An Integrated Approach for Identity and Access
Management in a SOA Context

Waldemar Hummer!, Patrick Gaubatz?, Mark Strembeck?®, Uwe Zdun?, and Schahram Dustdar!

!Distributed Systems Group
Information Systems Institute
Vienna University of Technology

2Software Architecture Group
Faculty of Computer Science
University of Vienna

3Information Systems Institute
Vienna University of
Economics and Business

{lastname}@infosys.tuwien.ac.at {firstname.lastname}@univie.ac.at mark.strembeck@wu.ac.at

ABSTRACT

In this paper, we present an approach for identity and access man-
agement (IAM) in the context of (cross-organizational) service-
oriented architectures (SOA). In particular, we defined a domain-
specific language (DSL) for role-based access control (RBAC) that
allows for the definition of IAM policies for SOAs. For the appli-
cation in a SOA context, our DSL environment automatically pro-
duces WS-BPEL (Business Process Execution Language for Web
services) specifications from the RBAC models defined in our DSL.
We use the WS-BPEL extension mechanism to annotate parts of
the process definition with directives concerning the IAM policies.
At deployment time, the WS-BPEL process is instrumented with
special activities which are executed at runtime to ensure its com-
pliance to the IAM policies. The algorithm that produces extended
WS-BPEL specifications from DSL models is described in detail.
Thereby, policies defined via our DSL are automatically mapped to
the implementation level of a SOA-based business process. This
way, the DSL decouples domain experts’ concerns from the tech-
nical details of IAM policy specification and enforcement. Our ap-
proach thus enables (non-technical) domain experts, such as physi-
cians or hospital clerks, to participate in defining and maintaining
IAM policies in a SOA context. Based on a prototype implementa-
tion we also discuss several performance aspects of our approach.

Categories and Subject Descriptors

D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Control; C.2.4 [Computer-Communication Networks]:
Distributed Systems—Client/server, Distributed applications;
D.2.11 [Software]: Software Architectures—Domain-specific
architectures, Languages, Service-oriented architecture

General Terms

Design, Languages, Management, Security

Keywords

Identity and Access Management, SAML, SOAP, WS-BPEL, WS-
Security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SACMAT’11, June 15-17, 2011, Innsbruck, Austria.

Copyright 2011 ACM 978-1-4503-0688-1/11/06 ...$10.00.

1. INTRODUCTION

In recent years, Service-Oriented Architectures (SOA) [24]
have emerged as a suitable means to develop loosely coupled
distributed systems. Today, Web services are a commonly used
technology that build the foundation of SOAs and both intra- and
cross-organizational business processes. Electronic business col-
laborations require enforcement of high-level security constraints
such as ensuring the identity and competencies of end users,
restricted access to resources, or protection of private data. In our
previous work, we identified the need for modeling support of
identity and access control models from the experiences gained
in the area of role engineering (see, e.g., [34-37]). However,
to enforce the corresponding access control policies in a soft-
ware system, the resulting models must also be mapped to the
implementation level.

Different aspects of identity and access management (IAM) in
distributed environments and SOAs have been studied previously.
In fact, our work builds on a number of existing approaches and
standards. An important point with regards to electronic business
processes spanning multiple services and cross-organizational units
is the concept of Single Sign-On (SSO, e.g., [17,25]), which sim-
plifies user authentication for the individual services by establish-
ing trust relationships across security domains. SSO allows the
business process to obtain a signed authentication token for a secu-
rity domain d, which is also accepted by other security domains
that trust domain d. The Security Assertion Markup Language
(SAML) [20] provides a standard way of expressing signed asser-
tions about the identity and attributes of a system participant. The
Web Services Security (WS-Security) [21] SAML Token Profile
defines how SAML assertions can be transported securely in Web
service invocations, i.e., by including a security token element in
the header of the SOAP (Simple Object Access Protocol) invoca-
tion message.

Cross-organizational IAM involves stakeholders with different
background and expertise. The technical IAM model which ex-
presses well-defined semantics and supports detailed security au-
dits may be suited for software architects and developers, but for
non-technical domain experts an abstracted view is desirable. In
the context of model-driven development (MDD) [28,29,33], a sys-
tematic approach for DSL (domain-specific language) development
has emerged in recent years (see, e.g., [15,32,38,42]). A DSL is
a tailor-made (computer) language for a specific problem domain.
In general, DSLs provide relevant domain abstractions as first class
language elements and can be designed and used on different ab-
straction layers, ranging from DSLs for technical tasks to DSLs for
tasks on the business-level. Thus, DSLs can also be defined for
non-technical stakeholders, such as business analysts or biologists,
for example. In general, a DSL makes domain-knowledge explicit.



That is, the DSL is built so that domain experts can understand and
modify DSL code to phrase domain-specific statements that are un-
derstood by an information system. To ensure compliance between
models and software platforms, the models defined in a DSL are
mapped to source code artifacts of the software platform via auto-
mated model-transformations (see, e.g., [14,30,41]).

This paper presents an approach to define and enforce IAM poli-
cies in cross-organizational SOA business processes. The approach
is based on the Web Services Business Process Execution Language
(WS-BPEL) [22], which has in the previous years emerged as the
de-facto standard for defining Web service compositions and busi-
ness processes. WS-BPEL is an XML-based special-purpose lan-
guage whose features range from invocation of external Web ser-
vices, message correlation and asynchronous invocations to con-
trol flow structures (e.g., loops, branches, parallel flows), XML
data transformation and modification of SOAP message headers.
Our implementation builds on well-established standards including
SAML and WS-Security, and supports the concept of single-sign-
on (SSO) to authorize and secure the individual steps in the busi-
ness process. The use of a domain-specific language (DSL) for
Role Based Access Control (RBAC) [4,5,27] allows us to abstract
from technological details and to involve domain experts in the se-
curity modeling process. SOA experts and software developers uti-
lize the identity and access models to define security constraints
while designing electronic business processes in WS-BPEL. At de-
ployment time, the WS-BPEL process is instrumented with special
activities to ensure its compliance to the IAM policies at runtime.

The remainder of this paper is structured as follows. In Section
2, we introduce an illustrative scenario for IAM in a distributed
SOA context. We then present in Section 3 our approach for inte-
grated modeling and enforcement of identity and access control in
SOA business processes, and discuss the mapping from the model-
ing to the implementation level. Details on the implementation are
given in Section 4, and in Section 5 we evaluate different aspects of
our solution. Section 6 contains a discussion of related work, and
Section 7 concludes the paper with an outlook for future work.

2. SCENARIO: IAM IN A SOA BUSINESS
PROCESS CONTEXT

We illustrate the concepts of this paper based on a motivating
scenario taken from the e-health domain. Our example scenario
models the workflow of an orthopedic hospital which treats frac-
tures and other serious injuries. The hospital is supported by an
IT infrastructure organized in a SOA, implemented using Web ser-
vices. The SOA provides services for patient data, connects the de-
partments of the hospital and facilitates the routine processes. The
hospital exchanges data with other partner hospitals. As patient
data constitute sensitive information, security must be ensured and
a tailored domain-specific RBAC model needs to be enforced.

A core procedure in the hospital is the patient examination. The
corresponding technical business process is depicted in Business
Process Modeling Notation (BPMN) in Figure 1. We assume that
the process is implemented using WS-BPEL and that each BPMN
service task (depicted as gray rounded rectangles) denotes the in-
vocation of a Web service. The arrows between the tasks indicate
the control flow of the process. The BPMN groups in the figure are
annotated with Role and Context labels, the purpose of which will
be detailed later in this section. Note that all tasks are backed by
Web services, however, part of the tasks are not purely technical but
involve some sort of human labor or interaction. For instance, the
activation of the task Obtain X-Ray Image triggers an invocation

Context “default" |

'/ Role “staff” '

: : [@} Get Personal Data ]——b[@} Assign Physician ] i

HES
[N

@ %} Obtain X-Ray Image ] i

Role “physician*

[
"

more data required i

i is emergenc

R N
i | Context Role “patient” . ¥
i emergency’ For each partner hospital hy t

%}i;‘,,} Get Patient History i
From Hospital hy

. Group (WS-BPEL: Scope)
(#__ ) service Task (WS-BPEL: Service Invocation)
Loop Activity (WS-BPEL: For Loop)

Figure 1: Hospital Patient Examination Scenario in BPMN

to the Web service http://hl.com/xray, but the task itself is
performed by the hospital staff (and the patient).

The first step in the examination process is to retrieve the per-
sonal data of the patient. To demonstrate the cross-organizational
character of this scenario, suppose that the patient has never been
treated in our example hospital (H1) before, but has already re-
ceived medical treatment in a partner hospital (H2). Consequently,
H1 obtains the patient’s personal data from H2 via a Web service re-
siding under the URL http://h2.com/patients. Secondly, the
patient is assigned to an available physician, which is performed
using an examination service. These first two tasks need to be
performed by a general staff member (role “staff”). In the process
definition in Figure 1, this requirement is expressed as a BPMN
group (rounded rectangle with dashed border) with a corresponding
label. In the implementation of the process, this group is mapped
to a BPEL scope with an extensibility attribute role. Similar to a
scope in a regular programming language, a WS-BPEL scope em-
braces a set of instructions and defines boundaries for the lifetime
of variables and event handlers defined in this scope. Analogously,
the role attribute is valid within the boundaries of its owner scope.

After the patient has been assigned, the responsible physician
requests an x-ray image using the Web service of the x-ray depart-
ment (http://hl.com/xray). This activity runs under a new
group (or scope), which requires the role “physician”. The physi-
cian then analyzes the received x-ray image and decides whether
additional data are required. For instance, the patient may have had
a similar fraction or injury in the past, in which case special treat-
ment is required. Hence, the business process requests historical
data from partner hospitals, which also participate in the SOA. Due
to privacy issues, the historical data are only disclosed to the patient
herself, and the Get Patient History service task executes under the
role “patient”. Note that this role change and the identity manage-
ment is enforced by the platform, which will be discussed in Sec-
tion 3. Another situation that requires additional data is the case of
an emergency. If the emergency demands for immediate surgery,
it is important to determine historical data about any critical condi-
tions or diseases that might interfere with the surgery. This critical
information is stored in a secured repository which can be accessed
via the Web service http://hl.com/emergency. Access to
the critical historical data requires the context “emergency”’, which



is also indicated via an enclosing scope in Figure 1. Finally, af-
ter acquiring the necessary data, the process switches back to the
context “default” and the role “physician”. The invocation of the
operation decideOnTreatment constitutes the end of the ex-
amination and triggers the subsequent treatment activities.

The following list summarizes the stakeholders and their key re-
quirements concerning the SOA-based IT system of the hospital.

e The IT system facilitates the hospital szaff in their daily work
and employs a clear role concept for separation of concerns.

e Besides receiving an efficient treatment, the main interest of
the patient is that all personal data remain confidential and
protected from abuse.

e The security experts of the hospital need not necessarily be
technical experts and hence require an intuitive interface to
model identities, roles and security restrictions in the system.

e The IT architects and developers who implement Web ser-
vices and business processes desire an integrated solution, in
which identity and access control can be easily plugged in
based on the models defined by the hospital’s management.

In the course of this paper, we focus on two aspects concerned
with mapping security constraints from a higher-level model to the
implementation level: 1) enabling domain experts to map the iden-
tity and access model from its abstract representation to a DSL,
and mapping of DSL expressions to the implementation level, 2)
enabling architects and developers to easily author SOA business
processes in WS-BPEL which enforce the security constraints.

3. INTEGRATED APPROACH FORIAM IN
A SOA CONTEXT

This section presents our integrated approach for identity and ac-
cess management and enforcement in a SOA context. The core as-
sets in a SOA are the services, and the participants that perform op-
erations on these services are either humans or other services. It has
been shown that SOA models can be mapped to (extended) RBAC
models (e.g., [1]). We build on these findings and provide a declara-
tive DSL for RBAC, integrated with an end-to-end solution for sim-
plified development of secured SOA business processes. The tight
integration of the DSL allows to trace identity and access control
specifications from the modeling level down to the implementation
code, enabling the detailed audit of security compliance.

Design Time Execution Time

() wite RBAC
) commands DSL enforce 1AM
Security expresses i
Experts P
utilizes
RBAC Model
Constraints " -
invokes | Business | executes
; Process [€——— A4
subject tof Instance [
5 User
. Web E-
implements SERiEEs (1)
. instantiated as
annotated with

IT Architect/ . BPLizlcn::ss transformed Bu;ingss Process
Developer writes Definition into » Definition with IAM
Tasks (WS-BPEL)
(WS-BPEL),
- 7

Deployment Time

Figure 2: Approach Overview

Figure 2 depicts a high-level overview of our approach, including
the involved stakeholders and system artifacts and the relationships
between them. At design time, the security experts write RBAC
DSL commands to define the RBAC model constraints. The IT spe-

cialists implement Web services and define WS-BPEL processes on
top of the services. The WS-BPEL definition is annotated with el-
ements from the RBAC DSL, in order to define which parts in the
process require which access privileges. At deployment time, the
WS-BPEL file is automatically enriched with IAM tasks that con-
form to the security annotations. The business process is instanti-
ated and executed by human individuals (for example patients and
staff members), and the IAM tasks have the process conform to the
constraints defined in the RBAC model. A PEP component inter-
cepts all service invocations and blocks unauthorized access.

In the following, we firstly discuss the core language model of
the RBAC DSL and show its mapping to the textual representation
and further down to the implementation level. Secondly, we present
our approach for automatic enforcement of the access control con-
straints using the extensibility mechanism in WS-BPEL processes.

3.1 DSL-Based RBAC Modeling for SOA

TypelClass Instance/Object (ex.) " DSL Textual Syntax (ex.)
[Subject | [ :Subject || :Subject | nar;]i‘_’b‘ea gggjgg ):;;,
|—'—/+ e [name: ‘ane*][name: “bob]|1355.010170°| | SUBECT “1352-010170°
s ROLE “staff"
=] RXIe ml B Role | [ :Role | ROLE “physician*
r name="staff" | [ name="patient"| | ROLE “patient"
+ name . 3
+ allPerms() inherits | ASSIGN “jane* “staff*
- mutualExclusive | ASSIGN “bob* “physician®
inherits ASSIGN *1352-010170" “patient"

ole

name="physician“

mutualExclusive INHERIT “staff* “physician”

MUTEX “patient” “physician*

:Resource :Resource [
& _Resouroe “ .
name="h1.com/ name="h1.com/ RESOURCE “h1.comlpat|ents ]
atients" emergency" RESOURCE “h1.com/emergency’

=1_Context
+name

H Context |[  :Context || CONTEXT “default‘
[name="defauit*|[name="emergency*| CONTEXT “emergency”

- H  :Operation :Operation
Operation « «
name="get name="get OPERATION “getPersonaID‘ata
PersonalData* CriticalHistory* OPERATION ‘requestXRay"

PERM “staff* “getPersonalData“

. - — - — “h1.com/patients”
Permission = —~| :Permission || :Permission |»- PERM “physician* “getCritical-

History“ “h1.com/emergency”
WHEN “emergency”

Figure 3: RBAC Model and DSL Language Elements

Figure 3 depicts an example that shows the different abstraction
layers of our RBAC DSL. In particular it depicts a (simplified) class
diagram of the DSL language elements, an excerpt of the object dia-
gram for the hospital scenario from Figure 1, and a textual represen-
tation of the example specified with our RBAC DSL. Subjects
are identified by a name attribute: hospital staff receive a unique
name, and for the patients’ name we use their social security num-
ber, which serves as a unique identifier. Subjects are associated
with an arbitrary number of Roles, which are themselves associ-
ated with Permissions to execute certain Operations. Roles
may inherit from other role instances (association inherits),
and two roles can be defined as being mutually exclusive (associ-
ation mutualExclusive). We use a context-specific extension
of the traditional RBAC model, which has been proposed previ-
ously in a similar form (e.g., [6, 8,26]). The Context element
allows for a more fine-grained definition of permissions and maps
directly to the context requirements in the scenario process defini-
tion (see Figure 1). In our approach, we directly associate Web ser-
vice instances with Resources, service invocations with RBAC
Operations,and Contexts with scopes in a Web services busi-
ness process. A scope in WS-BPEL builds a group of related tasks
and limits the lifetime and validness of its enclosed variables, part-
ner links, correlation sets and event handlers. The RBAC permis-



sions are expressed with regard to a certain context in which they
are applicable. When a WS-BPEL scope is associated with a cer-
tain context (e.g., emergency), then all activities (i.e., operations)
contained in that scope must execute under this context, and, con-
sequently, the subject executing the process must be allowed to in-
voke the service operations under this context (see Section 3.2).
For instance, when the physician named bob is about to retrieve the
critical patient history in our scenario, then bob needs to have the
role physician, which allows him to execute the Web service op-
eration getCriticalHistory in the context emergency (see
Figure 3). The default context always exists and is automatically
assumed if no context is explicitly provided.
DSL Command Effect (OCL)
SUBJECT "jane" Subject.alllnstances()->select(s |
s.name="jane’)->size() = 1
Subject.alllnstances()->select(s |
s.name="jane’).role->select(r |
r.name="staff’)->size() = 1
Role.alllnstances()->select(r1 |
rl.name="staff”).allPerms()->forAll(p1 |
Role.alllnstances()->select(r2 |
r2.name="physician’).allPerms()
->exists(p2 | pl=p2))
MUTEX "patient" [Subject.alllnstances()->forAll(s | not (
s.role->exists(r | .name="physician’)
and s.role->exists(r | .name="patient’)))

Table 1: Excerpt of RBAC DSL Semantics in OCL

An excerpt of the RBAC DSL constructs and their effect
expressed as an OCL (Object Constraint Language) expression
is printed in Table 1. The first exemplary command, SUBJECT
"jane" has the effect that, upon execution, exactly one instance
of the class Subject with name attribute "jane" exists. The effect
of the second instruction is that the Subject named jane has an
associated Role object with name "staff”. The INHERIT command
takes two parameters, a junior-role and a senior-role name, and
causes the senior-role to inherit all permissions of the junior-role.
The operation Role.allPerms() returns all associated permissions of
a Role instance and its ancestor roles. Finally, the statically mutual
exclusive roles “patient” and “physician” are defined via the DSL
command MUTEX, which specifies that no Subject instance must
ever be assigned both of these roles simultaneously . We currently
do not use the alternative form of dynamic mutually exclusive
constraints which disallow combinations of certain roles to be
activated by one user in the same session or process instantiation,
but this is planned for future work. The four OCL constraints
illustrate the mapping from the abstract RBAC domain model
to the level of an intermediate language (DSL), which is easy to
use and comprehend for domain experts, and abstracts from the
underlying complexity. The remaining OCL constraints for our
example have been left out for brevity.

ASSIGN "jane"
"staff"

INHERIT "staff"

"physician"

"physician"

3.1.1 Collaborative Identity and Access Modeling
for Single-Sign On

The goal of the patient examination scenario is that hospitals are
able to collaboratively model the identity and access control infor-
mation. To avoid a single point of failure and because each hospital
reserves the right to define their own (internal) access control poli-
cies, the RBAC information is not stored centrally, but each hos-
pital maintains their own model. However, the ability to retrieve
the model data from partner hospitals is vital in order to support
SSO and cross-organizational access to resources. For instance,
the loop in the business process in Figure 1 retrieves the patient

history from partner hospitals using a secured Web service opera-
tion getPatientHistory, which is provided by all hospitals.
The idea is to store data in a decentralized manner, i.e., when a
patient is registered or examined in hospital X, then X creates a
patient record that is stored locally, but can be accessed by the part-
ner hospitals. The invocation of the getPatientHistory op-
eration is secured with a SAML header asserting the identity of
the patient. Consider the patient is identified under a subject name
“1352-010170” (cf. Figure 3). This requires that the RBAC mod-
els of the partner hospitals also contain a subject with this identifier,
and that this subject is associated with the role “patient”.

To achieve an integrated view on a distributed RBAC model,
different strategies have been proposed. The special-purpose lan-
guage PCL (Policy Combining Language) defined in [10] allows
combining of access control policies expressed in XACML. In an-
other work, integration of policies from different organizations is
performed based on the similarity of XACML rules [12]. Since
the RBAC DSL essentially provides a subset of the functionality of
XACML, we are able to utilize these existing solutions for policy
integration and collaborative modeling of access control constraints
across the different hospitals in the scenario.

3.2 Security Enforcement in WS-BPEL Pro-
cesses using Annotations

Section 3.1 discussed how the RBAC model is constructed by
means of the RBAC DSL, and how the access constraints relate
to services, operations, and scopes in SOA business processes.
To enforce these constraints at runtime, the business process
needs to follow a special procedure. For instance, invoking the
getPersonalData operation of Hospital 1 requires the process
to execute under the role “staff”. That is, this service operation
requires the presence of a corresponding SAML WS-Security
token in the SOAP header of the request. The token contains a
SAML assertion that confirms the identity of the subject executing
the process operation, as well as the attribute claims for that
subject. Integrity of this token and the contained attributes is
ensured by applying an XML signature [40] using the X.509
certificate issued for Hospital 1. The attribute claims contain
the information under which role (“staff”’) and in which context
(“default”) the subject executes the operation. To obtain the
signed SAML assertion, the process needs to invoke the operation
requestSAMLAssertion of the SAML Identity Provider
(IdP) service of Hospital 1. The patient data service relies on the
IdP to identify and authenticate the subject (process user), hence
the user credentials (e.g. subject name and password) are required
for invocation of request SAMLAssertion.

Since one execution of the patient examination process involves
different subjects (a staff member, a physician, a patient), the user
credentials cannot be hard-coded into the process definition, but are
requested from a separate, decoupled Credentials Provider (CrP)
service. This service offers a getUserAuthentication op-
eration, which provides the actual user credentials to be used for a
specific process scope. Upon invocation, this operation will cause a
username/password input prompt to be displayed to the staff mem-
ber sitting at the reception desk. After the user has been authenti-
cated, the user credentials can also be stored in a local session con-
figuration file on the reception desk computer. To avoid plaintext
passwords from being transmitted over the network, the returned
user credentials are encrypted using WS-Security [21]. During ex-
ecution, the Credentials Provider service is always invoked when
the process enters a scope that requires a change of subject.

The detailed procedure is illustrated in Figure 4, which shows
the sub-part of the hospital scenario process that executes under



WS-BPEL Design View

WS-BPEL Deployment View

Generate Instance ID

;' Role “staff* Context ,,reception“\'

5. getPersonalData

[%"%} getUserAuthentlcatlon

%jf"é} assignPhysician

Copy auth data to request
for SAML assertion

«

i
i
i
i
i
i
<process xmlns="“... i
xmlns:rbac="http://.../rbac*>... | | i
<scope name="“reception” !
rbac:context="“reception” '[
i
i
i
]
i
i
i
i
i

Add SOAP headers to

rhacroleg sttt request getPersonalData

<invoke partnerLink="*...“
operation=‘“getPersonalData“
name="“Get_Personal Data“
>

<invoke partnerLink="...“ ...

operation="‘“assignPhysician‘/> @3} getPersonalData
</scope> ... :
S/processe E\T\? ifé} assignPhysician

Add SOAP headers to

[‘%}requestSAMLAssertlon ]
request assignPhysician ]

Automatic Transformation

Figure 4: Transformation of WS-BPEL Process Definition

the role “staff” and the context “reception”. The left part of
the figure shows the process definition at design time. Note the
annotation attributes rbac:context and rbac:role which
define the required context and role for the scope. At deployment
time, the necessary additional process tasks are inserted into the
WS-BPEL definition by means of an automatic transformation.
At the start of the transformed process, an activity is inserted
which generates a unique process instance identifier (ID). The
instance ID is sent along as a SOAP header in all subsequent
invocations of the WS-BPEL process. This ID helps the CrP
service to correlate previous invocations of the process instance,
and to keep track of the process state in order to provide the
credentials from the correct subject. For instance, when the CrP’s
operation getUserAuthentication is first called with the
generated ID, the user credentials are requested from the reception
desk employee. The second invocation with the same instance ID
will cause the CrP to request the user credentials from the assigned
physician, and so on (cf. Figure 1). Note that the CrP service
is application-specific and constitutes a tailor-made decoupled
component that orchestrates the retrieval of user credentials of
changing subjects. The injected process tasks that follow the CrP
invocation retrieve the required SAML assertion from the IdP and
copy a corresponding SAML header to all service requests of the
scope. Details on the implementation of the automatic WS-BPEL
transformation are provided in Section 4.

4. IMPLEMENTATION

In the following, we describe the prototype implementation of
our approach for integrated SOA identity and access control. This
section is divided into four parts: firstly, we outline the architecture
of the system and the relationship between the individual services
and components; secondly, the SAML-based SSO mechanism is
described; the third part briefly discusses the implementation of the
RBAC DSL; finally we present the algorithm for automatic trans-
formation of WS-BPEL definitions containing security annotations.

4.1 System Architecture

Figure 5 sketches the high-level architecture and relationship
between the example process and the system components. The
patient examination example scenario is implemented using WS-

System Architecture and Services

Business Process

RBAC

Import

RBAC

Import

RBAC

L t}
Integrated Distributed RBAC View

t

Hospital 3

SAML Identity Provider
@ Secured Service

SAML Request

Secured Service Request

% Instrumented
' IAM Tasks

Figure 5: Example Process in System Architecture

BPEL [22] and deployed in a Glassfish! server with WS-BPEL
module. The example scenario involves three hospitals, which host
the protected services for patient management and examination.
All service invocations are routed through a Policy Enforcement
Point (PEP), which acts as a central security gateway, intercepts
every incoming service request and either allows or disallows its
invocation. Using the Java API for XML Web services (JAX-WS),
the PEP has been implemented as a SOAP message handler (inter-
face soaPHandler). This handler can be plugged into the Web ser-
vice’s runtime engine in a straightforward manner. Once activated,
the interceptor is able to inspect and modify inbound and outbound
SOAP messages as well as to abort the service invocation.

Each hospital runs an instance of the SAML IdP service, which
is used to issue the SAML assertions that are required in the WS-
BPEL process. The responsibilities of the IdP are twofold: firstly,
it checks whether the subject (i.e., the user currently executing the
process) has provided valid credentials; secondly, the IdP assures
the identity of a subject and its associated attributes (roles, con-
texts) by issuing an SAML assertion which is used as a SOAP
header in subsequent service invocations by this subject (i.e., the
process scope for which it is valid).

The actual decision whether an invocation should be prevented
or not is typically delegated to another entity, the Policy Decision
Point (PDP). When deciding over the access to a service resource
the PDP has to make sure that the subject attempting to access the
resource has the permission to do so. In our concrete implemen-
tation, the PDP uses the RBAC repository to determine whether
the requesting subject is permitted to access the target resource
(service) under the specified context and role. Thereby, the PDP
can rely on the SAML tokens in the SOAP header of the request
messages, which assert the identity of the subject as well as the
context and role it operates under. The policy information in the
RBAC repository is based on the DSL commands authored by do-
main experts. Each repository defines both local rules and inte-
grates rules from RBAC repositories of trusted partner hospitals
(see, e.g., [10,12]). The combined information of all RBAC repos-
itories creates an integrated view on the distributed RBAC model.

The advantage of our approach is that changing security require-
ments in the course of the process execution are handled automati-

"https://glassfish.dev.java.net/



. receive result

invocation disallowed

create

(/)=
check
AuthzDecisionRequest AuthzDecisionStatement

=] R
2q request service
oca
+ assertion invalid
@ ? lidate integrit
o= intercept request valicate integrity
of assertion

[
=)
c
5L
2]
o
)
=3
g
o
2 —

o
il
£
o= " .
ST authenticate user return assertion
o & . check retum
= authenticate user [—® .. jantials assertion

receive request

check permissions

A

invoke service

return assertion

retumn result

authentication
failed

Figure 6: Identity and Access Control Enforcement Procedure

cally. Each time the process changes the scope and requires a new
role or context, we utilize the Instrumented IAM Tasks which get
injected into the WS-BPEL process automatically, as described in
Section 3.2. The IAM tasks invoke the IdP and request a new secu-
rity assertion token for the current subject, role, and context. The
security token is then added to the header of all invocations in the
same scope. This procedure is repeated for all sub-scopes which re-
quire a new role or context. More details concerning the automatic
generation of the IAM tasks in WS-BPEL are given in Section 4.4.

4.2 SAML-based Single Sign-On

Figure 6 depicts an example of the Identity and Access Control
enforcement procedure modeled via BPMN. To illustrate the SSO
aspect of the scenario, we assume that a patient with subject name
“1352-010170” (cf. Figure 3), who is registered in hospital 2 (H2),
is examined in hospital 1 (H1) and requests its patient history from
previous examinations in hospital 3 (H3). The procedure is ini-
tiated by the Web service client that demands the execution of a
protected Web service. Note that we use the generic term client,
whereas in our scenario this client is the WS-BPEL engine exe-
cuting the patient examination process. Prior to issuing the actual
service request, the client has to authenticate using the SAML IdP.
The latter queries the user database (DB) to validate the creden-
tials provided by the client. In our approach, the credentials (e.g.,
username-password combinations) are stored in a separate DB and
are hence decoupled from the RBAC model. However, the user-
name in the DB equals the subject name in the RBAC model. As
the credentials of user “1352-010170” are not stored in the DB of
H1, the IdP contacts the IdP of H2, which validates the credentials.

If the user credentials could not be validated, the process is ter-
minated prematurely and a SOAP fault message is returned. In our
example scenario, the business process receives the fault message
and activates corresponding WS-BPEL fault handlers. Otherwise,
if the credentials are valid, the IdP creates a signed assertion similar
to the one shown in Listing 1 and passes it back to the client. From
now on the business process attaches this assertion to every service
request. The request to the protected service is then intercepted by
the PEP of H3, which extracts the attached assertion, validates its
integrity, and aborts the service invocation if the assertion is invalid
(i.e., has been manipulated). Otherwise, it generates an Authoriza-
tion Decision Request message which is passed to the PDP. The
PDP then asks the RBAC repository if the client is allowed to ac-
cess the requested service. The PDP’s decision is expressed as an

Authorization Decision Statement. Wrapped into an assertion sim-
ilar to the one shown in Listing 2, the statement is then passed back
to the PEP. Based on the assertion’s enclosed information the PEP
then either effects the actual service invocation or returns a fault.

The example SAML assertion in Listing 1 illustrates the infor-
mation that is encapsulated in the header token when the scenario
process invokes the getPatientHistory operation of the pa-
tient Web service of H3. The assertion states that the subject named
1352-010170, which has been successfully authenticated by the
IdP of the hospital denoted by the Issuer element (H2), is al-
lowed to use the context default and the role patient. Note
that the subject can be a human being, but it may as well be a ser-
vice itself that attempts to invoke another service as part of a service
composition. The included XML signature element ensures the in-
tegrity of the assertion, i.e., that the assertion content indeed orig-
inates from the issuing IdP (H2) and has not been modified in any
way. When the PEP of H3 intercepts the service invocation with the
SAML SOAP header, its first task is to verify the integrity of the
assertion. The signature verification requires the public key of the
IdP that signed the assertion; this key is directly requested from the
corresponding IdP (under http://h2.com/IdP) using SAML
Metadata [19].

1 <Issuer>http://h2.com/IdP</Issuer>
2 <ds:Signature>...</ds:Signature>
3 <Subject><NamelD>1352—-010170</NameID></ Subject>
4 <Conditions NotBefore="2010—12—17T09:48:36.171Z"
5 NotOnOrAfter="2010—12—17T10:00:36 .171Z" />
6 <AttributeStatement>
7 <Attribute Name="context">
8 <AttributeValue>default</ AttributeValue>
9 </ Attribute>
<Attribute Name="role">
<AttributeValue>patient</ AttributeValue >
</ Attribute>
</ AttributeStatement>
</ Assertion>

11

Listing 1: SAML Assertion Example (1)

After the PEP of H3 has verified the message integrity (and
thereby authenticated the subject), it needs to determine whether
the subject is authorized to access the requested service operation.
This is achieved by the PDP service of H3 that allows the PEP to
post an SAML Authorization Decision Query. The PDP answers
this query by returning an assertion containing at least one SAML
Authorization Decision Statement. Using these Decision State-




ments the PDP is able to express the RBAC service’s authorization
decision using “plain” SAML. Listing 2 shows an example SAML
assertion which informs the PEP that our patient is allowed to
invoke the action (operation) getPersonalData of the resource
(Web service) http://hl.com/patient. The Issuer name
of the PDP is the same as for the IdP (http://h3.com/IdP).

<Assertion>
<Issuer>http://h3.com/IdP</Issuer>
<ds:Signature>...</ds:Signature>
<Subject>
<NamelD>1352—-010170</NameID>
</Subject>
<AuthzDecisionStatement Decision="Permit"
Resource="http://h3.com/ patient">
<Action>getPersonalData</ Action>
10 </ AuthzDecisionStatement>
11 </Assertion>

e . ST R .

Listing 2: SAML Assertion Example (2)

4.3 RBAC DSL Implementation

In Section 3.1 we have described the mapping of the RBAC
model elements to the textual DSL representation. The mapping
of the RBAC DSL commands to executable code on the implemen-
tation level is illustrated in Figure 7. We follow a hybrid approach
to DSL development, which combines preprocessing with embed-
ding [42]. Embedding means that the DSL platform makes use of
an existing host language and uses the interpreter and development
tools of that language. Preprocessing denotes the process of con-
verting the DSL commands into the machine-readable syntax of the
host language using (light-weight) transformations. We evaluated
the performance and syntactical flexibility of different (scripting)
languages and have chosen Ruby, a language frequently used for
DSL development. Ruby provides an interpreter named JRuby?,
which is implemented in pure Java and can be integrated using the
Java Bean Scripting Framework® (BSF).

RBAC Scenario

RBAC Scenario Uses | DSL Implementation

-~ Definition - -
~ Definition (in Host Scripting [ > (in rl:lost Scripting
(in DSL Notation) Language) anguage)

Interpreter for
Host Scripting Language

A

Preprocessor

Starts as
External Process

RBAC
Service

Figure 7: Execution of RBAC Requests

..................... > PDP

The Preprocessor component transforms the RBAC scenario def-
inition from the DSL notation to the syntax of the host scripting lan-
guage. An example of a light-weight transformation is to convert
ASSIGN "jane" "staff" to ASSIGN "jane","staff"
when using Ruby as the host scripting language. While the first
command cannot be parsed by JRuby, the transformed command
is well-formed for the interpreter, and is interpreted as a call to the
function ASSIGN with the two string parameters, which looks up
the Subject instance and assigns the given role. The remaining
DSL constructs are interpreted analogously, and the implementa-
tion ensures that all constraints (e.g., mutually exclusive roles, see

2http://jruby.org/
3http://jakarta.apache.org/bsf/

Table 1) are fulfilled. The preprocessor also serves a second pur-
pose, namely checking whether the DSL code conforms to the al-
lowed syntax or uses any disallowed commands; since the textual
DSL is the user interface to the security-critical RBAC model, it is
important to identify potentially harmful commands. Another point
to consider is that the host language potentially provides features
that are undesired for use in the DSL context, such as input/output
operations. Hence, the interpreter for the host scripting language
executes in a separate Java process, for which we apply restrictive
permissions in the Java security policy settings, such as file sys-
tem access (java.io.FilePermission) or network access
(java.net .NetPermission).

4.4 Automatic Transformation of WS-BPEL
Process Definition

At deployment time of the business process, the WS-BPEL def-
inition is automatically transformed to ensure correct execution of
identity and access control at runtime. Note that the WS-BPEL pro-
cess is responsible for the choreography of CrP service, SAML IdP,
as well as the core business logic services for patient examination.

Figure 8 depicts the relationships between the five scopes (s1,
52, 83, 54, s5) of the scenario process. A hierarchical relationship
indicates that the child scope (arrow target) is contained in the par-
ent scope (arrow source). Attributes that are not defined in a child
scope are inherited from the parent scope. For instance, scope s3
inherits the context from its parent s1. The existence of a sequential
relationship between two scopes s, (arrow source) and s, (arrow
target) means that the control flow is passed from s; to s,. More
specifically, the last task of scope s, has a control flow link to the
first task of s, in the process definition. This is the case for the
scopes sz and s3, where task Assign Physician has a control flow
link to Obtain X-Ray Image (cf. Figure 1). The scope relationships
graph is the basis for determining at which points in the process
definition the IAM tasks need to be injected.

Scope Relationships:
Hierarchical
..Sequential L

Scope s,
context = default

/\

Scope s, Scope s,
context = reception |~#{ context = default
role = staff role = physician

Scope s;
context = default
role = patient

Scope s,
context = emergency
role = physician

Figure 8: Scope Relationships in Scenario Process

The automatic WS-BPEL transformation is described in Algo-
rithm 1. Variable names are printed in ifalics, and XML markup
and XPath expressions are in typewriter font. The input is a
WS-BPEL document bpel with security annotations. Firstly, four
required documents need to be imported into the WS-BPEL process
using import statements: the XML Schema Definitions (XSD) of
SAML and WS-Security, and the WSDL (Web Service Description
Language) files describing the CrP service and the IdP service.

Then the partnerLink declarations for these two services are
added to bpel, and six variable declarations are created (in-
put/output variables for operations getUserAuthentication
and requestSAMLAssertion,a variable to store the assertion,
and a variable for additional information such as the instance ID).
Next, the algorithm loops over all scope elements s witharole
or context attribute, and stores hierarchical and sequential re-
lationships to the array variable rel. Although the implementa-



Algorithm 1 WS-BPEL Transformation Algorithm

Input: WS-BPEL document bpel
Output: transformed BPEL document
add <import ../> statements to bpel
add <partnerLink .. /> definitions to bpel
add <variable ../> declarations to bpel
rel <— new array // use variable rel for scope relationships
for all bpel/ /scope as s do

rels] «+ 0

if s/@role or s/@context then

rel[s] < rel[s]|Js/ancestor: :scope[1l]

SORXADUE LD

11: rel[s] < rel[s]|Js/preceding-sibling: :scope[1]

12:  endif

13: end for

14: for all indexes s in rel,  in rel[s] do

15:  if scopes r and s have different security requirements then

16: /I add IAM tasks to s: <invoke> for IdP and CrP
services, <assign> (SAML SOAP header) for each
<invoke>in s

17:  endif

18: end for

tion also considers more complex cases, we assume that a sequen-
tial relationship exists if s has a preceding XML sibling element
(i.e., an element on the same level as s in the element tree, shar-
ing the parent element with s) named scope. The parent scope
in a hierarchical relationship can be addressed using the XPath
ancestor: :scope [1]. After all scope relationships have been
determined, we loop over all related scopes r and s (conforming to
the notation in Figure 8, an arrow points from 7 to s) and check
whether the security requirements are different (in terms of differ-
ent security annotations). If so, the IAM tasks are injected to the
beginning of scope s. The IAM tasks consist of two invokes for
the invocations to CrP and IdP, as well as several assign tasks
which add the security SOAP headers to the requests of the re-
maining service invocations in scope s. Note that the first scope in
the process always receives the IAM tasks, although it has neither
a parent nor a preceding sibling element.

S. DISCUSSION AND EVALUATION

We evaluated various aspects of the presented solution, and the
main evaluation results are discussed in the following. The key as-
pects are the runtime performance of identity and access control en-
forcement, and the discussed WS-BPEL transformation algorithm.

To evaluate the scalability of the approach we have defined,
deployed, and executed ten test processes with the Glassfish
WS-BPEL engine. The processes contain an increasing size
(1,2,...,10) of scopes that are annotated with rbac:role and
rbac:context attributes. Each scope contains one <invoke>
task, which invokes one of the Web service operations of the
hospital scenario. The average response time of each service is
roughly 200 milliseconds. The processes have been deployed
in Glassfish, once with enforced security (i.e., annotated with
security attributes, automatically transformed at deployment time),
and once in an unsecured version. The deployed processes were
executed 10 times and we have calculated the average value to min-
imize the influence of external effects. Figure 9 illustrates different
measurements of the process execution time in milliseconds for
both the secured and the unsecured version. The secured version
incurs a large overhead, which is hardly surprising considering the
fact that for each business logic service the process needs to invoke

the CrP, IdP and RBAC services, and applies and checks the XML
signatures. However, the measured results indicate that the current
implementation leaves room for additional optimization.
18000 T T T r . r . :
16000 | Execution Time Secured
14000  Execution Time Unsecured |
12000 | L i 1
10000 | 1
8000 + * 1
6000 | [ T
4000 [ S 1
2000 = 1
0 1 | 1 1 I 1 | |
i 2 3 4 5 6 7 8 9 10

Number of WS-BPEL Scopes

Figure 9: Process Execution Times — Secured vs Unsecured

Avg. duration {(ms)

In Section 4.1 we presented our concrete implementation of an
SAML IdP and its duty to issue SAML Assertion tokens. These
Assertion tokens are embedded in the header of every subsequent
request to secured Web services. Each Assertion contains at least
one Attribute Statement that includes the service’s required role
and context attribute. As the Assertion contains exactly one single
context as well as one single role attribute, this means that the As-
sertion is only valid for one single subject, role, and context. Fur-
thermore this also means, that whenever one of these three change,
anew SAML Assertion has to be issued by the IdP. In terms of per-
formance, this approach may not be the most effective, but it has
the advantage, that it can be implemented using “plain” SAML. If
performance is a critical issue, we propose the following solution:
Instead of creating lots of specialized Assertions, the IdP should
issue just one generic Assertion per subject. Contrary to the spe-
cialized Assertion, the generic one contains a list of all context and
role attributes that the subject is allowed to use (instead of just one
in each case). This means, that the generic Assertion can be re-used
for multiple role/context changes in the WS-BPEL process. Con-
sequently, the IdP’s workload can be effectively reduced (provided
that there is at least one role/context change present in the WS-
BPEL process). The drawback of this solution is that a new custom
SOAP header needs to be introduced, in which the client specifies
which context and which role (chosen from the Assertion’s list of
allowed ones) it wants to use. Since the WS-BPEL engine acts as
the client, it is the engine’s duty to select and attach the correct
header to every Web service request. Hence this functionality has
to be embedded in the WS-BPEL process definition which, again,
increases its size and complexity substantially.

Concerning the evaluation of the WS-BPEL transformation al-
gorithm, we again consider the ten test processes described ear-
lier in this Section. Figure 10 shows the number of WS-BPEL
elements of the process definition before and after the automatic
transformation. The results indicate that the size of the WS-BPEL
definition rises sharply with increasing number of scopes. While
our test process with a single scope contains 33/115 WS-BPEL el-
ements before/after transformation, the process definition for 10
scopes grows to 60/484 WS-BPEL elements before/after transfor-
mation, respectively. These numbers are determined by counting
all XML (sub-)elements in the WS-BPEL file using the XPath ex-
pression count (//«). At the beginning of the transformation,
41 elements are added (import, partnerLink and variable
declarations), and for each new scope 41 elements are added for the
IAM task definitions (note that both values are 41 coincidentally).
We observe that the ability to define security annotations in WS-
BPEL greatly reduces the required effort at design time.



500 | WS-BPEL Elements After Transf.
WS-BPEL Elements Before Transf.

400
300 f
200
100

Value

T

1 2 3 4 5 6 7 8 9 10
Number of WS-BPEL Scopes

Figure 10: Process Size before and afer Transformation

The textual DSL is used as an interface to the policy rules stored
in the RBAC repository. In case a UML binding is required, it is
straightforward to integrate our DSL with domain-specific UML
extensions for process-related RBAC models (see, e.g., [36]).

6. RELATED WORK

This section discusses related approaches in the area of model-
driven IAM and their application to SOA.

Skoksrud et al. present Trust-Serv [31], a solution for model-
driven trust negotiation in Web service environments. The platform
supports modeling of trust negotiation policies as state machines,
and the policy enforcement is transparent to the involved Web ser-
vices. Different strategies for policy lifecycle management and mi-
gration are proposed. Our approach is less concerned with iterative
creation of trust relationships, but builds on an JAM model and uses
an integrated enforcement in Web service based business processes.

An integrated approach for Model Driven Security, that promotes
the use of Model Driven Architectures in the context of access con-
trol, is presented by Basin et al. [2]. The foundation is a generic
schema that allows creation of DSLs for modeling of access control
requirements. The domain expert then defines models of security
requirements using these languages. With the help of generators
these models are then transformed to access control infrastructures.

The approach by Wolter et al. [39] is concerned with modeling
and enforcing security goals in the context of SOA business pro-
cesses. Similar to our approach, their work suggests that business
process experts should collaboratively work on the security poli-
cies. A computational independent model (CIM) defines high-level
goals, and the CIM gets mapped to a platform independent model
(PIM) and further to a platform specific model (PSM). At the PIM
level, XACML and AXIS 2* security configurations are generated.
Whereas their approach is more generic and attempts to cover di-
verse security goals including integrity, availability and audit, we
focus on IAM in WS-BPEL business processes.

Kulkarni et al. [9] describe an application of context-aware
RBAC to pervasive computing systems. As the paper rightly states,
model-level support for revocation of roles and permissions is
required to deal with changing context information. Whereas their
approach has a strong focus on dynamically changing context (e.g.,
conditions measured by sensors) and the associated permission
(de-)activation, context in our case is a design-time attribute that is
part of the RBAC model definitions.

A related access control framework for WS-BPEL is presented
by Paci et al. in [23]. It introduces the RBAC-WS-BPEL model

*http://axis.apache.org/axis2/java/core/

and the authorization constraint language BPCL. Similar to our ap-
proach, the BPEL activities are associated with required permis-
sions (in particular, we associate permissions for invoke activi-
ties that try to call certain service operations). However, one main
difference is related to the boundaries of the validity of user permis-
sions: RBAC-WS-BPEL considers pairs of adjacent activities (a1
and a2, where a; has a control flow link to a2) and defines rules
among them, including separation of duty (a1 and a2 must execute
under different roles) and binding of duty (a1 and a2 require the
same role or user); our approach, on the other hand, is to annotate
scopes in BPEL processes, which allows to apply separation and
binding of duties in a sequential, but also in a hierarchical manner.

A dynamic approach for enforcement of Web services Security
is presented in [16] by Mourad et al. The novelty of the approach is
mainly grounded by the use of Aspect-Oriented Programming
(AOP) in this context, whereby security enforcement activities
are specified as aspects that are dynamically weaved into the
WS-BPEL process at certain join points. Essentially, our approach
can also be regarded as a variant of AOP: the weaved aspects are
the IAM tasks, and join points are defined by security annotations
in the process. A major advantage of our approach is the built-in
support for SSO and cross-organizational IAM. An interesting
extension could be to decouple security annotations from the WS-
BPEL definition and to dynamically adapt to changes at runtime.

Various other papers have been published that are related to
our work or have influenced it, some of which are mentioned in
the following. The platform-independent framework for Security
Services named SECTISSIMO has been proposed by Memon at
al. [13]. A multilayer mandatory access control (MAC) architec-
ture tailored to Web applications is presented by Hicks et al. [7].
Lin et al. [11] propose policy decomposition to support collabo-
rative access control definition. In [3] an approach to speeding up
credential-based access control operations — in particular in the
web context — is proposed by Carminati et al.

XACML [18] is an XML-based standard to describe RBAC
policies in a flexible and extensible way. Our DSL could be
classified as a high-level abstraction that implements a subset of
XACML’s feature set. Using a transformation of DSL code to
XACML markup, it becomes possible to integrate our approach
with the well-established XACML environment and tools for
policy integration (e.g., [12]).

7. CONCLUSION

We presented an integrated approach for Identity and Access
Management in a SOA context. The solution is centered around
model-driven development of RBAC constraints, and runtime
enforcement of these constraints in Web services based business
processes. Our approach fosters cross-organizational authenti-
cation and authorization in service-based systems, and greatly
simplifies development of SSO-enabled WS-BPEL processes. Al-
though tailor-made SSO solutions (coded explicitly in the business
process) may yield a performance gain over the generic approach,
from a practical viewpoint our approach has the advantage of being
highly reusable and simple to apply. As part of our ongoing work,
we are developing alternative ways to define and assign RBAC
permissions at runtime, also taking into account dynamic mutual
exclusion. We further investigate the use of additional security
annotations and an extended view of context information.

8. REFERENCES
[1] M. Alam, M. Hafner, and R. Breu. A constraint based role
based access control in the SECTET a model-driven appro-
ach. In Int. Conf. on Privacy, Security and Trust, 2006.



[2] D. Basin, J. Doser, and T. Lodderstedt. Model driven
security: From UML models to access control infrastruc-
tures. ACM Transactions on Software Engineering
Methodology, 15:39-91, 2006.

[3] B. Carminati and E. Ferrari. AC-XML documents:
improving the performance of a web access control module.
In 10th ACM SACMAT, pages 6776, 2005.

[4] D.F. Ferraiolo and D. R. Kuhn. Role-Based Access Controls.
In 15th National Computer Security Conference, 1992.

[5] D.E. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-
Based Access Control. Artech House, second edition, 2007.

[6] O. Garcia-Morchon and K. Wehrle. Efficient and
context-aware access control for pervasive medical sensor
networks. In IEEE Int. Conf. on Pervasive Computing and
Communications Workshops, pages 322 =327, April 2010.

[7]1 B. Hicks, S. Rueda, D. King, T. Moyer, J. Schiffman,

Y. Sreenivasan, P. McDaniel, and T. Jaeger. An architecture
for enforcing end-to-end access control over web
applications. In 75th ACM SACMAT, pages 163-172, 2010.

[8] V. Koufi, F. Malamateniou, and G. Vassilacopoulos. A
Mediation Framework for the Implementation of Context-
Aware Access Control in Pervasive Grid-Based Healthcare
Systems. In 4th Int. Conf. on Advances in Grid and Pervasive
Computing, pages 281-292, 2009.

[9] D. Kulkarni and A. Tripathi. Context-aware role-based
access control in pervasive computing systems. In /13th ACM
SACMAT, pages 113-122, 2008.

[10] N.Li, Q. Wang, W. Qardaji, E. Bertino, P. Rao, J. Lobo, and
D. Lin. Access control policy combining: theory meets
practice. In /4th ACM SACMAT, pages 135-144, 2009.

[11] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. Policy
decomposition for collaborative access control. In 13th ACM
SACMAT, pages 103-112, 2008.

[12] P. Mazzoleni, B. Crispo, S. Sivasubramanian, and E. Bertino.
XACML Policy Integration Algorithms. ACM Transactions
on Information System Security, 11:4:1-4:29, February 2008.

[13] M. Memon, M. Hafner, and R. Breu. SECTISSIMO: A
Platform-independent Framework for Security Services. In
Modeling Security Workshop at MODELS 08, 2008.

[14] T. Mens and P. V. Gorp. A Taxonomy of Model
Transformation. Electronic Notes in Theoretical Computer
Science, 152:125-142, 2006.

[15] M. Mernik, J. Heering, and A. Sloane. When and How to
Develop Domain-Specific Languages. ACM Computing
Surveys, 37(4):316-344, December 2005.

[16] A.Mourad, S. Ayoubi, H. Yahyaoui, and H. Otrok. New
approach for the dynamic enforcement of Web services
security. In 8th Int. Conf. on Privacy Security and Trust,
pages 189 —196, 2010.

[17] B. Neuman and T. Ts’o. Kerberos: an authentication service
for computer networks. Communications Magazine, IEEE,
32(9):33-38, Sept. 1994.

[18] OASIS. eXtensible Access Control Markup Language.
http://docs.oasis-open.org/xacml/2.0, 2005.

[19] OASIS. Metadata for the OASIS Security Assertion Markup
Language (SAML). http://docs.oasis-open.org/security/saml/
v2.0/saml-metadata-2.0-o0s.pdf, 2005.

[20] OASIS. Security Assertion Markup Language.
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-
os.pdf, March 2005.

[21] OASIS. Web Services Security: SOAP Message Security

(22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]

(30]

(31]

(32]
(33]

[34]

[35]

(36]

(371

(38]

[39]

[40]

[41]

[42]

1.1. http://docs.oasis-open.org/wss/v1.1/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf, 2006.

OASIS. Web Services Business Process Execution
Language. http://docs.oasis-open.org/wsbpel/2.0/0S, 2007.
F. Paci, E. Bertino, and J. Crampton. An Access-Control
Framework for WS-BPEL. Int. J. f. Web Services Research,
5(3):20-43, 2008.

M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and Research
Challenges. Computer, 40(11):38-45, 2007.

A. Pashalidis and C. J. Mitchell. A taxonomy of single
sign-on systems. In 8th Australasian Conference on
Information Security and Privacy, pages 249-264, 2003.

W. rong Jih, S. you Cheng, J. Y. jen Hsu, and T. ming Tsai.
Context-aware access control in pervasive healthcare. In EEE
Workshop: Mobility, Agents, and Mobile Services, 2005.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-
based access control models. Computer, 29(2):38 —47, 1996.
D. C. Schmidt. Model-Driven Engineering — Guest Editor’s
Introduction. Computer, 39(2), February 2006.

B. Selic. The Pragmatics of Model-Driven Development.
IEEE Software, 20(5), 2003.

S. Sendall and W. Kozaczynski. Model Transformation: The
Heart and Soul of Model-Driven Software Development.
IEEE Software, 20(5), 2003.

H. Skogsrud, B. Benatallah, and F. Casati. Model-Driven
Trust Negotiation for Web Services. IEEE Internet
Computing, 7:45-52, November 2003.

D. Spinellis. Notable design patterns for domain-specific
languages. J. of Systems and Software, 56(1):91-99, 2001.
T. Stahl and M. Volter. Model-Driven Software
Development. John Wiley & Sons, 2006.

M. Strembeck. A Role Engineering Tool for Role-Based
Access Control,. In 3rd Symposium on Requirements
Engineering for Information Security, 2005.

M. Strembeck. Scenario-driven Role Engineering. IEEE
Security & Privacy, 8(1), January/February 2010.

M. Strembeck and J. Mendling. Modeling Process-related
RBAC Models with Extended UML Activity Models.
Information and Software Technology, 53(5), May 2011.

M. Strembeck and G. Neumann. An Integrated Approach to
Engineer and Enforce Context Constraints in RBAC Environ-
ments. ACM Trans. on Inf. and System Security, 7(3), 2004.
M. Strembeck and U. Zdun. An Approach for the Systematic
Development of Domain-Specific Languages. Software:
Practice and Experience (SP&E), 39(15), October 2009.

C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and

C. Meinel. Model-driven business process security
requirement specification. J. Syst. Archit., 55:211-223, 2009.
World Wide Web Consortium (W3C). XML Signature
Syntax and Processing.
http://www.w3.org/TR/xmldsig-core/, 2008.

U. Zdun and M. Strembeck. Modeling Composition in
Dynamic Programming Environments with Model Trans-
formations. In 5th Int. Sym. on Software Composition, 2006.
U. Zdun and M. Strembeck. Reusable Architectural
Decisions for DSL Design: Foundational Decisions in DSL
Projects. In 14th European Conference on Pattern
Languages of Programs (EuroPLoP), July 2009.



