
 1

Software Architectures & Internet Technologies Research Group

Technical Report: SAIT-TR-01-2011

Title: An Enhanced Architectural Knowledge Metamodel Linking Architectural Decisions

to Other Artifacts in the Software Engineering Lifecycle
Date: April, 2011
Version: 1.0
Authors:

Rafael Capilla (Universidad Rey Juan Carlos)

Olaf Zimmermann (IBM Research)

Uwe Zdun (University of Vienna)

Paris Avgeriou (University of Groningen)

Jochen M. Küster (IBM Research)

Available at: http://www.sait.escet.urjc.es/rafael

Contact: rafael.capilla@urjc.es

Madrid, Spain

 2

Contents

1. Introduction ... 4

2. Motivation and Problem Identification ... 4

3. Framework Extensions for Artifact and Decision Knowledge Management 7

3.1 Extended Decision Modeling Framework: Checking and Tracing....................................... 8

3.2 Extended Decision Modeling Framework: Decision Evaluation and Tracking 9

3.3 Enhanced Trace Links and other Metamodel Extensions ... 10

4. Implementation in Existing and Emerging Tools ... 12

5. Case Study: Instantiation for SOA Enterprise Applications ... 15

5.1 Architecture Design Challenges ... 16

5.2 Decision Identification, Making, and Enforcement Activities .. 17

5.3 Decision Evaluation & Tracking Activities .. 18

6. Discussion ... 18

7. Related Work .. 20

8. Conclusion .. 21

References ... 21

 3

Abstract: Software architects create and consume many interrelated artifacts during the

architecting process. These artifacts may represent functional and nonfunctional requirements,

architectural patterns, infrastructure topology units, code, and deployment descriptors as well as

architecturally significant design decisions. Design decisions have to be linked to chunks of

architecture description in order to achieve a fine-grained control when a design is modified.

Moreover, it is imperative to identify quickly the key decisions affected by a runtime change that

are critical for a system’s mission. Therefore, this paper extends previous work on architectural

knowledge with a metamodel for architectural decision capturing and sharing that makes the

relationships between these artifacts explicit. This extended metamodel allows tools to create and

maintain fine-grained dependency links between the entities during decision identification,

making, and enforcement. Such links help to keep track of the evolution of the decisions and to

simplify artifact maintenance. Our extended metamodel also allows architects to defer decisions

from design and development time to the operations and maintenance phases of the software

lifecycle. In service-oriented architectures, such support for deferred decisions increases the

flexibility of tools and middleware and promotes loose coupling and runtime service composition.

Keywords: architectural design decisions, architectural knowledge, metamodel, runtime

decisions, traceability, evolution, service-oriented architecture.

 4

1. Introduction
The traditional software architecture design process [1] lacks adequate mechanisms to explain

the line of reasoning and making of design decisions. These decisions are often not

systematically documented when following this traditional design process. Reasoning about the

architectural design is considered a tacit process that exists only in the architect’s mind; the

decisions that lead to a software architecture are often overlooked during architecture design. In

recent years, the software architecture community has established design decisions as first-class

entities that should be captured alongside with other design elements. Therefore, the creation of

software architectures is now also seen as the result of a set of design decisions rather than just as

an assembly of components and connectors [2]. Making decisions explicit preserves architectural

knowledge when staff is exchanged, e.g., when subject matter experts join the development team

only temporarily or when transitioning from development to maintenance. As mentioned in [3],

long-term benefits such as reduced maintenance effort should motivate users to capture the

design rationale explicitly in the form of architectural decisions. This particularly holds true in

successive iterations of the system as it evolves. Three major issues exist in architectural

knowledge management:

a) Management of fine-grained dependencies between different design artifacts and decisions.

b) Adequate support for decisions that evolve over time and need to be maintained separately

from the current decision set.

c) Support for decisions that can be modified during runtime.

In this paper we show how these issues can be overcome. The introduced concepts help to

establish and preserve the correctness and consistency of the traceability links defined between

the various artifacts generated during design and development. As a second benefit, we close the

gaps between artifacts (caused by limitations in underlying metamodels) that make it difficult to

track the evolution of these artifacts during maintenance. Finally, the dynamicity of changes

during runtime requires re-evaluating and modifying certain decisions when context conditions

change. Hence, specific support for runtime decisions helps to facilitate tracing activities during

the operations phase (e.g., system monitoring).

The remainder of the paper is structured in the following way. Section 2 describes the

background and the motivation of this research. In Section 3 we present a metamodel supporting

traceability to keep track of the decisions made and their relations to design elements and

artifacts. Section 4 then outlines the implementation of the metamodel in several prototype tools.

After that, Section 5 describes a case study in the Service-Oriented Architecture (SOA) domain

to demonstrate how the extensions of the metamodel are of practical use for SOA design. In

Section 6 we discuss our findings while in Section 7 we describe the related work. Finally,

Section 8 summarizes the contributions of our work and draws conclusions.

2. Motivation and Problem Identification
A variety of research prototype tools have been developed to support design decisions in

software architecture. From our experience developing and using various tools for architectural

decision modeling, e.g., the Architectural Decision Knowledge Wiki [4], Architecture Design

 5

Decision Support System [5], and The Knowledge Architect [6], we have observed three major

shortcomings which are related to the creation and maintenance of the traceability links between

the architectural knowledge and other artifacts:

1. The coarse link granularity in existing metamodels makes models easy to populate, but

does not support a fine-grained tracing and tracking of decisions in relation to atomic

design elements such as attributes in a class model or tasks in a business process model.

Support for fine-grained trace links in current architectural decision modeling tools is

weak or inexistent as some of the tools import UML design models externally and

decisions can be only linked to coarse-grained artifacts.

2. Existing metamodels do not put special attention on history and evolution of decisions.

Only a few of them treat evolution of decisions and architecture partially. One reason for

this limitation is that most commercial and open source UML modeling tools do not offer

explicit support for architecture evolution (e.g., Jude Community, Magicdraw).

3. The decision making process suggested by existing metamodels assumes that all

decisions can be made at design time; deferring decisions to runtime is not supported. At

present, the existing architecture decision modeling prototype tools do not offer support

for runtime decisions that can be traced back to the architecture or to requirements when

a piece of code or system module changes.

The first problem area addressed in this paper is link granularity. Links connecting key design

decisions to architectural artifacts should include relationships to smaller parts of the design.

Such an approach helps to achieve the precision required to estimate the impact of changes

accurately. Small but important decisions should also be captured and linked properly. For

instance, a decision to introduce a new UML package or class seemingly constitutes a more

coarse-grained decision than the decision to add a new attribute to an existing class; however, the

attribute may express a key architectural concern, e.g., it might flag an architecture component to

be subject to financial and general IT controls audits or it might demarcate a system transaction

boundary in a service composition. In many cases, fine-grained decisions are derived from

coarse-grained ones made before; however, the lack of accuracy of existing traceability models

do not offer a way to track the impact on the design or code. Thus, it is required to introduce

trace links with narrower and more precise scope to achieve more precision in the traceability of

architectural decisions during decision identification, making, and enforcement.

The second problem pertains to the maintenance of a system, as the design decisions made in

the past might become obsolete, and the history and evolution of decisions should be recorded in

the same way versioning repositories store the history and evolution of source code. This is

useful for a number of reasons. In certain cases during system evolution, the architects have to

revisit past decisions and revert to them if a new decision appears to be wrong. In other cases,

architects may need to roll back the design, and start a new decision path from that point. Finally

new stakeholders that become involved in a project can be educated much more efficiently by

studying the evolution of decisions over time and the rationale that lead to the existing set of

decisions and the present design.

As a third problem, we observed that today the dynamicity of certain systems may imply that

certain decisions affect architectures that have already been deployed but have to be modified

during runtime. For instance, a composite service which replaces an atomic service with another

one due to new quality-of-service conditions during execution requires deferring decisions to

runtime. Such deferred decisions have to be tracked back to the architecture and requirements so

 6

that conformance to them can be ensured. Supporting runtime decisions becomes increasingly

relevant in modern operating environments and deployment infrastructures such as virtualized

data centers: each instantiation of a virtual software image may decide for a slightly different set

of quality properties. Examples include the heap and disk size of virtual UNIX machines

(infrastructure-as-a-service scenario), Java and relational data source settings of Web appli-

cation servers (platform-as-a-service), and login and encryption policies of hosted Web

conferences (software-as-a-service). These decisions are based on user preferences and current

resource consumption (system load); these two types of decision drivers only become known at

runtime. Consequently, it makes sense to defer the detailed architectural decisions about these

infrastructure settings to runtime (while at design time certain architectural templates that

constrain the runtime configuration options can be predefined).

Figure 1 Metamodel for Architectural Decisions

In our previous work [7, 8, 9] we introduced a conceptual framework for decision modeling

with reuse to extend recent research on design decisions. Our work focused on the following

main contributions:

1. A decision making process which comprises decision identification to delimit the scope,

decision making to choose a feasible design alternative for each design issue, and decision

enforcement to share the results of the decision making step with relevant stakeholders.

2. A decision capturing and sharing metamodel supporting the decision making process.

This metamodel is specified as a Unified Modeling Language (UML) class diagram and a

formal definition based on elementary set and graph theory [8]. The metamodel, illustrated

in Figure 1, relies on three main core domain entities: ADIssue, ADAlternative, and

ADOutcome (AD stands for Architectural Decision). An ADIssue captures an architectural

problem that requires a design solution whereas ADAlternative instances capture the pros

 7

and the cons of the design choices an architect has (i.e., the possible solutions available

and the criteria for choosing or not choosing such option). Finally, ADOutcome instances

capture project-specific knowledge including the justification and the consequences of

decisions actually made. This metamodel is implemented in the Architectural Decision

Knowledge Wiki/Architectural Decision Knowledge Web Tool [4], which is a

collaboration system and decision modeling tool. Other existing tools are based on similar

metamodels [5, 6].

With regards to the problems of link granularity, history and evolution of decisions and

deferring decisions, the existing metamodel does not offer support. We will later explain how

this metamodel can be extended to support these concepts.

We worked with more than one hundred practicing architects, who applied and appreciated the

metamodel as well as the SOA guidance model instantiated from it [7, 8, 9]. As part of our

validation activities, we conducted a user survey. Among other things, users pointed out:

1. Decisions have to be visited multiple times and sometimes revised as the design evolves;

any waterfall process or big design upfront is not adequate for most real-world projects.

Decisions are hardly made in isolation.

2. The lifetime of decisions transcends their identification, making, and enforcement; they

have to be evaluated once a system is implemented, at least in prototypical form. Only

then it becomes evident whether made decisions have led to a design and implementation

that allows the system to meet the quality attributes that have been stated for it.

3. There is a desire to model links from decisions to other model elements and artifacts

represented more explicitly (e.g., types of requirements appear as decision driver text in

the metamodel in Figure 1, but are not first class metamodel entities that can be linked to).

The scope attribute of an issue (in the metamodel in Figure 1) can identify the type of

design model element an issue pertains to, but at present this textual information does not

link to any artifacts used in the design process.

The metamodel extensions specified in this paper are motivated in this user feedback. We base

our proposed metamodel extensions on the metamodel that underlies in Architectural Decision

Knowledge Wiki/Architectural Decision Knowledge Web Tool because this tool is populated

with a SOA guidance model comprising more than 500 issues and 2000 alternatives recurring in

SOA design; architectural patterns described in the literature are among these alternatives (only a

subset of these issues and alternative descriptions have been published so far). Hence, we count

on a significant amount of knowledge to describe different types of design issues from a realistic

point of view. However, our metamodel extensions are designed in such a way that they can be

implemented in other tools as well (assuming that these tools support extensibility of their

respective metamodels). To support this claim, we outline how we implemented the new

concepts in an extensible commercial requirements engineering product later in this paper.

3. Framework Extensions for Artifact and Decision Knowledge

Management
In order to overcome the three problems mentioned in Section 2, we extend the conceptual

modeling framework and metamodel in Figure 1. In doing so, we leverage the capabilities of

current tools supporting architectural design decisions. For the sake of clarity, Table 1

summarizes the connection between our goals and the proposed solutions.

 8

Table 1 Goals linked to their solutions for artefact and knowledge management in the framework
Goal

Solution

Support for fine grained

dependencies between design

artifacts and decisions

Support history and

evolution of decisions

Support for deferring

decisions to runtime

Solution 1 Extend the decision modeling

framework with additional

checking and tracing activities

in the decision making step

(Section 3.1)

N/A

N/A

Solution 2

N/A

Define links to support the

evolution of design

decisions. Such links are

maintained separately from

the network of decisions

(Section 3.2)

Add an additional decision

evaluation and tracking step

to the decision modeling

framework to better control

those decisions affected by

runtime conditions

(Section 3.2)

Solution 3 Extend the UML metamodel

to express fine grained link

traceability (Section 3.3)

Extend the UML metamodel

to express history and

evolution of decisions

(Section 3.3)

Extend the UML metamodel

to express deferring decisions

at runtime (Section 3.3)

In the remainder of this section, we briefly review the existing concepts and then introduce

our extensions. Section 3.1 and Section 3.2 focus on the framework and process extensions,

Section 3.3 on the metamodel extensions. In Section 4 we then outline their implementation in

existing and emerging tools and in Section 5 we apply them to an SOA case study.

3.1 Extended Decision Modeling Framework: Checking and Tracing
As mentioned in the previous section, the decision making process described in [7] consists of

the following steps:

(i) Decision identification, delimiting the scope of the decisions required.

(ii) Decision making, aiming at selecting the best design alternative among several

options.

(iii) Decision enforcement, dealing with sharing the results of the decision making with the

stakeholders with the objective to ensure that these results are actually implemented.

As we can see in Figure 2, we added two new sub-tasks in the existing decision making step,

checking and trace, and added one new step, decision evaluation and tracking:

• Checking. This sub-task pre-evaluates the case of incompatible or wrong decisions and

warns users before these are made. Only valid decisions are included in the network of

decisions in order to avoid that unnecessary links between decisions and other software

artifacts are created. Valid decisions are those that do not violate any integrity constraints

that are specified in the decision model. The existing metamodel allows expressing such

integrity constraints, e.g., compatibility and incompatibility relations between

alternatives. Another benefit of this phase is that the amount of decisions and links can be

reduced if we focus only on valid ones.

 9

• Trace. This sub-task introduces two kinds of trace links: (i) between decisions and (ii)

from decisions to artifacts such as requirements, scenarios, and architectural elements of

different sizes. Such links have been already implemented in tools like ADDSS [5] and

The Knowledge Architect [6]. However, these fine-grained links that connect decisions to

small parts of the architecture have to be created and maintained manually; the

connection to an architecting or decision making process framework has not been

considered yet. By adding the trace activity to our process framework (in the decision

making step), new trace links from decisions to small architecture elements can now be

defined when they are identified during the decision making work. These trace links are

more detailed than the previously existing ones and therefore have an enhanced accuracy

(see Section 3.3 for examples). It becomes possible to let tools create some of these trace

links automatically as the design is refined.

Figure 2 Decision making steps, track and evolution

3.2 Extended Decision Modeling Framework: Decision Evaluation and Tracking
After the decision enforcement step, a new step called decision evaluation and tracking is added

with a twofold goal:

(i) First, this task allows architects to continuously track and evaluate the changes in the

decision model through the links established in the decision making step. Once an

architecture has been realized in an implementation and this implementation has been

deployed into a runtime environment (prototype or production level), the architect

evaluates whether the constructed system meets its functional requirements and quality

goals (these concerns have served as decision drivers of issues and as justifications of

outcomes in the extended decision making step introduced in Section 3.1). In case of

mismatches between requirements and the behavior of the system observed in the

evaluation, selected decisions are revisited and possibly changed; in any case, the

results of the evaluation are tracked.

(ii) Secondly, we support evolution links to preserve the change history of decisions. For

instance, the status of a decision might change over time; old decisions might be

replaced by new ones. However, the architect might want to record the history of the

decisions as they change over time to capture the change history and evolution of the

architecture. This evolution should be maintained separately from the current network

of decisions in order to alleviate having a big number of trace links, especially for

those decisions that become obsolete. In this step, what-if predictions (impact analyses)

Decision
Identification

Decision making
Decision

Enforcement

Decision Modeling Framework

Decision
Evaluation & Tracking

Checking
Evaluate decisions and warn users

about incompatible and wrong
decisions

Trace
Links between

design decisions
and SW artifacts

Track
Evaluate and monitor changes

Evaluate runtime decisions
Detect mistmatches

Evolve
Define links for evolution of

design decisions
Impact analysis

Decision
Identification

Decision making
Decision

Enforcement

Decision Modeling Framework

Decision
Evaluation & Tracking

Checking
Evaluate decisions and warn users

about incompatible and wrong
decisions

Trace
Links between

design decisions
and SW artifacts

Trace
Links between

design decisions
and SW artifacts

Track
Evaluate and monitor changes

Evaluate runtime decisions
Detect mistmatches

Track
Evaluate and monitor changes

Evaluate runtime decisions
Detect mistmatches

Evolve
Define links for evolution of

design decisions
Impact analysis

Evolve
Define links for evolution of

design decisions
Impact analysis

 10

often have to be performed; at present, these predictions are labor-intense brain

experiments solely based on the architect’s insight into the project and his/her tacit

experience. With our metamodel extensions in place, tools can support these activities

(with the objective to achieve design acceleration and quality assurance effects).

3.3 Enhanced Trace Links and other Metamodel Extensions
To overcome the lack of fine grained traceability (see Section 2), we enhanced the existing

metamodel with additional associations and classes. Our main rationale for adding new elements

is to support explicit trace links to small architectural artifacts that help to check the integrity of

the decision network, to evaluate the impact of changes, to keep track of the history and

evolution of changes, and to record the root causes of changes. The extended metamodel is

shown in Figure 3. In the remainder of this section we describe the new classes and new

elements highlighting them in italicized text.

Figure 3 UML metamodel for capturing design decisions and focus on maintenance, evolution,

and runtime concerns

Links to design artifacts. Two new classes, ADDesignElement and ADDesignArtifact, specify

the parts of the architecture that result from one or more design decisions represented by

outcome instances. ADDesignElement instances represent elements of modeling languages. For

example, if we map to Unified Modeling Language (UML), it refers to a UMLNamedElement

(i.e., any UML element that can be named). This includes coarse grained elements such as

components and connectors, but also more fine grained elements such as class attributes.

ADDesignArtifact aggregates and assembles such elements into project deliverables such as a

 11

platform-independent, technology-neutral functional component model. ADDesignElement

instances are defined to have an ADDesignElementType, which also becomes the type of the

scope attribute of the ADIssue class. In the architectural decisions viewpoint, the relationships

between two newly introduced subclasses of ADOutcome, ADDecidedOutcome and

ADDeferredOutcome (the existing metamodel introduced the ADOutcome class to record actual

decisions made to solve a problem including its rationale), and ADDesignElement (with subclass

ADRuntimeElement, introduced below) allows us to define trace links to individual parts of an

architecture. ADDecidedOutcome and ADDeferredOutcome indicate that enforcing a decision at

design time differs from enforcing a decision at runtime (with respect to the artifacts in which the

decision materializes; e.g., UML class or conceptual application server node at design time vs.

Java class or XML deployment descriptor at runtime. Such fine-grained linkage down to the

level of individual architectural elements (e.g., UML components and connectors, physical

topology units and hosting links, attributes of UML components or Java classes or XML

elements) increases the precision and expressivity of the decision models. In summary, we have

now introduced external trace links from decisions to structural and behavioral models, which

were not supported previously (i.e., in existing metamodels).

Requirements traceability. In the decision making process, several alternatives (ADAlternative)

can be captured, considered, and evaluated before a decision is made. An external link, from

requirements to decisions, can be established via the new class ADDriverType, which gathers the

origins and influencers of decisions, such as types of functional and non-functional requirements.

Because an issue is a reusable knowledge entity, the ADDriverType class supports only types of

requirements (e.g., quality attributes such as performance and modifiability), but not real

instances of such requirements: the additional class ADRequirement serves this purpose.

ADRequirement instances may represent analysis artifacts such as business process models, use

cases, or user stories as well as non-functional requirements such as software quality attributes

(e.g., sub-second response time performance, modifiability via multi-platform support, etc.).

ADRequirementsArtifact instances compile a number of individual requirements. Each

ADRequirement instance is classified by its kind, which is expressed by the ADRequirementType

class. As a result of the improvement, we removed the decisionDrivers attribute initially defined

in the ADIssue class (e.g., a problem that has to be solved). Thus, the new metamodel supports

now full traceability from requirements to decisions and other design artifacts.

Decision history and evolution. The evolution of decisions is described by means of the

ADOutcomeEdition class, which establishes a chain of decisions that change over time. For

instance, a corporate system may have to replace its middleware after several years of successful

production use because new enterprise-level requirements demand a technological change in the

organization. Hence, this decision made in the past for selecting the right middleware may have

became obsolete and may have to be replaced by a new one. The ADOutcomeHistory class keeps

track of the history of changes to a decision made years or months ago (i.e., collections of related

ADOutcomeEdition instances, each of which referring to a single ADOutcome instance).

Deferring decisions to runtime. Some systems may change their status, operation mode (e.g., a

system that updates its software version changes its operation mode from normal operation to

maintenance mode until the reconfiguration process finishes and the system returns to the normal

mode), or configuration during runtime due to external or internal conditions. Hence, the

decisions that led to, for instance, a given product architecture might have to be modified, and in

some cases lead to a different architecture. In such cases, certain decisions have to be replaced

 12

temporarily by new ones or they can also become obsolete for a given time period. Therefore, we

introduce the ADRuntimeElement class (atomic) and the ADRuntimeArtifact class (composite) to

reflect such situations and represent the code pieces that enforce the decisions represented by

instances of the ADDeferredOutcome class. As decisions that change during runtime cause the

architecture to be modified according to the depth of the change, adding support for runtime

decisions improves traceability between artifacts; runtime artifacts can serve as link targets.

These finer grained traceability links can determine the parts of architectures that have to be

modified when changes happen. To our knowledge, this feature has not been implemented before

in other tools and models capturing design rationale. Hence, we extend and enhance previous

works for systems that require more surveillance or adaptability due to, for instance, new context

conditions. Examples of issues that can not always fully be resolved at design time are:

• Specifically to Service-Oriented Architecture (SOA), capturing runtime decisions and

linking these to code assets is required. For example, our metamodel can describe the

decision in a composite Web Service (a type of design element) to dynamically modify

the Business Process Execution Language (BPEL) workflow that realizes the composite

Web service, e.g., to engage a new subprocess to reflect a certain business rule or other

runtime condition. Such late decision is often based on new quality-of-service conditions

that modify the Service Level Agreement (SLA) for a given period (e.g., regarding

guaranteed response times). Our metamodel uses the classes ADRuntimeArtifact and

ADDeferredOutcome to express such situations.

• The decision how to route a service invocation request that represents an atomic activity

in an executable business process model (i.e., dynamic service composition). Note that

this decision can only be deferred to runtime if such flexibility does not violate regulatory

constraints such data privacy and system and process assurance compliance (such

concerns can be modeled as ADDriverType and linked to issues according to the

metamodel presented in Figure 3).

• The decisions able to customize certain software features when reusing a particular

application package, middleware component, or product family (e.g., using variation

points in software product lines [10, 11]). For instance, a database management system

might support distributed two-phase commit (2PC) protocol at an extra performance and

license cost; when the decision to use the system is made, it might not be known yet

whether the 2PC support is required. This decision might even change over time, which

can be expressed as a series of chained ADOutcomeEdition instances.

• The decision to delegate some of the responsibilities to end users that are performed by

architects/developers in traditional software engineering (situational application

development via Web-centric container architectures such as mashups). For instance,

such design issues might deal with user interface patterns, data formats (e.g., MIME

types), and information provider selections.

4. Implementation in Existing and Emerging Tools
This section outlines how the enhancements in the extended metamodel can be supported by

three existing architectural knowledge management and modeling tools: ADDSS [5], The

Knowledge Architect [6], and Architectural Decision Knowledge Wiki/Web Tool [4]. These

tools share several goals and usage scenarios, but differ in their origins, use cases, and tool

architecture. We discuss all three independently developed tools to illustrate the generality of our

 13

approach by explaining how the extended metamodel can be supported by them. In addition, we

present an actual implementation of the extended metamodel on top of a commercial

requirements engineering and management platform which supports metamodel extensions and

Web-based artifact linking.

Architecture Design Decision Support System (ADDSS): In this tool [5], the model

underlying the tool supports explicit traces to requirements (ADDriverType) and architectures

(ADDesignElement, ADDesignArtifact) as well as between design decisions, but links between

decisions and smaller parts of the architecture can not be specified in a fine grained fashion. To

overcome this, Figure 3 specifies a class ADDesignElement and establishes links from the

ADOutcome to provide fine grained links to small design artifacts. Evolution in ADDSS is only

supported by several attributes; there is no way to define a chain of decisions history as in the

proposed metamodel of Figure 3 (using the ADOutcomeEdition and ADOutcomeHistory classes).

Finally, ADDSS does not support runtime decisions like in our proposed solution. Hence, the

ADRuntimeElement, ADRuntimeArtifact and ADDeferrredOutcome classes should be

incorporated into ADDSS’ metamodel to enable tracking runtime decisions.

The Knowledge Architect (KA): This tool suite [12] is comprised of a number of specialized

tools for capturing, (re)using, translating, sharing, and managing software architectural

knowledge. The Knowledge Architect entails specialized support for integrating the various

architecting activities [13] and supporting collaboration between the stakeholders of these

activities. The different tools support different activities (e.g. analysis [6], design [14], sharing

[15]) and therefore each tool has a specialized Architectural Knowledge (AK) metamodel to deal

with the different types of knowledge produced and consumed during the architecting process.

The different metamodels are integrated into the central knowledge repository of the tool suite.

Traceability can be achieved in two ways: a) within each metamodel, traceability links are

established between the AK concepts (e.g., between “decisions”, “concerns”, “decisions topics”

and “alternatives” in the document knowledge client of the KA) b) across different metamodels

traceability links can be established within the knowledge repository (e.g. “decisions” and

“concerns” are common concepts of both the document knowledge client and the analysis model

knowledge client of the KA). The KA can be extended in two ways to support the metamodel of

Figure 3: a) all the tools have extensible metamodels (not hard-coded but completely

customizable), thus the new concepts and relations can be added in a straightforward way; b) the

central knowledge repository itself stores knowledge in RDF format and can directly

accommodate the metamodel extensions of Figure 3. As an example the classes

ADDecideOutcome and ADDeferredOutcome can simply inherit from the class Decision, while

ADDriverType can inherit from the class Concern (both Decision and Concern belong to the

document knowledge client metamodel). The extensions for history and evolution are not

necessary to be implemented as the KA, as the tool suite uses the versioning system of Sesame to

track the evolution of each knowledge entity.

Architectural Decision Knowledge Wiki/Architectural Decision Knowledge Web Tool:

Architectural Decision Knowledge Wiki [4] is a Web 2.0 collaboration tool supporting the

decision modeling capabilities and original UML metamodel first published in [8]. A version 1.0

was originally implemented in PHP and released in March 2009; in October 2009, a Java

reimplementation of the tool was released under the name Architectural Decision Knowledge

 14

Web Tool [4]. The tool supports about 50 decision modeling and making use cases. It assembles

ADIssue and their ADAlternative on a decision identification tab (these metamodel entity types

are jointly referred to as decisions required). ADOutcome instances are created and updated on a

second decision outcome tab (capturing decisions made), which exposes a simple decision state

management workflow to the user (with open/decided/approved/rejected states).

To support the extended metamodel introduced in the previous sections, the following

additional features and components are required:

1. The ADDriverType class is a result of refactoring the decision driver attribute in ADIssue;

hence, the new capability can be implemented by refactoring the user interface

components displaying the decision identification tab as well as the underlying server-

side business logic and database schema. Having performed these refactorings, the fine-

grained traceability links can be added to the decision identification tab; advanced user

interface features such as pop-ups can be added.

2. The ADOutcomeHistory and ADOutcomeEdition classes can be realized by implementing

the edition pattern. The business logic and the database schema of the existing

implementation already do so; on top of that, an additional decision evolution tab can be

added to the user interface to display the decision making history.

3. Deferring decisions to runtime can be supported by introducing a new state “deferred” for

outcome instances; this requires to update the user interface components supporting the

decision making tab, as well as the state machine implemented in the business logic

realizing ADOutcome instance creation and lifecycle management.

To investigate and demonstrate the technical feasibility, practicality, and usability of these

enhancements, we created a demonstrator in a requirements modeling and management platform

prior to implementing them in the actual tools (following the well-established design principles

such as user interface storyboarding and prototyping).

Implementation of the extended metamodel in IBM Rational Requirements Composer: For

our proof-of-concept we used a recently released requirements engineering and storyboarding

tool, IBM Rational Requirements Composer (RRC). Version 2.0 of this Jazz repository-based

product became generally available on jazz.net in November 2009. The RRC metamodel by

default supports artifacts such as business process models, use case diagrams, storyboards, but

also supplemental rich text documents representing features and non-functional requirements.

All artifacts as well as external resources can be linked to each other via Web URLs. Via

attribute groups, the default metamodel can be extended.

We first created custom attribute groups to represent the original metamodel and then added

new attribute groups representing ADDriverType and ADDeferredOutcome. ADOutcomeHistory

does not require product configuration; it is supported by the server component of the RRC

product (via the snapshotting capabilities which stores model versions in the Jazz repository).

Next, we instantiated SOA model elements (instances) via templates we created from sample

rich text artifacts which use the newly defined attribute groups. The sample model elements were

populated from the existing SOA guidance model available in Architectural Decision Knowledge

Web Tool (via copy-paste). Finally, fine grained traceability links were added to demonstrate

requirements to decisions linkage.

The sample links from requirements to issues and back (introduced in the previous section and

shown in the extended UML diagram) demonstrate the technical feasibility of our concepts; the

 15

links reside on the individual requirement/issue/outcome instance level, not on document-to-

document level. This paves the way for requirements to decisions integration as suggested by our

metamodel extensions. Concerns expressed as ADDriverType become first class citizens in the

user interface (tagged as architecturally significant requirements) and the architecture of the tool

(unlike in the original implementations).

In conclusion, this implementation demonstrated that the extended metamodel is generic and

expressive enough to be supported in multiple tools.

5. Case Study: Instantiation for SOA Enterprise Applications
We applied our decision modeling and linking concepts to an industrial case study from the tele-

communications industry. We focused on one particular set of architectural decisions within the

boundaries of the executive decision to use process-enabled SOA as the primary architectural

style of the system. This industrial case study concerns the modernization of an existing,

business-to-business order management system in a major telecommunications company

employing a wholesaler-retailer business model [16]. In this business process-centric scenario, a

key business requirement (concern) was to ensure enterprise resource integrity over multiple

channel interactions and time. User channels included the Internet (providing end user self

services) and call centers. Two of the order management processes consisted of up to 19 steps

and could run for up to 24 hours. Market deregulation and increasing competition caused the

concrete problem of having to coordinate competing requests for the same physical resources in

the shared telephony network. This coordination was seen to improve customer satisfaction

(measured as number of successful order requests). Figure 4 describes the main use cases and

stakeholders of the two business process described before (i.e., create PSTN service, move PSTN

service):

 16

Figure 4 System context of an order management telecommunications system (VSP – Virtual

Service Provider; PSTN – Public Switched Telephone Network)

5.1 Architecture Design Challenges
This business environment led to many architectural design challenges. Key technical

requirements in this order management context were multi-channel request coordination and

process instance and timeout management. A business transaction started via the Internet-based

self-service channel had to be able to continue via call center (back office) interaction. Different

VSP retailers reserved resources in a single network owned by the wholesaler, so incomplete

requests had to be undone after a certain amount of time. The system context and resource

integrity management requirement suggested introducing a process layer as a governing

architecture element. This process layers serves one user channel per user type. These channels

reside in the presentation layer of the order management system. The required long-running

process instance tracking and timeout management could be implemented in a macroflow engine

[17] dedicated for this task (called). Short-running, transactional flows could be handled by

dedicated microflow engines [17].

All these concerns are addressed in the logical architecture of the production solution which is

outlined in Figure 5 and explained in detail in [16]. While such UML class diagram can give an

architectural overview, many detailed concerns cannot be covered on this level of refinement.

For instance, many technology- and product-specific design issues and the rationale of the

decision outcomes should be explained in detail elsewhere. More specifically (in the context of

this paper and the proposed metamodel extensions), the architecture elements should be traced

back to the outlined requirements, the evolution of the system from a plain Java Web application

to a process-based SOA should be captured, and the necessity to defer certain decisions to

runtime should be captured.

 17

Figure 5 Functional components of the order management telecommunications system

Let us map the model elements in Figure 5 back to the metamodel from Figure 3. All UML

classes representing functional components are instances of ADDesignElement (irrespective of

their stereotypes); the class diagram itself is an instance of ADDesignArtifact. The

ADDesignArtifactType of this class diagram artifact is “functional component model”; the

ADDesignElementType of the ADDesignElement instances is “(functional) UML component”

(we can view component stereotypes such as “subsystem”, “control component”, and “process

component” as subtypes; however, this subtyping is not expressed by our metamodel). Example

of traceability links will be given in the next subsection and Figure 5. We uses the extended

metamodel of Figure 3 to illustrate how these design/modeling problems in the Order

Management (OM) case study can be modeled.

5.2 Decision Identification, Making, and Enforcement Activities
Early in the project, a decision was required to decide for the main architectural concepts. In

particular, a process-based SOA and the related architectural patterns were chosen because the

solution was supposed to be flexible and adaptable. One of the important conceptual decisions in

this context was to decide whether a service composition layer should be introduced into the

architecture (the outcome of this decision led to the inclusion of the Process Layer component in

Figure 5).

Figure 6 shows a (heavily simplified) instance of the metamodel for this decision, working

with a subset of the design elements from Figure 5. Both instances of the core classes of the

existing metamodel (ADIssue, ADAlternative, ADOutcome) and our metamodel extensions are

illustrated (ADRequirement, ADDesignElement, ADOutcomeHistory, etc.). A sample decision

<<ADReqType>> Portability and a concrete <<ADRequirement>> Runs on 2 Platforms (i.e.,

solution can on at least two platforms) were identified for one required and made decision

(<<ADIssue>> Workflow Language with selected <<ADAlternative>> BPEL).

<<ADIssue>>
Architectural Style

AD Viewpoint

scope
(of ADIssue)

<<ADAlternative>>
SOA

<<ADOutcome>>
SOA for OM Sol.

<<ADIssue>>
Service Composition Layer

<<ADAlternative>>
Process-Based Integr.

<<ADOutcome>>
P-E SOA for OM Sol.

<<ADRequirement>>
Runs on 2 Platforms

<<ADReqType>>
Portability

<<ADIssue>>
Workflow Language

<<ADAlternative>>
BPEL

<<ADOutcome>>
BPEL for OM Sol.

Design/Development/
Operations Viewpoints

Requirements Viewpoint

<<ADDesElement>>
Process Layer

<<ADDesElemType>>
Functional Comp.

<<ADOutcHistory>>
SOA for OM Sol.

<<ADDesArtifact>>
Component Model

<<ADOutcEdition>>
SOA for OM Sol.

<<ADDeferredOutcome>>
LoggingPolicy

<<ADDecidedOutcome>>
ProcessLifetimePattern

Not shown in this figure:
<<ADReqArtifact>>
Quality Attributes

<<ADReqArtifact>>
Use Case Model

<<ADRuntimeElem>>
BPEL Process

SOA – Service Oriented
Architecture

OM – Order Management
BPEL – Business Process

Execution Language

<<ADRuntimeArtifact>>
BPEL File (XML)

 18

Figure 6 Architectural decisions made in case study with links to design model context a.k.a.

exemplary application (instantiation) of the AD metamodel for the case study

Furthermore, decisions that might change at runtime can be tracked using the proposed

metamodel extension. In the order management SOA, the system transaction boundary and the

logging settings might differ for certain components in the Process Layer and for components in

the Service Layer [16]. Figure 6 does not show the classes of our third metamodel extension

regarding runtime artifacts (i.e.: ADRuntimeArtifacts, ADRuntimeElements) and the class that

enforces the decisions (ADDeferredOutcome).

5.3 Decision Evaluation & Tracking Activities
A complementary outcome of applying the proposed metamodel extensions to our SOA case

study is to know which elements of the metamodel have more impact in the tasks included in the

decision making steps, in particular those elements related to evaluation and tracking activities.

Table 2 describes these relationships using Create (C), Read (R), Update (U), and Delete (D)

operation primitives. Hence, Table 2 offers also additional information which annotates each step

or task of Figure 2 with specific primitives. It also indicates which metamodel element is created,

read, updated or deleted for each specific activity of the decision making process. Hence, Table 2

can be consulted to understand which primitives must be implemented in any of the tools

discussed in Section 4 (to incorporate the activities described in the extended decision modeling

framework).

Table 2 Relating framework phases/steps/activities and ADK metamodel elements

Metamodel

Element

Framework

Step/(Sub-)Task

ADIssue, ADAlternative ADOutcomeHistory,

ADOutcomeEdition

ADDecided

Outcome

ADDeferred

Outcome

AD Identification CD

AD Making RU C C

AD Checking R RU R

AD Trace R R R

AD Enforcement R R R

AD Evaluation &

Tracking

R CRUD R RU

6. Discussion
Capturing decisions has a potential overhead, which may increase the effort to document

architectures. For instance, the links between decisions and other software artifacts, the rationale

of the changes made, the alternatives considered and evaluated, and the nature of the decisions

deferred to runtime has to be specified. The major benefit of the extended metamodel is to make

the relationships between architectural decisions and other artifacts explicit and to minimize the

effort to create and maintain such dependencies during decision identification, making, and

enforcement. With this support, the development of enterprise applications and other systems can

 19

be improved significantly by studying previous decisions that describe deep technical know-how

about existing systems.

In addition to these general benefits of decision modeling, our extended metamodel supports

three ways to improve the information we can reason on: First, it allows more fine-grained

entities to be connected to architectural decisions than other comparable models, leading to more

accurate and precise decision capturing in relation to the architecture (with fine grained links

down to the artifact and model element level). Second, by recording decision history

information, we can avoid the changes and the evolution of the decisions to get lost. This way we

can include information about the past when reasoning about the architecture. Third, we can

model runtime elements in our decision model, which allows them to be included in the

architectural reasoning and also to defer certain decisions from design and development time to

the operations and maintenance phase of the software lifecycle. Capturing runtime decisions

enables us to link static design artifacts with modules that change during runtime. This feature

allows us to keep a more precise track of those parts of the architecture that are affected by

runtime modifications, and trace back to the architecture the changes that happen during the

execution of the system.

For SOA-based systems, runtime decisions play an important role in order to track better the

changes that happen during the execution of the system, often caused by changes in the

environment or due to modifications in the quality of services. For instance, if a new service with

better quality properties (e.g., cost, availability) is found, then a decision replacing the old

service by the new one has to be made at runtime, and this runtime decision must be

communicated to the system administrator, stored in a log file or the user be warned. In other

cases, the failure of a service must be reported to the system administrator in case a replacement

during system execution can not be found, as the creators of the system must know which part of

the design is wrong.

Such extensions allow more detailed and precise information to be included when reasoning

on architectural decisions. All three extensions have been identified through interviews with the

users of our tools as crucial for improving the practical use of the architectural decision modeling

tools. With existing tools in place, it is possible to capture decisions made and relate experiences

(lessons learned, best practices) after the fact [5, 16, 19]. These capabilities are now extended

with the tasks described in Figure 2, as functional and non-functional requirements can be now

linked to, for instance, architectural decisions and to fine grained architecture artifacts (thus

offering a complete traceability mechanism).

As a downside, the three extensions in our enhanced metamodel also require some decisions to

be recorded in more detail and add slightly to the complexity of the decision models. Overall, we

believe that the benefits of our approach clearly outweigh the liabilities. This especially holds in

for SOA where runtime decisions are important.

The applicability of the decision making steps and the metamodel to enterprise applications

and to SOA decision modeling (SOAD) is clear, as we extend previous approaches and provide a

complete traceability model that include links to decisions that evolve. The new decision

evaluation step of our decision-making process can be compared to the architectural evaluation

step of the process defined in [20], to ensure that the decisions made are the right ones. The

perceived value of having fine-grained trace links and support for runtime decisions seems clear

for many enterprise applications that need a continuous tracking of the decisions that change

frequently.

 20

7. Related Work
To date, several research prototype tools [13, 21] for capturing, using, and documenting

architectural design decisions (many of them using templates of attributes for capturing

knowledge [22, 23]) have recently appeared. Tools such as PAKME [24], ADDSS [5], Archium

[19], The Knowledge Architect [6], and AREL [25] offer traceability mechanisms between

decisions and other software artifacts at different levels. Some of these tools support the

evolution of trace links between decisions and forward and backward traces. The traceability

supported by the tools can be used to estimate those artifacts that are impacted by the change in a

decision, as the majority of the mentioned tools lack fine grained links between decisions and

small architectural artifacts (e.g., a UML class or component instead of an entire subsystem). In

addition, the approach presented in [26] highlights the role of traceability in software architecture

evolution and describe a method to manage such traceability for design decisions using a Model-

Driven Development approach.

Software product lines (SPL) need to model also the dependencies of feature models (i.e.: in

practice they constitute a decision model) for different phases of the software life-cycle.

Modeling dependencies and dealing with traceability problems in SPL is discussed in [27],

where a wide list of dependency types between features are defined as constraints a software

product must satisfy, while in [28] the authors explain how metamodels from PAKME and

ADDSS tools can be merged to support product lines concepts and model dependency links

between architectural design decisions and the variability rules associated to a feature model.

Other works refer to Dynamic Product Lines (DSPLs) [29] to provide the necessary binding for

runtime variation points to adapt the software to changes in the environment. The authors state

that it is impossible to foresee al the variability a SPL requires, and use dynamic architectures

and support for runtime decisions to be able to support system configuration and binding at

runtime (for automatic decision-making). Designing and managing runtime variation points in

architecture is also described in [30], where patterns are used to provide such facility in SPL and

add the necessary flexibility for domain-specific applications (e.g.. custom Web servers that

cannot be stopped when deploying or configuring components).

Lago et al. [31] discuss three different traceability issues during SPL derivation, and they

focus on those traceability links between feature models and structural models (i.e.: architecture-

level decisions). In [32], a Dependency Structure Matrix (DSM) is used to represent and manage

dependencies in complex software architecture and to reveal underlying architectural patterns.

Acceptable and unacceptable dependencies are expressed using design rules to describe the

semantics of such dependencies.

All the aforementioned approaches lack explicit support for runtime decisions that can be

deferred and tracked back from code to the architecture and to the design decision. Furthermore,

in most cases they support coarse grained links between decisions and other software artifacts.

Evolution is only partially supported in two existing tool prototypes. Hence, our approach

improves these features and enriches previous metamodels and tools with runtime decisions.

Other approaches that consider fine grained traceability paths between different artifacts do not

consider the inclusion of design decisions as we do.

Traceability between decisions and from decisions to artifacts is related to traceability

between requirements and model elements in general. This general problem of establishing and

maintaining traceability has been studied in the literature and different approaches exist. Maeder

et al. [33] present an approach for automating traceability maintenance under changes by

classifying changes and automating updates of the traceability graph. Such an approach could in

 21

principle also be applied to traceability management for architectural decisions. Cleland-Huang

and Chang [34] propose a traceability method that is based on a publish-subscribe architecture in

order to keep traceability links up to date. It remains for future work to investigate the best

approach to maintain traceability links between architectural decisions and requirements.

8. Conclusion
Architectural knowledge is becoming a key asset and first-class entity for software architects, as

the key design decisions captured during the design activity become relevant to: (i) bridge the

gap between different phases of the software development process and enrich traceability

information for tracking purposes, (ii) understand better the reasons of the decisions made and

the alternatives considered, (iii) keep and track decisions history and in some case have the

possibility to revert to previous decisions, and (iv) even learn from other decision makers when

facilitating the work of software maintainers.

Our approaches revisits and enhances previous models and tools as we provide full traceability

between individual decisions and other software artifacts using fine grained links, even if the

decision networks becomes more complex to manage and to maintain. With such links we

achieve a better control of individual decisions and we are able to find out in detail which parts

of the architecture are affected by a change in the requirements or code.

Because certain software systems may vary their context conditions during runtime, they

require adequate models to support runtime decisions that can be deferred. Hence, we extend

previous works to track runtime decisions and make software architects aware of changes that

may affect the design.

The decision making steps cover all these enhancements including explicit support for

decision history and tracking, which reflects clearly the evolution of the system and architecture

over time. This knowledge facilitates the understanding of a system to novice software architects

or to a new team. The evolution of decisions helps to estimate better the impact of changes using

the trace links; runtime decisions are used to track the dynamicity of the system and how it

behaves. The proposed case study in the SOA domain, where certain decisions may vary

according to different context conditions, and often are motivated by new quality requirements,

illustrates the case of a key design challenge which is the explicit support of runtime decisions,

and how these can be described, maintained and tracked using the proposed metamodel and

framework extensions.

References
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, Second Edition,

Addison Wesley, 2003.

[2] J. Bosch, Software Architecture: The Next Step, Proceedings of the 1st European Workshop

on Software Architecture (EWSA 2004), Springer-Verlag, LNCS 3047, pp. 194-199, 2004.

[3] P. Kruchten, R, Capilla, and J.C. Dueñas, The Decision’s View Role in Software

Architecture Practice. IEEE Software, vol 26(2), 36-42, 2009.

[4] O. Zimmermann, and N. Schuster, Architectural Decision Knowledge Web Tool. Available:

http://www.alphaworks.ibm.com/tech/adkwik, (last updated October 2009).

 22

[5] R. Capilla, F. Nava, S, Pérez, and J.C. Dueñas, A Web-based Tool for Managing

Architectural Design Decisions (SHARK’066), ACM SIGDOFT Software Engineering Notes

31(5), 2006.

[6] A. Jansen, T.d. Vries, P. Avgeriou, and M.v. Veelen, Sharing the Architectural Knowledge of

Quantitative Analysis, Proceedings of the Quality of Software-Architectures (QoSA), 220-234,

2008.

[7] O. Zimmermann, T. Gschwind, J.M. Küster, F. Leymann, and N. Schuster, Reusable

Architectural Decision Models for Enterprise Application Development. (QoSA’07), Springer-

Verlag LNCS 4880, 15-32, 2007.

[8] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster, Managing

Architectural Decision Models with Dependency Relations, Integrity Constraints, and Production

Rules. Journal of Systems and Software volume 82(8), 1249-1267, 2009.

[9] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann, Combining Pattern Languages and

Architectural Decision Models in a Comprehensive and Comprehensible Design Method. In

Working IEEE/IFIP Conference on Software Architecture (WICSA) 2008, Vancouver, BC,

Canada, February, 2008.

[10] J. Bosch. Design and use of Software Architecture: Adopting and Evolving a Product-Line

Approach, Addison-Wesley, 2000.

[11] K. Pohl, G. Böckle, F. Van der Linde. Software Product Line Engineering: Foundations,

Principles, and Techniques, Springer, 2005.

[12] P. Liang, A. Jansen and P. Avgeriou. Collaborative Software Architecting through Knowledge

Sharing. (in Press) Collaborative Software Engineering . Springer, 2009.

[13] P. Liang and P. Avgeriou. Tools and Technologies for Architecture Knowledge Management.

In Software Architecture Knowledge Management: Theory and Practice, 91–111. Springer, 2009.

[14] A. Jansen, P. Avgeriou and J. van der Ven. Enriching Software Architecture Documentation.

Journal of Systems and Software, 82(8):1232–1248, 2009.

[15] P. Liang, A. Jansen and P. Avgeriou. Sharing Architecture Knowledge through Models:

Quality and Cost. The Knowledge Engineering Review, 24(3):225–244, 2009.

[16] O. Zimmermann, V. Doubrovski, J. Grundler, and K. Hogg, Service-Oriented Architecture

and Business Process Choreography in an Order Management Scenario. In: ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA 2005), ACM Press, 2005.

[17] C. Hentrich and U. Zdun, Patterns for Process-Oriented Integration in Service-Oriented

Architectures. In Proceedings of 11th European Conference on Pattern Languages of Programs

(EuroPLoP 2006), Irsee, Germany, pages 1-45, July, 2006.

[18] M. Fowler, Patterns of Enterprise Application Architecture, Addison Wesley, 2003.

[19] A. Jansen, and J. Bosch, Software Architecture as a Set of Architectural Design Decisions.

In: Proceedings of the 5th Working IEEE/IFIP Conference on Software Architecture (Wicsa'05)

- Volume 00 (November 06 - 10, 2005). IEEE Computer Society, Washington, DC, 2005.

[20] C. Hofmeister, P. Kruchten, R.L. Nord, H.m. Obbink, A. Ran, and P. America,. A General

Model of Software Architecture Design Derived from Five Industrial Approaches. The Journal of

Systems and Software 80(1), 106-126, Elsevier, 2006.

[21] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. Ali Babar, A Comparative Study of

Architecture Knowledge Management Tools, Journal of Systems and Software 83(3), 352-370,

Elsevier, 2010.

 23

[22] J. Tyree, and A. Akerman, Architecture Decisions: Demystifying Architecture, IEEE

Software, vol. 22, 2005.

[23] P. Kruchten P. Lago, H. van Vliet, Building up and reasoning about architectural knowledge.

In: Hofmeister, C. (Ed.), Proceedings of Second International Conference on the Quality of

Software Architectures (QoSA 2006), Springer LNCS 4214, 2006.

[24] M.A. Babar, I. Gorton, and B. Kitchenham, A Framework for Supporting Architecture

Knowledge and Rationale Management. in: A.H. Dutoit, R. McCall, I. Mistrik, and B. Paech,

(Eds.), Rationale Management in Software Engineering, Springer, pp. 237-254, 2006.

[25] A. Tang, Y. Jin, and J. Han, A rationale-based architecture model for design traceability and

reasoning. Journal of Systems and Software, 80(6), 918-934, 2007.

[26] E. Navarro, C.E. Cuesta, Automating the Trace of Architectural Design Decisions and

Rationales Using a MDD Approach. European Worksop on Software Architecture, Springer-

Verlag LNCS 5292, 114-130, 2008.

[27] K. Lee, and K. Kang, Feature Dependency Analysis for Product Line Component Design,

International Conference on Software Reuse, LNCS 3107 Springer-Verlag, pp. 69-85, 2004.

[28] R. Capilla, and M.A.Babar, On the Role of Architectural Design Decisions in Software

Product Line Engineering. (ECSA’08), Springer-Verlag LNCS 5292, 241-255, 2008.

[29] S. Hallsteeinsen, M. Hinchey, S. Park and K. Schmid, Dynamic Software Product Lines,

IEEE Computer 41(4), 93-95, 2008.

[30] M. Goedicke, C. Köllmann and U. Zdun, Designing Runtime Variation Points in Product

Line Architectures: three cases. Science of Computer Programming 53(3), 353-380, 2004.

[31] P. Lago, H. Muccini, and H. van Vliet, A scoped approach to traceability management.

Journal of Systems and Software, 82(1), 168-182, 2009.

[32] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, Using Dependency Models to Manage

Complex Software Architecture. OOPSLA’05, 167-176, 2005.

[33] P. Mäder, O. Gotel and I. Philippow. Enabling Automated Traceabilitz Maintenance

through the Upkeep of Traceability Relations. In Proceedings ECMFA-FA 2009, LNCS 5562,

174-189, Springer, 2009.

[34] J. Cleland-Huang, C. Chang. Event-Based Traceability for Managing Evolutionary Change.

IEEE Transactions on Software Engineering, Vol. 29, No. 9, September 2003.

