
Runtime Process Adaptation for BPEL Process Execution Engines

Simon Tragatschnig and Uwe Zdun
Software Architecture Research Group,

University of Vienna,
Austria

{simon.tragatschnig, uwe.zdun}@univie.ac.at

Abstract—Requirements for business processes can change
over time. Adapting a process to meet the changed require-
ments is not always possible, especially for long running
processes, where stopping the execution of process instances
might be necessary and/or instance migration or compensation
scenarios must be implemented. Adaptations for processes
can be described in a generic way using adaptation patterns.
Interpreting these adaptation patterns will enable adaptation
support at runtime, independently from a specific process
execution engine. This paper presents a framework which
enables adaptation support for process execution engines. It
explains how runtime information of process instances can be
monitored by using aspect-oriented programming. A model for
adaptation patterns is presented as well as an adaptation engine
which interprets instances of the adaptation pattern model and
applies the adaptations to running BPEL processes and their
instances. The presented adaptation framework is not tied to
a specific process execution engine, so any process execution
engine can be extended to provide adaptation support.

Keywords-Runtime Process Adaptation, Adaptation Model,
Process Execution Engine, BPEL

I. INTRODUCTION

Requirements on business processes usually change over
time, requiring executable business process models to be
changed accordingly. As many business processes are long
running entities, usually instances are still running, when a
business process model must be changed. Different strategies
exist for integrating process model changes into running
process instances, such as manually tailoring the process
instance or its results to comply to the new process model,
or writing a script to automatically apply these changes.
However, these strategies and similar strategies are usually
difficult, error-prone, and time consuming.

A number of approaches exist that address this problem. A
process-aware information system supporting modifications
during runtime is presented by Reichert et al. [1]. Even
though this approach solves the problem, it does not handle
process adaptation in a generic way, as it does not allow
to extend existing process execution engines with adap-
tation support, but is dependent on a proprietary process
engine. Some other approaches [2]–[5] support adaptation
of BPEL processes by monitoring and selecting or replacing
the services triggered by process activities of a running
BPEL process (e.g., based on quality of service (QOS)
definitions). These approaches use different strategies for

adaptation, such as general service proxies performing ser-
vice adaptation [5], or aspect-oriented engine adaptation plus
indirection by an interception and adaptation layer [2]–[4].
Even though these approaches allow for adapting existing
process engines, they do not support modifying a process’
structure at runtime.

This paper presents a framework and a prototype imple-
mentation to support structural modification of processes and
their instances at runtime and enables extending existing
BPEL process execution engines with adaptation support.
This is achieved by providing an abstract process model,
an adaptation patterns model, and an adaptation engine – to
support process adaptation in a generic way. The adaptation
patterns model describes adaptation patterns, based on the
abstract process model, and supports specifying adaptations
based on established adaptation structures. Instances of the
adaptation patterns model are interpreted by the adaptation
engine, which applies the adaptations to instances of the
abstract process model as well as to any process execution
engine on which the processes are executed. To allow
for monitoring and later adapting processes in an existing
process engine, without having to modify is implementation,
aspect-oriented programming (AOP) is used. In this paper,
the Apache ODE [6] BPEL process engine is exemplarily
extended to provide adaptation support.

Figure 1 gives a simplified overview of our adaptation
framework and the extension of Apache ODE. To integrate
the adaptation framework with Apache ODE (or any other
existing BPEL engine), only a monitor and a set of basic
adaptation operations (like inserting or deleting an activity)
must be implemented. Aspect-oriented programming is only
required, if the engine does not already implement suffi-
cient monitoring capabilities. For instance, in the case of
Apache ODE aspect-oriented programming was necessary
as Apache ODE does not emit all required events. The
monitor observes Apache ODE to synchronize deployed
processes and its instances with instances of the abstract
process model. Basic adaptation operations for Apache ODE
are used to execute the instances of the adaptation patterns
model. Analogously, to extend another process execution
engine, such as JBoss jBPM, only implementations of the
monitor and the basic adaptation operations are needed.

The paper is structured as follows: The next section intro-

Apache ODE, BPEL

A
p

a
ch

e

O
D

E

A
d

a
p

ta
tio

n
 F

ra
m

e
w

o
rk

Abstract Process Model

Adaptation Engine

Adaptation

Engine

Adaptation

Configuration

Abstract

Process Model

Adaptation

Operation

Abstract

Process Model

Operation

Apache ODE

Operation

based on

executes

configures

interprets

Apache ODEmanipulates

manipulates

Process Engine

Monitor

Apache ODE

Monitor

synchronizes

monitors

Figure 1. Overview of the adaptation framework extending Apache ODE

duces a motivating example to illustrate the problem further.
The monitoring of Apache ODE is presented in Section
III (using AOP). Section IV introduces the abstract process
model that describes detailed information about processes
and instances during runtime and how monitoring is used to
synchronize runtime information of the process engine with
the adaptation framework. The adaptation patterns model
for describing adaptation patterns is presented in Section
V and the adaptation engine, which applies adaptations to a
process, is introduced in Section VI. This section will also
explain how concrete adaptation descriptions are interpreted
to apply adaptation to processes and instances within the
adaptation framework and Apache ODE. A comparison to
the related work is presented in Section VII, and in Section
VIII we conclude.

II. MOTIVATING EXAMPLE

The following example illustrates the problem of changing
a process at runtime. The left-hand side of Figure 2 shows a
process for registration to a PhD program at a university.
An application for admission has to be submitted to the
university where it must be examined. The examination will
take about 6 weeks. If the examination leads to granting the
admission, the student is allowed to register for the PhD
program. Consider that 5 weeks after starting the examina-
tion of the admission, the process designer realizes that for
registering the PhD program a passport photo of the student
is needed as well. So a new activity get passport photo has
to be inserted before the activity register for phd program.
However, at this stage there might already be many running
process instances, which are for example in the 6 weeks
examination phase. These running process instances neither
contain the novel activity nor the process variable needed to
store the reference to the passport photo.

Possible approaches for applying the change to running
process instances are:

• Stopping all running process instances, changing the
process and starting new instances of the changed
process. This would cause the university to examine
the admission twice and the applying student would
have to wait another 6 weeks before being allowed
to register for the PhD course, which might lead to
problems regarding application deadlines.

• Ignoring the change, which may cause inconsistent data
(missing picture) and maybe additional administrative
effort to obtain the student’s picture. Only new in-
stances will take the new activity into account.

• Instance migration (manually or using scripts) by
adding a dummy picture to avoid inconsistent data, but
maybe cause additional administrative effort to obtain
the student’s picture later on.

These options will cause data inconsistencies and/or addi-
tional effort for instance migration. Support for applying
changes on processes as well as instance migration during
runtime is required to solve the problem without manual
efforts or inconsistencies. As explained in Section VII, so
far no approach exists that supports structural changes to
processes and their instances at runtime for existing process
engines, such as popular BPEL engines. Our approach
achieves this goal by providing a general adaptation frame-
work, based on an abstract process model, an adaptation
pattern model, and an adaptation engine, that can be com-
bined with existing engines through monitoring interfaces
(possibly realized using AOP) and the implementation of a
set of basic adaptation operations.

The outcome is illustrated in Figure 2 from the perspective
of the user of our adaptation framework: The user must
specify an adaptation pattern instance. First, the adaptation

perform adaptation :SerialInsert

:ProcessFragment

Indicator

:InsertConfiguration

:ProcessFragment

original process

referenced activity

:ProcessFragmentAnchor

PositionType : BEFORE

adapted process

activity to add

configured by

Figure 2. Example: Registration to a PhD program

type is selected (in this case SerialInsert). Next, the insert
operation is configured by selecting the place in the original
process, where the insert should take place, and by defining
a process fragment to insert. Upon deployment of this
adaptation, our prototype will update the BPEL process
description deployed in the engine, as well as all process
instances of the BPEL process.

III. MONITORING APACHE ODE

The process engine Apache ODE only provides rudi-
mentary monitoring support, e.g., basic information like the
name and state of deployed processes and their instances.
For supporting adaptation of processes during runtime much
more information is needed like the currently executing
activities, already processed and future activities, and even
information about the process engine’s internal execution of
an activity.

For the adaptation engine presented in this paper, the mon-
itored information about a process’ structure and runtime
information of a process’ instances is needed. This runtime
information includes information about which activities were
already processed, which one is actually executed and which
one still have to be executed. Detailed information about the
internal processing of an activity is extracted, as well.

The goal of our prototype implementation was that the
existing source code of Apache ODE should not be affected
by the additional monitoring code. Hence, AOP with runtime
weaving is used for adding the monitoring functionality.
Another advantage of using AOP for monitoring compared
to event-based monitoring (as for example used in the

Apache ODE

ODEServer

BPELServer

Monitor

ProcessContainer
Monitor

ProcessMonitor

RuntimeMonitor

BPELProcess

BPELRuntimeContext

VPU
Execution

Queue
Activities

Figure 3. Overview: Monitoring Apache ODE

Business Process Illustrator [7], [8]) is the direct access to
objects within the process execution engine. We can use
these monitored objects directly to apply the adaptations
(i.e., modifications of a process’ structure) on them, as
explained in Section VI.

Figure 3 shows a simplified overview of Apache ODE’s
structure and which parts have to be monitored to access the
information needed. The ProcessContainerMonitor monitors
the state of the process engine (start, stop, un-/deploy
process), which is represented by the implementation of
ODEServer and BPELServer. The ProcessMonitor monitors
the deployed processes and their instances. The required
information is provided by implementations of BPELProcess
and BPELRuntimeContext. The RuntimeMonitor monitors
the instances of a process and gives information about the
state (e.g., active, completed, failure, ...) and which activi-

ties were/are/will be executed. The required information is
provided by implementations of VPU (Apache JACOB’s [9]
virtual processing unit, dealing with persistence of execu-
tion state and consistency), the execution queue where all
activities to be executed are stored, and the representation
of (executed) activities.

By monitoring of Apache ODE the process’ runtime
information can be made explicit, which is explained in the
next section.

IV. USING AN ABSTRACT PROCESS MODEL TO
COLLECT PROCESS RUNTIME INFORMATION

As described before, Apache ODE does not provide de-
tailed information about processes, instances, or the runtime.
By monitoring the process engine this information can be
made explicit using a model for the representation of a
process and its instances at runtime. Inspired by Reichert
et al. [1] a simplified process model was designed. For
simplification the model only supports a sequence of process
fragments. To keep the example simple, joins, forks, and
parallel fragments are not considered at the moment. The
presented process model is called abstract process model in
this paper.

In Figure 4 an overview of the abstract process model is
given. A ProcessContainer contains Processes. A Process
contains an ordered sequence of ProcessFragments, which
contains an ordered sequence of the ProcessFragmentSteps.
A ProcessFragment is a specialization of BaseFragment
which allows to describe nested fragments.

Each instance of a Process is represented by Instance.
An Instance contains a queue ProcessFragmentQueue of
ConfiguredFragments. A ConfiguredFragment is related to
a corresponding ProcessFragment including runtime infor-
mation. The realization of Suspendable allows suspending
and resuming a Process, an Instance and a ProcessFrag-
mentQueue while applying adaptations to them.

In the case of Apache ODE a ProcessContainer is the
BPELServer on which the the BPEL processes are deployed.
A Process is a BPEL process and the ProcessFragments its
activities. Each single step a BPEL engine has to perform for
each activity is represented by a ProcessFragmentStep. The
instance of a BPEL process including it’s runtime context (if
available) is represented by Instance. A ConfiguredFragment
represents a BPEL activity during runtime.

The abstract process model provides the information at
runtime needed for applying adaptations. A mechanism
for applying adaptations and their synchronization between
the process engine (Apache ODE) and the process model
instances is introduced in the next section. Using this model
will decouple the adaptations, described in the next section,
from a specific process definition languages, such as BPEL
and BPMN, as well as their process execution engines.

V. ADAPTATION PATTERNS MODEL

Based on the abstract process model presented in Section
IV, an adaptation patterns model is presented in this section.
An adaptation pattern describes a structural change of a
process. To execute an adaptation, an instance of adaptation
patterns model is configured with specific data about the
process to be modified.

In [10]–[12] patterns of changes in process-aware infor-
mation systems were identified. E.g., the insert adaptation
pattern is defined as follows (from [11]):

Name: Insert Process Fragment
Description: A process fragment is added to a
process schema.
Example: For a particular patient an allergy test
has to be added due to a drug incompatibility.
Problem: In a real world process a task has to be
accomplished which has not been modeled in the
process schema so far.
Design Choices: D. How is the additional process
fragment X embedded in the process schema?
(1.) X is inserted between 2 directly succeeding
activities (serial insert)
(2.) X is inserted between 2 activity sets (insert
between node sets) a) Without additional condi-
tion (parallel insert) b) With additional condition
(conditional insert)
Implementation: The insert adaptation pattern
can be realized by transforming the high level
insertion operation into a sequence of low level
change primitives (e.g., add node, add control
dependency).

The adaptation patterns model presented in this paper
allows one to specify these change patterns for a later
adaptation of a running process. An outline of the adaptation
patterns model is shown in Figure 5.

An Adaptation represents a set of Operations, which are
applied to a process. An Atomic Operation is the most low-
level operation like adding or deleting a process fragment
(e.g., a BPEL activity). More complex operations can be
assembled by these atomic operations (e.g., moving a pro-
cess fragment can use the delete and insert operation) but,
if needed, can be defined as an atomic operation as well
for semantic distinction (e.g., moving a process fragment
is semantically different from deleting and inserting it).
These operations are completely independent of a particular
process’ structure. That is, in particular, they can be used
for adapting an instance of the abstract process model
introduced in Section IV as well as for adapting a BPEL
process. Decoupling the operations from a specific process
structure enables decoupling of the adaptation engine, too,
which interprets instances of the adaptation patterns model
presented in Section VI. To enable adaptation support for a
specific process execution engine only these atomic opera-

BaseFragment

ProcessContainer

Process ProcessFragment ProcessFragmentStep

Instance ConfiguredFragmentProcessFragmentQueue

Suspendable

*

* *

1

*

1

*

1

parent

Figure 4. Overview of the abstract process model

AdaptationConfiguration

ProcessFragment

Indicator

DeleteConfigurationInsertConfiguration

ProcessFragment

Operation

AtomicOperationAdaptation

AddOperation DeleteOperation

configured by
*

Delegating

Operation

supplying

internal

ProcessFragmentAnchor

PositionType : relativePosition
<<interface>>

Add

<<interface>>

Delete

<<enumeration>>

PositionType

BEFORE

AFTER

Figure 5. Outline of the adaptation patterns model

tions have to be implemented.

When the adaptation engine, presented in Section VI,
interprets instances of the adaptation patterns model, it holds
an instance of the abstract process model, presented in
Section IV, which represents the process to be adapted of the
process execution engine. If the structure of the process is
changed within the process execution engine, the adaptation
engine needs to know about these changes. It is assumed,
that the process execution engine does not provide support
for monitoring changes of a process’ structure. A mechanism
to apply the modifications on the processes of the process
execution engine as well as on its abstract process model
representation is needed. This is realized by a Delegating
Operation, which is defined by two operations of the same
type (e.g., adding a process fragment), called internal and
supplying operation. First, the supplying operation is applied
on the process of the process execution engine. If this

operation was able to proceed successfully, the internal
operation will be applied on the abstract process model
instance. This will cause both process representations having
the same structure after applying a Delegating Operation.
Please note that there is a need for a transaction handling
(which is not realized right now in our prototype, but will
be implemented in future versions).

Figure 6 shows the relationship between the serial insert
adaptation pattern, using the delegating add operation. More
details about binding an adaptation patterns to instances of
the corresponding operation are presented in Section VI. The
code snippet in Figure 7 shows how the configuration for
a serial insert adaptation pattern can be created. Though,
this code should never be typed since the information
can be extracted from existing process definitions, e.g. by
comparing the structure of the running process instance with
its modified BPEL process definition.

InsertConfiguration

InsertConfiguration

Adaptation AddOperation

SerialInsert FragmentAdd

OdeAdd

Delegating

Operation

DelegatingAdd

internal

supplying

Operation

uses

<<interface>>

Add

Figure 6. Example for describing a serial insert adaptation pattern for Apache ODE

// the abstract process representation of

// the executed process of the process execution engine

Process process;

// fetch the fragment from process, which

// represents the activity register_for_phd_program

ProcessFragment referenceFragment =

process.findActivity("register_for_phd_program");

// create the new bpel activity

// get_passport_photo to be added

OProcess owner = (OProcess) process.getBase();

OActivity parent =

(OActivity) referenceFragment.getParent().getBase();

OInvoke activity_get_passport_photo =

new OInvoke(owner, parent);

// set properties for activity_get_passport_photo

[…]

// create the according process fragment

// for the BPEL activity

ProcessFragment newFragment = new ProcessFragmentImpl(

activity_get_passport_photo,

referenceFragment.getParent(),

referenceFragment.getOwningProcess());

AbstractInsertConfiguration insertConfig =

new SerialInsertConfiguration();

insertConfig.setNewFragment(newFragment);

insertConfig.setFragmentAnchor(

new ProcessFragmentAnchor(

referenceFragment,

ProcessFragmentPositionType.AFTER

)

);

Figure 7. Example code snippet for serial insert configuration

So far, an adaptation knows which operations have to
be performed, but it does not know on to which process
fragments it should be applied during runtime. A configu-
ration solves this problem by providing information about
the specific process structure. For example, the adaptation

for deleting a process fragment needs to be configured with
the specific process fragment to be deleted. The adaptation
for inserting a new process fragment needs to be configured
with the new process fragment and a relative position to an
existing process fragment, as shown in Figure 2.

VI. ADAPTATION ENGINE

The adaptation engine provides functionality for applying
adaptations to a process. A main objective of the adaptation
engine is to easily adapt it to any process engines, which can
be mapped to our abstract process model, and their respec-
tive process definition languages (in this paper we focus on
BPEL engines, but in principle our abstract process model
can also be applied to other process definition languages).

The adaptation engine’s task is to interpret instances of
the adaptation patterns model and to apply these adaptations
to processes and its instances within the process execution
engine. The adaptation patterns model is presented in Sec-
tion V, Figure 5 gives an outline of the model.

To apply an Adaptation to a process, a description of
a specific adaptation is needed, which is represented by
an instance of a adaptation patterns model. For example,
as shown in Figure 6, for inserting a process element,
information about the new process element and its position
relative to an already existing process element is needed.
This description is defined by an AdaptationConfiguration.
A ProcessFragmentIndicator is used for identifying a spe-
cific process fragment within a process. To define a relative
position in relation to a process fragment (e.g., before,
after), a ProcessFragmentAnchor is used. The binding be-
tween a description and the corresponding operation hap-
pens at runtime. As shown in Figure 8, the adaptation
engine is configured by a specific implementation of an
Adaptation Engine Configuration, which provides a factory
for instancing operations and knows about the mapping
between adaptations and operations. When the execution of

Adaptation

Engine

Adaptation

Engine

Configuration

Adaptation

Operation

Adaptation

Executor
executes

provides

requests operation for

adaptation pattern instance

Apache ODE

Configuration

Apache ODE

Operation

is configured by

starts
1

2

3

Figure 8. Operation binding at runtime using Adaptation Engine Config-
uration

an adaptation starts (1), the Adaptation Executor requests the
corresponding operation for the adaptation to be executed
(2), which then gets executed (3).

Using this binding at runtime and by just implementing
the set of atomic operations for a specific process execution
engine, an Adaptation can easily be adjusted to work on any
process models and platforms, (e.g., not just on Apache ODE
with BPEL, but jBPM with jPDL or BPMN as well).

Figure 1 gives an schematic overview of the relations
between the Adaptation Engine, Adaptation Configurations,
Adaptation Operations and the process environment to be
adapted.

Figure 6 shows an outline of a more specific example:
serially inserting a new process fragment. The InsertConfig-
uration defines the new process fragment to be added as well
as it’s new position. It configures the adaptation Serial Insert,
which uses a Delegating Add to add the new fragment to
both process representations, the abstract process model and
BPEL. The Delegating Add will only apply the implementa-
tion of an Add to the abstract process model (via Fragment
Add) if the add operation was successful on the Apache ODE
engine. Which implementation of Add is used to adapt
the Apache ODE engine is elicited during runtime using
mappings for each process engine and process model. Using
AOP for monitoring Apache ODE, as described in Section
III, enables connecting process fragments of the abstract
process model with the corresponding objects processed
within Apache ODE. Operations can directly work on these
objects, without querying the process engine for them during
runtime.

When an adaptation is applied to a running instance of
a process within a process engine, the instance must be
paused. Because Apache ODE does not support this feature,
the implementation of an instance’s execution queue was
replaced by a suspendable implementation using AOP .
There is still a need for controlling processes and instances
during runtime, but is not realized right now.

VII. RELATED WORK

A workflow system supporting adaptations for long run-
ning processes is presented by Minor et al. [13]. It provides
a partial suspension mechanism, so elements which will not
be affected by the modifications can continue to be executed
during adaptation. Reasoning over previous adaptations are
used for supporting the user to apply future ones.

Another process-aware information system supporting
modifications during runtime is ADEPT, presented by Re-
ichert et al. [1]. It supports modification of process level
and process instance level as well as instance migration for
evolving process schemes.

Even though these two approaches solve the problem,
it does not handle process adaptation in a generic way,
as it does not allow to extend existing process execution
engines with adaptation support, but is dependent on a
proprietary process engine. The approach presented in this
paper provides an adaptation engine which can be used
to easily extend existing process execution engines. The
only effort to connect the adaptation engine with a process
execution engine is to implement process execution engine
specific monitoring and a very limited number of atomic
operations for applying modifications to processes and its
instances.

Other approaches enable monitoring and adaptation sup-
port by transforming the original process and enrich it
with additional information and structural behavior using
middleware. Because the original process differs from the
executed process, it will be difficult to close the gap between
the user performing an adaptation to the original process
and the process execution engine executing a process which
differs to the original one the user wants to adapt. If the
information about the transformation as well as the process
structure is issue of change, their co-evolution must be
manageable for an adaptation engine, too.

Baresi and Guinea presented the framework Dynamo [14],
[15] allowing to create monitoring rules, which can be
weaved with a process during deployment time. During
runtime, the monitoring can be parametrized.

Ezenwoye and Sadjadji present the TRAP/BPEL frame-
work [5] that enables service adaptation by using service
proxies. An adaptation ready version of a BPEL process
can be generated, where web services are replaced by either
a static or dynamic service proxy, where a static service
proxy offers alternative, equivalent compositions of web
services and a dynamic service proxy uses UDDI lookup
for dynamically identifying equivalent web services.

VieDAME presented by Moser et al. [3], [4] allows dy-
namic adaptation of web service composition using aspect-
oriented engine adaptation plus indirection by an inter-
ception and adaptation layer. Defined quality of service
(QoS) properties are used to select an appropriate, equivalent
service. Equality of services have to be defined manually and

stored in a repository. A service invocation is intercepted by
the presented framework using aspect oriented programing.

Another, similar approach presented by Agarwal and
Jalote [2] is calculating equality of services, using semantical
annotated service descriptions. This allows to automatically
use new available services without maintaining a repository.

The approaches for dynamic web service composition of
Ezenwoye et al., Moser et al. and Agarwal et al. allow
extending existing process engines with adaptation support,
where adaptation support means exchanging web services.
However, they do not support modifying a process’ structure
during runtime. Weber et al. [12] identify requirements on
process-aware information systems to support these changes
as well as patterns for changes. An evaluation of selected ap-
proaches and systems focusing change support is presented,
as well.

MASC (Manageable and Adaptive Service Composi-
tions) [16], presented by Erradi et al., provides a middleware
for adaptive composite web services. A transformation of
the process to be instantiated wraps each activity with a
special activity, which acts as listener for and executor of
adaptations, as well as executing the wrapped activity. In
contrast to MASC the approach presented in this paper aims
to offer a solution which can easily be plugged onto an
existing process engine, without setting up a middleware.

Leitner et al. [17] use an approach, where sequences of a
graph based workflow can be supplemented by composition
fragments, which are linked to the original workflow. Using
an aspect based description of fragment substitution, the
fragments can be weaved into the origin workflow during
runtime. The proposed generic fragments can be compared
to the adaptation pattern model presented in our approach,
where we focus on enabling the extension of process engines
with model based adaptation support.

An approach without transforming a process is
AO4BPEL [18]. This approach addresses expressing
crosscutting concerns of processes and uses the aspect
oriented paradigm for changing web service composition
during runtime. Although AO4BPEL enables modifying a
process’ structural behavior, it can be hard to predict or
reconstruct the sequential flow of a process adapted with
aspects, especially with a growing amount of aspects.

VIII. CONCLUSION AND DISCUSSION

This paper presents an approach for adaptation of pro-
cesses during runtime using the example of BPEL. The
adaptation engine is able to interpret and execute instances
of the presented model for adaptations and to apply the
adaptations to deployed processes and its instances to any
process execution engine. To show the feasibility of our
approach, adaptation support has been implemented in a
prototype for Apache ODE.

The adaptation framework presented in this paper shows
that it is feasible to perform structural adaptation to BPEL

processes running in existing process engines. In particular,
it is possible to extract runtime information about instances
from existing process engines and add adaptation support
without touching the engine’s code.

However, our adaptation framework still has some lim-
itations: Still a lot of adaptation patterns exist which are
not (yet) realized by the model. Currently the model is
implemented in Java. However, an implementation in es-
tablished modeling frameworks such as EMF will be used
in future version (to be able to use EMF’s tool support).
As mentioned above, transaction support when updating
the abstract process model and the engine model would be
desirable.

Our approach enables a number of further future works:
Modeling the adaptation patterns enables analyses of a
concrete set of adaptations with established technologies,
e.g., comparison of different sets of adaptations, monitoring
concurrent adaptations, detection of dependencies between
adaptations (e.g., conflicts, causal dependencies, mutual ex-
clusion, ...) which can support optimization of adaptations
as well as concurrency handling. By comparing two process
versions, instances of configured adaptation pattern can be
generated. Conversely, configured instances of adaptation
patterns can be used for realizing versioning, using adapta-
tions as deltas between versions. E.g., Langer et al. presented
an approach for model versioning using operations [19],
[20] for conflict detection, where operations are similar to
configured adaptations presented in this paper.

REFERENCES

[1] M. Reichert and P. Dadam, “Enabling Adaptive Process-
aware Information Systems with ADEPT2.” in Handbook
of Research on Business Process Modeling. Information
Science Reference, 2009, pp. 173–203.

[2] V. Agarwal and P. Jalote, “From Specification to Adaptation:
An Integrated QoS-driven Approach for Dynamic Adaptation
of Web Service Compositions,” IEEE International Confer-
ence on Web Services, pp. 275–282, Jul. 2010.

[3] O. Moser, F. Rosenberg, and S. Dustdar, “VieDAME - flexible
and robust BPEL processes through monitoring and adapta-
tion,” in Companion of the 30th International Conference on
Software Engineering, ser. ICSE Companion ’08. New York,
NY, USA: ACM, 2008, pp. 917–918.

[4] ——, “Non-intrusive monitoring and service adaptation
for WS-BPEL,” in Proceeding of the 17th international
conference on World Wide Web, ser. WWW ’08. New York,
NY, USA: ACM, 2008, pp. 815–824. [Online]. Available:
http://doi.acm.org/10.1145/1367497.1367607

[5] O. Ezenwoye and S. M. Sadjadi, “TRAP/BPEL: A Frame-
work for Dynamic Adaptation of Composite Services,” in
Proceedings of the International Conference on Web Informa-
tion Systems and Technologies (WEBIST 2007), ser. WEBIST
2007, 2007.

[6] The Apache Software Foundation, “Apache ODE,” http://ode.
apache.org/, Sep. 2010.

[7] G. Latuske, “Business Process Illustrator,” http://sourceforge.
net/projects/bpi/, Sep. 2010.

[8] ——, “Sichten auf Geschäftsprozesse als Werkzeug zur
Darstellung laufender Prozessinstanzen,” Diplomarbeit, Uni-
versität Stuttgart, Fakultät Informatik, Elektrotechnik und
Informationstechnik, Germany, Oktober 2010.

[9] The Apache Software Foundation, “Apache ODE Jacob,”
http://ode.apache.org/jacob.html, Sep. 2010.

[10] B. Weber, S. Rinderle, and M. Reichert, “Change Patterns and
Change Support Features in Process-Aware Information Sys-
tems,” in Proceedings of the 19th International Conference
on Advanced Information Systems Engineering. Springer-
Verlag, 2007, pp. 574–588.

[11] B. Weber, S. Rinderle-Ma, and M. Reichert, “Identifying and
Evaluating Change Patterns and Change Support Features in
Process-Aware Information Systems.” Centre for Telematics
and Information Technolog, Technical Report, March 2007.

[12] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns
and change support features - enhancing flexibility in process-
aware information systems,” Data & Knowledge Engineering,
vol. 66, no. 3, pp. 438 – 466, 2008.

[13] M. Minor, D. Schmalen, A. Koldehoff, and R. Bergmann,
“Structural Adaptation of Workflows Supported by a Sus-
pension Mechanism stand by Case-Based Reasoning,” 16th
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 2007),
pp. 370–375, 2007.

[14] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of
WS-BPEL Processes,” in Proceedings of the 3rd International
Conference of Service-Oriented Computing (ICSOC 2005),
ser. Lecture Notes in Computer Science, vol. 3826. Springer,
2005, pp. 269–282.

[15] ——, “Dynamo: Dynamic Monitoring of WS-BPEL Pro-
cesses,” in Proceedings of the International Conference
on Service-Oriented Computing (ICSOC05), ser. Lecture
Notes in Computer Science, B. Benatallah, F. Casati, and
P. Traverso, Eds. Springer, 2005, vol. 3826, pp. 478–483.

[16] A. Erradi, V. Tosic, and P. Maheshwari, “MASC - .NET-
Based Middleware for Adaptive Composite Web Services,”
in IEEE International Conference on Web Services (ICWS
2007). IEEE, 2007, pp. 727–734.

[17] P. Leitner, B. Wetzstein, D. Karastoyanova, W. Hummer,
S. Dustdar, and F. Leymann, “Preventing SLA Violations in
Service Compositions Using Aspect-Based Fragment Substi-
tution,” in Service-Oriented Computing, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2010, vol.
6470, pp. 365–380.

[18] A. Charfi and M. Mezini, “Aspect-Oriented Web Service
Composition with AO4BPEL,” in Web Services, ser. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg,
2004, vol. 3250, pp. 168–182.

[19] P. Langer, K. Wieland, and P. Brosch, “Specification, Exe-
cution, and Detection of Refactorings for Software Models,”
in Proceedings of the Work-in-Progress Session at the 8th
International Conference on the Principles and Practice of
Programming in Java (PPPJ 2010). CEUR-WS.org, 2010.

[20] P. Brosch, P. Langer, M. Seidl, and M. Wimmer, “Towards
End-User Adaptable Model Versioning: The By-Example Op-
eration Recorder,” in Proceedings of the 2009 ICSE Workshop
on Comparison and Versioning of Software Models. IEEE,
2009, pp. 55–60.

