
Responsibility-driven Design and Development of Process-aware Security Policies

Maria Leitner,Stefanie Rinderle-Ma
University of Vienna

Vienna, Austria
{maria.leitner,stefanie.rinderle-ma}@univie.ac.at

Juergen Mangler
SBA Research

Vienna, Austria
jmangler@sba-research.org

Abstract—Process-Aware Information Systems (PAIS) enable
the automated support of business processes that are executed
by a combination of human actors and systems. As processes
typically require access to sensitive data, security policies are of
high importance. Typically security policies in PAIS range from
access rules and authorization constraints to context policies
(location, time) and are scattered over the multitude of het-
erogeneous PAIS components, i.e. process models, repositories,
organizational structures, etc. Currently, different approaches
for modeling and enforcing security policies exist that assume
a set of explicitly defined security policies. Because of afore-
mentioned heterogeneity, these approaches are suboptimal for
PAIS. In order to improve upon existing approaches we present
a security policy data model and design methodology, based
on the concept of responsibilities, permissions and constraints.
The goal is to not only unify diverse security policies in
different PAIS subsystems, but also to make security policies
independent of these subsystems to restrain complexity from
process modeling and evolution, and to allow for comprehensive
security policy development and maintenance.

Keywords-Security Policy Design; Security Policy Develop-
ment; Process-Aware Information Systems

I. INTRODUCTION

Process-Aware Information Systems (PAIS) support the
automated execution of business processes carried out by
various actors and manage private and publich data (e.g., a
patient record in a hospital). Therefore, security in PAIS
is an essential factor for their successful application in
practice. Currently, commercial systems such as Staffware,
Websphere MQ Workflow or AristaFlow as well as research
prototypes (e.g., YAWL) offer role-based access control
mechanisms that connect process activities and organiza-
tional structures via so called access rules [1]. Further, the
definition of authorization constraints such as separation of
duties on top of the access control mechanisms is essential
in many practical scenarios. Finally, access rules and au-
thorization constraints might be enriched with various kinds
of context information [2]. Of particular importance here
are time and location. Think, for example, of a security
policy stating that the patient records should be accessed
by a physician only during the day.

Access rules and authorization constraints imposed over a
process, potentially enriched by context, are process-relevant
security policies. As defined in literature [3] business pro-
cesses are secure, if all security policies imposed over the

process are fulfilled. Different approaches for modeling and
enforcing different security policies exist [4] that assume
a set of explicitly defined security policies. Typically this
assumption cannot be made for PAIS, since policies in
general, and security policies in particular might be scattered
over all different kinds of components of the PAIS, i.e.,
process models, repositories, or organizational structures.
Further, they might even be integrated within the control
flow structure of a process model. One example is the
decision who has to sign a certain document modeled as
an alternative branching within the process. This existing
mix of representations and implementations for security
policies in PAIS hampers their enforcement, consistency
checks between the policies, as well as maintenance and
evolution of the PAIS.

In this paper, we claim that security policies and pro-
cesses must be separately designed from each other. This
independence offers many advantages: first of all, security
policies can be completely stored and maintained within
one policy base. This enables consistency checks as well
as maintenance and evolution of the policy repository. To
achieve independence, we present a new security policy data
model based on responsibilities and permissions to cover
structural as well as operational aspects of the process. By
doing so the separation of both aspects can be achieved and
the relations between process and policies can be expressed
by an explicit mapping. If now changes of either the process
or policies occur, the side effects can be easily handled
within the mapping. Additionally, we show how necessary
information can be acquired and evaluate our approach
based on a requirements analysis. The approach presented in
this paper establishes a new model for developing security
policies for PAIS.

Sect. II gives an overview of security policies in PAIS.
In Section III, security policy design requirements are pre-
sented. Sect. IV gives an overview on policy acquisition.
Then, the design (cf. Sect. V) and mapping of security
policies (see Sect. VI) are presented. We discuss related
work and evaluate our approach in Sect. VII and conclude
in Sect. VIII.

II. SECURITY POLICIES IN PAIS

Security policies are a set of principles that control
which subject is allowed to access which object within
an information systems [5]. Such access restrictions are
often defined based on roles (e.g., head of group) or job
functions. In PAIS, however, security policies require a more
detailed definition due to the multi-faceted characteristics of
such systems. Specifically, security policies in PAIS might
relate to access control, control flow, information flow, data
integrity, and availability. The three parts of Fig. 1 each
show the same Travel Request example, with the following
basic structure. Fill out travel request requires
that an employee has to fill in the required information for
the business trip consisting of personal information (e.g.,
name), travel information (e.g., start and end date), budget
information, signature, and date of signature. Subsequently,
two signatures on the travel request are required, which
can be done in parallel. Sign travel request implies
that two superiors have to approve the travel request: the
head of group has to approve the necessity of the trip (and
absence of work) by signing the request. The budget owner
has to confirm the travel request by verifying the financial
coverage as well as approving the trip and advances of travel
expenses. Both superiors have to authorize the request with
their signature and date. Finally, the travel request is archived
(activity Archive travel request) by administrative
staff.

As depicted in Fig. 1, we differentiate between three
different ways of representing security policies in PAIS:
(a) As part of the process logic as shown in Fig. 1(a).
(b) Attached to tasks as shown in Fig. 1(b) (is the most

common approach [6]).
(c) As separate group of annotations, loosely connected

to a process as shown in Fig. 1(c). This implies that
the security model includes knowledge of the process
structure (sequence of tasks) that is independent of the
process model.

From a technical point of view, most approaches dealing
with authorization constraints such as [4], define security
policies as explicit policies that are stored in a repository.
This approach is valid for representations b and c, while
the granularity of policies is different. For example for
representation b a security policy has to include a refer-
ence to a specific task which requires knowledge about a
specific process modeling notation. On the other hand, it
is necessary to establish this connection between the tasks
and security policies during enforcement for representation
c (which requires some additional reasoning and or mapping
information).

III. SECURITY POLICY DESIGN REQUIREMENTS

As described above, there are different approaches for
security policies in PAIS. The most important goal of our

Administrative
Staff

Employee Head of Group

Fill out travel
request form

Vice Head of
Group

Head is available

Head is not
available

Budget Owner
University

Employee is
not Head

Employee is Head

Sign travel
request form

Sign travel
request form

Sign travel
request form

Travel
Request

Form

Archive travel
request

(a) Inherent Representation

(b) Attached Representation

Fill out travel
request form

Sign travel
request form H

Sign travel
request form B

Archive travel
request

+

+

Security Policies
● An employee has to sign the request before a head or budget owner can

sign the request.
● An employee has to file a request two weeks before the traveling starts.
● A travel req. can only be filed between Mondays and Thursdays

(for accounting reasons).
● A travel request applies only to employees of a specific faculty (e.g., A,B,C)

at University. (Other faculties at University may have different procedures.)
● A travel req. has to be signed by a head of group and a budget owner.
● A travel req. has to be approved by two different persons.
● If an employee is the head of group, then a vice head has to authorize the

travel request.
● In case a head of group is not available a vice head is authorized to sign the

request.
● If a budget owner (employee might be budget owner) is not available, then a

vice budget owner is allowed to sign the request.

(c) Separated Representation

Figure 1. Travel Request: Process Modeling and Security Policies

approach is to operate independent from specific process
models order process modeling notations. In order to achieve
this goal we define the following requirements:

Requirement 1 (Independence): Security polices should
not be be intertwined with process logic. By choosing
the representation shown in Fig. 1(c) the process model
stays simple and security and process design can be kept
separately.

Requirement 2 (Maintainability): Security policies
should be easy to maintain (e.g., add, change, delete).
This includes their reuse in multiple process models and
activities. When changing a security policy it should not
be necessary to change multiple connections to process
models, or even worse, to redesign processes models.

Requirement 3 (Extendability): Due to constantly chang-
ing business environments, changing process models and
security policies is very important. We think that this ex-

tendability should be decoupled. Changing processes models
should require no security policy knowledge and vice versa.
Instead the extendability should be fostered by providing
tool support to warn of violations.

Requirement 4 (Scalability): Scalability is about the abil-
ity to handle growth. In PAIS, scalability means managing
an increase of components such as activities or security poli-
cies. Of course this also affects Maintainability. Scalability
demands for both, a well structured process repository as
well as authorities (staff roles) responsible for diverse as-
pects (e.g. process modeling, security policy design, conflict
resolution).

IV. SECURITY POLICY ACQUISITION

Acquisition is an important part in the process of de-
signing security policies. Many techniques exist for the
accruing process such as process mining to derive process
models (e.g., [7], [8]), role engineering [9], [10] and role
mining [11] to establish an organizational model. Other
methods for the acquisition are for example, interviews
with employees about the correlations between their job
and their work tied to other employees, or evaluating the
organizational model, internal guidelines or national law.
The acquisition includes but is not limited to the following
topics: organizational structure, job functionalities (roles),
permissions, authorization rules, authorization constraints
(e.g., time, location), control flow of tasks, and information
flow. The results of the acquisition are:

Process Acquisition: The resulting view counters on
structural aspects such as activities, and the control flow
and data flow between them.

Role Acquisition: The outcome focus on the organiza-
tional aspects such as structure and job functionalities.

Security Acquisition: The result is user centric. If focuses
on the properties and restrictions imposed on the work
relations with other users. This may incorporate structural
and operational aspects.

It is important to note, that the information about the
sequence (or structure) of activities, temporal relations be-
tween the activities, and correlation of data elements to
activities, are present in the processes as well as in security
policies. This duplication is well desired, as the security
policies are not only used to enforce secure process models
at design time (e.g., if certain data elements are only to be
accessed by certain users and an activity uses data elements
that are only allowed to be accessed by different users, then
there is a static security violation in the model) but also at
runtime such as separation or binding of duty constraints.

V. SECURITY POLICY DESIGN

In order to ensure the primary requirements of indepen-
dence and maintainability it is vital to separate process
related information and security related information. From
a security standpoint each process can be viewed from two

Figure 2. Security Policy Data Model

perspectives: (1) the process has a structure (process model),
and (2) the process is subject to operations. Point (2) not only
includes the instantiation and execution of a process, but may
also include changes on the process structure, execution or
monitoring of individual tasks in the process, or dynamic
service selection. Operational security always depends on
structural information, in that the operations always refer to
certain process models and/or a set of tasks. In order to cater
to this duality, we further distinguish between structural and
operational security aspects:

Structural Aspect denotes a set of data objects and tasks,
and how they occur in a process model.

Operational Aspect denotes constraints on this data ob-
jects and tasks, for example during process execution.
I.e., under which circumstances something is allowed.

Please note, that while the structural aspect deals with
names of data objects and tasks also covered by processes, it
is nonetheless intended to be completely independent of pro-
cesses. The structural aspect just deals with a set of names,
further called responsibilities, classified as either data object
or task. This set can be directly derived from information
collected through a process acquisition (cf. Sect. IV). The
structural aspect serves as a basis for the operational aspect,
and is then mapped to the actual actual data elements and
activities of available processes (as described in Sect. VI).

A. Responsibilities

As depicted in Fig. 2, the structural aspect includes
responsibilities. We define a responsibility r to be a piece
of data (e.g. a document, an information) or interrelated
tasks from the point of a certain role. The concept of re-
sponsibility does not include the notion of operation such as
execute, monitor, or access. The purpose of responsibilities
is solely to comprehend data and interrelated work tasks as
objects, that can be constrained and assigned to roles in an
organizational structure (as depicted in Fig. 2).

In a large organization with many roles, a deep hierarchy
and many responsibilities, responsibilities may occur for sev-
eral roles on several hierarchy levels. Also responsibilities
do not exist separately, but are related to each other: e.g.
several data objects and interrelated tasks belong together.

Therefore, we introduce the concept of responsibility
bundles b that serve two purposes:

Constriction: Grouping allows to define constraints re-
garding the order of tasks, the existence of data regarding
certain order of tasks, separation / binding of duty related
to data and order of tasks, as well as security constraints
(operations allowed regarding data and structure on certain
circumstances). For more details please see Sect. VI.

Assignment: A group of responsibilities including a set
of constraints may be assigned to several roles. The cre-
ation of bundles fosters structure and reuseability. Assigning
each responsibilities to multiple levels of an organizational
hierarchy and constraining them separately would arguably
increase the workload for administrators and foster errors.
Whereas an inheritance (with the necessity of multiple
inheritance between roles and users/roles) would introduce
all the complexity known from object oriented programming.

For a given organization there exist a set of responsibility
bundles B = {b1, . . . , bn}. A responsibility bundle b con-
tains a set of responsibilities R = {r1, . . . , rn} and a set of
constraints RC = {rc1, . . . , rcn} referring to a subset of R.

In order to exemplify the concepts involved in a respon-
sibility bundle we introduce a simple travel request example
btravel request (cf. Sect. II, Fig. 1(c)). In this case, a responsibil-
ity bundle contains btravel request =

{
{r1, . . . , r9}, rctp1 , rcr2

}
a

set of responsibilities R and responsibility constraints RC.
The following responsibilities are included:

rdata0 : start date
rdata1 : end date
rdata2 : signature employee
rdata3 : signature employee date
rdata4 : signature approval a
rdata5 : signature approval b
rdata6 : additional unspecified data
rtask7 : filling form and signing it
rtask8 : approval A
rtask9 : approval B

(btravel request, Responsibilities)

Example (btravel request, Responsibilities) displays a set of
responsibilities R = {r1, . . . , r9} where rdatan refers to a
data object and rtaskn to a task. Furthermore, each responsi-
bility can be restricted with responsibility constraints.

There are two categories of Responsibility Constraints
C: Responsibility Task Pattern Constraints rctp, and Respon-
sibility Relation Constraints rcr. First, the responsibilities
have to be constrained regarding the order (pattern) in which
the tasks may occur. We further call this class of constraints
Responsibility Task Pattern Constraint rctp. We describe
these patterns as Linear Temporal Logic (LTL) expressions
[12]. For the btravel request example the pattern is as follows:

rctp1 : �(rtask7 → ((♦rtask8 → ♦rtask9) ∨ ♦rtask9))

(btravel request, rc
tp
1)

This can be read as: rtask7 is eventually followed by rtask8

and rtask9 or task rtask9 .
In the second step, we define the relation between the data

responsibilities rdata and the responsibility task pattern con-
straints rctp. It is important to note that unlike for processes
there is no assignment of data to tasks necessary. Because the
purpose is not process execution, but rather providing a basis
for process consistency checking and secure resource (user)
allocation. We call this type of constraints Responsibility
Relation Constraint rcr. For btravel request the constraint is:

rcr2 : rdata0 ∧ rdata1 ∧ rdata2 ∧ rdata3 ∧ rdata4 ∧ rdata5 ∧
rdata6 ∧ rctp1

(btravel request, rcr2)

More complex rcr relations may define that certain data
responsibilities occur only for certain task patterns. Please
note that the inclusion of rdata6 is important for the mapping
as described in Sect. VI. Because it allows to define that
additional (but unspecified) data elements may be present
for the given pattern rctp1 . This way, redesigning the travel
request process (e.g., including additional data elements) is
independent of the responsibilities and constraints.

Regarding the checking of Responsibility Bundles
against processes, it is important to note, that if a bundle
holds multiple rcr relations, only one of the rcr relations
has to match.

B. Permissions

In contrast to the structural aspect, the operational aspect
deals with permissions and constraints on these permissions.
Permissions constraints refer to the responsibility constraints
(as defined above) and are closely interrelated (refer to each
other). In other words: they use the responsibilities defined
in a responsibility bundle b, and restrict them in a certain
process related security context (permission).

We define an operational context O = {p,PC} to consist
of a single permission p and a set of permissions constraints
PC = {pc1, . . . , pcn}.

Permissions p define which operations (execute, monitor)
are allowed for which security objects (process execution,
process model change, service selection). They apply only
to an entire responsibility bundle. Thus, a permission de-
scribes the situation in which the permission constraints are
checked. It is important to note that one permission is further
constrained by set of Permission Constraints as explained
below.

As the permission describes “the situation”, not all of
the following constraints make sense for each possible per-
mission. E.g., data permissions constraints pcd (see below)
are not used when checking process model change (which
affects the order of tasks).

We identified the following four classes of permission
constraints:

Data constraints pcd to restrict certain data responsibil-
ities rdata according to their value.

Time constraints pct to restrict certain task responsibil-
ities rtask according to time they may occur.

Location constraints pcl to restrict certain task respon-
sibilities rtask according to location of an assigned
resource (user).

Separation/binding constraints pcsb to define that dif-
ferent/same resources (users) have to be assigned. They
can only occur in relation to responsibility task pattern
constraints rctp.

To exemplify the relation between permissions, permis-
sion constraints and responsibilities, we created the follow-
ing two examples, connect to our travel request use case. The
first example (btravel request, permission 1) defines a permission
that restricts how a user may file a travel request.

pcp3 : control flow, r7, execute

pcd3,0 : r0 − r3 > 2 weeks

pct3,1 : Monday till Thursday

pcl3,2 : Faculty of C
(btravel request, permission 1)

As mentioned above, pcp3 describes a situation. In this
case, the right to execute activity r7 is granted during
process execution. This is related to pattern given in rctp1 and
includes the right to access and change all data elements as
defined in rcr2 (as long as they are available during process
execution for this activity, which is defined in the process).
In this case, this bundle is intended to be linked with every
role, as every employee can make a travel request. The
constraints are described as follows: pcd3,0 describes that
the travel request has to be filed two weeks in advance.
pct3,1 describes that the travel request can only be made
between Monday and Thursday (because of internal resource
planning reasons). pcl3,2 describes that the right to file a
travel request applies only to employees from a certain
faculty (as e.g. employees from other faculties use different
procedures).

The second example (btravel request, permission 2) deals with
the approval of the travel request:

pcp3 : control flow, r8, execute

pcsb3,0 : (r7 6= r8) ∧ (r8 6= r9)
(btravel request, permission 2)

pcp3 describes the execution of r8 which is intended for
the role of group leaders. pcsb3,0 denotes that if the user that
filed the travel request r7, or signed the approval r9, is
not allowed to sign the approval r8. This does not exclude
that the user that filed the travel request, signs the second
approval, e.g. the head of group.

C. Assigning Security Aspects to Roles

The verdict so far is that responsibility bundles, permis-
sions and permission constraints are connected. While re-
sponsibility bundles, permissions and permission constraints
together describe the security aspect, roles and users together
define the organizational aspect. We thus define a security
policy to be the combination of security aspect and organi-
zational aspect.

In order to simplify our argumentation we introduce
the notion of security bundles S = {s1, . . . , sn}, where
s = {b, p, x} with x ⊆ PC, is a single combination of re-
sponsibility bundles, permissions and permission constraints.
As depicted in Fig. 3, a security policy is the connec-
tion between responsibility bundles, permissions, permission
constraints, roles and eventually users.

While the relation between role and user is clear [13] (a
role has several users), the relation between roles and the
security aspect is more complicated:
• Every role can be related to 0. . . * security bundles.
• Every security bundle can be assigned to 1. . . * roles.
• Different security bundles can combine the same re-

sponsibility bundle with different permissions / permis-
sion constraints.

• Security bundles can override / complement each other.
In an organization hierarchy, it would be very tedious

to assign all single responsibilities, permissions, and con-
straints to roles over and over again. A solution would be,
to implement inheritance for the hierarchy, however this
would introduce all the limitations, problems and solutions
connected to inheritance (e.g. “diamond problem” as a role
or user can inherit from multiple parent roles in order
to implement flexible organizational structures), and thus
introduce significant management and runtime complexity.

So in order to avoid inheritance and the overhead of single
assignments we introduced the concept of responsibility
and security bundles. Bundles follow the idea of mixins in
object oriented languages: they are a means of collecting
constraints and aspects and foster reuse. For example a
responsibility bundle can be used to allow the employees
of group to execute certain activities of process instance.
The same responsibility bundle with a different permission
(and optional permission constraints) can be used to allow
management the monitoring of the execution of said activi-
ties.

When multiple security bundles with the same permission
are assigned to a role, they can complement each other.
They can be evaluated in the assigned order, with the first
matching set of responsibilities and responsibility constraints
denoting the relevant security bundles.

VI. SECURITY POLICY MAPPING

While Sect. V describes a data model to allow for a
comprehensive representation of arbitrary process related

Figure 3. Security Policy - Overview and Definition

Figure 4. Security Policy Mapping

security policies, this section is dedicated to the mapping of
security policies to actual processes and process instances.
This includes:

A. Assigning responsibilities to actual processes models.
B. Checking for structural process model security by uti-

lizing responsibility constraints.
C. Selecting roles based on the responsibility mapping and

enforcing security policies based on the responsibility
mapping (for running instances).

A. Assigning Responsibilities

Mapping responsibilities to process activities is intended
to be carried out by a person (the policy guardian). As shown
in Fig. 5, Mapping is carried out after Acquisition (Sect. IV),
Security Policy Design (cf. Sect. V) and Process Design. In
this section, we focus on point (1) of Mapping, depicted in
Fig. 5.

As stated before this step is essential for providing the
separation between a process (control flow, data flow) view
and a security view, that focuses on users, roles and their
responsibilities. Responsibilities consist of tasks and data ob-
jects, that are potentially shared and used in many processes,
yet always fall under the same security restrictions.

Figure 5. Responsibility Mapping

One advantage of the mapping is, that the policy guardian
does not have to know about responsibility constraints or
permission constraints. The policy guardian starts out with
a list of responsibilities, that can be extracted from the data
model described in Sect. V:

Listing 1. Extract Mapping Information
1 t a s k s = Array . new
2 d a t a = Array . new
3 B . each |b |
4 b [R] . each |r |
5 t a s k s << MappingPa i r . new (b . id , r . i d) i f rdata

6 d a t a << MappingPa i r . new (b . id , r . i d) i f rtask

7 end
8 end

As can be seen in lines 5 and 6, two lists are prepared
which hold entries that each consist of the bundle id and
a responsibility id. Because responsibilities may occur in
multiple bundles, the bundle id adds a category. We further
refer to these pairs as mdata

x,y = (bx, r
data
y) and mtask

x,y =
(bx, r

task
y).

Based on these two lists, the policy guardian has to iterate
all processes in order to assign each mdata to data elements
and mtask to activities. Please note that responsibility bun-
dles are intended to include catchall responsibilities (see for
example rdata6 in Sect. V) in order to categorize additional
data objects and tasks that are not important for security
considers but are present in tasks.

It is also important to note that data objects and task of
the travel request example (btravel request) may not only
occur in a process travel request but also in multiple other
accounting and reporting processes.

B. Checking for Structural Process Security
As stated in point (2) of Mapping in Fig. 5, after mapping

the responsibilities, it is possible to check if the process
structure is consistent with the responsibility constraints.
As described in Sect. V, responsibility constraints neither
describe the input or output of tasks, nor do they describe
the exact task order. They just loosely describe a set of
tasks (which may occur mixed with other tasks in an actual
process), and some connected data objects (how they are
connected is not specified).

These responsibility constraints can be utilized for running
an automated check on processes. This check has to occur:
(1) whenever the mapping for a processes is finished, and
(2) whenever a mapped process is changed. The result of
such a check consists of three different classes of errors:
• Tasks occur in an unspecified order (no rctp for this

particular order exists).
• Known data objects are used or written in combination

with unknown tasks (as specified in a rcr).
• Unknown data objects are used in combination with

known tasks (as specified in a rcr).
As stated before, for each bundle one or many rctp or rcr

constraints may match. If multiple rctp or rcr constraints
exist, they are independent.

An error may have one of the following reasons/solu-
tions: (1) The policy guardian has made a mapping error.
He/she can correct the error. (2) Because of process change,
additional mapping is necessary. The policy guardian can
correct the error. (3) The process is not consistent with the
responsibilities and responsibility constraints for reasons un-
known to the policy guardian: (a) trigger a process designer
for possible correction, if the process designer confirms the
process structure, or (b) trigger a security policy designer
for possible adaption of the security policy. (b) may lead
to a confirmation of the security policy in which case the
process designer is overruled and has to redesign the process
anyway.

The methodology described in this section depends on
humans. The automatic checking is convenient, but solving
the resulting errors is to be coordinated by the policy
guardian.

C. Selecting Roles

As explained in Sect. V, security policies not only consist
of (1) responsibilities that describe structural aspects, but
also (2) permissions that describe operational aspects. In
this section, we discuss how to derive a set of roles and
eventually users that are associated with a certain activity
or set of activities in a process. This selection is based on
the mapping of responsibilities to data objects and tasks as
described above, and the data model introduced in Sect. V.

Listing 2. Role Selection
1 # i n p u t v a r i a b l e p r o c e s s : pr
2 # i n p u t v a r i a b l e t a s k s : t a
3 # i n p u t v a r i a b l e o b j e c t : ob
4 # i n p u t v a r i a b l e o p e r a t i o n : op
5 rb = Array . new # l i s t o f r e s p o n s i b i l i t y b u n d l e s
6 B . each do |b |
7 temp = Array . new
8 b[R] . each do |r |
9 i f rtask

10 temp << r
11 end
12 end
13 i f ta ⊆ temp
14 b[RC] . each do |rc |
15 i f rctp and m = rc . ma tches (pr) and ta ⊆ m
16 rb << b
17 break
18 end
19 end
20 end
21 end
22 r o l e s = Array . new # l i s t o f r o l e s
23 S . each do |s |
24 s u c c e s s = t rue
25 i f s[b] ∈ rb and s[p] . o b j e c t ==ob and s[p] . o p e r a t i o n ==op
26 s[x] . each do |pc |
27 u n l e s s pc
28 s u c c e s s = f a l s e # pc n o t s u c c e s s f u l e v a l u a t e d
29 end
30 end
31 i f s u c c e s s
32 r o l e s << s . c o n n e c t e d r o l e s
33 end
34 end
35 end
36 r o l e s = r o l e s . un iq # remove d u p l i c a t e r o l e s

The algorithm in Listing 2 as a perquisite assumes that
four input variables are set in the first lines: (1) process
holds the process id in which certain (2) tasks occur, for
which a certain security (3+4) object and operation is
requested. For example when running a process instance, it
is necessary to derive a list of roles that is allowed to execute
a certain activity. In this case object is “control flow” and
operation is “execute”. Many other combinations for fine-
grained administration, change, and monitoring of processes
are imaginable.

For each bundle (line 6) every responsibility inside the
bundle is iterated and all tasks are concatenated to a list
temp (8 to 12). Lines 13 to 20 describe that if the set of
input tasks is a part of the responsibility task in the bundle,
then check all responsibility constraints (15): if the process
containing the tasks, matches a certain task pattern and the
tasks are part of the match. If this condition holds true this
responsibility bundle matches and is appended to the list rb.

In the next step (line 23) all security bundles are iterated,
in order to check (25) if they hold a responsibility bundle
identified in the last step, and if the object and operation
for this security bundle matches the request. Lines 26 to
30 ensure that all permission constraints for the given
permission are fulfilled, which eventually leads to appending
the all roles connected to this security bundle to a list of
roles (see line 32).

The resulting list of roles can be used in different process
related contexts. For example worklists need a set of roles in
order to show tasks for certain users. But the most important
application is an independent security monitor in order to
check if a certain user is allowed to execute a certain task
(Enforcing of Security Policies).

VII. RELATED WORK

In this section, we discuss and evaluate a selection of
policy approaches and our method along the design require-
ments as set out in Sect. III. The results of the evaluation
are shown in Tab. I.

Table I
Evaluation of existing Approaches

Policy R1 R2 R3 R4

NIST RBAC [13], W-RBAC [14] +
ARBAC [15] + + +
Bertino et al [4], Casati et al [16] +
Riberio et al [17] + + +
Neumann et al [2] + ∼ ∼
Responsibilty-driven + + + +

The Role-Based Access Control (RBAC) model (e.g.,
NIST RBAC [13]) expresses security policies based on
the role-permission assignments. Further models such as
Administrative RBAC models (e.g., ARBAC [15]) or PAIS
related RBAC models (e.g., Workflow RBAC [14]) have
been developed. Whereas these models depend on abilities

of authorized users to perform tasks (e.g., set in job descrip-
tion), our approach uses responsibilities such as data objects
or tasks related to permissions and roles to develop security
policies. Even though RBAC models enable independence
(R1), only administrative models enable maintenance fea-
tures (R2, R3) in PAIS.

The specification and enforcement of constraints in PAIS
are proposed in [2], [4], [16]. They support independence
(R1) but most of them ignore maintainability (R2), ex-
tendibility (R3), and scalability (R4) in PAIS. In our paper,
static and dynamic authorization and assignment constraints
are enforced. In [17], workflow processes are verified against
organization security policies by transforming each in a
common constraint language. This way, scalability (R4) can
become an issue when transforming and processing a large
amount of data. In our approach, inconsistencies only have
to be checked when policies are created or at change time.

The related work discussion showed that our approach is
a new method for designing and developing security policies
in PAIS. To our best knowledge, no other approach has met
all necessary design requirements in PAIS.

VIII. CONCLUSION

In this paper we presented design and development tech-
niques for security policies in PAIS. The main motivation
behind is the separation of business processes and security
policy aspects, since in current PAIS often a mix of both
aspects exists. This, however, hampers consistency checks
and enforcement of the security policies on the one side,
and maintenance and evolution of processes and associated
policies on the other side. The latter problem mainly arises
due to the potential side effects of changes that cannot be
controlled within such a mixed representation. To achieve
independence of security policies from business processes
they are imposed on, we enriched existing RBAC models
with structural aspects (responsibilities) as used in PAIS to
further define security policies. Based on these extensions,
all different kinds of security policies can be expressed
(e.g., access rules, authorization constraints, or context-
aware security policies) and they can be easily connected
to the business processes based on a simple mapping. This
approach can be deployed on every PAIS regardless of the
process modeling and system used. In future work we aim at
extending our considerations to cross-organizational process
settings. Further, we will integrate all concepts within a
proof-of-concept prototype.

REFERENCES

[1] N. Russell, W. M. van der Aalst, A. H. ter Hofstede, and
D. Edmond, “Workflow resource patterns: Identification, rep-
resentation and tool support,” in Proc. of CAISE. Springer,
2005, pp. 216–232.

[2] G. Neumann and M. Strembeck, “An approach to engineer
and enforce context constraints in an RBAC environment,” in
Proc. of ACM SACMAT. ACM, 2003, pp. 65–79.

[3] P. C. K. Hung and K. Karlapalem, “A secure workflow
model,” in Proc. of AISC on ACSW frontiers 2003 - Volume
21. Australian Computer Society, Inc., 2003, pp. 33–41.

[4] E. Bertino, E. Ferrari, and V. Atluri, “The specification
and enforcement of authorization constraints in workflow
management systems,” ACM Trans. Inf. Syst. Secur., vol. 2,
no. 1, pp. 65–104, 1999.

[5] R. J. Anderson, “Security in clinical systems,” Tech. Rep. 1.1,
1996.

[6] S. Rinderle-Ma and M. Leitner, “On evolving organizational
models without loosing control on authorization constraints
in web service orchestrations,” in CEC, 2010.

[7] J. E. Cook and A. L. Wolf, “Event-based detection of con-
currency,” in Proc. of ACM SIGSOFT FSE. ACM, 1998, p.
35–45.

[8] W. van der Aalst, H. Reijers, A. Weijters, B. van Dongen,
A. A. de Medeiros, M. Song, and H. Verbeek, “Business pro-
cess mining: An industrial application,” Information Systems,
vol. 32, no. 5, pp. 713–732, Jul. 2007.

[9] E. J. Coyne, “Role engineering,” in Proceedings of the first
ACM Workshop on Role-based access control. ACM, 1996.

[10] G. Neumann and M. Strembeck, “A scenario-driven role
engineering process for functional RBAC roles,” in Proc. of
ACM SACMAT. ACM, 2002, p. 33–42.

[11] M. Kuhlmann, D. Shohat, and G. Schimpf, “Role mining
- revealing business roles for security administration using
data mining technology,” in Proceedings of the eighth ACM
SACMAT. ACM, 2003, p. 179–186.

[12] M. Pesic and W. van der Aalst, “A declarative approach for
flexible business processes management,” in Business Process
Management Workshops. Springer, 2006, vol. 4103, pp. 169–
180.

[13] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST model
for role-based access control: towards a unified standard,” in
Proceedings of the fifth ACM workshop on Role-based access
control, 2000, pp. 47–63.

[14] J. Wainer, P. Barthelmess, and A. Kumar, “W-RBAC - a
workflow security model incorporating controlled overriding
of constraints,” International Journal of Cooperative Infor-
mation Systems, vol. 12, no. 4, pp. 455–485, 2003.

[15] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
model for role-based administration of roles,” ACM Trans. Inf.
Syst. Secur., vol. 2, no. 1, pp. 105–135, 1999.

[16] F. Casati, S. Castano, and M. Fugini, “Managing workflow
authorization constraints through active database technology,”
Inf. Syst. Frontiers, vol. 3, no. 3, pp. 319–338, 2001.

[17] C. Ribeiro and P. Guedes, “Verifying workflow processes
against organization security policies,” in Proc. of WETICE.
IEEE Computer Society, 1999, pp. 190–191.

	Introduction
	Security Policies in PAIS
	Security Policy Design Requirements
	Security Policy Acquisition
	Security Policy Design
	Responsibilities
	Permissions
	Assigning Security Aspects to Roles

	Security Policy Mapping
	Assigning Responsibilities
	Checking for Structural Process Security
	Selecting Roles

	Related Work
	Conclusion
	References

