
Name-based view integration for enhancing the
reusability in process-driven SOAs

Huy Tran1, Uwe Zdun1, and Schahram Dustdar1

Distributed Systems Group
Information System Institute

Vienna University of Technology, Austria.
htran,zdun,dustdar@infosys.tuwien.ac.at

Abstract. Many companies opt for reusing existing software development ar-
tifacts due to the benefits of the reuse such as increasing productivity, shorten-
ing time-to-market, and spending less time for testing, debugging, to name but
a few. Unfortunately, reusing artifacts in existing process-driven SOA technolo-
gies is cumbersome and hard to achieve due to several inhibitors. First, the lan-
guages used for business process development are not intentionally designed for
reuse. Second, numerous tangled process concerns embraced in a process de-
scription significantly hinder the understanding and reusing of its concepts and
elements. Third, there is a lack of appropriate methods and techniques for in-
tegrating reusable artifacts. In our previous work, we proposed a view-based,
model-driven approach for addressing the two former challenges. We present in
this paper a named-based view integration approach aiming at solving the third
one. Preliminary qualitative and quantitative evaluations of four use cases ex-
tracted from industrial processes show that this approach can enhance the flexi-
bility and automation of reusing process development artifacts.

Key words: reuse, business process, SOAs, view-based, model-driven, name-
based, tool support

1.1 Introduction

Process-driven, service-oriented architectures (SOAs) advocate the notion of pro-
cess in order to aggregate various business functionality to accomplish a certain goal,
such as fulfilling a purchase order, handling customer complaints, booking a travel
itinerary, and so on. A typical business process consists of a number of activities that
are orchestrated by a control flow. Each activity is either a communication task (e.g.,
invoking other services, processes, or an interaction with a human) or a data processing
task. Business processes are often designed by business and domain experts using high-
level, notational languages, such as Business Process Modeling Notation (BPMN)1 and
UML Activity Diagram2. Process designs in the aforementioned languages are mostly
non-executable, and therefore, have to be translated into or implemented in low-level,
executable languages such as Business Process Execution Language (BPEL)3. After
1 http://www.bpmn.org
2 http://www.uml.org
3 http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

2 Huy Tran et al.

that, process implementations can be deployed in a process engine for executing and
monitoring.

The IEEE Glossary of Software Engineering Terminology defines reusability as “the
degree to which a software module or other work product can be used in more than one
computer program or software system” [1]. The significant benefit of reuse is to improve
software quality and productivity [2, 3]. There are several types of reusable aspects
in software projects such as architectures, source code, data, design, documentation,
test cases, requirements, etc. [4, 5]. The state-of-the-art software reuse practice suffers
from several technical and non-technical inhibitors [6, 7]. Reuse in business process
development is not an exception. We identify the most important factors that hinder the
reuse of artifacts during the process development life cycle as:

– Most of the languages used for modeling and developing processes, such as BPMN,
UML Activity Diagram, EPC, WS-BPEL, etc., are not intentionally designed for
reuse. As a result, none of the plethora of existing tools for business process design
and development offers adequate support for reusing development artifacts.

– A process description based on the aforementioned languages is often suffering from
various tangled concerns such as the control flow, collaborations, data handling,
transaction, and so on. As the number of services or processes involved in a busi-
ness process grows, the complexity of the process increases along with the number
of invocations, data exchanges, and therefore, multiplies the difficulty of analyzing,
understanding, and reusing any artifacts.

– The lack of adequate method support for flexibly integrating and composing reusable
artifacts also contributes to the difficulty of reusing process artifacts.

In our previous work we proposed a novel approach for addressing the complexity
of business process development [8, 9, 10, 11, 12]. Our approach explored the notion
of views and the model-driven stack in order to separate process representations (e.g.
process designs or implementations) into different (semi-)formalized view models. This
way, stakeholders can be provided with tailored perspectives by view integration mech-
anisms [10, 8] according to their particular expertise and interests. View models are
also organized into appropriate levels of abstraction: high-level, abstract views are suit-
able for business experts while low-level, technology-specific views are mostly used by
technical specialists. In this paper we focus on providing a solution for the third issue
mentioned above, i.e., supporting methods for reusing and integrating process artifacts
in a flexible manner. In particular, we introduce a name-based matching approach for
view model integration and show that this approach can enhance the flexibility and au-
tomation of process artifacts (i.e., process views and view elements) reuse via industrial
case studies.

This paper is organized as follows. In Section 1.2 we briefly introduce the View-
based Modeling Framework [8, 10, 9] that realizes the view-based, model-driven ap-
proach. Next, Section 1.3 presents a name-based view integration approach which is
simple, efficient, and flexible for improving the reusability. Processes extracted from
four case studies are exemplified to illustrate our approach in Section 1.4 along with
a quantitative study to evaluate this approach in industrial context. Then Section 1.5
discusses the related work. Finally, Section 1.6 summarizes our main contributions.

1 Name-based view integration for enhancing the reusability in process-driven SOAs 3

1.2 View-based Modeling Framework

Core
Model

FlowView
Model

CollaborationView
Model

InformationView
Model

HumanView
Model

BpelCollaborationView
Model

BpelnformationView
Model

BPEL4PeopleView
Model

Technology-
specific Layer

Abstract
Layer

TransactionView
Model

extends
(refines)

extends
(refines)

extends
(refines)

extends extends extends extendsextends

horizontal dimension
mastering the complexity of tangled process concerns

ve
rt

ic
al

 d
im

en
si

o
n

b
rid

gi
ng

 a
bs

tr
a

ct
io

n
le

ve
ls

BpelFlowView
Model

extends
(refines)

Fig. 1.1: Overview of the View-based Modeling Framework ([8, 9])

In this section, we briefly introduce the View-based Modeling Framework (VbMF),
which is an implementation of our view-based, model-driven approach [8]. VbMF ex-
ploits the notion of process views to separate tangled process concerns in order to reduce
the complexity and enhance the flexibility and extensibility in process-driven SOA de-
velopment. Each process concern, i.e., a particular perspective of business processes,
is (semi-)formally described by a view model that comprises a number of elements
and their relationships. VbMF view models are organized into abstract and technology-
specific layers. As such, business experts, who mostly work with the high level view
models, can better formulate domain- and business-oriented concepts and knowledge
because the technical details have been abstracted away. For particular process-driven
technologies, such as BPEL, VbMF provides extension models that add details to the
abstract models that are required to depict the specifics of these technologies [8]. These
extension views belong to the technology-specific layer shown in Figure 1.1.

VbMF initially provides stakeholders with basic (semi-)formalizations, which are
the FlowView, CollaborationView and InformationView models, for describing a busi-
ness process. The FlowView model specifies the orchestration of process activities, the
CollaborationView model represents the interactions with other processes or services,
and the InformationView model elicits data representations and processing. Nonethe-
less, VbMF is not bound to these view models but can be extended for capturing many
other concerns, for instance, human interaction [9], data access and integration [13],
and traceability [12]. View models of VbMF are derived from fundamental concepts
and elements of the Core model. Thus, the concepts of the Core model are the exten-
sion points and integration points of VbMF [8].

We implemented VbMF as Eclipse plugins based on the Eclipse Modeling Frame-
work4. To illustrate how VbMF works in reality, we exemplify parts of the billing and
4 http://www.eclipse.org/emf

4 Huy Tran et al.

a b

c

Fig. 1.2: Billing Renewal process development using VbMF

provisioning system of a domain registrar and hosting provider [14]. The billing system
comprises a wide variety of services including: credit bureau services (cash clearing,
card validation and payment, etc.), domain services (whois, domain registration and
transfer, etc.), hosting services (Web and email hosting, provisioning, etc.), and retail
services (customer service and support, etc.). The company has developed a business
process, namely, Billing Renewal process, in order to integrate and orchestrate core
functionality and the services. We present the VbMF views of the Billing Renewal pro-
cess that are the FlowView (Figure 1.2(a)), the high-level CollaborationView and In-
formationView (Figure 1.2(b)), and the low-level BpelCollaborationView and BpelIn-
formationView (Figure 1.2(c)). For further details of VbMF, we would like to refer the
readers to [8, 10, 11, 12, 9].

1.3 Name-based View Integration Approach

In our view-based, model-driven approach, the FlowView – as the most important
concern in process-driven SOA – is often used as the central view. Views can be inte-
grated via integration points to produce a richer view or a thorough view of the business
process. We propose a name-based matching algorithm for realizing the view integra-
tion mechanism (see Algorithm 1). This algorithm is simple, but effectively used at the
view level (or model level) because from a modeler’s point of view in reality it makes
sense, and is reasonable, to assign the same name to the modeling entities that pose
the same functionality and semantics. Nonetheless, other view integration approaches
such as those using class hierarchical structures or ontology-based structures are appli-
cable in our approach with reasonable effort as well. Exploring other view integration

1 Name-based view integration for enhancing the reusability in process-driven SOAs 5

mechanisms and comparing them with the name-based matching approach is beyond
the scope of this paper. Therefore, we merely focus on the name-based view integra-
tion and illustrate its promising advantages contributing to improve the reusability of
process artifacts.

Before discussing in detail the name-based view integration, we introduce the defi-
nition of conformity of model elements and integration points. Let m be an element of
a certain view model, the symbol m̂ denotes the hierarchical tree of inheritance of m,
i.e., all elements which are ancestors of m, and m.x denotes the value of the attribute x
of the element m.

Definition 1 (Conformity). Let M1, M2 be two view models and m1 ∈M1 and m2 ∈
M2. Two elements m1 and m2 are conformable if and only if m1 and m2 have at least
one common parent type in their tree of inheritance or m1 is of type m2, or vice versa.

Using m1 ↑ m2 to denote m1 and m2 are conformable, Definition 1 is given as:

m1 ↑ m2 ⇐⇒ (m̂1 ∩ m̂2 6= ∅) ∨ (m1 ∈ m̂2) ∨ (m2 ∈ m̂1)

Definition 2 (Integration point). Let M1, M2 be two view models and two views V1,
V2 be instances of M1 and M2, respectively. A couple of elements e1 and e2, where
e1 ∈ V1 and e2 ∈ V2, e1 is an instance of m1, and e2 is an instance of m2, is an
integration point between V1 and V2 if and only if m1 and m2 are conformable and e1
and e2 have the same value of the attribute “name”.

Using I(e1, e2) to denote the integration point between two views V1 and V2 at the
elements e1 and e2, and x � y to denote x is an instance of y, Definition 2 can be
written as:

I(e1, e2) ⇐⇒ (m1 ↑ m2) ∧ (e1.name = e2.name)

where
e1 ∈ V1, e2 ∈ V2, e1 � m1, e2 � m2, V1 �M1, V2 �M2

The main idea of the name-based matching for view integration is to find all inte-
gration points I(e1, e2) between two views V1 and V2 and merge these two views at
those integration points. The merging at a certain integration point I(e1, e2) is done
by creating a new element which aggregates the attributes and references of both e1
and e2 (see Algorithm 1). The complexity of the name-based matching algorithm is
approximately O(k + l + k × l), where k = |V1| and l = |V2|. This complexity can
be significantly reduced by generating and maintaining a configuration file containing
the integration points of every pair of views with tool support. The integration points
can be automatically derived from the relationships between two views. Later on, the
view integration algorithm only loads the configuration file and performs view merging
straightforwardly. This way, the complexity of the view integration algorithm can be
reduced to approximately O(P), where P is the number of integration points between
V1 and V2. We note that P ≤ k × l. In reality, the numbers of elements which are used
for view integration are often much less the total number of elements of the containing
view, and therefore, P � k × l). Nonetheless, this approach requires additional sup-
port, especially tool support, for deriving and maintaining the integration points, which
is one of our ongoing endeavors to complete the framework.

6 Huy Tran et al.

Algorithm 1: View integration by name-based matching
Input: View V1 and view V2

Output: Integrated view V12

begin
V12.initialize();
E1 ← V1.getAllElements();
E2 ← V2.getAllElements();
V12.addElements(E1);
V12.addElements(E2);
foreach e1 ∈ E1 do

found← false;
while not found do

e2 ← E2.next();
if (e1.name = e2.name) ∧ (e1.superType ↑ e2.superType) then

found← true;
enew ← createNewElement();
enew.attribute← merge(e1.attribute, e2.attribute);
enew.reference← merge(e1.reference, e2.reference);
V12.addElements(enew);
V12.removeElements(e1,e2);

return V12;
end

1.4 Case Study

In this section, a typical process development scenario is used to demonstrate how
the name-based view integration in VbMF can support a flexible reuse of process arti-
facts. After that, we present a preliminary quantitative evaluation of our approach based
on four use cases extracted from industrial business processes.

1.4.1 Process artifacts reuse scenario

As shown in Section 1.2, the Billing Renewal process has been developed using
VbMF. Now the company starts develop an Order Handling process such that Internet
customers can order the company’s products via the Web site. Figure 1.3 shows the core
functionality of the Order Handling process in terms of a BPMN diagram. The company
opts to reuse existing artifacts as much as possible to develop the Order Handling pro-
cess rather than starting from scratch. After analyzing the business requirements, the
developers identify a number of fragments of process models and services with similar
functionality existing across the enterprise. For instance, the Order Handling process
requires a task that charges customer payment by invoking the services provided by
the credit bureau partner. This task is similar to the ChargePayment task of the Billing
Renewal process developed before. Therefore, this task should be reused in the Order
Handling process rather than being re-developed.

Figure 1.4 illustrates how the developers reuse the existing ChargePayment activity
for modeling the Order Handling process. The scenario is presented in terms of UML

1 Name-based view integration for enhancing the reusability in process-driven SOAs 7

O
rd

er
 P

ro
ce

ss
in

g

Customer

Verify
Payment

Card valid
&&

product
available?

Receive
Order

Compute
Price

Deliver
Product

Charge
Payment

Cancel
Order

No

Notify
Customer

YesCheck
ProductAvailability

Purchase
Order

Send
Invoice

Invoice

Fig. 1.3: Overview of the Order Handling process

object diagrams. On the right-hand side, we show the CollaborationView and BpelCol-
laborationView of the Billing Renewal process where the ChargePayment activity is
defined at high-level and low-level of abstract, respectively. In the Billing Renewal Col-
laborationView, ChargePayment:Interaction – an instance of the Interaction class – has
relationships with three other objects: CreditBureau:Partner, CreditBureau:Interface,
and charge:Operation. The ChargePayment:Interaction object is refined in the Billing
Renewal BpelCollaborationView by the ChargePayment:Invoke object – an instance of
the Invoke class. The ChargePayment:Invoke object has two more associations with the
chargePaymentInput:VariableReference and chargePaymentOutput:VariableReference
objects.

BillingRenewal : BpelCollaborationView

BillingRenewal : CollaborationView

OrderHandling :FlowView

name=“ChargePayment“

ChargePayment :
AtomicTask

name=“ChargePayment“
inVariable=“chargePaymentInput“
outVariable=“chargePaymentOutput“
interface=“CreditBureau“
operation=“charge“
partner=“CreditBureau“

ChargePayment : Invoke

name=“CreditBureau“

CreditBureau : Interface

name=“charge“

charge : Operation

name=“CreditBureau“

CreditBureau : Partner

name=“CreditBureau“

CreditBureau : Role

role

partner

interaction

role

name=“chargePaymentInput“

chargePaymentInput :
VariableRefenrence

name=“ChargePayment“
interface=“CreditBureau“
operation=“charge“
partner=“CreditBureau“
type=“INOUT“

ChargePayment :
Interaction

name=“chargePaymentOutput“

chargePaymentOutput :
VariableRefenrence

inVar

outVar

partner

operation

name=“charge“

charge : Operation name=“request“

request : Channel

name=“response“

response : Channel

I1

I2

I3

I4
Billing Renewal :

BpelInformationView

name=“ComputePrice“

ComputePrice :
AtomicTask

Fig. 1.4: Name-based view integration approach for reusing by referencing the Charge
Payment element of the Billing Renewal Process in the Order Handling process

8 Huy Tran et al.

In order to properly reuse the ChargePayment activity of the Billing Renewal pro-
cess, the developers perform two steps:

1. Create a corresponding ChargePayment:AtomicTask in the Order Handling
FlowView as shown in the right-hand side of Figure 1.4.

2. Perform one of the following tasks (note that these tasks can be supported by the
framework in a (semi-)automatic manner):
a) Explicitly define either an integration point I1 between the ChargePay-

ment:AtomicTask and the ChargePayment:Interaction or I2 between the
ChargePayment:AtomicTask and the ChargePayment:Invoke.

b) Explicitly specify the CollaborationView and BpelCollaborationView of the
Billing Renewal process are input views of the Order Handling process. As
VbMF supports view integration by name-based matching (cf. Section 1.3), the
aforementioned integration points can be implicitly resolved by VbMF tooling,
for instance, the code generators.

A question might be risen at this point: “How’s about the relationships between
the reused elements and other views or elements?”. For instance, the ChargePay-
ment:Invoke has associations with chargePaymentInput:VariableReference and charge-
PaymentOutput:VariableReference objects which are instances of the VariableRefer-
ence class. In the Billing Renewal process, the actual definitions of these objects belong
to the BpelInformationView. Therefore, these objects are part of the integration points
I3 and I4, respectively, between the BpelCollaborationView and BpelInformationView
of the Billing Renewal process. In this situation, the stakeholders can take any one of
two possible approaches which can be (semi-)automatically supported by our modeling
framework:

1. Reuse the existing integration points between the BpelCollaborationView and
BpelInformationView of the Billing Renewal process: The stakeholders can gain
more benefit of reusability but they have to analyze the subsequent dependencies
of the reused objects in the BpelInformationView. In addition, these subsequent de-
pendencies also require extra effort to maintain view synchronization when making
any change in the reused views. This task is supported by our traceability approach
[12].

2. Create new objects in the Order Handling BpelInformationView bearing corre-
sponding names, then I3 and I4 can be automatically derived. Although no benefit
of reusability gained, there is also no binding to the Billing Renewal BpelInforma-
tionView. That is, no extra effort for understanding the subsequent dependencies or
maintaining view synchronization is required.

1.4.2 Quantitative evaluation

So far we presented a development scenario to illustrate how our view-based,
model-driven powered by the name-based matching can improve the flexibility and
automation of reuse process development artifacts. To explore the application and prag-
matic usage of our approach, adequate experiments to quantitatively evaluating it in in-
dustrial business process development environment are definitely necessary. As the use
cases examined in our work are mostly in the preliminary development phase. Thus,

1 Name-based view integration for enhancing the reusability in process-driven SOAs 9

the reuse rate is an adequate factor for the initial assessment of the value of the reuse
method [15, 5]. We present in this section our quantitative evaluations of the reuse rate
according to the model proposed by Gaffney and Cruickshank (which is called the pro-
portion of reuse) [15] as well as by Frakes and Terry (which is called reuse percent)
[5]. Essentially, the reuse rate RR of each view reflects how much of that view can be
attributed to reuse and be computed by the formula RR = ER

E × 100, where ER is the
number of reusable/reused elements and E is the total number of model elements of the
corresponding view [15, 5].

We have conducted the quantitative evaluation in four processes extracted from in-
dustrial use cases. Two of them are the Billing Renewal and the Order Handling pro-
cesses mentioned in the previous sections. Two other processes are the CRM Fulfill-
ment process [14] and the Travel Booking process [16]. The CRM Fulfillment process
is part of the customer relationship management (CRM), billing, and provisioning sys-
tems of an Austrian Internet Service Provider. The Travel Booking process is based
upon the procedure of making itinerary arrangements. It comprises typical steps for
accomplishing a travel reservation: Internet customers submit data about the travel
itineraries and receive a confirmation number when the travel itineraries have been
booked successfully. These processes are mostly in the modeling and implementation
phases. In Table 1.1, we present the reuse rate RR of VbMF views, such as Collabora-
tionView (CV), InformationView (IV), BpelCollaborationView (BCV), and BpelInfor-
mationView (BIV), of each case study.

Process CV IV BCV BIV

ER E RR (%) ER E RR (%) ER E RR (%) ER E RR (%)

Billing Renewal 49 63 77.78 59 85 69.41 63 132 47.73 407 494 82.39
CRM Fulfillment 60 74 81.08 63 78 80.77 74 131 56.49 448 537 83.43
Order Handling 29 36 80.56 36 44 81.82 36 65 55.38 238 286 83.22
Travel Booking 27 33 81.82 33 43 76.74 33 56 58.93 219 260 84.23

Average 80.31 77.19 54.63 83.32

Table 1.1: The reuse rate of process view models in four use cases

As illustrated in the previous development and reuse scenario, each element of
VbMF process views is potentially reusable artifact. A FlowView purely contains a con-
trol flow that defines the business logic, i.e., the execution order of process activities in
order to achieve a particular business goal. Note that detailed specification of process ac-
tivities, for instance, invoking a service, transforming data objects, are not embraced in
the FlowView but others such as (Bpel)CollaborationView and (Bpel)InformationView.
Therefore, reusing an existing FlowView to develop a new process is still possible but
inefficient. Nonetheless, a FlowView can be reused as the documentation of an “as-is”
process that can be referenced, or even used as a skeleton, for developing new processes.
For this reason, we omit the reuse rate of the FlowView in Table 1.1.

10 Huy Tran et al.

0.0%

25.0%

50.0%

75.0%

100.0%

CV IV BCV BIV

(a) Billing Renewal Process

0.0%

25.0%

50.0%

75.0%

100.0%

CV IV BCV BIV

(b) Order Handling Process

Fig. 1.5: The reuse rate of view models in the Billing Renewal and Order Handling
processes

The ratio of reuse also reflects the tendency of integration of VbMF views.
That is, AtomicTasks of the FlowView are often integrated with the corresponding
elements of the CollaborationView and InformationView such as Interaction and
Data Handling, or elements of the BpelCollaborationView and BpelInformationView,
such as Receive, Reply, Invoke, and Assign. In addition, a number of elements
of the (Bpel)CollaborationView have references to corresponding elements of
(Bpel)InformationView whilst none of the (Bpel)InformationView’s element depends
on other views’ elements. As a result, the ratio of reuse of the (Bpel)InformationView
is much higher than that of the (Bpel)CollaborationView. The ratios of reuse of
high-level views are higher than that of low-level ones because the abstract concepts
are more reusable than the technology-specific counterparts. The average degrees of
reuse over four use cases are very promising: 80.31% for the CollaborationView
(CV), 77.19% for the InformationView (IV), 54.63% for the BpelCollaborationView
(BCV), and 83.32% for the BpelInformationView (BIV). Because the reuse rates of
view models of each use case is almost identical to those of the others, we only show
the visualizations of the evaluation results of the Billing Renewal and Order Handling
processes (see Figure 1.5).

1.5 Related Work

Software reuse has been an active field of study in software engineering since last
three decades that leads many promising results for reusing existing software or soft-
ware knowledge to build new software [7, 4, 6]. Several work in this field has con-
tributed success stories in various aspects such as reuse libraries, domain engineering
methods and tools, reuse design, design patterns, domain specific software architec-
ture, components, generators, and so on [6]. Yet there has been very few investigation
of reuse in in the area of business process management, in particular, business process
development.

As we mentioned above, most of popular languages used for modeling and devel-
oping business processes such as BPMN, UML Activity Diagram, EPC, BPEL, etc., are

1 Name-based view integration for enhancing the reusability in process-driven SOAs 11

not intentionally designed for reuse. As a consequence, developers find it hard to reuse
a certain excerpt of a process represented in any of these languages. Reuse merely exists
in form of “copy-and-paste” if the same language is used to model and develop busi-
ness processes. Otherwise, necessary interpretation and translation must be performed
in order to reuse existing processes. All these are however cumbersome and error-prone
tasks.

To the best of our knowledge, most of researches on software reuse in the domain
of business process management focus on the control flow of the business process. Van
der Aalst et al. [17] proposed several so-called workflow patterns, which are reusable
control flow structures representing frequently occurring knowledge for constructing
workflows. Each pattern has a sound semantic and example usage in various workflow
products. These patterns can be applied for specifying, analyzing, understanding the
control flow of business processes. Similarly, Schumm et al. [18] present an approach
based on the notion of process fragment that enables a flexible method for describing
and integrating existing artifacts into business processes. From our point of view, the
aforementioned approaches and our work in this paper are nicely complementary. We
believe that further exploring and integrating can fully benefit the reuse of the con-
trol flow. The distinctive point is that our approach does not solely focus on the reuse
of the control flow per se. Facilitating VbMF’s extension mechanisms [8], we aim at
supporting the flexible reuse of business processes from different aspects such as col-
laborations, data handling, etc., considering the control flow as the central notion.

Markovic and Pereira present a preliminary approach based on π-calculus and on-
tologies to provide richer representations of business process aspects such as function,
information, organization, etc., [19]. This approach aims at using ontologies to explic-
itly specify business knowledge for better manipulating and reusing. However, the au-
thors have not further mentioned or investigated the reuse of these knowledge in the
business process life cycle.

1.6 Conclusion

In the domain of process-driven SOAs, reusing existing development artifacts is
hindered by various factors. First, the languages used for modeling and developing pro-
cesses are not intentionally designed for reuse. Second, business process representations
in these languages are often complex and tangled by various concerns such that it is hard
for the stakeholders to analyze, understand, and reuse them. Last but not least, there is
still a lack of methods for flexibly integrating reusable artifacts.

In our previous work, we presented a novel solution for addressing the two former
challenges. In this paper we focused on a name-based view integration approach aiming
at solving the last challenge. Through a qualitative scenario-driven and a quantitative
evaluation, we show that promising results on reusing process development artifacts
can be achieved using our approach. Nonetheless, further endeavors such as industrial
experiments and surveys over several software projects are definitely necessary in order
to confirm the application and pragmatic usage of this approach in reality. In addition,
exploring other view integration methods, such as those based on concept hierarchies or
ontologies, can help fully exploiting the benefit of reuse and enhancing the automation
in reusing process development artifacts.

12 Huy Tran et al.

Acknowledgement

This work was supported by the European Union FP7 project COMPAS, grant no.
215175.

References

1. IEEE: Standard Glossary of Software Eng. Terminology (December 1990)
2. Gaffney, J., Durek, T.A.: Software reuse: key to enhanced productivity: some quantitative

models. Information and Software Technology 31(5) (June 1989) 258–267
3. Fichman, R., Kemerer, C.F.: Incentive compatibility and systematic software reuse. J. Sys-

tems and Software 57(1) (April 2001) 45–60
4. Krueger, C.W.: Software reuse. ACM Comp. Surv. 24(2) (1992) 131–183
5. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comp. Surv. 28(2) (June

1996) 415–435
6. Frakes, W., Kang, K.: Software reuse research: status and future. IEEE Trans. Software Eng.

31(7) (July 2005) 529–536
7. Morisio, M., Ezran, M., Tully, C.: Success and failure factors in software reuse. IEEE Trans.

Software Eng. 28(4) (April 2002) 340–357
8. Tran, H., Zdun, U., Dustdar, S.: View-based and Model-driven Approach for Reducing the

Development Complexity in Process-Driven SOA. In: Int’l Conf. Business Process and Ser-
vices Computing (BPSC). Volume 116 of LNI., GI (2007) 105–124

9. Holmes, T., Tran, H., Zdun, U., Dustdar, S.: Modeling Human Aspects of Business Pro-
cesses - A View-Based, Model-Driven Approach. In: 4th European Conf. Model Driven
Architecture Foundations and Applications (ECMDA-FA), Springer (2008) 246–261

10. Tran, H., Zdun, U., Dustdar, S.: View-based Integration of Process-driven SOA Models
At Various Abstraction Levels. In: 1st Int’l Workshop on Model-Based Software and Data
Integration, Springer (April 2008) 55–66

11. Tran, H., Zdun, U., Dustdar, S.: View-Based Reverse Engineering Approach for Enhanc-
ing Model Interoperability and Reusability in Process-Driven SOAs. In: 10th Int’l Conf.
Software Reuse (ICSR), Springer (2008) 233–244

12. Tran, H., Zdun, U., Dustdar, S.: VbTrace: Using View-based and Model-driven Devel-
opment to Support Traceability in Process-driven SOAs. J. Softw. Syst. Model. (2009)
http://dx.doi.org/10.1007/s10270-009-0137-0.

13. Mayr, C., Zdun, U., Dustdar, S.: Model-Driven Integration and Management of Data Access
Objects in Process-Driven SOAs. In: ServiceWave. (2008) 62–73

14. Evenson, M., Schreder, B.: SemBiz Project: D4.1 Use Case Definition and Functional Re-
quirements Analysis. http://sembiz.org/attach/D4.1.pdf (August 2007)

15. Gaffney, J.E., Cruickshank, R.D.: A general economics model of software reuse. In: 14th
Int’l Conf. Software Eng. (ICSE), ACM Press (1992) 327–337

16. IBM: Business process use cases. http://publib.boulder.ibm.com/bpcsamp
(2006) (accessed 2008/01/05).

17. van der Aalst, W., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns.
Distributed and Parallel Databases 14(1) (2003) 5–51

18. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S.: Integrating Compliance into
Business Processes Process Fragments as Reusable Compliance Controls. In: Multikon-
ferenz Wirtschaftsinformatik (MKWI), Universitätsverlag Göttingen (2010) 2125–2137

19. Markovic, I., Pereira, A.C.: Towards a Formal Framework for Reuse in Business Process
Modeling. In: BPM Workshops Advances in Semantics for Web services 2007 (seman-
tics4ws’07), Springer (2008) 484–495

