
An Enhanced Architectural Knowledge Metamodel
Linking Architectural Design Decisions to Other Artifacts

in the Software Engineering Lifecycle

Rafael Capilla1, Olaf Zimmermann2,
Uwe Zdun3, Paris Avgeriou4, Jochen M. Küster2

1 Universidad Rey Juan Carlos, Madrid, Spain

rafael.capilla@urjc.es
 2 IBM Research, Zurich, Switzerland

olz,jku@zurich.ibm.com
3 Vienna University of technology, Vienna, Austria

uwe.zdun@univie.ac.at
4 University of Groningen, Groningen, The Netherlands

paris@cs.rug.nl

Abstract. Software architects create and consume many interrelated artifacts
during the architecting process. These artifacts may represent functional and
nonfunctional requirements, architectural patterns, infrastructure topology units,
code, and deployment descriptors as well as architecturally significant design
decisions. Design decisions have to be linked to chunks of architecture
description in order to achieve a fine-grained control when a design is modified.
Moreover, it is imperative to identify quickly the key decisions affected by a
runtime change that are critical for a system’s mission. This paper extends
previous work on architectural knowledge with a metamodel for architectural
decision capturing and sharing to: (i) create and maintain fine-grained
dependency links between the entities during decision identification, making,
and enforcement, (ii) keep track of the evolution of the decisions, and (iii)
support runtime decisions.

Keywords: architectural design decisions, architectural knowledge, metamodel,
runtime decisions, traceability, evolution.

1 Introduction

Existing software architecture design processes [1] lack adequate mechanisms to
explain the line of reasoning that architects follow in order to make design decisions.
Reasoning about the architectural design is considered a tacit process that exists only
in the architect’s mind; the decisions that lead to a software architecture are often
overlooked during architecture design and thus not systematically documented. In
recent years, the software architecture community has established design decisions as
first-class entities that should be captured alongside with other design elements.
Therefore, the creation of software architectures is now also seen as the result of a set

of design decisions rather than just as an assembly of components and connectors [2].
Making decisions explicit preserves architectural knowledge when staff is exchanged,
e.g., when subject matter experts join the development team only temporarily or when
transitioning from development to maintenance. As mentioned in [3], long-term
benefits such as reduced maintenance effort should motivate users to capture the
design rationale explicitly in the form of architectural decisions. This particularly
holds true in successive iterations of the system as it evolves.
This paper extends previous work on architectural knowledge with a metamodel for
architectural decisions to: (i) create and maintain fine-grained dependency links
between the entities during decision identification, making, and enforcement, (ii) keep
track of the evolution of the decisions, and (iii) support runtime decisions. Section 2
describes the background and the motivation of this research. In Section 3 we present
a metamodel supporting traceability to keep track of the decisions made and their
relations to design elements and artifacts. Section 4 then outlines the implementation
of the metamodel in several prototype tools. Section 5 discusses a case study in the
Service-Oriented Architecture (SOA) domain to demonstrate how the extensions of
the metamodel are of practical use for SOA design. Section 6 describes the related
work and section 7 summarizes the conclusions and future work.

2 Motivation and Problem Identification

A variety of research prototype tools have been developed to support design decisions
in software architecture. From our experience developing and using various tools for
architectural decision modeling, e.g., the Architectural Decision Knowledge Wiki [4],
Architecture Design Decision Support System [5], and The Knowledge Architect [6],
we observed three major shortcomings related to the creation and maintenance of the
traceability links between the architectural knowledge and other artifacts:

1. The coarse link granularity in existing metamodels makes models easy to
populate, but does not support a fine-grained tracing and tracking of
decisions in relation to atomic design elements such as attributes in a class
model or tasks in a business process model. Support for fine-grained trace
links in current architectural decision modeling tools is weak or inexistent as
some of the tools import UML design models externally and decisions can be
only linked to coarse-grained artifacts.

2. Existing metamodels do not put special attention on history and evolution of
decisions. Only a few of them treat evolution of decisions and architecture
partially. One reason for this limitation is that most commercial and open
source UML modeling tools do not offer explicit support for architecture
evolution (e.g., Jude Community, Magicdraw).

3. The decision making process suggested by existing metamodels assumes that
all decisions can be made at design time; deferring decisions to runtime is
not supported. At present, the existing architecture decision modeling
prototype tools do not offer support for runtime decisions that can be traced
back to the architecture or to requirements when a piece of code or a system
module change.

The first problem area addressed in this paper is link granularity. Links connecting
key design decisions to architectural artifacts should include relationships to smaller
parts of the design. Such an approach helps to achieve the precision required to
estimate the impact of changes accurately. Small but important decisions should also
be captured and linked properly. For instance, a decision to introduce a new UML
package or class seemingly constitutes a more coarse-grained decision than the
decision to add a new attribute to an existing class; however, the attribute may express
a key architectural concern, e.g., it might flag an architecture component to be subject
to financial and general IT controls audits or it might demarcate a system transaction
boundary in a service composition. In many cases, fine-grained decisions are derived
from coarse-grained ones made before; however, the lack of accuracy of existing
traceability models do not offer a way to track the impact on the design or code. Thus,
it is required to introduce trace links with narrower and more precise scope to achieve
more precision in the traceability of architectural decisions during decision
identification, making, and enforcement.

The second problem pertains to the maintenance of a system, as the design
decisions made in the past might become obsolete, and the history and evolution of
decisions should be recorded in the same way versioning repositories store the history
and evolution of source code. This is useful for a number of reasons. In certain cases
during system evolution, the architects have to revisit past decisions and revert to
them if a new decision appears to be wrong. In other cases, architects may need to roll
back the design, and start a new decision path from that point. Finally new
stakeholders that become involved in a project can be educated much more efficiently
by studying the evolution of decisions over time and the rationale that lead to the
existing set of decisions and the present design.

As a third problem, we observed that today the dynamicity of certain systems may
imply that certain decisions affect architectures that have already been deployed but
have to be modified during runtime. For instance, a composite service which replaces
an atomic service with another one due to new quality-of-service conditions during
execution requires deferring decisions to runtime. Such deferred decisions have to be
tracked back to the architecture and requirements so that conformance to them can be
ensured. Supporting runtime decisions becomes increasingly relevant in modern
operating environments and deployment infrastructures such as virtualized data
centers: each instantiation of a virtual software image may decide for a slightly
different set of quality properties. Examples include the heap and disk size of virtual
UNIX machines (infrastructure-as-a-service scenario), Java and relational data
source settings of Web application servers (platform-as-a-service), and login and
encryption policies of hosted Web conferences (software-as-a-service). These
decisions are based on user preferences and current resource consumption (system
load); these two types of decision drivers only become known at runtime.
Consequently, it makes sense to defer the detailed architectural decisions about these
infrastructure settings to runtime (while at design time certain architectural templates
that constrain the runtime configuration options can be predefined).

In our previous work [4, 7] we introduced a conceptual framework for decision
modeling with reuse to extend recent research on design decisions. Our work focused
on the following main contributions:

1. A decision-making process which comprises decision identification to
delimit the scope, decision making to choose a feasible design alternative for
each design issue, and decision enforcement to share the results of the decision
making step with relevant stakeholders.

2. A decision-capturing and sharing metamodel supporting the decision
making process. This metamodel is specified as a Unified Modeling Language
(UML) class diagram and a formal definition based on elementary set and
graph theory [4]. The metamodel, illustrated in Figure 1, relies on three main
core domain entities: ADIssue, ADAlternative, and ADOutcome (AD stands for
Architectural Decision). An ADIssue captures an architectural problem that
requires a design solution whereas ADAlternative instances capture the pros
and the cons of the design choices an architect has (i.e., the possible solutions
available and the criteria for choosing or not choosing such option). Finally,
ADOutcome instances capture project-specific knowledge including the
justification and the consequences of decisions actually made. This metamodel
is implemented in the Architectural Decision Knowledge Wiki/Architectural
Decision Knowledge Web Tool, which is a collaboration system and decision
modeling tool [4]. Other existing tools are based on similar metamodels [5],
[6].

Fig. 1. Metamodel for architectural design decisions implemented in the Architectural Decision
Knowledge Wiki tool.

With regards to the problems of link granularity, history and evolution of decisions
and deferring decisions, the existing metamodel does not offer support. We will later
explain how it can be extended to support these concepts. We worked with more than
one hundred practicing architects, who applied and appreciated the metamodel as well
as the SOA guidance model instantiated from it [4], [7]. As part of our validation
activities, we conducted a user survey. Among other things, users pointed out:

1. Decisions have to be visited multiple times and sometimes revised as the
design evolves; any waterfall process or big design upfront is not adequate for
most real-world projects. Decisions are hardly made in isolation.

2. The lifetime of decisions transcends their identification, making, and
enforcement; they have to be evaluated once a system is implemented, at least
in prototypical form. Only then it becomes evident whether made decisions
have led to a design and implementation that allows the system to meet the
quality attributes that have been stated for it.

3. There is a desire to model links from decisions to other model elements and
artifacts represented more explicitly (e.g., types of requirements appear as
decision driver text in the metamodel in Figure 1, but are not first class
metamodel entities that can be linked to). The scope attribute of an issue (in
the metamodel in Figure 1) can identify the type of design model element an
issue pertains to, but at present this textual information does not link to any
artifacts used in the design process.

The metamodel extensions specified in this paper are motivated in this user
feedback. We base our proposed metamodel extensions on the metamodel that
underlies in Architectural Decision Knowledge Wiki/Architectural Decision
Knowledge Web Tool because this tool is populated with a SOA guidance model
comprising more than 500 issues and 2000 alternatives recurring in SOA design;
architectural patterns described in the literature are among these alternatives (only a
subset of these issues and alternative descriptions have been published so far). Hence,
we count on a significant amount of knowledge to describe different types of design
issues from a realistic point of view. However, our metamodel extensions are
designed in such a way that they can be implemented in other tools as well (assuming
that these tools support extensibility of their respective metamodels). To support this
claim, we outline how we implemented the new concepts in an extensible commercial
requirements engineering product later in this paper

3 Enhanced Trace Links and other Metamodel Extensions

To overcome the three problems mentioned before, we extended the conceptual
metamodel of Figure 1. Our main rationale for adding new elements is to support
explicit trace links to small architectural artifacts that help to check the integrity of the
decision network, to evaluate the impact of changes, to keep track of the history and
evolution of changes, and to record the root causes of changes. This new metamodel
is shown in Figure 2. In the remainder of this section we describe the new classes and
new elements highlighting them in italicized text.

Links to Design Artifacts: Two new classes, ADDesignElement and
ADDesignArtifact, specify the parts of the architecture that result from one or more
design decisions represented by outcome instances. ADDesignElement instances
represent elements of modeling languages. For example, if we map to Unified
Modeling Language (UML), it refers to a UMLNamedElement (i.e., any UML
element that can be named). This includes coarse grained elements such as

components and connectors, but also more fine grained elements such as class
attributes. ADDesignArtifact aggregates and assembles such elements into project
deliverables such as a platform-independent, technology-neutral functional
component model. ADDesignElement instances are defined to have an
ADDesignElementType, which also becomes the type of the scope attribute of the
ADIssue class. In the architectural decisions viewpoint, the relationships between two
newly introduced subclasses of ADOutcome, ADDecidedOutcome and
ADDeferredOutcome (the existing metamodel introduced the ADOutcome class to
record actual decisions made to solve a problem including its rationale), and
ADDesignElement (with subclass ADRuntimeElement, introduced below) allows us to
define trace links to individual parts of an architecture. ADDecidedOutcome and
ADDeferredOutcome indicate that enforcing a decision at design time differs from
enforcing a decision at runtime (with respect to the artifacts in which the decision
materializes; e.g., UML class or conceptual application server node at design time vs.
Java class or XML deployment descriptor at runtime). Such fine-grained linkage
down to the level of individual architectural elements (e.g., UML components and
connectors, physical topology units and hosting links, attributes of UML components
or Java classes or XML elements) increases the precision and expressivity of the
decision models. In summary, we have now introduced external links from decisions
to structural and behavioral models, which were not supported previously.

Fig. 2. UML metamodel for capturing design decisions with focus on maintenance, evolution,
and runtime concerns.

In the decision making process, several alternatives (ADAlternative) can be
captured, considered, and evaluated before a decision is made. An external link, from
requirements to decisions, can be established via the new class ADDriverType, which
gathers the origins and influencers of decisions, such as types of functional and non-
functional requirements. Because an issue is a reusable knowledge entity, the
ADDriverType class supports only types of requirements (e.g., quality attributes such
as performance and modifiability), but not real instances of such requirements: the

additional class ADRequirement serves this purpose. ADRequirement instances may
represent analysis artifacts such as business process models, use cases, or user stories
as well as non-functional requirements such as software quality attributes (e.g., sub-
second response time performance, modifiability via multi-platform support, etc.).
ADRequirementsArtifact instances compile a number of individual requirements. Each
ADRequirement instance is classified by its kind, which is expressed by the
ADRequirementType class. As a result of the improvement, we removed the
decisionDrivers attribute initially defined in the ADIssue class (e.g., a problem that
has to be solved). Thus, the new metamodel supports now full traceability from
requirements to decisions and other design artifacts.

Decision History and Evolution: The evolution of decisions is described by means
of the ADOutcomeEdition class, which establishes a chain of decisions that change
over time. For instance, a corporate system may have to replace its middleware after
several years of successful production use because new enterprise-level requirements
demand a technological change in the organization. Hence, this decision made in the
past for selecting the right middleware may have became obsolete and may have to be
replaced by a new one. The ADOutcomeHistory class keeps track of the history of
changes to a decision made years or months ago (i.e., collections of related
ADOutcomeEdition instances, each of which referring to a single ADOutcome
instance).

Support for Runtime Decisions: Some systems may change their status, operation
mode (e.g., a system that updates its software version changes its operation mode
from normal operation to maintenance mode until the reconfiguration process finishes
and the system returns to the normal mode), or configuration during runtime due to
external or internal conditions. Hence, the decisions that led to, for instance, a given
product architecture might have to be modified, and in some cases lead to a different
architecture. In such cases, certain decisions have to be replaced temporarily by new
ones or they can also become obsolete for a given time period. Therefore, we
introduce the ADRuntimeElement class (atomic) and the ADRuntimeArtifact class
(composite) to reflect such situations and represent the code pieces that enforce the
decisions represented by instances of the ADDeferredOutcome class. As decisions that
change during runtime cause the architecture to be modified according to the depth of
the change, adding support for runtime decisions improves traceability between
artifacts; runtime artifacts can serve as link targets. These finer grained traceability
links can determine the parts of architectures that have to be modified when changes
happen. To our knowledge, this feature has not been implemented before in other
tools and models capturing design rationale. Hence, we extend and enhance previous
works for systems that require more surveillance or adaptability due to, for instance,
new context conditions. Examples of issues that cannot always fully be resolved at
design time are:

• Specifically to Service-Oriented Architecture (SOA), capturing runtime decisions
and linking these to code assets is required. For example, our metamodel can
describe the decision in a composite Web Service (a type of design element) to
dynamically modify the Business Process Execution Language (BPEL) workflow
that realizes the composite Web service, e.g., to engage a new subprocess to

reflect a certain business rule or other runtime condition. Such late decision is
often based on new quality-of-service conditions that modify the Service Level
Agreement (SLA) for a given period (e.g., regarding guaranteed response times).
Our metamodel uses the classes ADRuntimeArtifact and ADDeferredOutcome to
express such situations.

• The decision how to route a service invocation request that represents an atomic
activity in an executable business process model (i.e., dynamic service
composition). Note that this decision can only be deferred to runtime if such
flexibility does not violate regulatory constraints such data privacy and system
and process assurance compliance (such concerns can be modeled as
ADDriverType and linked to issues according to the metamodel presented in
Figure 2).

• The decisions enable to customize certain software features when reusing a
particular application package, middleware component, or product family (e.g.,
using variation points in software product lines [8], [9]). For instance, a database
management system might support distributed two-phase commit (2PC) protocol
at an extra performance and license cost; when the decision to use the system is
made, it might not be known yet whether the 2PC support is required. This
decision might even change over time, which can be expressed as a series of
chained ADOutcomeEdition instances.

• The decision to delegate some of the responsibilities to end users that are
performed by architects/developers in traditional software engineering
(situational application development via Web-centric container architectures
such as mashups). For instance, such design issues might deal with user interface
patterns, data formats (e.g., MIME types), and information provider selections.

4 Implementation in Existing and Emerging Tools

This section outlines how the enhancements in the extended metamodel can be
supported by three existing architectural knowledge management and modeling tools:
ADDSS [5], The Knowledge Architect [6], and Architectural Decision Knowledge
Wiki/Web Tool [4]. These tools share several goals and usage scenarios, but differ in
their origins, use cases, and tool architecture. We discuss all three independently
developed tools to illustrate the generality of our approach by explaining how the
extended metamodel can be supported by them. In addition, we present an actual
implementation of the extended metamodel on top of a commercial requirements
engineering and management platform which supports metamodel extensions and
Web-based artifact linking.

4.1 Architecture Design Decision Support System (ADDSS)

In this tool [5], the model underlying the tool supports explicit traces to requirements
(ADDriverType) and architectures (ADDesignElement, ADDesignArtifact) as well as
between design decisions, but links between decisions and smaller parts of the
architecture can not be specified in a fine grained fashion. To overcome this, Figure 2

specifies a class ADDesignElement and establishes links from the ADOutcome to
provide fine grained links to small design artifacts. Evolution in ADDSS is only
supported by several attributes; there is no way to define a chain of decisions history
as in the proposed metamodel of Figure 2 (using the ADOutcomeEdition and
ADOutcomeHistory classes). Finally, ADDSS does not support runtime decisions like
in our proposed solution. Hence, the ADRuntimeElement, ADRuntimeArtifact and
ADDeferrredOutcome classes should be incorporated into ADDSS’ metamodel to
enable tracking runtime decisions.

4.2 The Knowledge Architect (KA)

This tool suite [6], [10] is comprised of a number of specialized tools for capturing,
(re)using, translating, sharing, and managing software architectural knowledge. The
Knowledge Architect entails specialized support for integrating the various
architecting activities [11] and supporting collaboration between the stakeholders of
these activities. The different tools support different activities (e.g. analysis, design,
sharing) and therefore each tool has a specialized Architectural Knowledge (AK)
metamodel to deal with the different types of knowledge produced and consumed
during the architecting process. The different metamodels are integrated into the
central knowledge repository of the tool suite. Traceability can be achieved in two
ways: a) within each metamodel, traceability links are established between the AK
concepts (e.g., between “decisions”, “concerns”, “decisions topics” and “alternatives”
in the document knowledge client of the KA) b) across different metamodels
traceability links can be established within the knowledge repository (e.g. “decisions”
and “concerns” are common concepts of both the document knowledge client and the
analysis model knowledge client of the KA). The KA can be extended in two ways to
support the metamodel of Figure 2: a) all the tools have extensible metamodels (not
hard-coded but completely customizable), thus the new concepts and relations can be
added in a straightforward way; b) the central knowledge repository itself stores
knowledge in Resource Description Framework (RDF) format and can directly
accommodate the metamodel extensions of Figure 2. As an example the classes
ADDecideOutcome and ADDeferredOutcome can simply inherit from the class
Decision, while ADDriverType can inherit from the class Concern (both Decision and
Concern belong to the document knowledge client metamodel). The extensions for
history and evolution are not necessary to be implemented as the KA, as the tool suite
uses the versioning system of Sesame to track the evolution of each knowledge entity.

4.3 Architectural Decision Knowledge Wiki/Architectural Decision Knowledge
Web Tool

Architectural Decision Knowledge Wiki is a Web 2.0 collaboration tool supporting
the decision modeling capabilities and original UML metamodel first published in [7].
A version 1.0 was originally implemented in PHP and released in March 2009; in
October 2009, a Java reimplementation of the tool was released under the name
Architectural Decision Knowledge Web Tool [4]. The tool supports about 50 decision
modeling and making use cases. It assembles ADIssue and their ADAlternative on a

decision identification tab (these metamodel entity types are jointly referred to as
decisions required). ADOutcome instances are created and updated on a second
decision outcome tab (capturing decisions made), which exposes a simple decision
state management workflow to the user (with open/decided/approved/rejected states).
To support the extended metamodel introduced in the previous sections, the following
additional features and components are required:

1. The ADDriverType class is a result of refactoring the decision driver attribute
in ADIssue; hence, the new capability can be implemented by refactoring the
user interface components displaying the decision identification tab as well
as the underlying server-side business logic and database schema. Having
performed these refactorings, the fine-grained traceability links can be added
to the decision identification tab; advanced user interface features such as
pop-ups can be added.

2. The ADOutcomeHistory and ADOutcomeEdition classes can be realized by
implementing the edition pattern. The business logic and the database
schema of the existing implementation already do so; on top of that, an
additional decision evolution tab can be added to the user interface to display
the decision making history.

3. Deferring decisions to runtime can be supported by introducing a new state
“deferred” for outcome instances; this requires to update the user interface
components supporting the decision making tab, as well as the state machine
implemented in the business logic realizing ADOutcome instance creation
and lifecycle management.

4.4 Implementation in IBM Rational Requirements Composer

To investigate and demonstrate the technical feasibility, practicality, and usability of
these enhancements, we created a demonstrator in a requirements modeling and
management platform prior to implementing them in the actual tools (following the
well-established design principles such as user interface storyboarding and
prototyping).

For our proof-of-concept we used a recently released requirements engineering and
storyboarding tool, IBM Rational Requirements Composer (RRC). Version 2.0 of this
Jazz repository-based product became generally available on jazz.net in November
2009. The RRC metamodel by default supports artifacts such as business process
models, use case diagrams, storyboards, but also supplemental rich text documents
representing features and non-functional requirements. All artifacts as well as external
resources can be linked to each other via Web URLs. Via attribute groups, the default
metamodel can be extended.

We first created custom attribute groups to represent the original metamodel and
then added new attribute groups representing ADDriverType and
ADDeferredOutcome. ADOutcomeHistory does not require product configuration; it is
supported by the server component of the RRC product (via the snapshotting
capabilities which stores model versions in the Jazz repository). Next, we instantiated
SOA model elements (instances) via templates we created from sample rich text
artifacts which use the newly defined attribute groups. The sample model elements

were populated from the existing SOA guidance model available in Architectural
Decision Knowledge Web Tool (via copy-paste). Finally, fine grained traceability
links were added to demonstrate requirements to decisions linkage.

The sample links from requirements to issues and back (introduced in the previous
section and shown in the extended UML diagram in Figure 2) demonstrate the
technical feasibility of our concepts; the links reside on the individual
requirement/issue/outcome instance level, not on document-to-document level. This
paves the way for requirements to decisions integration as suggested by our
metamodel extensions. Concerns expressed as ADDriverType become first class
citizens in the user interface (tagged as architecturally significant requirements) and
the architecture of the tool (unlike in the original implementations). In conclusion, this
implementation demonstrated that the extended metamodel is generic and expressive
enough to be supported in multiple tools.

5 Instantiation for SOA Enterprise Applications

We applied our extended metamodel to an industrial case study from the telecom-
munications industry. This industrial case study concerns the modernization of an
existing, business-to-business order management system (OM) in a major
telecommunications company employing a wholesaler-retailer business model [12]. In
this business process-centric scenario, a key business requirement (concern) was to
ensure enterprise resource integrity over multiple channel interactions and time. User
channels included the Internet (providing end user self services) and call centers. Two
of the order management processes consisted of up to 19 steps and could run for up to
24 hours. Market deregulation and increasing competition caused the concrete
problem of having to coordinate competing requests for the same physical resources
in the shared telephony network. This coordination was seen to improve customer
satisfaction (measured as number of successful order requests).

This business environment led to many architectural design challenges. Key
technical requirements in this order management context were multi-channel request
coordination and process instance and timeout management. A business transaction
started via the Internet-based self-service channel had to be able to continue via call
center (back office) interaction. Different VSP retailers reserved resources in a single
network owned by the wholesaler, so incomplete requests had to be undone after a
certain amount of time. The system context and resource integrity management
requirement suggested introducing a process layer as a governing architecture
element. This process layers serves one user channel per user type. These channels
reside in the presentation layer of the order management system. The required long-
running process instance tracking and timeout management could be implemented in a
macroflow engine [13] dedicated for this task (called). Short-running, transactional
flows could be handled by dedicated microflow engines [13].

All these concerns are addressed in the logical architecture of the production
solution which is outlined in Figure 3 and explained in detail in [12]. While such
UML class diagram can give an architectural overview, many detailed concerns
cannot be covered on this level of refinement. For instance, many technology- and
product-specific design issues and the rationale of the decision outcomes should be

explained in detail elsewhere. More specifically (in the context of this paper and the
proposed metamodel extensions), the architecture elements should be traced back to
the outlined requirements, the evolution of the system from a plain Java Web
application to a process-based SOA should be captured, and the necessity to defer
certain decisions to runtime should be captured.

Fig. 3. Functional components of the order management system

Let us map the model elements in Figure 3 back to the metamodel from Figure 2.

All UML classes representing functional components are instances of
ADDesignElement (irrespective of their stereotypes); the class diagram itself is an
instance of ADDesignArtifact. The ADDesignArtifactType of this class diagram
artifact is “functional component model”; the ADDesignElementType of the
ADDesignElement instances is “(functional) UML component” (we can view
component stereotypes such as “subsystem”, “control component”, and “process
component” as subtypes; however, this subtyping is not expressed by our metamodel).
Example of traceability links will be given in the next subsection and Figure 5. We
uses the extended metamodel of Figure 2 to illustrate how these design/modeling
problems in the Order Management (OM) case study can be modeled.

Early in the project, a decision was required to decide for the main architectural
concepts. In particular, a process-based SOA and the related architectural patterns
were chosen because the solution was supposed to be flexible and adaptable. One of
the important conceptual decisions in this context was to decide whether a service
composition layer should be introduced into the architecture (the outcome of this
decision led to the inclusion of the Process Layer component in Figure 5).

Figure 4 shows a (heavily simplified) instance of the metamodel for this decision,
working with a subset of the design elements from Figure 3. Both instances of the
core classes of the existing metamodel (ADIssue, ADAlternative, ADOutcome) and
our metamodel extensions are illustrated (ADRequirement, ADDesignElement,
ADOutcomeHistory, etc.). A sample decision <<ADReqType>> Portability and a

concrete <<ADRequirement>> Runs on 2 Platforms (i.e., solution can on at least two
platforms) were identified for one required and made decision (<<ADIssue>>
Workflow Language with selected <<ADAlternative>> BPEL).

Fig. 4. Architectural decisions made in case study with links to design model context a.k.a.
exemplary application (instantiation) of the AD metamodel for the case study

At this stage, we couldn’t test the evolution of the decisions as we only produced

the first version of the architecture of the OM system using, but we captured the
evolution of the system from a plain Java Web application to a process-based SOA.

Furthermore, decisions that might change at runtime can be tracked using the
proposed metamodel extension (i.e.: ADRuntimeArtifacts, ADRuntimeElements) and
the class that enforces the decisions (ADDeferredOutcome). In the order management
SOA, the system transaction boundary and the logging settings might differ for certain
components in the process layer and for components in the service layer shown in
Figure 3. This metamodel extension is not illustrated in Figure 4.

6 Related Work

Several research prototype tools [11], [14] for capturing, using, and documenting
architectural design decisions have recently appeared; many of these use templates
and metamodels for capturing knowledge attributes and managing decision
dependencies [15], [16]. Tools such as PAKME, ADDSS, Archium, The Knowledge
Architect, and AREL offer traceability mechanisms between decisions and other
software artifacts at different levels. Some of these tools support the evolution of trace
links between decisions and forward and backward traces. The traceability supported
by the tools can be used to estimate those artifacts that are impacted by the change in
a decision, as the majority of the mentioned tools lack fine grained links between
decisions and small architectural artifacts (e.g., a UML class or component instead of

<<ADIssue>>
Architectural Style

AD Viewpoint

scope
(of ADIssue)

<<ADAlternative>>
SOA

<<ADOutcome>>
SOA for OM Sol.

<<ADIssue>>
Service Composition Layer

<<ADAlternative>>
Process-Based Integr.

<<ADOutcome>>
P-E SOA for OM Sol.

<<ADRequirement>>
Runs on 2 Platforms

<<ADReqType>>
Portability

<<ADIssue>>
Workflow Language

<<ADAlternative>>
BPEL

<<ADOutcome>>
BPEL for OM Sol.

Design/Development/
Operations Viewpoints

Requirements Viewpoint

<<ADDesElement>>
Process Layer

<<ADDesElemType>>
Functional Comp.

<<ADOutcHistory>>
SOA for OM Sol.

<<ADDesArtifact>>
Component Model

<<ADOutcEdition>>
SOA for OM Sol.

<<ADDeferredOutcome>>
LoggingPolicy

<<ADDecidedOutcome>>
ProcessLifetimePattern

Not shown in this figure:
<<ADReqArtifact>>
Quality Attributes

<<ADReqArtifact>>
Use Case Model

<<ADRuntimeElem>>
BPEL Process

SOA – Service Oriented
Architecture

OM – Order Management
BPEL – Business Process

Execution Language

<<ADRuntimeArtifact>>
BPEL File (XML)

an entire subsystem). In addition, the approach presented in [17] highlights the role of
traceability in software architecture evolution and describe a method to manage such
traceability for design decisions using a model-driven development approach.

Software product lines (SPL) need to model also the dependencies of feature
models (i.e.: in practice they constitute a decision model) for different phases of the
software life-cycle. Modeling dependencies and dealing with traceability problems in
SPL is discussed in [18], where a wide list of dependency types between features are
defined as constraints a software product must satisfy, while in [19] the authors
explain how metamodels from PAKME and ADDSS tools can be merged to support
product lines concepts and model dependency links between architectural design
decisions and the variability rules associated to a feature model. Other works refer to
Dynamic Software Product Lines (DSPLs) [20] to provide the necessary binding for
runtime variation points to adapt the software to changes in the environment. The
authors state that it is impossible to foresee al the variability a SPL requires, and use
dynamic architectures and support for runtime decisions to be able to support system
configuration and binding at runtime (for automatic decision-making). Designing and
managing runtime variation points in architecture is also described in [21], where
patterns are used to provide such facility in SPL and add the necessary flexibility for
domain-specific applications (e.g.. custom Web servers that cannot be stopped when
deploying or configuring components).

Lago et al. [22] discuss three different traceability issues during SPL derivation,
and they focus on those traceability links between feature models and structural
models (i.e.: architecture-level decisions). In [23], a Dependency Structure Matrix
(DSM) is used to represent and manage dependencies in complex software
architecture and to reveal underlying architectural patterns. Acceptable and
unacceptable dependencies are expressed using design rules to describe the
semantics of such dependencies.

All the aforementioned approaches lack explicit support for runtime decisions that
can be deferred and tracked back from code to the architecture and to the design
decision. Furthermore, in most cases they support coarse grained links between
decisions and other software artifacts. Evolution is only partially supported in two
existing tool prototypes. Hence, our approach improves these features and enriches
previous metamodels and tools with runtime decisions. Other approaches that
consider fine grained traceability paths between different artifacts do not consider the
inclusion of design decisions as we do.

Traceability between decisions and from decisions to artifacts is related to
traceability between requirements and model elements in general. This general
problem of establishing and maintaining traceability has been studied in the literature
and different approaches exist. Maeder et al. [24] present an approach for automating
traceability maintenance under changes by classifying changes and automating
updates of the traceability graph. Such an approach could in principle also be applied
to traceability management for architectural decisions. Cleland-Huang and Chang
[25] propose a traceability method that is based on the publish-subscribe architecture
in order to keep traceability links up to date. It remains for future work to investigate
the best approach to maintain traceability links between architectural decisions and
requirements.

7 Conclusion and Future Work

Our approach revisits and enhances previous models and tools as we provide full
traceability between individual decisions and other software artifacts using fine
grained links, even if the decision networks becomes more complex to manage and to
maintain. We are aware that capturing fine grain trace links introduces additional
costs to maintain the links over time and this cost should not be higher than the
expected benefits, but the architect must decide when to define such links to smaller
parts of the architecture that must be traced (e.g., a critical software component in a
system composed by a few number of classes is replaced at runtime by a new
component with extended functionality and defined by a new UML for which a new
trace link must be create for its corresponding design decision). With such links we
achieve a better control of individual decisions and we are able to find out in detail
which parts of the architecture are affected by a change in the requirements or code.
Because certain software systems may vary their context conditions during runtime,
they require adequate models to support runtime decisions that can be deferred.
Hence, we extend previous works to track runtime decisions and make software
architects aware of changes that may affect the design. Other extensions would
include supporting the full context of decisions that evolve and store not only the
decisions but also the issues, drivers, and requirements that accomplish a particular
solution. Finally, other non-SOA domains like self-adaptive systems can benefit from
tracking runtime decisions as a way to monitor better those changes that happen
during system execution.

References

1. Bass, L., Clements, P., Kazman R.: Software Architecture in Practice, Second Edition,
Addison Wesley, (2003)
2. Bosch, J.: Software Architecture: The Next Step, Proceedings of the 1st European Workshop
on Software Architecture (EWSA 2004), Springer-Verlag, LNCS 3047, pp. 194-199, (2004)
3. Kruchten, P., Capilla, R., Dueñas, J.C.: The Decision’s View Role in Software Architecture
Practice. IEEE Software, vol 26(2), 36-42, (2009)
4. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing Architectural
Decision Models with Dependency Relations, Integrity Constraints, and Production Rules.
Journal of Systems and Software volume 82(8), 1249-1267, (2009)
5. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: Web-based Tool for Managing Architectural
Design Decisions (SHARK’066), ACM SIGDOFT Software Engineering Notes 31(5), (2006)
6. Jansen, A., Vries, T.d.., Avgeriou, P., Veelen, M.v.: Sharing the Architectural Knowledge of
Quantitative Analysis, Proceedings of the Quality of Software-Architectures (QoSA), 220-234,
(2008)
7. Zimmermann, O., Gschwind, T., Küster, J.M., Leymann, F., Schuster, N.: Reusable
Architectural Decision Models for Enterprise Application Development. (QoSA’07), Springer-
Verlag LNCS 4880, 15-32, (2007)
8. Bosch, J.: Design and use of Software Architecture: Adopting and Evolving a Product-Line
Approach, Addison-Wesley, (2000)
9. Pohl, K., Böckle, G., Linden, F.v.d: Software Product Line Engineering: Foundations,
Principles, and Techniques, Springer, (2005)

10. Liang, P., Jansen, A., Avgeriou, P.: Collaborative Software Architecting through
Architectural Knowledge Sharing, in A. Finkelstein, J. Grundy, A. van der Hoek, I.
Mistrík, J. Whitehead (eds.) Collaborative Software Engineering (CoSE), pp. 343-368,
Springer-Verlag, (2010)
11. Liang, P., Avgeriou, P.: Tools and Technologies for Architecture Knowledge Management.
In Software Architecture Knowledge Management: Theory and Practice, 91–111. Springer,
(2009)
12. Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-Oriented Architecture
and Business Process Choreography in an Order Management Scenario. In: ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2005), ACM Press, (2005)
13. Hentrich, C., Zdun, U.: Patterns for Process-Oriented Integration in Service-Oriented
Architectures. In Proceedings of 11th European Conference on Pattern Languages of Programs
(EuroPLoP 2006), Irsee, Germany, pages 1-45, July, (2006)
14. Tang, A., Avgeriou, P., Jansen, A., Capilla, R.., Babar, M.A.: A Comparative Study of
Architecture Knowledge Management Tools, Journal of Systems and Software 83(3), 352-370,
Elsevier, (2010)
15. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture, IEEE Software,
vol. 22, (2005)
16. Kruchten, P., Lago, P., Vliet, H. van: Building up and reasoning about architectural
knowledge. In: Hofmeister, C. (Ed.), Proceedings of Second International Conference on the
Quality of Software Architectures (QoSA 2006), Springer LNCS 4214, (2006)
17. Navarro, E., Cuesta, C.E.: Automating the Trace of Architectural Design Decisions and
Rationales Using a MDD Approach. European Worksop on Software Architecture, Springer-
Verlag LNCS 5292, 114-130, (2008)
18. Lee, K., Kang, K.C.: Feature Dependency Analysis for Product Line Component Design,
International Conference on Software Reuse, LNCS 3107 Springer-Verlag, pp. 69-85, (2004)
19. Capilla, R., Babar, M.A.: On the Role of Architectural Design Decisions in Software Product
Line Engineering. (ECSA’08), Springer-Verlag LNCS 5292, 241-255, (2008)
20. Hallsteeinsen, S., Hinchey, M., Park S., Schmid, K.: Dynamic Software Product Lines, IEEE
Computer 41(4), 93-95, (2008)
21. Goedicke, M., Köllmann, C., Zdun, U.: Designing Runtime Variation Points in Product Line
Architectures: three cases. Science of Computer Programming 53(3), 353-380, (2004)
22. Lago, P., Muccini, H., Vliet, H. van: A scoped approach to traceability management. Journal
of Systems and Software, 82(1), 168-182, (2009)
23. Sangal, N., Jordan, E. Sinha, V., Jackson, D.: Using Dependency Models to Manage Complex
Software Architecture. OOPSLA’05, 167-176, (2005)
24. Mäder, P., Gotel, O, Philippow, I.: Enabling Automated Traceability Maintenance through the
Upkeep of Traceability Relations. In Proceedings ECMFA-FA 2009, LNCS 5562, 174-189,
Springer, (2009)
25. Cleland-Huang, J., Chang, C.: Event-Based Traceability for Managing Evolutionary Change.
IEEE Transactions on Software Engineering, Vol. 29, No. 9, September (2003)

