

co-funded by the European Union

The project is co-funded by the European Union, through the eContentplus programme

http://ec.europa.eu/econtentplus

EuropeanaConnect is coordinated by the Austrian National Library

Europeana RDF Store Report

The results of qualitative and quantitative study of
existing RDF stores in the context of Europeana

Europeana RDF Store Report

Bernhard Haslhofer, Elaheh Momeni, Bernhard Schandl, and Stefan Zander

Research Group Multimedia Information Systems
Faculty of Computer Science

University of Vienna

March 8, 2011

Abstract

Expressing data in RDF is one of the principles to be considered when making data available as
Linked Data on the Web. This can be achieved using RDF-wrappers for existing (relational) data stores
or by using RDF stores as data repositories. The latter requires special RDF storage solutions, many
of which are available today. Organizations often have difficulties to decide which solution they should
adopt because comprehensive comparisons of existing RDF stores are hardly available and experiences
w.r.t performance and scalability are still missing. In this report, we summarize the results of qualitative
and quantitative study we carried out on existing RDF stores in the context of the European Digital
Library project. We give a detailed overview on existing RDF store solutions, analyze their functional and
non-functional features, summarize the outcomes of other, previously carried out studies, and conduct a
Linked-Data oriented performance evaluation on a subset of existing triple stores w.r.t to load and query
time. The results of this study show that certain RDF stores, such as OpenLink Virtuoso or 4Store, can
deal with the Europeana data volume and answer those SPARQL queries that are relevant for exposing
Europeana metadata as Linked Data in an acceptable time-range.

1 Introduction

Linked Data has gained momentum [12] and became a widely implemented method of exposing data on
the Web in many domains. Many data providers now identify their data items by means of dereferencable
HTTP URIs and deliver data not only in the human-readable HTML but also in the machine-readable RDF
format. In many cases, the RDF data representations are generated, often on-the-fly, from underlying (e.g.,
relational) data stores for the purpose of data-exchange. In certain cases, however, it might be necessary to
store and retrieve RDF data directly, which requires special storage solutions that support the schema-less
and graph-based nature of the RDF data model. Many solutions have been developed throughout the past
years and often it is unclear which solutions to adopt.

The Linked Data approach will play a major role in the European Digital Library (http://europeana.eu)
and solutions that can handle data expressed in the newly created, RDF-based Europeana Data Model (EDM)
are currently being investigated. This report summarizes the results of a study we performed on existing
RDF stores, in the context of Europeana and encompasses the following contributions:

• An inventory of existing RDF store solutions comparing their non-functional features.

• A meta-analysis that surveys and summarizes the results of previous RDF store studies.

• A detailed qualitative analysis of all stores in the RDF store inventory.

• A quantitative load and query-response time evaluation carried out on the complete Europeana data
set.

2

Europeanardfs:labelhttp://dbpedia.org/
resource/Europeana

dbpedia-owl:Website

rdf:type

Figure 1: Example DBpedia RDF graph representing Europeana.

The overall objective of this study was to find an appropriate RDF store that can host EDM data and
expose these data as Linked Data on the Web. We observed that the majority of stores that were developed
in recent years are so called native-stores, which are systems that do not make use of a relational database as
storage backend, and hybrid stores, which combine relational and native RDF storage functionalities. They
can load datasets in the size of the Europeana dataset (approx. 380 million triples) in reasonable time (> 1.5
h) and answer basic SELECT and DESCRIBE queries in a time-frame between 0.3 and 1 second respectively.
Since these response times can hardly compete with those of full-text search engines such as Apache Lucene,
an RDF store should not replace full-text search engines. Given that an RDF store meets Europeana’s
functional and non-functional requirements, it could, however, serve as persistent and query-able metadata
storage that can be used to serve Europeana Data as Linked Data. The aim of this report is to discuss the
functional and non-functional features of available RDF store solutions and to give deeper insight into their
performance behavior.

The remainder of this report is structured as follows: in Section 2, we briefly introduce the RDF-specific
notions used in the subsequent sections and introduce a first RDF store classification. Then, in Section 3,
we set up the RDF store inventory and describe their non-functional features. Section 4 summarizes the
results of studies carried out by others in the area of RDF store analysis and performance evaluation. In
Section 5 we summarize the outcome of a qualitative functional feature analysis we carried out for all stores
contained in our RDF store inventory and in Section 6 we present the results of the RDF store performance
evaluation. Finally, in Section 7, we summarize the major findings of our study.

2 Background

The capabilities of RDF stores inherently depend on the properties of the RDF data model and other
Semantic Technologies built on-top of RDF. In the following, we briefly introduce the technologies and
notions mentioned in this report, explain what an RDF Store is, and provide a first classification of existing
RDF storage approaches. We also outline the major peculiarities RDF has compared to traditional data
models we can find in today’s relational database management systems. This section also provides the
definitions for the terms we use throughout this report.

2.1 Semantic Web Technologies

The Resource Description Framework (RDF) [26] is a graph-based, semi-structured data model for represent-
ing metadata about a certain resource. It allows us to formulate statements about resources, each statement
consisting of a subject, a predicate, and an object. The subject and predicate in a statement must always
be resources, the object can either be a resource or a literal node (label). A statement is represented as a
triple and several statements form a graph. Figure 1 shows an example RDF graph representing data about
the Europeana project. It is identified by the URI http://dbpedia.org/resource/Europeana, is of type

3

<http://dbpedia.org/resource/Europeana>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://dbpedia.org/ontology/Website> .

<http://dbpedia.org/resource/Europeana>
<http://www.w3.org/2000/01/rdf-schema#label>
"Europeana" .

Figure 2: The example RDF graph from Figure 1 in N-Triples representation.

dbpedia-owl:Website and has the label “Europeana”. Figure 2 shows the data defined by this graph in
N-Triples1 serialization.

The concept of Named Graphs [15] is an extension of the RDF specification an allows for the expression
of meta information about graphs and the relationships between them. RDF by itself merely provides means
to represent the structure and semantics of one single graph but does not include mechanisms that allow
for identifying or referring to a set of triples defined in another graph. By naming RDF graphs with URIs,
they can be uniquely identified and assertions about them can be made. Therefore, a single RDF document
can host multiple graphs where each graph is identified by its URI. A common proposition of implementing
named graphs in RDF is to replace the triple-based model by a quad-based model in which the fourth element
contains the graph URI to which an RDF triple belongs. Named graphs exhibit some significant advantages
compared to the RDF innate concept of reification; a detailed discussion regarding the current limitations
of RDF reification w.r.t data syndication, ontology evolution and versioning etc. together with a formal
specification of the named graphs syntax and semantic is provided by [16, 15].

The RDF Vocabulary Description Language RDF Schema (RDFS) [46] and the Web Ontology Language
(OWL) [48] are means to describe the vocabulary terms used in an RDF model. RDFS provides the basic
constructs for describing classes and properties and allows to arrange them in simple subsumption hierarchies.
Since the expressiveness of RDFS is limited and misses some fundamental modeling features often required
to construct vocabularies, the Web Ontology Language (OWL) was created. It is based on RDFS and allows
the distinction between attribute-like (owl:DatatypeProperty) and relationship-like (owl:ObjectProperty)
properties and provides several other expressive modeling primitives (e.g., class union and intersections,
cardinality restrictions on properties, etc.), which allow us to express more complex models, which are then
called ontologies. With RDFS and OWL one has the possibility to define models that explicitly express data
semantics and specify and process possible inferences of data. The formal grounding of RDFS and OWL
(Description Logics) allows applications to reason on RDF statements and infer logical consequences.

The SPARQL Query Language for RDF [47] is an expressive language for formulating structured queries
over RDF data sources. It defines a protocol for sending queries from clients to a SPARQL endpoint and for
retrieving the requested results via the Web.

2.2 RDF Stores

While small RDF graphs can be efficiently handled and managed in computers’ main memory, larger RDF
graphs render the deployment of persistent storage systems indispensable. RDF stores are purpose-built
databases for the storage and retrieval of any kind of data expressed in RDF. Although the term triple store
is often used for that kind of systems, we use the term RDF store in order to abstract over any kind of
system that is capable of handling RDF data, including triple stores, quad stores, etc. For the purpose of
this study, we define RDF stores as systems that allow the ingestion of serialized RDF data and the retrieval
of these data later on.

1N-Triples is line-based, plain text format for representing RDF data. See http://www.w3.org/2001/sw/RDFCore/ntriples/

4

We distinguish the following types of RDF stores based on their architecture: native stores, DBMS-backed
stores, and RDF wrappers.

2.2.1 Native stores

Native stores implement a complete database engine that is optimized for RDF processing and operates
independent of any other Database Management System (DBMS). Data are stored directly on the file system,
either in a single file or distributed among several segments on the underlying file system.

2.2.2 DBMS-backed stores

DBMS-backed stores make use of the storage and retrieval functionality of existing (mostly relational)
database management systems. RDF stores, which are backed by relational DBMS, can apply different
kinds of storage models for representing the RDF model in the underlying relational schema. We can clas-
sify these models into generic schemas, which store RDF data regardless of any ontology in place, and
ontology-specific schemas, which resemble a specific ontological structure in the relational table design.

Generic schemas We can further divide the generic schemas into a single database table design (the most
simple generic schema) resembling a serialized RDF triple structure using a three-column table for storing
subject, predicate, and object, a property table design (cf. [3]), which is a flattened denormalized RDF table
schema consisting of one subject column followed by many property columns, a normalized table design
introducing separate tables for storing URIs and literals, as well as hybrid approaches that resemble the
advantages of singe and normalized table designs2. The advantage of a generic schema approach is clearly
the flexibility gained by the schema-less data representation approach. The major disadvantage is the high
number of self-joins, which are required for answering non-trivial queries (cf. [3]).

Ontology-specific schemas DBMS-backed stores that follow an ontology-specific schema approach do
not store triples in a single table but apply a schema structure that reflects the structural properties of the
ontologies in place. Evolutions in the ontology design are reflected in database table design, i.e., whenever a
class or property changes in the ontology, this change is reflected in the database tables. According to [24]
we can distinguish three different ontology-specific schema layouts:

• Horizontal representation or one-table-per-class schema: each ontology class is reflected in a database
table, which holds all instances of a class. Including a new property in the ontology requires all instance-
related database tables to be extended by an additional column representing the newly introduced
property. The major disadvantages of this approach are the necessity to restructure database tables
whenever the adhering ontology changes and the lacking support for multi-value properties.

• Decomposition storage model : this schema is also called one-table-per-property-schema or vertically
partitioned schema and stores each property in one single table (including RDF/S properties) consisting
of two columns: subject and object. This table layout also lacks query efficiency (performance) when
it comes to complex queries because it leads to many joins among property tables. However, it can
outperform single-database schemas by a factor greater than two [3].

• Hybrid schemas: are more common and combine the advantages of both one-table-per-class schemas
and one-table-per-property schemas since ontology changes do not lead to database table restructuring.
Instead, each class is represented as one single table where only the IDs of the instances of a specific
class are stored.

2Advantages and limitations of the different generic schema approaches are discussed and exemplified in ([24]).

5

2.2.3 RDF wrappers

RDF wrappers are another noteworthy type of RDF management system. An RDF wrapper is a lightweight
software components that is set up on top of an existing data source and exposes the data stored therein as
RDF without affecting existing storage infrastructures. RDF Wrappers exist for relational databases (e.g.,
D2RQ Server3, Triplify [5]), for protocols such as OAI-PMH (e.g., OAI2LOD Server [23]), for structured
file formats (e.g., TripCel [8]), for complete file systems (TripFS [41]) and other kinds of data sources.
Depending on the capabilities of the underlying data source, wrappers can also provide structured RDF
access via SPARQL. The distinguishing feature between RDF wrappers and the previously mentioned types
of RDF stores (native, DBMS-backed) is that RDF wrappers provide read-only access to RDF data. Since
this doesn’t fit into our definition of RDF stores, we exclude systems in this category from further analysis.

2.3 RDF Peculiarities Compared to Relational Database Models

RDF Stores are optimized to quickly process operations on RDF models and are highly flexible because they
do not rely on a fixed, pre-defined schema. Hence, schema (domain model) changes can be realized without
direct schema and data migrations in the underlying storage infrastructure, as it would, for instance, be
the case in relational databases. If an RDF store builds on a relational database, schema migrations are
typically handled transparently by some RDF middleware. The drawback of this flexibility lies in the loss
of performance and scalability in query processing. Existing query optimization algorithms typically rely on
the existence of fixed schema information. In the following, we describe some of the distinct and significant
features the RDF data model exposes compared to traditional database systems (for a detailed discussion
see [34]):

• The unpredictable structure of RDF documents not only affects the execution of (arbitrary) query
patterns, but also requires a generic structure for RDF data storage in, for instance, relational database
systems. Therefore, RDF stores should provide support for generic storage schemas covering RDF data
model characteristics and the efficient execution of arbitrary query patterns.

• Data aggregation in RDF is relatively simple compared to the complex schema realignments known in,
for instance, relational database systems since RDF graphs can be easily merged. For instance, if two
resources are using the same URI, its valid to assume that they refer to the same (real world) entity.

• URIs exhibit a standard and uniform identification scheme. By using URIs for identifying resources
and concepts, data discovery across documents and systems is facilitated since the use of URIs allow
for a global identification mechanism among systems and domains.

• RDF is an open world framework with no tightly defined data schemas, wherefore anyone can say
anything about any topic. Therefore, the RDF data model allows for the insertion of individual RDF
statements to existing data sources but also for specifying assertions about a resource in different
systems. In this respect, RDF is considered to be a schema-less model.

• RDF offers a powerful and open knowledge representation language that can be used to virtually
express any type of knowledge due to its underlying triple-based generic schema. This simplicity and
flexibility led to the creation of a multitude of open-source frameworks and tools (e.g., knowledge
extraction engines, reasoners etc.) for processing and storing RDF data that can be used in existing
applications.

3 RDF Store Inventory

After having introduced the fundamental technical properties of RDF stores, we now given an overview
of existing RDF stores. We include all publicly available solutions, which are referenced and described on

3D2RQ Server: http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

6

the Web4 or were discussed in related publications (see Section 4) throughout the past years. Following
the categorization introduced in Section 2.2, we categorize them into native or DBMS-backed stores, or, if
both architectural styles are applicable, into hybrid stores. For each RDF store solution, we provide a short
background description and details on the following non-functional features:

• Licensing model : some RDF store solutions are commercial, others open source and/or free of
charge. The latter may be released under various licenses (GNU GPL, Apache License, etc.).

• Deployment : depending on their architecture, RDF Stores can either be installed as a stand-alone
server, or be used as a remote hosted service. Some are designed as libraries, which can be
integrated into applications, and provide RDF storage functionality via their API.

• Operating environment : the operating environment (Windows, Linux, Mac OS X, etc.) for running
a particular RDF store. Several RDF stores might also be implemented as platform-independent
systems that run on any platform supporting a specific programming language (e.g., Java, PHP).

• Client connectors: the programming languages (C, C#, Java, PHP, etc) for which client connectors
are available.

• Extensibility mechanism: if an RDF Store follows a modular architecture, it might be possible to create
extensions (e.g., plugins, modules, etc.)

• Storage model : the storage model (see Section 2.2.2) a DBMS-based store applies.

• Latest Release: the month when the latest release of an RDF store was released at the time of this
writing.

3.1 Native RDF Stores

According to the classification introduced in Section 2.2, all RDF stores that implement their own database
engine without reusing the storage and retrieval functionalities of other database management systems fall
into the category of native stores. In this section, we give an overview on the non-functional features of
existing native RDF stores.

3.1.1 4/5store

4Store5 is an RDF database developed by Garlik Inc. It is implemented in ANSIC99 and available under the
GNU General Public License (GPL), version 3. It is designed for UNIX-like systems (Linux, Mac OS) and
runs as a server on a single-machine or in cluster-mode on 64bit machines. Client connectors are available
for PHP, Ruby, Python, and Java. Dedicated extensibility mechanisms are not foreseen.

5Store6 is the latest clustered RDF store development by Garlik. Unlike 4Store, it is commercial software
and not publicly available. 5Store provides similar features as 4Store, but improved efficiency and scalability.
It should scale up to clusters of 1000 machines, with no effective limit on the number of triples stored.

3.1.2 AllegroGraph

AllegroGraph7 is a commercial RDF graph database and application framework developed by Franz Inc. for
the storage and querying of RDF data. It can be deployed as a standalone database server and offers
interfaces (entry points) for remote access where the communication between the AllegroGraph Server and
client processes is realized through HTTP. AllegroGraph is available for Windows, Linux, or Mac OS X
platforms either as 32-bit or 64-bit version. Franz Inc. offers different editions of AllegroGraph together

4http://esw.w3.org/LargeTripleStores
5http://4store.org/
6http://4store.org/trac/wiki/5store
7http://www.franz.com/products/allegrograph/

7

with a number of different clients: the free RDFStore server edition is limited to storing less than 50
million triples, a developer edition capable of storing a maximum of 600 million triples, and an enterprise
edition whose storage capacity is only limited by the underlying server infrastructure. Clients connectors are
available for Java, Python, Lisp, Clojure, Ruby, Perl, C#, and Scala. AllegroGraph’s storage capabilities are
not limited to storing RDF-data; instead, due to its generic storage model, it can store any form of graphs
whose elements can be represented as tuples consisting of node elements s and o, an edge p, and additional
data g [25]. AllegroGraph provides a number of additional features such as geospatial or temporal reasoning,
social network analysis, or federation. These features are packaged into so-called extensions. However,
AllegorGraph does not offer possibilities for building custom extensions in the form of plug-ins or modules.

3.1.3 Jena TDB

Jena TDB8 is a component of the Jena Semantic Web framework and available as open-source software
released under the BSD license. It can be deployed as a server on 64 and 32 bit Java systems and accessed
through the Java-based Jena API library as well as through a set of command line utilities. Jena TDB also
supports the SPARQL query language for RDF data. The latest version of TDB was released in July 2010.

3.1.4 Kowari

The Kowari Metastore [49] is a multi-platform, open-source, database server for RDF and OWL-based meta
data analysis, retrieval, and storage. It is implemented in Java and licensed under the Mozilla Public License
Version 1.19. Clients can connect to the database via Java either using JRDF or Kowari’s Java-based RDF
API library. Kowari is a native RDF repository [10] based on the XA-Triplestore engine that provides native
RDF support and allows for the deployment of multiple databases per Kowari server instance. Kowari does
not provide a dedicated extension mechanism but can be extended programmatically and expose interfaces
for the integration of external RDF data sources, which can be mapped to the internally used RDF graph
schema so that they can be queried like internal RDF meta data. Active developments stopped in 2006 with
the release of Kowari v1.1 and have been continued as a Mulgara fork.

3.1.5 Mulgara

The Mulgara Semantic Store10 is the community-driven successor of Kowari and is described as a purely Java-
based, scalable, and transaction-safe RDF database for the storage and retrieval of RDF-based metadata.
The current version as of September 2010 is licensed under the Open Software License v3.0 as well as the
Apache License 2.0, which is being applied to new code contributions. Mulgara provides connectors for Java-
based applications via the JRDF and Jena libraries. Since Mulgara is a fork of the Kowari project and uses
an enhanced version of the XA Triplestore engine (version 1.1), most of the features such as multi-platform
support, deployment model, storage model etc. described for Kowari also apply to Mulgara, although Mulgara
provides more client connectors (see above). Mulgara is optimized for metadata management [36] and uses
a native quad-based model for representing and storing RDF-based metadata where the conceptual RDF
model elements subject, predicate, and object are extended by the named graph concept.

3.1.6 OWLIM

OWLIM11 is a family of commercial RDF storage solutions, provided by Ontotext [33]. It is available in
two different editions: SwiftOWLIM is designed for medium data volumes (up to 100 million triples) since
reasoning and query evaluation are performed in main memory, while BigOWLIM is designed for large data
volumes and uses file-based indices that allow it to scale up to billions of RDF triples. Additionally, OWLIM
is available as a SAIL (Storage and Inference Layer) for the Sesame RDF framework.

8http://www.openjena.org/TDB/
9http://www.mozilla.org/MPL/MPL-1.1.html

10http://mulgara.org/
11http://www.ontotext.com/owlim/

8

SwiftOWLIM source code is provided free of charge for any purpose under a GNU LGPL license12.
BigOWLIM is free to use for research, evaluation, and testing purposes; for commercial applications an
appropriate license is required. Both versions do not provide a dedicated extensibility mechanism but allow
the definition of custom rules and rule languages for the inferencing process.

BigOWLIM is in use for a large number of Semantic Web and Linked Data applications, including the
BBC 2010 World Cup Website13 and the LinkedLifeData platform14. The latest release was published in
May 2010.

3.1.7 Talis Platform

The Talis Platform15 is a “multi-tenant” system, delivered as Software as a Service (SaaS). It uses multiple
stores both for arbitrary document data as well as RDF-based semantic data storage, where a store consist
of a ContentBox for persisting unstructured binary blocks, and a Metabox for holding structured metadata.
The hosted stores are accessible by clients via numerous web interfaces (e.g., transmitting data to a store can
be performed via a HTTP POST request) or software libraries and tools. Currently, Talis offers a number
of different programming language libraries (e.g., PHP, Java, Javascript, Ruby, Phyton, and C#) and two
licensing models: (1) free development stores for members of the n2 developer community and public data
providers, and (2) a fixed pricing schema oriented on the amount of stored triples for commercial usage.

3.1.8 ClioPatria

ClioPatria16 is an RDF Store implemented in SWI-Prolog. It supports both the SPARQL and the SeRQL
query languages. ClioPatria is open source an can be installed on Unix/Linux and Windows Systems. Client
connectors exist for Java (via Sesame) and Prolog. Dedicated extensibility mechanisms are not provided.
The ClioPatria download page does not provide explicit releases but allows one to check out code from the
code repository.

3.2 DBMS-backed Stores

When an RDF Store uses the storage and retrieval functionality provided by another database management
system, it falls into the category of DBMS-backed stores.

3.2.1 YARS2

YARS217 is a Java-based, federated RDF server for querying structured graph data using a declarative query
language. It uses the Berkeley DB for storing RDF data in B+Trees. YARS2 is released under the GNU
General Public License (GPL) and operates in any Java-supporting environment. The interface is built
upon the REST principle and for interacting with YARS is plain HTTP. It seems, that this project was not
continued because the last release is Beta 3 in 2006.

3.2.2 3store

3store18 is an RDF triple store developed at the University of Southampton, released under the GNU GPL.
It is written in C, runs on Linux and Unix platforms, and is backed either by a MySQL or Berkeley DB. Its
storage model follows a triple table layout with additional dictionary tables for prefixes, URIs, and literals;
hence, a generic schema as described in Section 2.2.2. Development stopped mid 2006.

12http://www.gnu.org/copyleft/lesser.txt
13http://bbc.co.uk/worldcup
14http://www.linkedlifedata.com/
15Talis Platform http://www.talis.com/platform/ and Documentation \url{http://n2.talis.com/wiki/Main_Page}
16http://www.swi-prolog.org/web/ClioPatria.html
17http://sw.deri.org/2004/06/yars/
18http://sourceforge.net/projects/threestore/

9

3.2.3 ARC

ARC19 is a free, open-source semantic web framework for PHP applications released under the W3C Software
License and the GNU GPL. It is designed as a PHP library and includes RDF parsers and serializers, an
RDBMS-backed (MySQL) RDF storage, and implements the SPARQL query and update specifications.
Since it is written in PHP, it runs in all PHP-supporting operating environments. A plugin mechanism
allows ARC to be extended with additional, custom extensions. At the moment, ARC applies a generic
triple table layout where subject, predicate, object, and graph values are stored in separate dictionary
tables.

3.2.4 Jena SDB

Jena SDB20 is another component of the Jena Semantic Web Framework and provides storage and query for
RDF datasets using conventional relational databases. Among the supported databases are: Microsoft SQL
Server, Oracle 10g, IBM DB2, PostgreSQL, MySQL, HSQLDB, H2, and Apache Derby. Jena SDB is open
source and released under the BSD license. It runs as server and can be integrated into applications that
make use of the Jena library. As all Jena components, also SDB runs on all Java-supporting platforms. The
latest SDB version considered in this report was released in July 2010.

3.2.5 Oracle 11g

The Spatial module of Oracle’s Database Enterprise Edition 11g21 also supports RDF data management.
Oracle 11g is a commercial product, which is free of charge for non-commercial purposes. It is deployed
as a database server and provides programming interfaces (connectors) for SQL (SQLplus, PL/SQL) and
Java-based applications (via Jena/Sesame and JDBC). To the best of our knowledge, it is currently not
possible to extend or customize Oracle 11g’s semantic features by additional plugins or modules. For each
model (graph) Oracle generates a separate triple table containing references to subject, predicate, and object
values, which are stored in an external dictionary table. Hence, it follows a generic triple table layout. At
the time of this writing the latest release was of September 2010.

3.2.6 Semantics Platform

Intellidimension Semantics Platform22 is a family of commercial products for RDF-based applications. It is
based on the .NET Framework and provides two different storage solutions: Semantics.Datacenter, which
is an in-memory distributed storage component for RDF data, while Semantics.Server uses Microsoft SQL
Server as persistence layer. Offered as complementary product, Semantics.Framework is a comprehensive
RDF framework for the .NET framework, offering support for in-memory graphs, SPARQL, inference rule
processing, and APIs for Semantics.Datacenter and Semantics.Framework.

The products of the Semantics Suite are offered under a commercial license, while evaluation versions
are available for download. Details about the internal storage model and the latest release data are not
available.

3.2.7 Boca

Boca23 is a Java-based, multi-user RDF repository being developed by the IBM Adtech group. It is part
of IBM Semantic Layered Research Platform (SLRP) and released under the GNU General Public License
(GPL). It operates in any Java-supporting environment and can be integrated into applications via a Java-
based client connector. It uses IBM’s DB2 as backend database and follows a generic storage model. This
project seems discontinued because the last release is in 2007.

19http://arc.semsol.org/
20http://www.openjena.org/SDB/
21http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
22http://www.intellidimension.com/products/semantics-platform/
23http://ibm-slrp.sourceforge.net

10

3.3 Hybrid Stores

An RDF store that supports both architectural styles (native and DBMS-backed) falls into the class of hybrid
stores. In the following, we outline the major non-functional features of these stores.

3.3.1 RedStore

RedStore24 is a lightweight RDF store based on the Redland RDF library25 for the C programming language.
It is compatible with the interfaces for 4store and supports, in addition to its native persistent or in-memory
storage, a variety of storage backend adapters, including MySQL, Postgres, and Virtuoso. In native mode
RedStore uses hashtables for persisting RDF data. RedStore is offered under the GNU GPL license26.

3.3.2 Sesame

Sesame27 is an open source framework for storage, inferencing and querying of RDF data. It is a library that
is release under the Aduna BSD-style license and can be integrated in any Java application. Additionally,
it is possible to deploy Sesame as an RDF repository and query service. Sesame includes RDF parsers and
writers (Sesame Rio), a storage and inference layer (SAIL API) that abstracts from storage and inference
details, a repository API for handling RDF data, and an HTTP Server for accessing Sesame repositories
via HTTP. It operates in any Java-supporting environment and can be used by any Java application. Many
developers have already contributed extensions and plugins28. Sesame provides native as well as RDB-backed
triple storage. The latter follows a generic triple table layout. The latest version (2.3.2) was released in July
2010.

3.3.3 Virtuoso

OpenLink Virtuoso Universal Server29 is a hybrid storage solution for a range of data models, including
relational data, RDF and XML, and free text documents. Through it unified storage it can be also seen as a
mapping solution between RDF and other data formats, therefore it can serve as an integration point for data
from different, heterogeneous sources [18]. Virtuoso has gained significant interest since it is used to host
many important Linked Data sets (e.g., DBpedia30), and preconfigured snapshots with several important
Linked Data sets are offered. Virtuoso is offered as an open-source version; for commercial purposes several
license models exist. It can be deployed as a server on major platforms.

3.3.4 BigData

Bigdata31 is a clustered RDF store for ordered data (B+Trees) and designed to run as as server on commodity
hardware. It is available under the GNU General Public License (GPL) and is designed for UNIX systems
(Linux) with client connectors available for Java (Sesame). Additional scale can be achieved by simply
plugging in more data services dynamically at runtime, which will self-register with the centralized service
manager and start managing data automatically. Scale-out is achieved via dynamic key-range partitioning
of the B+Tree indices.

24http://www.aelius.com/njh/redstore/
25http://librdf.org/
26http://www.gnu.org/licenses/gpl.html
27http://www.openrdf.org/
28http://www.openrdf.org/contrib.jsp
29http://virtuoso.openlinksw.com
30http://dbpedia.org
31http://www.systap.com/bigdata.htm

11

3.4 Summary

In this section, we set up an RDF store inventory that lists and briefly describes currently available RDF
store solutions. We assigned each store to one of three categories (native stores, DBMS-backed stores, hybrid
stores) and described the non-functional features for each store.

Regarding the results summarized in Figure 3 we can observe that most RDF stores follow a native
storage approach. Especially when regarding the latest release date, it seems that RDF store development
goes into the direction of native stores. From the DBMS-backed stores, only four are actively being enhanced
and have provided recent (after 2008) releases. It also turns out that the majority of triple stores are open
source, although the market for commercial stores (6 out of 19) seems to grow. The vast majority of RDF
stores can be deployed as a server on any common operating systems (Windows, Mac OS X and Linux).
Most RDF stores provide client connectors for Java, some (4Store, AllegroGraph, Talis Platform) also for
scripting languages such as Python or Ruby. The predominant storage model of DBMS-backed stores is the
generic model, which doesn’t take into account the classes and properties defined in the applied ontologies.
Regarding the latest release dates, we can conclude that the development of RDF stores is an active, on-going
process.

4 Related Work

4.1 Performance Reports

Liu and Hu [28] evaluated 7 RDF storage system configurations: in-memory Sesame (SESAME-MEM),
Sesame with relational backend (Sesame-DB), in-memory Jena (JENA-MEM), Jena with relational backend
(Jena-DB), Sesame with native RDF storage (SESAME-NATIVE), Kowari and YARS. They used datasets
generated from the LUBM (Leigh University Benchmark) dataset, which contained approximately 2.5 million
triples. Evaluating the data loading performance of these stores revealed that the memory-based stores have
the best performance. The database-backed systems performed badly in data loading, the three native
systems loaded data with linearly growing loading time. Also the query response times of DB-backed stores
were higher than in all other types of stores (mem, native) mainly because query answering requires numerous
joins on data stored in a large single table. The query performance of the native stores depends on their
inference support. Sesame-NATIVE, which does not support inference, shows similar results than Sesame-
MEM. Kowari can answer queries in reasonable time. YARS could only answer a subset of all queries but
performed better than Sesame.

Rohloff et al [37] compared the performance of various RDF stores configurations in deployment scenarios
that include very large knowledge bases (hundreds of millions of triples). They derived their test data sets
and queries from the LUBM benchmark. The evaluated triple stores were Sesame 1.2.6 and Jena 2.5.2. with
various storage backends (MySQL 5.0, DAML DB 2.2.1.2, SwiftOWLIM 2.8.3, BigOWLIM 0.9.2) as well
as AllegroGraph 1 and 2.0.1. The generated test set consisted of roughly 200 million triples in the first
round and 1 billion triples in the second test round. The applied evaluation metrics were: cumulative load
time, query response time, query completeness and soundness, and disk-space requirements. All triple store
configurations had linear load times. Jena + DAML DB and Sesame + DAML DB had the best cumulative
load time performance. Jena and Sesame configurations with BigOWLIM made a factor three more efficient
use of disk space then Sesame and Jena with DAML DB. Jena + DAML DB had the best query response
performance. The overall result of this study is that RDF stores based on the DAML DB and BigOWLIM
technologies exhibit the best performance among the tested stores.

Abadi et al [3] propose vertically partitioning as a schema design for storing RDF data in relational
databases. Essentially, this approach creates one relation per unique property in a data set. They evaluated
their approach against two other schema layouts (single triple relation, property tables) and SESAME-
NATIVE using a benchmark created from the Barton Libraries dataset containing approximately 50 million
triples with 221 unique properties [2]. The reported result was that property table and vertical partitioning
approaches both perform a factor 2-3 faster than the generic schema triple-store approach and that using

12

Licensing Model Deployment
Operating

Environment
Client Connectors

Extensibility
Mechanism

Storage Model Latest Release

4Store GNU GPL Server Linux, Mac OS
PHP, Ruby, Python,

Java
- N/A February 2010

AllegroGraph commercial, free Server
Windows, Linux,

Mac OS X

Java, Python, Lisp,
Clojure, Ruby, Perl,

C#, Scala
- N/A September 2010

Jena TDB BSD license Server Library
platform-

independent (Java)
Java - N/A July 2010

Kowari
Mozilla Public

License Version 1.1
Server

platform-
independent (Java)

Java - N/A December 2004

Mulgara
Open Software

License v3.0 Apache
License 2.0

Server
platform-

independent (Java)
Java . N/A September 2010

OWLIM
commercial, GNU

LGPL
Server, Library

platform-
independent (Java)

Java
Custom Rule

Language
N/A May 2010

ClioPatria
Open Source, no

license
Server

Linux / Unix,
Windows

Java, Prolog - N/A October 2010

Talis Platform free and commercial Hosted Service
platform

independent (REST
interface)

PHP, Java,
Javascript, Ruby,

Python, C#
- N/A August 2010

YARS2 BSD license Service
platform-

independent (Java)
Java - B+ Trees July 2006

3Store GNU GPL Server Linux / Unix - - Generic July 2006

ARC
W3C Software

License, GNU GPL
Library

platform-
independent (PHP)

N/A Plugin Mechanism Generic July 2010

Jena SDB BSD license Server Library
platform-

independent (Java)
Java - Generic June 2010

Oracle 11g commercial, free Server
Linux, Windows,

Solaris, HP-UX, AIX
Java, SQL - Generic September 2010

Semantics
Platform

commercial Server Windows .NET - unknown June 2010

Boca GNU GPL Library
platform-

independent (Java)
Java - Generic July 2007

RedStore GNU GPL Server, Library Linux, Mac OS X C Storage Modules Hashtables April 2010

Sesame
Aduna BSD-style

license
Server, Library

platform-
independent (Java)

Java Plugin Mechanism Generic July 2010

Virtuoso
commercial, GNU

GPL
Server

Windows, Linux,
Mac OS X

Java Plugin Mechanism Object-relational July 2010

Bigdata GNU GPL Server Linux / Unix Java Plugin Mechanism B+ Trees July 2010

Non Functional Features

N
at

iv
e

S
to

re
s

H
yb

ri
d

 S
to

re
s

D
B

M
S

-b
ac

ke
d

 S
to

re
s

Figure 3: Existing RDF Stores and their non-functional features.

13

a column-oriented DBMS for the vertically partitioning approach adds another factor of 10 performance
improvement, which is a factor 32 faster than triple stores.

Schmidt et al [42] compared the performance of the triple (single triple relation) and the vertically
partitioned (one relation per predicate) scheme for storing RDF data in DBMS using the SP2Bench SPARQL
benchmark. They also tested the same benchmark with SESAME-NATIVE and a purely relational scheme.
Their experiments include eleven real-world sample queries and show that, when triples are physically sorted
by (predicate, subject, object) the triple table approach becomes competitive to a vertically partitioned
approach. However, none of the approaches scales for real-world queries to documents containing tens of
millions of RDF triples and none of the approaches can compete with a purely relational model.

Minack et al [30] provided a detailed feature and performance comparison of full-text queries (classic
IR queries) as well as hybrid queries (structured and full-text queries) of the most widely used RDF stores
(Jena, Sesame2, Virtuoso, YARS) by extending the LUBM benchmark with synthetic scalable full-text data
and corresponding queries. Their evaluation includes 21 real-world sample queries. Evaluating the query
response time of these stores revealed that Jena and Sesame2 are the best choices for basic or advanced IR
queries and specially Sesame2 is the only RDF store sufficiently solving the tasks of full-text search on RDF
data. However Virtuoso shows an impressive performance, but does only supported a small subset of queries.

Lee [27] evaluated which open source RDF store system (Jena, Joseki, Kowari, 3store, Sesame) holds the
most promise for acting as large, remote backing stores for the SIMILE project (browser-like applications).
They were choosing a subset of ARTstor, art metadata in addition to a subset of the MIT OpenCourse-Ware
(OCW) as a dataset which is 27.4 MB in RDF/XML format. By choosing the configuration time as an
interesting metric (e.g., how fast does a store return its results for creating the in-memory cache?) the
evaluation results shows that for network models, the fastest were 3store and Sesame. Therefore Sesame and
3store are the most worthwhile for exploring as remotely accessible stores for even larger datasets. They
also discussed that non-Joseki-based remote stores are approximately an order of magnitude faster at cache
initialization because of the focus of the Jena and Joseki projects on doing things correctly instead of doing
them as quickly as possible.

Figure 4 summarizes the observations reported in these surveys. For each survey, it indicates the ap-
proximate number of triples and the triple stores included in the evaluation. It also reports which stores
performed best w.r.t. data loading, query- and inference performance.

4.2 Other RDF Store Reports

Hertel et al [24] reviewed architecture, storage models, typical functionalities of RDF middleware, (such
as data model support and reasoning capabilities), RDF query languages with a special focus on SPARQL
and scalability of existing RDF storage and retrieval systems. Their observation is the fact that almost
all systems rely on relational databases that provide very limited support with respect to data model and
reasoning. For instance most RDF stores are not really specialized database systems for RDF data but
rather an intelligent middleware that wraps existing database technology. Therefore two trends for further
development of RDF technologies can be identified: first the extension of existing systems to more expressive
representation languages. Second, the scalability of RDF infrastructures to internet scale.

Bizer et al [13] introduced the Berlin SPARQL Benchmark (BSBM), which is built around an e-commerce
use case. The dataset contains a set of products offered by different vendors and consumer reviews from
various sites. The benchmark queries simulate search and navigation patterns of fictitious consumers who
are looking for products. The following systems were analyzed in the experiment: the D2R Server, which
is an RDF wrapper for relational databases, Sesame, Virtuoso, and Jena SDB. The benchmark revealed:
concerning the load times, Sesame and Virtuoso are faster for small datasets while Jena SDB is faster for
larger datasets. Regarding the performance of relational database to RDF wrappers, D2R Server has shown
a very good performance for specific queries against large datasets, but was very slow at others. Finally
they concluded that no store is dominant for all queries. The Berlin SPARQL Benchmark has been updated
recently32 and the following systems were analyzed: Virtuoso, Jena TDB, 4store, BigData, and BigOWLIM.

32http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

14

Analyzed Triple Stores Applied Benchmarks Number of Triples Load Time Query Response Time Inference Support

Liu and Hu

Sessame-MEM, Sesame-
DB, Jena-MEM, Jena-DB,
Sesame-NATIVE, Kowari,

YARS

LUBM 2.5 M
Sesame-NATIVE, Kowari,

YARS

Sesame-MEM, Jena-MEM,
Sesame-NATIVE, Kowari,

YARS
Kowari, YARS

Rohloff et al

Sesame, Jena (with
MySQL, DAML-DB,

SwiftOWLIM, BigOWLIM),
AllegroGraph

LUBM 200 M / 1 B
Jena and Sesame with

DAML-DB and BigOWLIM Jena + DAML-DB -

Abadi et al

UNKNOWN with triple,
property table, and vertical

partitioning layout;
Sesame-NATIVE

Barton Libraries dataset 50 M

Schmidt et al

UNKNOWN with triple,
property table, and vertical

partitioning layout;
Sesame-NATIVE

SP2Bench SPARQL
Benchmark

Minack et al
Jena, Sesame2, Virtuoso7,

YARS LUBM 7.6 GB (LUBMft(100)) _ Jena and Sesame2 _

Lee et al Jena, Joseki, Kowari,
3store, Sesame

_ 27.4 MB 3store and Sesame Jena and Joseki _

Best -performing RDF StoresSetting

vertical partitioning schema

(sorted) triple table schema competetive to vertically partitioned approach; purely
relational approach is still the best

R
e
p

o
rt

s

Figure 4: Summery of Related Works

The first results indicate that Virtuoso, 4Store and BigOWLIM are the dominating RDF store solutions.

5 Qualitative Analysis

In the following, a discussion of the features and functional characteristics of a set of RDF storage solutions
is presented. We start this section with a discussion of the evaluation criteria that we have applied, followed
by a detailed description of each criterion with respect to the analyzed solutions. Figure 5 summarizes our
findings.

5.1 Evaluation Criteria

Transactions In the database context, transactions have the purpose of guaranteeing that the data is in a
consistent state at any time, regardless of whether operations (modifications) to the data were successful or
not, and regardless of whether there are concurrent, probably contradicting modifications. For this purpose,
client applications define bounded units of work that are either executed in their entirety, or not at all.
These units of work must follow the four basic transaction principles of atomicity, consistency, isolation, and
durability [21]. Techniques to achieve full support for transaction include two-phase locking and multiversion
concurrency control [9].

Query Languages In general, two approaches for querying RDF data can be distinguished; (1) implement-
ing a specific or dedicated query API, and (2) providing support for query languages that can be translated
to SQL in case of relational database management system or being proprietary and DBMS-specific query
languages such as SeRQL. However, a vast majority of contemporary RDF stores use common RDF query
languages such as SPARQL or RDQL. An important aspect of query translations is to maintain and recover
query semantics and translate them into relational calculus, object-specific models, or other database-specific

15

query formats. Hertel et al. [24] identified six general query properties that help characterizing a query lan-
guage with respect to expressiveness, completeness, closure, adequacy, orthogonality, and safety33.

Full-text Queries Full-text queries have become a common requirement for many kinds of applications.
With the proliferation of big amounts of data (especially through the World Wide Web) and corresponding
search indices, users are acquainted with the common procedure of searching information by keyword, and
inspect potential result lists in order to locate the desired information. While RDF query languages usually
provide minimum support for full-text queries (e.g., through regular expressions), efficient support for full-
text queries, associated data and query pre-processing (e.g., stemming and stop words), and full-text query
execution control (e.g., ranking parameters) can be considered as a functional requirement on its own.

Batch Ingest By batch ingest we denote the functionality of loading large amounts of data into the
database within a single transaction (if the database supports such). Batch loading is often required in
the setup phase of a database system, where existing data from external sources must be loaded, and the
database must initialize its index and caching structures according to the loaded data. Ideally, batch ingest
does not block other (read) requests.

(Selective) Replication Replication denotes the possibility to automatically copy data across multiple
instances of a database in a way that ensures consistency between multiple copies. Replication is beneficial
for a number of reasons, including the increase of fault tolerance, performance, and accessibility. Depending
on the needs of the application, replication strategies and topologies have to be chosen; a large number of
such approaches have been presented and studied in literature (e.g., classification of replication approaches
based on their strategies [44], surveys on particular approaches like optimistic replication [39], and specific
applications like peer-to-peer-based content distribution [4] or mobile networks [35]). A special case of
replication is partial replication [29], where only subsets of data are duplicated, which increases the complexity
of update synchronization.

Versioning For many applications it is important to access historical versions of data. Versioning denotes
the capability to record and store the change history of a given data set, and to make this history accessible
to applications. The RDF data model imposes several constraints on versioning algorithms: for instance,
there exist multiple, incompatible serialization formats that must be considered [6], and the usage of blank
nodes has implications on the comparability of RDF graphs, which is a precondition for calculating diffs in
order to represent an RDF graph’s change history [50].

Named Graphs The concept of Named Graphs are extensively used and implemented in current RDF
stores not only to host multiple graphs and identify the triples belonging to a specific graph, but also to
record and keep track of a graph’s provenance information. By analyzing provenance information, multiple
aspects of a graph can be inferred such as its trustworthiness, proof, or contradictions between graphs
can be detected and back-traced. This is an important feature for keeping track of or recording a graph’s
provenance information, i.e., the source a graph stems from, but also allows for restricting information usage
of RDF graphs, implementing access control mechanisms and policies, RDF graph signing, and expressing
uncertainty and propositional attitudes (cf. [11]).

Provenance The feature of provenance (also called lineage in the database community [17]) describes a
RDF store’s capability to store and keep track of a graph’s origin or source and is an important feature
for ensuring data quality, determining the trustworthiness of RDF data sets, and ranking query results [38].
In particular when RDF stores execute forward or backward chaining, provenance information must be
stored to determine whether an RDF triple was explicitly asserted or implicitly inferred. Provenance is

33For a detailed discussion, the reader is referred to [24],[14],[7]

16

categorized according to its granularity where a distinction is made between workflow provenance (coarse-
grained) and data provenance (fine-grained). The latter is the more important one from the perspective of
database systems and therefore considered for this survey. Data provenance accounts for the derivation of
a single data item resulting in the course of a data transformation process applied to a database through a
database query [17]. Data provenance by itself can be divided into Non-annotation approaches and Anno-
tation approaches. Provenance information in non-annotation approaches is typically derived by analyzing
transformation queries as well as the involved input and output data bases, whereas in annotation-based
approaches, additional information is applied to a transformation query so that the resulting (output) con-
tains both the originally queried data as well as additional information [17]. Provenance information can be
derived by analyzing the additional information created as a result of the augmentation and execution of the
transformation query.

Inference According to [24], inferencing on RDF/S entailment rules can be classified into inferencing
on the transitive closure of the rdfs:subClassOf and rdfs:subPropertyOf-properties as well as on class
memberships by analyzing rdfs:range and rdfs:domain-properties. Most methods use recursive algorithms
for computing transitive closures and store these rules in database views as well as production rule systems
that discover new facts using forward or backward chaining [24, 34]. However, reasoning over RDF/S and
in particular over OWL ontologies is rather complex wherefore most RDF stores pre-compute much of the
entailments (forward chaining) [34]. In general, inference can be performed in advance (eager evaluation)
reducing query evaluation times while occasionally increasing the amount of stored triples dramatically—
even for computing the full entailments of OWL Lite ontologies [34]—or at query runtime (lazy evaluation)
where matching entailments are evaluated when a query is issued reducing possible query entailments as well
as query processing times [24]. However, a combination for forward and backward chaining can be used to
gain the advantages of both inferencing techniques.

Backup and Restore Seamless backup and restore functionality is a requirement for applications where
data needs to be secured, and data loss needs to be avoided. In many situations is desirable that backup
processes can be performed while the database is still operational, while in other application scenarios it
might be acceptable that the database can be shut down while backup is performed.

5.2 Analysis

Transactions Support for transactions had been removed from the current release (version 1.0.5 as of 18th
November 2010) of 4store and 5store because of incompatibilities with the main index34. In ARC, bundled
SPARQL INSERT and DELETE queries as a form of transactions are not supported. In AllegroGraph’s
version 4.1, transactions are built on the ACID properties and realized through transaction logs, where
modification operations are recorded in dedicated logs before they are executed35. A further optimization
is that updates to database files are performed on a checkpoint basis, that is, the triple store is updated
periodically and commits are only reflected in the transaction log and applied to in-memory graphs for
performance purposes. Jena TDB does not provide explicit support for transactions, leaving these issues
to the application level, while Jena SDB reuses the transaction model from the underlying relational data
base. Kowari and Mulgara employ the XA Triplestore that offers full transaction support and a transaction-
safe storage infrastructure for RDF data. In addition, Mulgara extends transaction support using the Java
Transaction API (JTA) to provide transaction-consistent multi-query support and access to the two-phase
commit protocol internally used. In Oracle 11g, all transactions fully comply with the ACID properties36.
BigOWLIM supports transactions on a ‘read committed’ isolation level, meaning that write operations
will not impact concurrent query evaluation unless the entire transaction they belong to is successfully
committed [32]. Semantics Platform is based on MS SQL Server and reuses transaction functionality from

34http://groups.google.com/group/4store-support/browse_thread/thread/a6c5fbd72e819c3a?pli=1
35http://www.franz.com/agraph/support/documentation/v4/warm-standby.html#header2-16
36http://download.oracle.com/docs/cd/E11882_01/server.112/e16508/transact.htm#CNCPT117

17

Transactions
Query

Languages

Full-text

Queries
Batch Ingest

(Selective)

Replication
Versioning Provenance

Named

Graphs
Inference

Backup and

Restore

4Store No SPARQL SPARQL regex Files
Segment

Replication
No Graph URI Quads no

Database / File

system

5Store No SPARQL SPARQL regex Files
Segment

Replication
No Graph URI Quads no

Database / File

system

AllegroGraph
Transaction

Logs
SPARQL

free text-

indicies

Files &

Programmatic

ally

Database level Database level Graph URI 5-Tuples

Spatio-

temporal,

RDFS

Yes

Jena TDB No
SPARQL with

Extensions
Yes (Lucene)

Files, SPARQL

INSERT
No No Graph URI Quads

 RDFS, OWL,

DAML, Rules
No

Kowari Yes iTQL, RDQL Yes (Lucence) iTQL load
No information

available

No information

available
Graph URI Quads Rules Database

Mulgara Yes

iTQL, SPARQL

via JRDF API,

REST

Yes

iTQL load -

Resolvers and

Content

Handler

No information

available
No

Separate

Inference

model

Quads
RDFS, Rules

(Krule)
Database

OWLIM Yes
SPARQL,

SeRQL
Yes Files Database level No Graph URI Quads Rules No

Talis Platform No SPARQL Yes
HTTP

POST/PUT
Internally

Versioned

Updates using

Changesets

No Partially No Yes, snapshots

YARS2 No SPARQL - N3Q yes HTTP PUT No No
No Information

available
Quads

External OWL

reasoner

No Information

available

ARC No
SPARQL,

SPARQLScript
No

SPARQL

INSERT

Yes - explicit

command
No Graph URI Quads via plugins

Database

Dump

Jena SDB Yes
SPARQL with

Extensions
Yes (Lucene)

Files, SPARQL

INSERT
No No Graph URI Quads

 RDFS, OWL,

DAML, Rules,

Custom

reasoner

Database

Oracle 11g

Yes - full

transaction

support

SPARQL, SQL Yes Yes Yes Tables, Models
Yes (specific

tables)
Generic

RDFS, OWL,

OWL 2, Rules
Yes

Semantics

Platform
Yes SPARQL, SQL ?

SPARQL

INSERT
Database level ? Graph URI Quads Rules Database

RedStore No SPARQL No Files No No Graph URI Quads No Database

Sesame Yes
SPARQL,

SeRQL
Yes (Lucene) Files, API No No Graph URI Quads

RDFS, Custom

reasoner

Database / File

system

Virtuoso Yes SPARQL, SQL Yes
Files, SPARQL

INSERT

Snapshot,

Transactional
No Graph URI Quads

RDFS, OWL

(limited)
Yes

BigData yes
SPARQL,

SeRQL
Yes Files ? Yes

Statement

identifiers,

Named Graphs

Quads
RDFS, OWL

(limited)

Database / File

system

Functional Features

N
a
ti

v
e
 S

to
r
e
s

D
B

M
S

-b
a
c
k
e
d

 S
to

r
e
s

H
y
b

r
id

 S
to

r
e
s

Figure 5: Existing RDF Stores and their functional features

18

this underlying database. Redstore, being a lightweight RDF storage solution, does not provide transaction
support. Sesame, on the other hand, provides full transaction support through its SAIL API; however, it
depends on the underlying concrete storage module whether transactions are guaranteed or not. Virtuoso
offers full ACID-compliant transaction support as well as a distributed two-phase commit transaction model.
Bigdata provides an optional MVCC-based optimistic transaction model and provides built-in resolution
strategies for conflicting updates [45].

Query Languages SPARQL is supported by most analyzed solutions, including AllegroGraph, Jena TDB,
Jena SDB, Oracle 11g, OWLIM, Semantics Platform, and Redstore. 4store, 5store, and Redstore support
the execution of SPARQL queries either via a command line client, or alternatively via a SPARQL HTTP
protocol server instance, which can be started optionally. Kowari incorporates the two query languages
interactive Tucana Query Language (iTQL)37 and the RDF Data Query Language (RDQL) [43]. Mulgara
provides support for TQL which provides a high-level interface for executing commands on database level,
and offers SPARQL support via external (e.g. JRDF) APIs38 or a REST interface39. ARC extends its
support for SPARQL with SPARQLScript, therefore providing a script-like syntax for queries and several
functional extensions, like query chaining, variable assignments, structured variables, loops, and templating.
The Oracle 11g database provides full SPARQL support through connectors for Jena, Sesame, and Joseki, or
alternatively by extending SQL with SPARQL-like clauses. Jena provides with ARQ40 a dedicated SPARQL
processing engine, which extends the language with a number of features, such as arbitrary length property
paths, property functions, and aggregates. Jena’s Joseki41 component exposes these SPARQL processing
capabilities to the outside via the SPARQL/HTTP protocol. These components can be used with Jena TDB
as well as Jena SDB stores. OWLIM, Sesame, and Bigdata (through its SAIL interface) support, in addition
to SPARQL, evaluation of queries formulated in the SeRQL language, while Virtuoso provides access to data
via SPARQL as well as SQL.

Full-text Queries 4store, 5store, and Redstore do not offer full-text queries natively due to the lack of an
appropriate index for full text search [22]. Instead the SPARQL regex function provides such functionality
whereas true full-text query support is offered via an additional non-standard extension. AllegroGraph
supports multiple configurable free-text indices, which are based on a locality-optimized Patricia trie and
allows for wildcard and fuzzy searches42. Jena provides full-text query capabilities through the possibility
to couple the RDF store with a Lucene index, which is then accessed via special predicates in SPARQL
queries43. A similar approach is taken by Sesame through the LuceneSail component44. Kowari uses
the Lucene search engine to index string literals and XML data [20]. Mulgara also offers full text search
functionality. Similarly, full-text query functionality is also offered by the Talis Platform. ARC does not
provide full-text queries; however they can be implemented as a plug-in-based custom extension. Oracle
11g offers full-text queries via Oracle Text that employs fast and accurate full-text retrieval technology that
indexes any document or textual content, which can be searched based on their textual content, metadata,
or attributes45. OWLIM supports full-text queries through special RDF predicates that are evaluated as
part of query execution [32]. Similarly, Virtuoso and Bigdata are equipped with full-text indices that can
be queried using special predicates in SPARQL queries.

Batch Ingest Many solutions provide bulk import of RDF data from files in various formats, including
4store, 5store, AllegroGraph, Jena TDB and SDB, OWLIM, Redstore, Sesame, Virtuoso, and Bigdata. Alle-

37iTQL: http://docs.mulgara.org/tutorial/itql.html
38cf. http://lists.mulgara.org/pipermail/mulgara-general/2007-July/000144.html
39http://www.mulgara.org/trac/wiki/RESTInterface
40http://jena.sourceforge.net/ARQ/
41http://joseki.sourceforge.net/
42http://www.franz.com/agraph/support/documentation/v4/text-index.html
43http://jena.sourceforge.net/ARQ/lucene-arq.html
44http://gnowsis.opendfki.de/wiki/LuceneSail
45http://download.oracle.com/docs/cd/E11882_01/server.112/e16508/cncptdev.htm#CNCPT1537

19

groGraph also provides programmatic support for importing RDF triples. Other approaches allow to insert
bulk data via SPARQL INSERT queries, like ARC, Jena TDB, Semantics Platform, and Virtuoso. RDF
data can be loaded into Kowari and Mulgara using the iTQL load command46. Additionally, Mulgara
allows for including external data into queries via Resolvers and Content Handlers that act as a query layer
between the Mulgara transport and storage layers47. An HTTP-based approach is chosen by hosted RDF
store systems such as the Talis Platform, where RDF data can be loaded to a store using HTTP PUT or
POST operations. Oracle 11g provides multiple ways to load data into a database such as bulk load using a
SQL*Loader, batch load using a Java client, or via an SQL INSERT statement48.

(Selective) Replication 4store and 5store provide a replication on segment and storage node level. Selec-
tive replication on graph or RDF model level is not supported. AllegroGraph and ARC support replication on
database-level where ARC provides a specific replication command49 or allow for specifying a finer grained
replication where only triples/quads from a custom, SPO(G)-compliant SELECT query are considered [1].
Jena TDB and SDB do not provide designated replication functionality; replication must be performed
on the file system or database level, requiring corresponding locking mechanisms. Boca supports selective
replication of RDF data, where data is selected either on the Named Graph level, or by defining triple pat-
terns with placeholders for the subject, predicate, and object positions. The Talis Platform is Software as a
Service wherefore replication is performed internally but it is possible for users to make snapshots of their
stores and download the triples and binary content as a tar archive. Oracle 11g offers a rich set of replication
functionality ranging from full database replicas, mass deployment and server-to-server replication, to mate-
rialized views. A rich set of database-related objects can be replicated (multi-level replication)50. Semantics
Platform reuses the replication features of the underlying SQL Server; selective replication can be done on
the relational model level. OWLIM supports the definition of replication clusters, where nodes can fulfill
either master or non-master roles; however, no selective replication can be performed using this model [32].
Sesame does not provide out-of-the-box replication functionality at the moment. Virtuoso provides a range
of options for replication, including snapshot replication (one-time replication of data chosen by a query) as
well as (optionally bi-directional) transactional replication, allowing other instances to subscribe to updates
in selected database tables.

Versioning No explicit versioning support can be found in 4store, 5store, Kowari, Mulgara [19], ARC,
OWLIM, Jena TDB/SDB, Redstore, and Virtuoso. However, there are components available that can be
deployed on top of an existing RDF storage solution, e.g., Graph Versioning System (GVS)51. Boca provides
access to revisions of named graphs, therefore allowing clients to access historic versions of data. AllegroGraph
implements a versioning framework on the database level but not on graph level52. The Talis Platform
realizes versioning through an individual concept called Changesets53 that allows for versioned updates (add
and remove triples) of the contents stored in the triple store. Oracle 11g provides versioning support on
RDF model level using a component called Workspace Manager. RDF graph versions are also reflected
in queries on version-enabled models. New versions are created for changed data only. Sesame does not
provide versioning functionality out-of-the-box; however, components like SemVersion54 can bring in such
functionality as an add-on. Finally, Bigdata allows the database administrator to configure a time interval
for which historical data (i.e., deleted or modified RDF resources) will be retained. Within that interval, the
database can be rolled back to any point and the corresponding data can be read.

46http://kowari.sourceforge.net/oldsite/417.htm
47http://www.mulgara.org/trac/wiki/Resolvers
48http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11828/sdo_rdf_concepts.htm#insertedID7
49http://arc.semsol.org/docs/v2/store
50http://download.oracle.com/docs/cd/E11882_01/server.112/e10706/repoverview.htm#i15730
51http://tech.groups.yahoo.com/group/jena-dev/message/29826
52http://www.franz.com/agraph/support/documentation/v4/change-history.html
53http://n2.talis.com/wiki/ChangeSets
54http://semanticweb.org/wiki/SemVersion

20

Provenance 4store, 5store and ARC use a quad-based model for recording provenance information where
the fourth element contains the model or graph URI a triple belongs to. Since these stores initially lack
inference support, provenance information regarding whether a statement was explicitly asserted or inferred
is not recorded. A common strategy to distinguish inferred from explicitly asserted triple is to store them in
separated models or database tables. This strategy is used by Kowari, Mulgara, OWLIM, Jena TDB/SDB,
Redstore, Semantics Platform, Sesame, Virtuoso, and Bigdata. Bigdata additionally supports provenance by
optionally assigning an identifier to each statement, which allows to make assertions about their provenance.
Oracle 11g uses multiple tables to record provenance information regarding a stored model including graph
IDs and asserted and inferred statements etc.55.

Named Graphs The concept of named graphs is supported by many systems, although the names used
to describe this feature differ. 4store, 5store, AllegroGraph56, Jena TDB/SDB, Semantics Platform, ARC,
Sesame, Boca, Kowari, Mulgara, OWLIM, Virtuoso, and Bigdata actually represent RDF triples as quads,
where the fourth element describes the graph a triple belongs to. YARS2 also uses a quad-based model but
introduces the notion of context to track or record provenance information in the form of URLs referring to
the original data sources. The Talis Platform does not provide full user-defined support for named graphs;
although a store may contain multiple graphs, but operations for creating or deleting graphs are not offered
by its API57. Oracle 11g uses a generic construct (specific schema) for resembling the concept of named
graphs.

Inference RDFS inference is not directly supported in 4store, but a side-project called 4sreasoner58 cur-
rently investigates how to include RDFS reasoning in 4store [40]. ARC can be extended via a plug-in
architecture that allows reasoning to be implemented via triggers. BigData provides limited RDFS and
OWL inference. The reasoning engine built in AllegroGraph is capable of performing RDFS++ and Prolog
reasoning and allows for computing the full entailments of RDF/S and OWL predicates [25]. Temporal rea-
soning is supported too. Kowari and Mulgara support rule-based reasoning using different engines. Mulgara
for instance uses the Krule rule reasoning engine59 for applying a set of pre-defined entailment rules to a
base set of RDF model statements. Talis Platform does not provide any form of reasoning60. Some stores
decouple inferencing from their core functions and use external reasoners; YARS2 uses the external Scalable
Authoritative OWL Reasoner (SOAR) engine which incorporates a “carefully crafted subset of OWL” [31].
Oracle 11g supports reasoning over RDFS and OWL ontologies as well as the definition of custom reasoning
rules. Semantics Platform provides the means to express custom reasoning rules. OWLIM provides means
to perform rule-based reasoning over RDF data, whereas rules can either be defined manually using a custom
rule language, or be chosen from a set of predefined rule collections (RDFS, OWL-Horst, OWL-Lite) [32].
Jena provides an extensible reasoning API, which allows to connect the store to any external reasoner, and
provides built-in support for RDFS, OWL, and DAML reasoning61. This API can be used in conjunction
with any Jena-compliant store, including Jena SDB and Jena TDB. Sesame’s native store provides only
RDFS reasoning, however additional reasoning engines can be connected to a Sesame store through the
Sesame Storage and Inference Layer (SAIL). Virtuoso is equipped with a backward-chaining reasoner that
provides support for a subset of RDFS and OWL semantics, including class hierarchies and property equiv-
alence. Bigdata employs a mixed inference strategy, where load-time reasoning is applied to certain RDF
Schema constructs, while other entailments are computed during query time [45].

Backup and Restore 4store and 5store support only manual or script-based backup and restore func-
tionalities; restore is realized either via a Perl file method using the 4s-import module or by importing

55http://download.oracle.com/docs/cd/E11882_01/appdev.112/e11828/sdo_rdf_concepts.htm#insertedID4
56AllegroGraph uses a 5-tuple model where the fifth element is a unique identifier assigned by the triple store.
57cf. http://groups.google.com/group/n2-dev/browse_thread/thread/a4e5492bbdd1627f
58http://4sreasoner.ecs.soton.ac.uk/
59http://docs.mulgara.org/tutorial/krule.html
60http://weblog.clarkparsia.com/2010/09/23/the-rdf-database-market/
61http://jena.sourceforge.net/inference/

21

previously created tar balls to the /var/lib/4store directory. AllegroGraph supports online full backups
containing all data files and information required to restore a database to its backup state62. Jena TDB
does not provide special backup functionality. Storage files can only be backed up on the file system level
while no TDB instance is running. Similarly, for Jena SDB the backup/restore infrastructure of the un-
derlying relational data base must be used. Kowari and Mulgara offer specific TQL terminal command
support for creating online backups or restoring a database, where a complete snapshot of the triple store
can be backed63. The Talis Platform supports database snapshots which can be created using a snapshot
job and can be requested via its HTTP URI. ARC uses specific PHP commands for streamed store backups
by creating a SPOG64 document from all quads in the store [1]. Oracle 11g provides a rich set of backup
and restore functionality realized through the Oracle Enterprise Manager Database Control that features
multiple manual and automatic backup and recovery strategies65. To backup RDF data within the Seman-
tics Platform, the underlying MS SQL Server features can be used. OWLIM, Redstore, Sesame, and Bigdata
provide no special back and restore functionality; data can be secured on the file system or database level,
though. Virtuoso provides comprehensive support for backups, allowing the administrator to take backups
at any time while the database is operational.

5.3 Summary

The question of which RDF storage solution to choose cannot be answered clearly. Even when the require-
ments of a specific application are clear and well defined, there exists a plentitude of comparable solutions
to be chosen from. We can identify a group of powerful database solutions, which are usually designed
to handle large amounts of data in a reliable and safe manner. These systems usually provide support
for concurrent access through a well-defined transaction model, import and export functionality, sophis-
ticated query processing (including optimization) for different languages, reasoning and inference, backup
and restore functionality, and support for replication and synchronization. Examples for this category are
4Store/5Store, AllegroGraph, Oracle 11g, Semantics Platform, Virtuoso, and Bigdata. These stores are suited
for data-intensive server applications and for enterprise warehouses. A special case is Talis Platform, which
can be used as an off-site, cloud storage for RDF data.

On the other hand we can observe a number of lightweight implementations that are suitable to be
included as RDF library within applications that need to process and store RDF data. Often these solutions
provide only in-memory and file-based storage facilities, do not guarantee safe transactions, support a limited
set of query languages (only SPARQL is supported by the vast majority of analyzed systems), and do not
provide versioning, replication, or inference. Examples include RedStore, YARS2, and Jena TDB.

6 Quantitative Analysis

After having discussed the features and functional characteristics of various RDF storage solutions, we now
focus the performance of a selected subset of these solutions w.r.t load time and SPARQL query response
time. We conducted all our experiments in the context of the Europeana66, which, as we explain in the
following, influenced the applied methodology and the datasets and test queries used for the performance
evaluation.

6.1 Background and Methodology

Europeana currently aggregates metadata of approximately 15 million items from around 1500 cultural
institutions all over Europe. The metadata of these objects are currently represented in XML following

62http://www.franz.com/agraph/support/documentation/v4/backup-and-restore.html
63http://www.mulgara.org/trac/wiki/BackupRestore
64http://www.wasab.dk/morten/blog/archives/2008/04/04/introducing-spog
65http://download.oracle.com/docs/cd/E11882_01/server.112/e10897/backrest.htm#CHDHEJBA
66The European Digital Library: http://www.europeana.eu/

22

the Europeana Semantic Elements (ESE)67 scheme and stored on the file system. A periodic batch process
parses and indexes these metadata using the Apache Lucene-based Solr68 engine. Since the ESE provides only
limited means for expressing semantics, a new, semantically richer, RDF-based format, called the Europeana
Data Model (EDM)69 is currently being developed. As a consequence, appropriate solutions for persisting
and retrieving RDF data are required

With this background, we included selected solutions from the previously presented RDF store inventory
(see Figure 3), which fulfill the following properties: the store must be (i) under active development (latest
release year in or after 2010), (ii) available as open source under a free license, also for production, (iii)
installable as a local server on UNIX-based systems, and (iv) provide a SPARQL query interface that
supports DESCRIBE queries in order to install Linked Data front-ends such as Pubby70 on-top of a store.
Further, we skipped those stores that were superseded by other stores in experiments conducted by others
(see Figure 4). Therefore we included the following stores in our study:

• Native stores: 4Store v.1.0.4, Jena TDB v.0.8.9

• DBMS-backed stores: Jena SDB v.1.3.3 with MySQL RDB backend

• Hybrid stores: Sesame v.2.3.2, OpenLink Virtuoso Open-Source Edition 6.1.2

For conducting the experiments we developed a Ruby-based RDF store performance test framework
(https://github.com/behas/tripleval), which defines the following generic evaluation procedure that is
applied a selected set of RDF stores:

• Iteratively ingest triple blocks, where each block is defined by a given N-Triples file

• Execute the set of predefined queries after each block ingest using random query values extracted from
the already ingested triples

This procedure allows us to measure the triple load and query response times at growing triple load
levels. For each RDF store, we implemented a wrapper class, which implement the execution of triple-store
specific command-line calls for triple ingest and SPARQL query.

All experiments were run three times on a 2x Quad-Core Xeon E5504 2.0 GHz machine, with 48 GB
DDR3-1333 ECC RAM, running openSUSE Linux 11.1. We configured each RDF store to persist the ingested
data on a RAID-01 cluster of 4 Seagate 600 GB SAS hard disks. We believe that the usage of such a high-end
server application is justified in contexts such as Europeana where an investment into hardware of this scale
should be possible. We configured all RDF stores — also those that could run in cluster configuration (e.g.,
4Store) — to run in single-machine, single-disk mode. Furthermore, we installed all triple stores in standard
configuration.

6.2 Dataset and Queries

We used the complete bibliographic metadata set currently available in Europeana for our performance
experiments. Since the production metadata are currently available only in the Europeana Semantic El-
ements (ESE) XML format, we first had to map and convert these data from ESE XML to the RDF-
based EDM model. The exact mapping specification is documented at http://europeanalabs.eu/wiki/
EDMPrototypingTask15 and the transformation scripts are available at https://github.com/behas/ese2edm.
The resulting EDM RDF/XML records, as shown in Figure 6, were then transformed to the N-Triples for-
mat, merged into one large file containing 382,629,063, and then split into 38 N-Triples block files, each
containing 10,000,000 triples and one N-Triples file containing the remaining 2,629,063 triples. The resulting
EDM dataset is available for download upon request at: http://europeana.mminf.univie.ac.at.

67Europeana Semantic Elements schema. Available at: http://www.europeana.eu/schemas/ese/
68Apache Solr. Available at: http://lucene.apache.org/solr/
69http://www.version1.europeana.eu/c/document_library/get_file?uuid=718a3828-6468-4e94-a9e7-7945c55eec65&groupId=

10605
70http://www4.wiwiss.fu-berlin.de/pubby/

23

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<rdf:RDF xmlns : rd f=” ht t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns:dc=” h t tp : // pur l . org /dc/ e lements /1 .1/ ” xmlns :dct=” h t tp : // pur l . org /dc/ terms /”
xmlns :ens=” h t t p : //www. europeana . eu/schemas/edm/” xmlns : e se=” h t tp : //www. europeana . eu”
xmlns :ore=” h t t p : //www. openarch ives . org / ore / terms /”>

<ens :Phys i ca lTh ing rd f : about=” h t t p : //www. europeana . eu/ r e s o l v e / record /00101/C400748B5B9DAE7A28181B9AC620F76E19F78940”/>

<ore :Aggregat i on rd f : about=” h t t p : // id . europeana . eu /00101/ aggregat ion /C400748B5B9DAE7A28181B9AC620F76E19F78940”>
<ore:aggregatedCHO

r d f : r e s o u r c e=” h t t p : //www. europeana . eu/ r e s o l v e / record /00101/C400748B5B9DAE7A28181B9AC620F76E19F78940”/>
<ens:isShownBy

r d f : r e s o u r c e=” h t t p : // baimages . gulbenkian . pt/ images / winl ib img . aspx ? skey=& ; doc=130466& ; img=10866”/>
<e n s : o b j e c t

r d f : r e s o u r c e=” h t t p : // baimages . gulbenkian . pt/ images / winl ib img . aspx ? skey=& ; doc=130466& ; img=10866& ; r e s=30& ; thb=1& ; pag=1”/>
<e n s : p r o v i d e r> F u n d a o Calouste Gulbenkian − Portugal</ e n s : p r o v i d e r>

</ ore :Aggregat i on>

<ore :Proxy rd f : about=” h t tp : // id . europeana . eu /00101/ proxy/C400748B5B9DAE7A28181B9AC620F76E19F78940”>
<ore :proxyFor r d f : r e s o u r c e=” h t t p : //www. europeana . eu/ r e s o l v e / record /00101/C400748B5B9DAE7A28181B9AC620F76E19F78940”/>
<ore :p roxy In r d f : r e s o u r c e=” h t t p : // id . europeana . eu /00101/ aggregat ion /C400748B5B9DAE7A28181B9AC620F76E19F78940”/>
<ens : type>TEXT</ ens : type>
<d c : d e s c r i p t i o n xml:lang=”pt”>Novamente emendado nesta l t i m a i m p r e s s o</ d c : d e s c r i p t i o n>
<d c : t i t l e xml:lang=”pt”>Acto do In f an t e D. Pedro de Portugal , o qual andou as s e t e pa r t i da s do mundo</ d c : t i t l e>
<dc : format xml:lang=”pt”>29 , [1] p .</ dc : format>
<d c t : e x t e n t xml:lang=”pt”>(21 cm)</ d c t : e x t e n t>
<d c : c r e a t o r>Santo E s t e v o , Gomes de</ d c : c r e a t o r>
<d c : c o n t r i b u t o r>Ribeiro , A n t n i o l v a r e s</ d c : c o n t r i b u t o r>
<d c : i d e n t i f i e r>130466</ d c : i d e n t i f i e r>
<d c : i d e n t i f i e r>CALLNUMBER−TC 155</ d c : i d e n t i f i e r>
<dc : language>pt</ dc : language>
<d c t : i s s u e d>1790</ d c t : i s s u e d>
<d c : p u b l i s h e r>O f f i c . de Antonio Alvarez Ribe i ro</ d c : p u b l i s h e r>
<d c : p u b l i s h e r>Porto</ d c : p u b l i s h e r>
<d c : s u b j e c t>Porto</ d c : s u b j e c t>
<dc : type xml:lang=”pt”>mate r i a l t extua l , impresso</ dc : type>
<dc : type xml:lang=”en”>language mater ia l s , p r in ted</ dc : type>

</ ore :Proxy>

<ens :EuropeanaAggregat ion rd f : about=” h t t p : // id . europeana . eu/ europeana / aggregat i on /C400748B5B9DAE7A28181B9AC620F76E19F78940”>
<ore:aggregatedCHO r d f : r e s o u r c e=” h t t p : //www. europeana . eu/ r e s o l v e / record /00101/C400748B5B9DAE7A28181B9AC620F76E19F78940”/>
<o r e : a g g r e g a t e s r d f : r e s o u r c e=” h t t p : // id . europeana . eu /00101/ aggregat ion /C400748B5B9DAE7A28181B9AC620F76E19F78940”/>
<d c : c r e a t o r>Europeana</ d c : c r e a t o r>
<ens : l and ingPage r d f : r e s o u r c e=” ht t p : //www. europeana . eu/ p o r t a l / record /00101/C400748B5B9DAE7A28181B9AC620F76E19F78940 . html”/>
<ens:isShownBy r d f : r e s o u r c e=” h t t p : // baimages . gulbenkian . pt/ images / winl ib img . aspx ? skey=& ; doc=130466& ; img=10866”/>
<ens:hasView r d f : r e s o u r c e=” h t t p : // baimages . gulbenkian . pt/ images / winl ib img . aspx ? skey=& ; doc=130466& ; img=10866”/>
<ens : count ry>portuga l</ ens : count ry>
<ens : l anguage>pt</ ens : l anguage>

</ ens :EuropeanaAggregat ion>

<ore :Proxy rd f : about=” h t tp : // id . europeana . eu/ europeana /proxy/C400748B5B9DAE7A28181B9AC620F76E19F78940”>
<ore :proxyFor r d f : r e s o u r c e=” h t t p : //www. europeana . eu/ r e s o l v e / record /00101/C400748B5B9DAE7A28181B9AC620F76E19F78940”/>
<ore :p roxy In r d f : r e s o u r c e=” h t t p : // id . europeana . eu/ europeana / aggregat i on /C400748B5B9DAE7A28181B9AC620F76E19F78940”/>
<ens : type>TEXT</ ens : type>

</ ore :Proxy>

</rdf:RDF>

Figure 6: Sample EDM record.

24

In Europena RDF stores will mainly take the role of metadata repositories that are accessed by higher-level
components to build up the Lucene-based search and retrieval index and to serve EDM records following the
Linked Data principles. At the time of this writing it seems that RDF stores must provide good performance
for two types of queries:

• SPARQL DESCRIBE queries for instances of ens:EuropeanaAggregation objects (e.g., DESCRIBE
<http://id.europeana.eu/europeana/aggregation/C400748B5B9DAE7A28181B9AC620F76E19F78940>)
This type of queries is frequently applied by Linked Data front-ends, which must deliver RDF data for
URIs that are being de-referenced via their HTTP URIs.

• SPARQL SELECT queries for subjects, which have certain resources or labels as object. As a repre-
sentative for this query type, we set up a query that retrieves all ens:EuropeanaAggregation subjects
that have a certain ens:landingPage as object (e.g., SELECT ?x WHERE ?x ens:landingPagemate
<http://www.europeana.eu/portal/record/00101/C400748B5B9DAE7A28181B9AC620F76E19F78940.html>).

To evaluate the response times of these queries our test harness caches a randomly selected subset of
the ingested data, such as URIs of ens:EuropeanaAggregation objects and ens:landingPage objects and
generates random queries without proceeding triple store query interactions, which should lead to unbiased
query response results.

For all results we applied the same time-out strategies: triple load stops when ingesting a single N-Triples
file (10,000,000 triples) takes more than 2 hours. SELECT and DESCRIBE queries have a timeout of 10
seconds.

6.3 Results

Figure 7 illustrates the cumulative load time for the complete Europeana EDM/RDF dump and shows
significant differences in triple load performance. Ingesting the complete EDM dataset into 4Store takes 1.5
hours in total; doing the same with JenaTDB or Virtuoso takes longer, but is still in an acceptable time
range. The load time of the MySQL-backed JenaSDB installation grows exponentially and is not suitable
for datasets as large as the Europeana EDM dataset. With Sesame we encountered the problem that data
ingestion is, to the best of our knowledge, only possible via HTTP, which resulted in a load time greater
than two hours for the first N-Triples file and hence a time-out.

Figure 8 shows the performance of SPARQL DESCRIBE queries executed against different RDF stores at
various triple load levels. We can observe that Virtuoso answers DESCRIBE queries within a second unless
it performs system-internal tasks that delay the response time. Up to 200 million triples 4Store provides
the fastest answers but the response times grow significantly with increasing triple load. JenaTDB achieves
almost constant 2 second response times; JenaSDB behaves similar but is not applicable for triple loads
larger than 100 million triples.

Figure 9 shows the performance of SPARQL queries that retrieve subjects by object labels, executed
against different RDF stores at various load levels. We can observe that Virtuoso performs best on this type
of queries and delivers answers in less than half a second. JenaSDB responses take 2 seconds in average but
scale up to the Europeana triple size, which is not the case for JenaSDB.

These results show that certain RDF stores, notably OpenLink Virtuoso and 4Store, can hold the complete
Europeana EDM data set. They can serve as repositories for metadata expressed in the Europeana Data
Model (EDM) and allow to set up Linked Data front-ends on-top of them. It is however, yet unclear how
these stores perform under heavy load and with increasing query frequency. Therefore, Linked Data services
built with one of these stores must still be consider experimental and should not replace existing data storages
or search and retrieval facilities.

7 Summary and Conclusions

In this report, we gave a detailed overview on existing RDF store solutions, analyzed their functional and
non-functional features, summarized the outcomes of other, previously carried out studies, and conducted a

25

Triple Load Performance

Loaded Triples (in millions)

C
um

ul
at

iv
e

In
ge

st
 T

im
e

(in
 m

in
ut

es
)

100

200

300

400

500

50 100 150 200 250 300 350

RDF_Store

4store

JenaSDB

JenaTDB

Virtuoso

Figure 7: Cumulative Load Time.

Describe Query Performance

Loaded Triples (in millions)

Q
ue

ry
 R

es
po

ns
e

T
im

e
(in

 s
ec

on
ds

)

1

2

3

4

50 100 150 200 250 300 350

RDF_Store

4store

JenaSDB

JenaTDB

Virtuoso

Figure 8: SPARQL DESCRIBE query performance.

26

Select Query Performance

Loaded Triples (in millions)

Q
ue

ry
 R

es
po

ns
e

T
im

e
(in

 s
ec

on
ds

)

0.5

1.0

1.5

2.0

50 100 150 200 250 300 350

RDF_Store

4store

JenaSDB

JenaTDB

Virtuoso

Figure 9: SPARQL SELECT query performance.

performance evaluation on a subset of existing RDF stores w.r.t to load and query time.
The results of this study show that native RDF solutions can deal with the Europeana data volume and

answer SPARQL queries, which are relevant in the context of Europeana, in a time-range that is acceptable
when RDF stores are solely used as Linked Data enabling metadata stores and not as a replacement for
existing full-text search engines such as Apache Lucene.

Acknowledgements

This report presents work done for the best practice network EuropeanaConnect. EuropeanaConnect is
funded by the European Commission within the area of Digital Libraries of the eContentplus Programme
and is lead by the Austrian National Library. We want to thank Jan M. Stankovsky for the technical support
in setting up the various RDF store instances.

References

[1] Arc developer documentation, 2010. Available at: http://arc.semsol.org/docs/v2/store.

[2] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Using the barton libraries
dataset as an rdf benchmark. Technical Report MIT-CSAIL-TR-2007-036, MIT, 2007.

[3] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Sw-store: a vertically
partitioned dbms for semantic web data management. The VLDB Journal, 18(2):385–406, 2009.

[4] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A Survey of Peer-to-peer Content Distribu-
tion Technologies. ACM Comput. Surv., 36(4):335–371, 2004.

[5] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David Aumueller. Triplify -
light-weight linked data publication from relational databases. In 18th International World Wide Web
Conference, pages 621–621, April 2009.

27

[6] Sören Auer and Heinrich Herre. A Versioning and Evolution Framework for RDF Knowledge Bases. In
Irina Virbitskaite and Andrei Voronkov, editors, Ershov Memorial Conference, volume 4378 of Lecture
Notes in Computer Science, pages 55–69. Springer, 2006.

[7] James Bailey, François Bry, Tim Furche, and Sebastian Schaffert. Web and semantic web query lan-
guages: A survey. In Norbert Eisinger and Jan Maluszynski, editors, Reasoning Web, volume 3564 of
Lecture Notes in Computer Science, pages 35–133. Springer, 2005.

[8] Schandl Bernhard. Tripcel: Exploring rdf graphs using the spreadsheet metaphor (poster and demo).
In 8th International Semantic Web Conference (ISWC 2009), Washington, DC, USA, 10 2009.

[9] Philip A. Bernstein and Nathan Goodman. Concurrency Control in Distributed Database Systems.
ACM Comput. Surv., 13(2):185–221, 1981.

[10] Chris Bizer and Daniel Westphal. Developers guide to semantic web toolkits for different programming
languages. Available at: http://www4.wiwiss.fu-berlin.de/bizer/toolkits/.

[11] Christian Bizer, Richard Cyganiak, and Olaf Hartig. Ng4j - named graphs api for jena, 2010. Available
at: http://www4.wiwiss.fu-berlin.de/bizer/ng4j/.

[12] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data - the story so far. International Journal
on Semantic Web and Information Systems (IJSWIS), 5(3), 2009.

[13] Christian Bizer and Andreas Schultz. Benchmarking the performance of storage systems that expose
sparql endpoints. In In Proceedings of the ISWC Workshop on Scalable Semantic Web Knowledgebase,
2008.

[14] J. Broekstra. Storage, querying and inferencing for semantic web languages. Phd-thesis, Vrije Univer-
siteit - Amsterdam, 2005.

[15] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs, provenance and
trust. In WWW ’05: Proceedings of the 14th international conference on World Wide Web, pages
613–622, New York, NY, USA, 2005. ACM.

[16] Jeremy J. Carroll and Patrick Stickler. Trix: Rdf triples in xml. Technical Report HPL-2004-56, HP
Labs, May 2004.

[17] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in databases: Why, how, and
where. Found. Trends databases, 1(4):379–474, 2009.

[18] Orri Erling and Ivan Mikhailov. RDF Support in the Virtuoso DBMS. In Sören Auer, Christian Bizer,
Claudia Müller, and Anna V. Zhdanova, editors, CSSW, volume 113 of LNI, pages 59–68. GI, 2007.

[19] Sebastian Eulau. Verteilte speicherung von daten und metadaten in einem föderierten semantischen
produktinformationssystem, December 2009.

[20] Paul Ford. A first look at the kowari triplestore, June 2004. Available at: http://www.xml.com/pub/
a/2004/06/23/kowari.html.

[21] J. Gray. The Transaction Concept: Virtues and Limitations. In Very Large Data Bases, 7th Interna-
tional Conference, September 9-11, 1981, Cannes, France, Proceedings, pages 144–154. IEEE Computer
Society, 1981.

[22] Steve Harris, Nicholas Lamb, and Nigel Shadbol. 4store: The design and implementation of a clus-
tered rdf store. In 5th International Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS2009), co-located with ISWC2009, Washingtion DC, USA, October 25-29 2009. Available at:
http://4store.org/publications/harris-ssws09.pdf.

28

[23] Bernhard Haslhofer and Bernhard Schandl. The OAI2LOD Server: Exposing OAI-PMH Metadata as
Linked Data. In International Workshop on Linked Data on the Web (LDOW2008), 2008.

[24] Alice Hertel, Jeen Broekstra, and Heiner Stuckenschmidt. RDF Storage and Retrieval Systems. On-line,
2008.

[25] Franz Inc. Allegrograph 4.0.5d introduction, 08 2010. Available at: http://www.franz.com/agraph/
support/documentation/v4/agraph-introduction.html.

[26] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Concepts and Abstract
Syntax (W3C Recommendation 10 February 2004). World Wide Web Consortium, 2004.

[27] Ryan Lee. Scalability report on triple store applications. Technical report, Massachusetts Institute of
Technology, 2004.

[28] Baolin Liu and Bo Hu. An Evaluation of RDF Storage Systems for Large Data Applications. In SKG,
page 59. IEEE Computer Society, 2005.

[29] Zhihong Lu and Kathryn S. McKinley. Partial Replica Selection Based on Relevance for Information
Retrieval. In SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pages 97–104, New York, NY, USA, 1999. ACM.

[30] Enrico Minack, Wolf Siberski, and Wolfgang Nejdl. Benchmarking fulltext search performance of rdf
stores. In 6th Annual European Semantic Web Conference (ESWC2009), pages 81–95, June 2009.

[31] Vassil Momtchev, Brahmanda Sapkota, Andreas Harth, Omair Shafiq, and Atanas Kiryakov. Storage
performance evaluation. Deliverable, FP6 – 02734, www.tripcom.org/docs/del/D1.4.pdf, December
2009.

[32] Ontotext. BigOWLIM User Guide Version 3.3. Technical report, Ontotext AD, 2010. Available at
http://www.ontotext.com/owlim/BigOWLIMUserGuide_v3.3.pdf.

[33] Ontotext. OWLIM Primer. Technical report, Ontotext AD, 2010. Available at http://www.ontotext.
com/owlim/OWLIM_primer.pdf.

[34] Alisdair Owens. An investigation into improving rdf store performance, 2009.

[35] Prasanna Padmanabhan, Le Gruenwald, Anita Vallur, and Mohammed Atiquzzaman. A S of Data
Replication Techniques for Mobile Ad hoc Network Databases. The VLDB Journal, 17(5):1143–1164,
2008.

[36] Sandro Reichert. A secure data repository for semantic federation of product information. In iiWAS ’09:
Proceedings of the 11th International Conference on Information Integration and Web-based Applications
and Services, pages 745–749, New York, NY, USA, 2009. ACM.

[37] Rohloff, Dean, Emmons, Ryder, and Sumner. An Evaluation of Triple-Store Technologies for Large
Data Stores. 2006.

[38] Satya Sanket Sahoo, Olivier Bodenreider, Pascal Hitzler, Amit P. Sheth, and Krishnaprasad
Thirunarayan. Provenance context entity (pace): Scalable provenance tracking for scientific rdf data.
In Michael Gertz and Bertram Ludäscher, editors, SSDBM, volume 6187 of Lecture Notes in Computer
Science, pages 461–470. Springer, 2010.

[39] Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM Comput. Surv., 37(1):42–81, 2005.

[40] Manuel Salvadores, Gianluca Correndo, Temitope Omitola, Nicholas Gibbins, Steve Harris, and Nigel
Shadbolt. 4s-reasoner: Rdfs backward chained reasoning support in 4store. In Web-scale Knowledge
Representation, Retrieval, and Reasoning (Web-KR3), September 2010.

29

[41] Bernhard Schandl. TripFS: Exposing File Systems as Linked Data. In Linked Open Data Triplification
Challenge, Graz, Austria, 2009.

[42] Michael Schmidt, Thomas Hornung, Norbert Küchlin, Georg Lausen, and Christoph Pinkel. An Ex-
perimental Comparison of RDF Data Management Approaches in a SPARQL Benchmark Scenario. In
ISWC ’08: Proceedings of the 7th International Conference on The Semantic Web, pages 82–97, Berlin,
Heidelberg, 2008. Springer-Verlag.

[43] Andy Seaborne. RDQL - A Query Language for RDF. W3c member submission, Hewlett Packard,
January 2004. See http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/.

[44] Sang Hyuk Son. Replicated Data Management in Distributed Dtabase Systems. SIGMOD Rec.,
17(4):62–69, 1988.

[45] SYSTAP. Bigdata Architecture Whitepaper. Technical report, SYSTAP, LLC, 2009. Available at
http://www.bigdata.com/whitepapers/bigdata_whitepaper_10-13-2009_public.pdf.

[46] W3C. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Semantic Web Activity - RDF
Core Working Group, February 2004. Available at: http://www.w3.org/TR/rdf-schema/.

[47] W3C. SPARQL Query Language for RDF. W3C Semantic Web Activity – RDF Data Access Working
Group, 2008.

[48] W3C. OWL 2Web Ontology Language. W3C Semantic Web Activity – OWL Working Group, 2009.

[49] David Wood. Kowari: A platform for semantic web storage and analysis. In In XTech 2005 Conference,
pages 05–0402, 2005.

[50] Dimitris Zeginis, Yannis Tzitzikas, and Vassilis Christophides. On the Foundations of Computing
Deltas between RDF Models. In Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-Il
Lee, Lyndon J B Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Guus Schreiber, and Philippe
Cudré-Mauroux, editors, Proceedings of the 6th International Semantic Web Conference and 2nd Asian
Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea, volume 4825 of LNCS, pages
631–644, Berlin, Heidelberg, November 2007. Springer Verlag.

30

