components is rather low. For the
non-reflective and reflective integrations cases, the average stan-
dard deviations are 3.12 % and 2.45 %, respectively. In both cases,
we observe outliers with a deviation of up to 15.12 % and 13.43 %.
Overall, the reflective integration performs a little better in terms of



Test component Switch-threaded wrappers Method-introspective wrappers ∆

# test
cases

# method
calls

(A) Avg. test
execution time

(in µs)

Relative standard
deviation (in %)

(B) Avg. test
execution time

(in µs)

Relative standard
deviation (in %)

(B − A) ∗ 100/A
(i.e., in %)

Basic Frag commands 42 822 66,472.70 5.61 91,992.20 1.45 38.39

Math commands 57 1,065 81,873.90 1.81 90,732.10 13.43 10.82

Expressions 418 6,462 211,581.60 2.74 251,431.80 4.48 18.83

Object system 113 4,197 139,907.10 4.09 155,564.50 1.82 11.19

Dispatchers 10 6,860 15,234.60 7.05 16,513.10 2.77 8.39

Callstack 22 4,612 15,721.70 12.26 17,253.50 4.03 9.74

Command classes 13 7,205 14,402.70 6.90 15,947.90 3.94 10.73

Exception handling 30 5,586 52,320.70 7.06 56,067.40 4.00 7.16

Hashtable 20 7,835 32,324.90 4.33 36,340.60 3.62 12.42

Garbage collection 47 10,106 128,055.40 2.97 162,561.30 2.24 26.95

Unparsed regions 8 7,956 3,338.00 6.09 3,660.90 3.10 9.67

File handling 69 11,567 311,195.30 15.12 302,227.20 9.37 -2.88

List handling 178 7,827 91,785.20 1.17 128,334.20 1.58 39.82

String handling 101 19,122 17,7061.40 0.91 17,2989.90 1.46 -2.30

Control-flow commands 82 12,511 45,127.80 2.12 50,237.80 2.67 11.32

Interpreter methods 13 19,421 12,138.10 2.05 13,192.60 2.10 8.69

Java wrapper 20 13,133 33,194.30 2.12 36,429.20 0.84 9.75
Total 1,243 146,287 1,431,735.40 3.12 1,601,476.20 2.45 11.86

Table 2. Performance comparison

the standard deviation, but the results are comparable. Hence, it is
justified to interpret the average execution times reported.

The difference between the average numbers ranges from -2.88
% up to 39.82 %. The average delta is 11.86 %. That is, in aver-
age, a performance penalty of approximately 12 % can be expected
for adopting reflection-based cross-language method invocations.
However, in cases heavily dependent on the reflective integration,
this penalty increases to 40 %. In seldom cases, reflective integra-
tion even shows a very small positive impact on performance. We
can observe that this applies to features, such as string and file han-
dling, which are relatively expensive compared to basic language
features. In contrast, when mainly base language features are used,
the performance costs of reflective calls are significant. We can
draw two conclusions from these data:

1. Given the positive effect on cross-language refactorings, the re-
flective approach should be used for rapid prototyping projects
if modest performance degradation is tolerable.

2. For performance-critical parts of an application, falling back
to non-reflective cross-language method invocations remains a
viable option.

Besides, we used these profiling results to improve Frag’s perfor-
mance profile. In the upcoming Frag release, the test components
suffering from considerable performance degradation, namely
garbage collection, basic commands, and list handling, have been
optimized to compensate for reflective method invocations. Across
all test cases, the new version performs better than the Frag 0.6
version. Tracing the execution time of reflective method calls
revealed further hot spots in Frag, e.g., repetitive actions in list
handling, which caused unnecessary garbage collection loads. To
sum up, our design research project has also led to an improved
and stable performance profile of the overall Frag implementation.

6. Related Work
In Section 2, we gave an overview of related work on guiding the
adoption of a certain implementation technique for cross-language
method invocations [5, 7, 9, 11, 23, 24, 27, 29, 33, 34]. It be-
came clear that the findings offered turn out insufficient for making
design decisions in a language development project such as Frag
[13, 35]. The empirical evaluation approach presented in this paper
offers an important analytical instrument applicable in various sce-
narios of cross-language integration. Besides, our experience report
falls into the areas of designing embedded, dynamic languages in
Java, in particular realizing forms of language symbiosis [15], and
the implementation of reflection protocols in virtual machines such
as current JVMs.

Designing and implementing symbiotic associations among two
OO languages vary in several properties [11, 15]: features covered
by the symbiotic associations realized; forms of (a)symmetry along
the associations; the transparency of navigating such an associa-
tion; the coverage of base-level and meta-object protocol elements;
and, most interestingly, the extent to which the base- and meta-
levels of the embedded and the host language overlap. The notion
of split objects [34] helps bridge between the conceptual models
of OO language symbiosis and guiding the actual design and im-
plementation process. A split object has separate in-memory ob-
ject representations in each of the two languages integrated (i.e.,
a wrapper and a wrappee half) while being treated as having a
single, cross-language object identity. Mutual access to the split,
yet shared state and behaviour is enforced through invocation for-
warding between the respective wrapper and wrappee halves. Split
object frameworks [34] further provide auxiliaries for converting
back and forth between primitive and object-types as well as for
mediating between parallel inheritance hierarchies. To apply the
split object approach for the problem addressed in this paper, a
cross-language invocation forwarder must be implemented (e.g., a



two-way invoke method for the split object). This invocation for-
warder negotiates signature information between the two split ob-
ject halves (i.e., the method names, the invocation parameters, and
possible return types).

An early example of an embedded language design based on
split objects implemented in Java is the prototype-based Agora98
language [8]. Agora98 was not only one of the first languages to
be hosted by Java (1.1, at that time), it also delivered a form of
cross-language reflection and showcased the alignment of a proto-
typical and a class-centric object model. The Java implementation
of the Piccola language, i.e., JPiccola [29], is a glueing language
to facilitate composition of Java components. JPiccola embodies a
language model following a process calculus and agents. The JPic-
cola interfaces to its Java host establish asymmetrically symbiotic
associations between JPiccola and Java. Meta-level symbiosis is
not covered, at the base-level, two-way associations are provided
(e.g., through the javaObject and javaClass instructions). Frag
[13, 35] itself continues a line of Java-implemented Tcl derivatives,
namely Hecl [16] and Jacl [19], which both are limited to basic and
asymmetric forms of symbiosis with Java.

Today, a variety of dynamic scripting languages and domain-
specific languages (DSLs) built on top of host languages such as
Java is available. A selection of embedded languages are Jython
(built on top of the JVM; see [5, 22]), IronPython (built on top
of the .NET CLR; see [18]), JRuby (built on top of the JVM; see
[21]), and Rhino (built on top of the JVM; [26]). Another branch of
embedded languages provides means to bypass their host languages
and to directly access the latter’s runtime environment (e.g., the
VM) or even the machine instruction sets (see., e.g., R [25]).

Various infrastructures and toolkits for developing embedded
(and, in particular, dynamic) languages have been proposed. While
these frameworks embody design decisions for various forms of
cross-language integration (i.e., method invocation, object creation,
insulation methods, and inheritance; [11]), they also provide sup-
port for realizing dynamic language features on top of predomi-
nantly static host languages as well as for bridging two object-
type systems. Higher-level instruments are host language exten-
sions. Dynamic [5], for instance, provides a framework for em-
bedded languages by emulating dynamic language features (e.g.,
method delegation, structural polymorphism, mixin-based inheri-
tance) in the host language. This emulation is achieved by devising
both introspection through the Java Reflection API and, based on
the introspective input, runtime injection of bytecode to realize the
adaptation and glue structures (e.g., classes) on demand.

Designing virtual machines as carrier platforms for multiple and
heterogeneous (i.e., static vs. dynamic type systems) languages as
been explored from various angles. For instance, embedded, yet
intermediate languages for language-oriented programming (e.g.,
RPython [1], Slang [30]) have been considered which mediate be-
tween the requirements of realizing dynamic language features and
type-aware virtual machines. Restricted Python (RPython; [1]), for
instance, provides a language middleware on top of backends for
the JVM and the .NET CLI. RPyhton balances the tensions of re-
alizing dynamic language features in virtual machines, with virtual
machines having typeful requirements built into their bytecode en-
gines (e.g., mandatory type annotations for method dispatch targets
as well as argument and return values). RPython does so by offer-
ing a mere subset of Python used as implementation vehicle for a
feature-complete, self-hosted Python interpreter (i.e., PyPy). The
.NET Dynamic Language Runtime (.NET DLR) takes a different
approach, building upon an implicit, shared type system (i.e., by
using type inference). As Frag [13, 35] is mono-typed with weak
runtime checking of object-types, aligning an embedded and the
Java object-type system was not an issue.

When considering and evaluating forms of reflective integra-
tion, an intimate knowledge about the reflection implementation
in the runtime execution environment of the host language is
paramount. For instance, a critical evaluation must consider
the fact that reflection is often used internally in host language
implementations to realize basic language features (e.g., for object
serialization [4, 27]) or to support code generation [5]. Another,
often ignored aspect is the share of reification in the total reflection
overhead encountered [6]. Against the background of the Jikes
Research Virtual Machine, Rogers et al. compare variants of
indirection (i.e., “out-of-line” branching to the physical method
memory locations) and bytecode generation to realize a reflective
method dispatch [27]. They look at the time and space overheads
linked to the creation of runtime representations of the method (and
wrapper elements; i.e., the reification requirements), argument
processing (parameter boxing), and the actual dispatch perfor-
mance. They conclude that the acquisition of redirecting bytecode
at the time of creating the method representation (i.e., the lookup
operation and the eager creation of a reflective wrapper) creates
the smallest overhead in execution time. The Frag performance
data was collected running the stock Sun (OpenJDK) JVM, which
implements the reflective object creation and the reflective method
dispatch based on bytecode injection.

7. Lessons Learnt
In this design science research project [17], we demonstrated that
a test suite covering critical aspects of a language system provides
realistic insights for deciding on using reflective or non-reflective
variants of cross-language method invocations. Using our novel
idea to use transformation counts on cross-language refactorings,
we were also able to quantify the positive impact of the reflective
approach for rapid prototyping purposes. Transformation counts
also highlight the potential of generative techniques and code-
generating tooling for facilitating non-reflective integration strate-
gies, especially when being compared to hand-written implemen-
tations of, for instance, switch-threaded wrappers.

Even in a project heavily relying on cross-language integration,
such as Frag [13], the average performance impact of the reflec-
tive integration is not greater than 12 %. We identified some hot
spots in our implementation, but a follow-up investigation allowed
to fix these. With this, a more adequate estimate is that the aver-
age performance impact settles between 5-10 %. Unfortunately, it
is not always feasible to realize a language feature on top of all im-
plementation variants under comparison. For example, it would be
interesting to incorporate the current, largely optimized Frag ver-
sion 0.8 into the performance comparison. However, as features
other than the implementation of cross-language method invoca-
tions have changed in the new version, the profiling results could
not be attributed to the functional concern under review. Besides,
the effort required to provide an additional Frag implementation,
which incorporates yet another implementation variant, is consider-
able regarding the size and the complexity of the Frag core and test
code bases (approx. 10,000 SLOC each). Nevertheless, our evalu-
ation approach might generate valuable insights by just applying
it on selected parts of the application and the corresponding test
cases.

The transformation counts on cross-language refactorings
have proven to be very helpful for quantifying the benefits of the
implementation variants of cross-language method invocations.
We found that, in average, the reflective variant considered entailed
71 % fewer transformations in four frequent cross-language
refactorings (e.g., REMOVE HOST METHOD; see also Table 1). In
scenarios which combine several cross-language refactorings (e.g.,
MOVE METHOD) the reduction in refactoring complexity is even
higher. This leads us to the conclusion that the reflective integration



techniques should be considered, provided that a modest degra-
dation in execution times can be tolerated and refactoring efforts
are critical. A thorough execution time analysis based on realistic
test suites delivers valuable findings and provides guidance for
perfective refactorings in an embedded language implementation.
The figures from our project can be used for rough projections
onto related development projects (e.g., in object remoting). Of
course, for an in-depth analysis, project-specific evaluations must
be conducted.

Providing two complete implementations of the Frag lan-
guage core as complex benchmark applications, adopting different
implementation variants of cross-language method invocations,
is one major contribution of our work. The other one is the
performance profile data generated from benchmarking these two
language implementations. However, as already hinted at, the
complexity of Frag impedes the inclusion of further implementa-
tion variants of cross-language method invocations throughout the
entire language core. The two implementation techniques selected,
i.e., a switch-threaded, non-reflective and a method-reflective
variant (see Section 3 for details), settle at the two ends of the
spectrum of implementation options available.

To give an example, we considered cross-language integration
using dedicated language wrappers. Using wrappers is not strictly
necessary in reflection-based integration [29]. Methods of the host
language could be directly exposed to the embedded language, with
the invocation data (parameters and return values) being automati-
cally wrapped and unwrapped when crossing the language barrier.
Dedicated method wrappers, however, permit us to implement dif-
ferent types of message passing control [3, 10] for Frag-to-Java
method invocations. Also, wrappers allow to design signature in-
terfaces of embedded objects independently from their host lan-
guage implementation [29]. Furthermore, wrappers are the spots
for applying optimizations (e.g., specific type conversion schemes,
different embedded value representations, aligned I/O operations;
[9]). In short, wrappers are particularly important when providing
a development infrastructure for embedded DSLs such as Frag [13].

As for non-reflective integration, an implementation alternative
to the switch-threaded wrapper evaluated for Frag are kinds of
method objects. That is, each Frag/Java method could be repre-
sented as either a freestanding Java class or a class nested in the
Frag/Java class. These would be Java-specific implementations of a
COMMAND OBJECT [14] pattern variant applied to cross-language
method invocations. We tentatively realized nested Frag/Java
method objects by means of anonymous inner classes [31]. This
way we learnt that method objects potentially combine some of
the advantages of the non-reflective and the reflective approaches.
First, they substitute the reflective reification and the reflective dis-
patch for an additional, delegating method call to the nested object.
Still, method objects preserve some benefits of method-reflective
Frag/Java methods (e.g., transparent access to variables of the
parent object). Second, the Frag/Java methods are fully reified,
though not by reflective reification. This preserves their compos-
ability (e.g., re-registering them under different names to the Frag
interpreter). Third, the refactoring effort closely resembles the one
reported for the method-reflective implementation because many
switch-related transformation steps are not required anymore. A
notable downside is that refining Frag/Java methods along a Java
class hierarchy becomes impossible.

As for the method-reflective integration, certain optimizations
based on the Java Reflection API may be considered to improve
over the execution time degradation reported. In the Java context,
for instance, one might consider adopting reflective invocation on
per-class (i.e., static) methods, which incur a reduced execution
time penalty. Applied to Frag, however, this would considerably

increase the refactoring workload. This is because of the need
for dedicated reflection proxies, either in terms of static methods
within each Frag/Java class or additional proxy classes owning the
static method forwarders.

As an example integrating reflective and non-reflective tech-
niques, Cazzola [6] presents an approach to emulate native reflec-
tive method invocations in Java by generated proxies specific to
and associated with each application class, borrowing the idea of
Java RMI stubs. Each proxy provides a central dispatcher method
invoke, modelled after the java.lang.reflect.Method signa-
ture interface. The dispatcher method implements switch-threaded
method delegations, based on the target methods’ hashed names as
switch indices, with each switch branch early-binding a single, con-
crete target method. This scheme trades an improvement over the
execution time degradation of standard reflective calls (i.e., 25 %
in the evaluation reported in [6]) for an increased refactoring effort
due to supplemental proxy classes and a switch control block.

More recently, a revised JVM infrastructure for managing dy-
namic method invocations has been introduced to the OpenJDK
7 [28]. Based on a new invocation bytecode (invokedynamic),
allowing for deferring the binding to a particular object-type and
receiver object, this infrastructure provides means to dynamically
create and manage reifications of call sites and method handles. The
reified call sites can be linked to different target methods at various
decision points and times. Also, object representations of call sites
and method handles are lazily acquired upon the first invocation.
This acquisition step (i.e., the bootstrapping phase) can be inter-
cepted from within the application (i.e., through the per-class boot-
strap callbacks) and so allows for injecting application-specific call
site and method handle types. When implementing cross-language
method invocations, the language developer can therefore express
language-specific linking points, linking times, method lookup,
method dispatch, and parameter processing semantics in terms of
this infrastructure (in Frag, e.g., varargs and the unknown method
dispatcher).

For Frag, adopting this infrastructure appears promising. While
preserving the advantages of dedicated method wrappers (e.g.,
message passing control, DSL-specific optimizations), this in-
frastructure devises lightweight object representations of methods
(i.e., java.dyn.Method which sets aside annotations and selected
object-type meta-data). Equally important, it avoids the execution
time overhead of the Java Reflection API. First, there is no need
for generating and injecting bytecoded invokers anymore. Second,
the recurring, caller-specific method access checks have been
replaced by one-time checks when creating method handles. Third,
parameter processing can be adjusted according to the needs of the
embedded language (e.g., ranging from automatic or no conversion
at all to custom signature adapters). Fourth, standard JVM runtime
optimizations (inlining) apply to such dynamic method invocations
[28].

8. Conclusion
In this paper, we compared non-reflective and reflective implemen-
tation options for realizing cross-language method invocations be-
tween the embedded language Frag [13, 35] and Java as its host lan-
guage. This comparison is performed in a qualitative and quantita-
tive manner: On the one hand, cross-language method refactorings
are evaluated with respect to the effort involved based on source
transformation counts. On the other hand, an execution time com-
parison is presented. We found an average penalty in runtime per-
formance of 12 % when adopting the Java Reflection API, which
is justified in scenarios that do not have high performance require-
ments.

The general approach taken in this paper is applicable to many
application scenarios of cross-language method refactorings. The



actual evaluation results are, however, specific to the Java imple-
mentations as employed in Frag. As the Frag implementation uses
a pretty standard reflection-based design and mostly basic Java li-
brary functionality, our results can be generalized to other dynamic
language implementations in Java.

In a next step, we will collect further examples of cross-
language refactorings by harvesting our ongoing DSL development
projects based on Frag [13]. In addition, we plan to refine our
performance measurements by incorporating ideas borrowed from
benchmarking virtual machines [2]. This will include execution
time measurements under different heap sizes and garbage col-
lection schemes, the comparative reporting of multiple iterations
to quantify setup costs and dynamic optimizations, and the
micro-profiling of low-level hot spots (e.g., Frag’s getter and setter
methods).
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