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Abstract. Software architects create and consume many interrelated artifacts 
during the architecting process. These artifacts may represent functional and 
nonfunctional requirements, architectural patterns, infrastructure topology units, 
code, and deployment descriptors as well as architecturally significant design 
decisions. Design decisions have to be linked to chunks of architecture 
description in order to achieve a fine-grained control when a design is modified. 
Moreover, it is imperative to identify quickly the key decisions affected by a 
runtime change that are critical for a system’s mission. This paper extends 
previous work on architectural knowledge with a metamodel for architectural 
decision capturing and sharing to: (i) create and maintain fine-grained 
dependency links between the entities during decision identification, making, 
and enforcement, (ii) keep track of the evolution of the decisions, and (iii) 
support runtime decisions.  

Keywords: architectural design decisions, architectural knowledge, metamodel, 
runtime decisions, traceability, evolution. 

1   Introduction 

Existing software architecture design processes [1] lack adequate mechanisms to 
explain the line of reasoning that architects follow in order to make design decisions. 
Reasoning about the architectural design is considered a tacit process that exists only 
in the architect’s mind; the decisions that lead to a software architecture are often 
overlooked during architecture design and thus not systematically documented. In 
recent years, the software architecture community has established design decisions as 
first-class entities that should be captured alongside with other design elements. 
Therefore, the creation of software architectures is now also seen as the result of a set 

 
 



of design decisions rather than just as an assembly of components and connectors [2]. 
Making decisions explicit preserves architectural knowledge when staff is exchanged, 
e.g., when subject matter experts join the development team only temporarily or when 
transitioning from development to maintenance. As mentioned in [3], long-term 
benefits such as reduced maintenance effort should motivate users to capture the 
design rationale explicitly in the form of architectural decisions. This particularly 
holds true in successive iterations of the system as it evolves.  
This paper extends previous work on architectural knowledge with a metamodel for 
architectural decisions to: (i) create and maintain fine-grained dependency links 
between the entities during decision identification, making, and enforcement, (ii) keep 
track of the evolution of the decisions, and (iii) support runtime decisions. Section 2 
describes the background and the motivation of this research. In Section 3 we present 
a metamodel supporting traceability to keep track of the decisions made and their 
relations to design elements and artifacts. Section 4 then outlines the implementation 
of the metamodel in several prototype tools. Section 5 discusses a case study in the 
Service-Oriented Architecture (SOA) domain to demonstrate how the extensions of 
the metamodel are of practical use for SOA design. Section 6 describes the related 
work and section 7 summarizes the conclusions and future work. 

2   Motivation and Problem Identification 

A variety of research prototype tools have been developed to support design decisions 
in software architecture. From our experience developing and using various tools for 
architectural decision modeling, e.g., the Architectural Decision Knowledge Wiki [4], 
Architecture Design Decision Support System [5], and The Knowledge Architect [6], 
we observed three major shortcomings related to the creation and maintenance of the 
traceability links between the architectural knowledge and other artifacts: 

1. The coarse link granularity in existing metamodels makes models easy to 
populate, but does not support a fine-grained tracing and tracking of 
decisions in relation to atomic design elements such as attributes in a class 
model or tasks in a business process model. Support for fine-grained trace 
links in current architectural decision modeling tools is weak or inexistent as 
some of the tools import UML design models externally and decisions can be 
only linked to coarse-grained artifacts.   

2. Existing metamodels do not put special attention on history and evolution of 
decisions. Only a few of them treat evolution of decisions and architecture 
partially. One reason for this limitation is that most commercial and open 
source UML modeling tools do not offer explicit support for architecture 
evolution (e.g., Jude Community, Magicdraw).  

3. The decision making process suggested by existing metamodels assumes that 
all decisions can be made at design time; deferring decisions to runtime is 
not supported. At present, the existing architecture decision modeling 
prototype tools do not offer support for runtime decisions that can be traced 
back to the architecture or to requirements when a piece of code or a system 
module change.  



The first problem area addressed in this paper is link granularity. Links connecting 
key design decisions to architectural artifacts should include relationships to smaller 
parts of the design. Such an approach helps to achieve the precision required to 
estimate the impact of changes accurately. Small but important decisions should also 
be captured and linked properly. For instance, a decision to introduce a new UML 
package or class seemingly constitutes a more coarse-grained decision than the 
decision to add a new attribute to an existing class; however, the attribute may express 
a key architectural concern, e.g., it might flag an architecture component to be subject 
to financial and general IT controls audits or it might demarcate a system transaction 
boundary in a service composition. In many cases, fine-grained decisions are derived 
from coarse-grained ones made before; however, the lack of accuracy of existing 
traceability models do not offer a way to track the impact on the design or code. Thus, 
it is required to introduce trace links with narrower and more precise scope to achieve 
more precision in the traceability of architectural decisions during decision 
identification, making, and enforcement.  

The second problem pertains to the maintenance of a system, as the design 
decisions made in the past might become obsolete, and the history and evolution of 
decisions should be recorded in the same way versioning repositories store the history 
and evolution of source code. This is useful for a number of reasons. In certain cases 
during system evolution, the architects have to revisit past decisions and revert to 
them if a new decision appears to be wrong. In other cases, architects may need to roll 
back the design, and start a new decision path from that point. Finally new 
stakeholders that become involved in a project can be educated much more efficiently 
by studying the evolution of decisions over time and the rationale that lead to the 
existing set of decisions and the present design. 

As a third problem, we observed that today the dynamicity of certain systems may 
imply that certain decisions affect architectures that have already been deployed but 
have to be modified during runtime. For instance, a composite service which replaces 
an atomic service with another one due to new quality-of-service conditions during 
execution requires deferring decisions to runtime. Such deferred decisions have to be 
tracked back to the architecture and requirements so that conformance to them can be 
ensured. Supporting runtime decisions becomes increasingly relevant in modern 
operating environments and deployment infrastructures such as virtualized data 
centers: each instantiation of a virtual software image may decide for a slightly 
different set of quality properties. Examples include the heap and disk size of virtual 
UNIX machines (infrastructure-as-a-service scenario), Java and relational data 
source settings of Web application servers (platform-as-a-service), and login and 
encryption policies of hosted Web conferences (software-as-a-service). These 
decisions are based on user preferences and current resource consumption (system 
load); these two types of decision drivers only become known at runtime. 
Consequently, it makes sense to defer the detailed architectural decisions about these 
infrastructure settings to runtime (while at design time certain architectural templates 
that constrain the runtime configuration options can be predefined).  

In our previous work [4, 7] we introduced a conceptual framework for decision 
modeling with reuse to extend recent research on design decisions. Our work focused 
on the following main contributions: 

 



1. A decision-making process which comprises decision identification to 
delimit the scope, decision making to choose a feasible design alternative for 
each design issue, and decision enforcement to share the results of the decision 
making step with relevant stakeholders. 

2. A decision-capturing and sharing metamodel supporting the decision 
making process. This metamodel is specified as a Unified Modeling Language 
(UML) class diagram and a formal definition based on elementary set and 
graph theory [4]. The metamodel, illustrated in Figure 1, relies on three main 
core domain entities: ADIssue, ADAlternative, and ADOutcome (AD stands for 
Architectural Decision). An ADIssue captures an architectural problem that 
requires a design solution whereas ADAlternative instances capture the pros 
and the cons of the design choices an architect has (i.e., the possible solutions 
available and the criteria for choosing or not choosing such option). Finally, 
ADOutcome instances capture project-specific knowledge including the 
justification and the consequences of decisions actually made. This metamodel 
is implemented in the Architectural Decision Knowledge Wiki/Architectural 
Decision Knowledge Web Tool, which is a collaboration system and decision 
modeling tool [4]. Other existing tools are based on similar metamodels [5], 
[6]. 

 

  
Fig. 1. Metamodel for architectural design decisions implemented in the Architectural Decision 
Knowledge Wiki tool. 
 

With regards to the problems of link granularity, history and evolution of decisions 
and deferring decisions, the existing metamodel does not offer support. We will later 
explain how it can be extended to support these concepts. We worked with more than 
one hundred practicing architects, who applied and appreciated the metamodel as well 
as the SOA guidance model instantiated from it [4], [7]. As part of our validation 
activities, we conducted a user survey. Among other things, users pointed out: 



1. Decisions have to be visited multiple times and sometimes revised as the 
design evolves; any waterfall process or big design upfront is not adequate for 
most real-world projects. Decisions are hardly made in isolation. 

2. The lifetime of decisions transcends their identification, making, and 
enforcement; they have to be evaluated once a system is implemented, at least 
in prototypical form. Only then it becomes evident whether made decisions 
have led to a design and implementation that allows the system to meet the 
quality attributes that have been stated for it. 

3. There is a desire to model links from decisions to other model elements and 
artifacts represented more explicitly (e.g., types of requirements appear as 
decision driver text in the metamodel in Figure 1, but are not first class 
metamodel entities that can be linked to). The scope attribute of an issue (in 
the metamodel in Figure 1) can identify the type of design model element an 
issue pertains to, but at present this textual information does not link to any 
artifacts used in the design process. 

The metamodel extensions specified in this paper are motivated in this user 
feedback. We base our proposed metamodel extensions on the metamodel that 
underlies in Architectural Decision Knowledge Wiki/Architectural Decision 
Knowledge Web Tool because this tool is populated with a SOA guidance model 
comprising more than 500 issues and 2000 alternatives recurring in SOA design; 
architectural patterns described in the literature are among these alternatives (only a 
subset of these issues and alternative descriptions have been published so far). Hence, 
we count on a significant amount of knowledge to describe different types of design 
issues from a realistic point of view. However, our metamodel extensions are 
designed in such a way that they can be implemented in other tools as well (assuming 
that these tools support extensibility of their respective metamodels). To support this 
claim, we outline how we implemented the new concepts in an extensible commercial 
requirements engineering product later in this paper 

3   Enhanced Trace Links and other Metamodel Extensions 

To overcome the three problems mentioned before, we extended the conceptual 
metamodel of Figure 1. Our main rationale for adding new elements is to support 
explicit trace links to small architectural artifacts that help to check the integrity of the 
decision network, to evaluate the impact of changes, to keep track of the history and 
evolution of changes, and to record the root causes of changes. This new metamodel 
is shown in Figure 2. In the remainder of this section we describe the new classes and 
new elements highlighting them in italicized text. 
 
Links to Design Artifacts: Two new classes, ADDesignElement and 
ADDesignArtifact, specify the parts of the architecture that result from one or more 
design decisions represented by outcome instances. ADDesignElement instances 
represent elements of modeling languages. For example, if we map to Unified 
Modeling Language (UML), it refers to a UMLNamedElement (i.e., any UML 
element that can be named). This includes coarse grained elements such as 



components and connectors, but also more fine grained elements such as class 
attributes. ADDesignArtifact aggregates and assembles such elements into project 
deliverables such as a platform-independent, technology-neutral functional 
component model. ADDesignElement instances are defined to have an 
ADDesignElementType, which also becomes the type of the scope attribute of the 
ADIssue class. In the architectural decisions viewpoint, the relationships between two 
newly introduced subclasses of ADOutcome, ADDecidedOutcome and 
ADDeferredOutcome (the existing metamodel introduced the ADOutcome class to 
record actual decisions made to solve a problem including its rationale), and 
ADDesignElement (with subclass ADRuntimeElement, introduced below) allows us to 
define trace links to individual parts of an architecture. ADDecidedOutcome and 
ADDeferredOutcome indicate that enforcing a decision at design time differs from 
enforcing a decision at runtime (with respect to the artifacts in which the decision 
materializes; e.g., UML class or conceptual application server node at design time vs. 
Java class or XML deployment descriptor at runtime). Such fine-grained linkage 
down to the level of individual architectural elements (e.g., UML components and 
connectors, physical topology units and hosting links, attributes of UML components 
or Java classes or XML elements) increases the precision and expressivity of the 
decision models. In summary, we have now introduced external links from decisions 
to structural and behavioral models, which were not supported previously. 
 

 
Fig. 2. UML metamodel for capturing design decisions with focus on maintenance, evolution, 
and runtime concerns. 

In the decision making process, several alternatives (ADAlternative) can be 
captured, considered, and evaluated before a decision is made. An external link, from 
requirements to decisions, can be established via the new class ADDriverType, which 
gathers the origins and influencers of decisions, such as types of functional and non-
functional requirements. Because an issue is a reusable knowledge entity, the 
ADDriverType class supports only types of requirements (e.g., quality attributes such 
as performance and modifiability), but not real instances of such requirements: the 



additional class ADRequirement serves this purpose. ADRequirement instances may 
represent analysis artifacts such as business process models, use cases, or user stories 
as well as non-functional requirements such as software quality attributes (e.g., sub-
second response time performance, modifiability via multi-platform support, etc.). 
ADRequirementsArtifact instances compile a number of individual requirements. Each 
ADRequirement instance is classified by its kind, which is expressed by the 
ADRequirementType class. As a result of the improvement, we removed the 
decisionDrivers attribute initially defined in the ADIssue class (e.g., a problem that 
has to be solved). Thus, the new metamodel supports now full traceability from 
requirements to decisions and other design artifacts.  

Decision History and Evolution: The evolution of decisions is described by means 
of the ADOutcomeEdition class, which establishes a chain of decisions that change 
over time. For instance, a corporate system may have to replace its middleware after 
several years of successful production use because new enterprise-level requirements 
demand a technological change in the organization. Hence, this decision made in the 
past for selecting the right middleware may have became obsolete and may have to be 
replaced by a new one. The ADOutcomeHistory class keeps track of the history of 
changes to a decision made years or months ago (i.e., collections of related 
ADOutcomeEdition instances, each of which referring to a single ADOutcome 
instance). 

Support for Runtime Decisions: Some systems may change their status, operation 
mode (e.g., a system that updates its software version changes its operation mode 
from normal operation to maintenance mode until the reconfiguration process finishes 
and the system returns to the normal mode), or configuration during runtime due to 
external or internal conditions. Hence, the decisions that led to, for instance, a given 
product architecture might have to be modified, and in some cases lead to a different 
architecture. In such cases, certain decisions have to be replaced temporarily by new 
ones or they can also become obsolete for a given time period. Therefore, we 
introduce the ADRuntimeElement class (atomic) and the ADRuntimeArtifact class 
(composite) to reflect such situations and represent the code pieces that enforce the 
decisions represented by instances of the ADDeferredOutcome class. As decisions that 
change during runtime cause the architecture to be modified according to the depth of 
the change, adding support for runtime decisions improves traceability between 
artifacts; runtime artifacts can serve as link targets. These finer grained traceability 
links can determine the parts of architectures that have to be modified when changes 
happen. To our knowledge, this feature has not been implemented before in other 
tools and models capturing design rationale. Hence, we extend and enhance previous 
works for systems that require more surveillance or adaptability due to, for instance, 
new context conditions. Examples of issues that cannot always fully be resolved at 
design time are: 

• Specifically to Service-Oriented Architecture (SOA), capturing runtime decisions 
and linking these to code assets is required. For example, our metamodel can 
describe the decision in a composite Web Service (a type of design element) to 
dynamically modify the Business Process Execution Language (BPEL) workflow 
that realizes the composite Web service, e.g., to engage a new subprocess to 



reflect a certain business rule or other runtime condition. Such late decision is 
often based on new quality-of-service conditions that modify the Service Level 
Agreement (SLA) for a given period (e.g., regarding guaranteed response times). 
Our metamodel uses the classes ADRuntimeArtifact and ADDeferredOutcome to 
express such situations. 

• The decision how to route a service invocation request that represents an atomic 
activity in an executable business process model (i.e., dynamic service 
composition). Note that this decision can only be deferred to runtime if such 
flexibility does not violate regulatory constraints such data privacy and system 
and process assurance compliance (such concerns can be modeled as 
ADDriverType and linked to issues according to the metamodel presented in 
Figure 2). 

• The decisions enable to customize certain software features when reusing a 
particular application package, middleware component, or product family (e.g., 
using variation points in software product lines [8], [9]). For instance, a database 
management system might support distributed two-phase commit (2PC) protocol 
at an extra performance and license cost; when the decision to use the system is 
made, it might not be known yet whether the 2PC support is required. This 
decision might even change over time, which can be expressed as a series of 
chained ADOutcomeEdition instances. 

• The decision to delegate some of the responsibilities to end users that are 
performed by architects/developers in traditional software engineering 
(situational application development via Web-centric container architectures 
such as mashups). For instance, such design issues might deal with user interface 
patterns, data formats (e.g., MIME types), and information provider selections. 

4   Implementation in Existing and Emerging Tools 

This section outlines how the enhancements in the extended metamodel can be 
supported by three existing architectural knowledge management and modeling tools: 
ADDSS [5], The Knowledge Architect [6], and Architectural Decision Knowledge 
Wiki/Web Tool [4]. These tools share several goals and usage scenarios, but differ in 
their origins, use cases, and tool architecture. We discuss all three independently 
developed tools to illustrate the generality of our approach by explaining how the 
extended metamodel can be supported by them. In addition, we present an actual 
implementation of the extended metamodel on top of a commercial requirements 
engineering and management platform which supports metamodel extensions and 
Web-based artifact linking. 

4.1   Architecture Design Decision Support System (ADDSS) 

In this tool [5], the model underlying the tool supports explicit traces to requirements 
(ADDriverType) and architectures (ADDesignElement, ADDesignArtifact) as well as 
between design decisions, but links between decisions and smaller parts of the 
architecture can not be specified in a fine grained fashion. To overcome this, Figure 2 



specifies a class ADDesignElement and establishes links from the ADOutcome to 
provide fine grained links to small design artifacts. Evolution in ADDSS is only 
supported by several attributes; there is no way to define a chain of decisions history 
as in the proposed metamodel of Figure 2 (using the ADOutcomeEdition and 
ADOutcomeHistory classes). Finally, ADDSS does not support runtime decisions like 
in our proposed solution. Hence, the ADRuntimeElement, ADRuntimeArtifact and 
ADDeferrredOutcome classes should be incorporated into ADDSS’ metamodel to 
enable tracking runtime decisions.  

4.2   The Knowledge Architect (KA) 

This tool suite [6], [10] is comprised of a number of specialized tools for capturing, 
(re)using, translating, sharing, and managing software architectural knowledge. The 
Knowledge Architect entails specialized support for integrating the various 
architecting activities [11] and supporting collaboration between the stakeholders of 
these activities. The different tools support different activities (e.g. analysis, design, 
sharing) and therefore each tool has a specialized Architectural Knowledge (AK) 
metamodel to deal with the different types of knowledge produced and consumed 
during the architecting process. The different metamodels are integrated into the 
central knowledge repository of the tool suite. Traceability can be achieved in two 
ways: a) within each metamodel, traceability links are established between the AK 
concepts (e.g., between “decisions”, “concerns”, “decisions topics” and “alternatives” 
in the document knowledge client of the KA) b) across different metamodels 
traceability links can be established within the knowledge repository (e.g. “decisions” 
and “concerns” are common concepts of both the document knowledge client and the 
analysis model knowledge client of the KA). The KA can be extended in two ways to 
support the metamodel of Figure 2: a) all the tools have extensible metamodels (not 
hard-coded but completely customizable), thus the new concepts and relations can be 
added in a straightforward way; b) the central knowledge repository itself stores 
knowledge in Resource Description Framework (RDF) format and can directly 
accommodate the metamodel extensions of Figure 2. As an example the classes 
ADDecideOutcome and ADDeferredOutcome can simply inherit from the class 
Decision, while ADDriverType can inherit from the class Concern (both Decision and 
Concern belong to the document knowledge client metamodel). The extensions for 
history and evolution are not necessary to be implemented as the KA, as the tool suite 
uses the versioning system of Sesame to track the evolution of each knowledge entity. 

4.3   Architectural Decision Knowledge Wiki/Architectural Decision Knowledge 
Web Tool 

Architectural Decision Knowledge Wiki is a Web 2.0 collaboration tool supporting 
the decision modeling capabilities and original UML metamodel first published in [7]. 
A version 1.0 was originally implemented in PHP and released in March 2009; in 
October 2009, a Java reimplementation of the tool was released under the name 
Architectural Decision Knowledge Web Tool [4]. The tool supports about 50 decision 
modeling and making use cases. It assembles ADIssue and their ADAlternative on a 



decision identification tab (these metamodel entity types are jointly referred to as 
decisions required). ADOutcome instances are created and updated on a second 
decision outcome tab (capturing decisions made), which exposes a simple decision 
state management workflow to the user (with open/decided/approved/rejected states). 
To support the extended metamodel introduced in the previous sections, the following 
additional features and components are required:  

1. The ADDriverType class is a result of refactoring the decision driver attribute 
in ADIssue; hence, the new capability can be implemented by refactoring the 
user interface components displaying the decision identification tab as well 
as the underlying server-side business logic and database schema. Having 
performed these refactorings, the fine-grained traceability links can be added 
to the decision identification tab; advanced user interface features such as 
pop-ups can be added. 

2. The ADOutcomeHistory and ADOutcomeEdition classes can be realized by 
implementing the edition pattern. The business logic and the database 
schema of the existing implementation already do so; on top of that, an 
additional decision evolution tab can be added to the user interface to display 
the decision making history. 

3. Deferring decisions to runtime can be supported by introducing a new state 
“deferred” for outcome instances; this requires to update the user interface 
components supporting the decision making tab, as well as the state machine 
implemented in the business logic realizing ADOutcome instance creation 
and lifecycle management. 

4.4   Implementation in IBM Rational Requirements Composer 

To investigate and demonstrate the technical feasibility, practicality, and usability of 
these enhancements, we created a demonstrator in a requirements modeling and 
management platform prior to implementing them in the actual tools (following the 
well-established design principles such as user interface storyboarding and 
prototyping).  

For our proof-of-concept we used a recently released requirements engineering and 
storyboarding tool, IBM Rational Requirements Composer (RRC). Version 2.0 of this 
Jazz repository-based product became generally available on jazz.net in November 
2009. The RRC metamodel by default supports artifacts such as business process 
models, use case diagrams, storyboards, but also supplemental rich text documents 
representing features and non-functional requirements. All artifacts as well as external 
resources can be linked to each other via Web URLs. Via attribute groups, the default 
metamodel can be extended.  

We first created custom attribute groups to represent the original metamodel and 
then added new attribute groups representing ADDriverType and 
ADDeferredOutcome. ADOutcomeHistory does not require product configuration; it is 
supported by the server component of the RRC product (via the snapshotting 
capabilities which stores model versions in the Jazz repository). Next, we instantiated 
SOA model elements (instances) via templates we created from sample rich text 
artifacts which use the newly defined attribute groups. The sample model elements 



were populated from the existing SOA guidance model available in Architectural 
Decision Knowledge Web Tool (via copy-paste). Finally, fine grained traceability 
links were added to demonstrate requirements to decisions linkage. 

The sample links from requirements to issues and back (introduced in the previous 
section and shown in the extended UML diagram in Figure 2) demonstrate the 
technical feasibility of our concepts; the links reside on the individual 
requirement/issue/outcome instance level, not on document-to-document level. This 
paves the way for requirements to decisions integration as suggested by our 
metamodel extensions. Concerns expressed as ADDriverType become first class 
citizens in the user interface (tagged as architecturally significant requirements) and 
the architecture of the tool (unlike in the original implementations). In conclusion, this 
implementation demonstrated that the extended metamodel is generic and expressive 
enough to be supported in multiple tools. 

5   Instantiation for SOA Enterprise Applications 

We applied our extended metamodel to an industrial case study from the telecom-
munications industry. This industrial case study concerns the modernization of an 
existing, business-to-business order management system (OM) in a major 
telecommunications company employing a wholesaler-retailer business model [12]. In 
this business process-centric scenario, a key business requirement (concern) was to 
ensure enterprise resource integrity over multiple channel interactions and time. User 
channels included the Internet (providing end user self services) and call centers. Two 
of the order management processes consisted of up to 19 steps and could run for up to 
24 hours. Market deregulation and increasing competition caused the concrete 
problem of having to coordinate competing requests for the same physical resources 
in the shared telephony network. This coordination was seen to improve customer 
satisfaction (measured as number of successful order requests).  

This business environment led to many architectural design challenges. Key 
technical requirements in this order management context were multi-channel request 
coordination and process instance and timeout management. A business transaction 
started via the Internet-based self-service channel had to be able to continue via call 
center (back office) interaction. Different VSP retailers reserved resources in a single 
network owned by the wholesaler, so incomplete requests had to be undone after a 
certain amount of time. The system context and resource integrity management 
requirement suggested introducing a process layer as a governing architecture 
element. This process layers serves one user channel per user type. These channels 
reside in the presentation layer of the order management system. The required long-
running process instance tracking and timeout management could be implemented in a 
macroflow engine [13] dedicated for this task (called). Short-running, transactional 
flows could be handled by dedicated microflow engines [13]. 

All these concerns are addressed in the logical architecture of the production 
solution which is outlined in Figure 3 and explained in detail in [12]. While such 
UML class diagram can give an architectural overview, many detailed concerns 
cannot be covered on this level of refinement. For instance, many technology- and 
product-specific design issues and the rationale of the decision outcomes should be 



explained in detail elsewhere. More specifically (in the context of this paper and the 
proposed metamodel extensions), the architecture elements should be traced back to 
the outlined requirements, the evolution of the system from a plain Java Web 
application to a process-based SOA should be captured, and the necessity to defer 
certain decisions to runtime should be captured. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Functional components of the order management system   
 
Let us map the model elements in Figure 3 back to the metamodel from Figure 2. 

All UML classes representing functional components are instances of 
ADDesignElement (irrespective of their stereotypes); the class diagram itself is an 
instance of ADDesignArtifact. The ADDesignArtifactType of this class diagram 
artifact is “functional component model”; the ADDesignElementType of the 
ADDesignElement instances is “(functional) UML component” (we can view 
component stereotypes such as “subsystem”, “control component”, and “process 
component” as subtypes; however, this subtyping is not expressed by our metamodel). 
Example of traceability links will be given in the next subsection and Figure 5. We 
uses the extended metamodel of Figure 2 to illustrate how these design/modeling 
problems in the Order Management (OM) case study can be modeled.  

Early in the project, a decision was required to decide for the main architectural 
concepts. In particular, a process-based SOA and the related architectural patterns 
were chosen because the solution was supposed to be flexible and adaptable. One of 
the important conceptual decisions in this context was to decide whether a service 
composition layer should be introduced into the architecture (the outcome of this 
decision led to the inclusion of the Process Layer component in Figure 5).  

Figure 4 shows a (heavily simplified) instance of the metamodel for this decision, 
working with a subset of the design elements from Figure 3. Both instances of the 
core classes of the existing metamodel (ADIssue, ADAlternative, ADOutcome) and 
our metamodel extensions are illustrated (ADRequirement, ADDesignElement, 
ADOutcomeHistory, etc.). A sample decision <<ADReqType>> Portability and a 

 



concrete <<ADRequirement>> Runs on 2 Platforms (i.e., solution can on at least two 
platforms) were identified for one required and made decision (<<ADIssue>> 
Workflow Language with selected <<ADAlternative>> BPEL).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Architectural decisions made in case study with links to design model context a.k.a. 
exemplary application (instantiation) of the AD metamodel for the case study 

 
At this stage, we couldn’t test the evolution of the decisions as we only produced 

the first version of the architecture of the OM system using, but we captured the 
evolution of the system from a plain Java Web application to a process-based SOA. 

Furthermore, decisions that might change at runtime can be tracked using the 
proposed metamodel extension (i.e.: ADRuntimeArtifacts, ADRuntimeElements) and 
the class that enforces the decisions (ADDeferredOutcome). In the order management 
SOA, the system transaction boundary and the logging settings might differ for certain 
components in the process layer and for components in the service layer shown in 
Figure 3. This metamodel extension is not illustrated in Figure 4. 

6   Related Work 

Several research prototype tools [11], [14] for capturing, using, and documenting 
architectural design decisions have recently appeared; many of these use templates 
and metamodels for capturing knowledge attributes and managing decision 
dependencies [15], [16]. Tools such as PAKME, ADDSS, Archium, The Knowledge 
Architect, and AREL offer traceability mechanisms between decisions and other 
software artifacts at different levels. Some of these tools support the evolution of trace 
links between decisions and forward and backward traces. The traceability supported 
by the tools can be used to estimate those artifacts that are impacted by the change in 
a decision, as the majority of the mentioned tools lack fine grained links between 
decisions and small architectural artifacts (e.g., a UML class or component instead of 
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an entire subsystem). In addition, the approach presented in [17] highlights the role of 
traceability in software architecture evolution and describe a method to manage such 
traceability for design decisions using a model-driven development approach.  

Software product lines (SPL) need to model also the dependencies of feature 
models (i.e.: in practice they constitute a decision model) for different phases of the 
software life-cycle. Modeling dependencies and dealing with traceability problems in 
SPL is discussed in [18], where a wide list of dependency types between features are 
defined as constraints a software product must satisfy, while in [19] the authors 
explain how metamodels from PAKME and ADDSS tools can be merged to support 
product lines concepts and model dependency links between architectural design 
decisions and the variability rules associated to a feature model. Other works refer to 
Dynamic Software Product Lines (DSPLs) [20] to provide the necessary binding for 
runtime variation points to adapt the software to changes in the environment. The 
authors state that it is impossible to foresee al the variability a SPL requires, and use 
dynamic architectures and support for runtime decisions to be able to support system 
configuration and binding at runtime (for automatic decision-making). Designing and 
managing runtime variation points in architecture is also described in [21], where 
patterns are used to provide such facility in SPL and add the necessary flexibility for 
domain-specific applications (e.g.. custom Web servers that cannot be stopped when 
deploying or configuring components).    

Lago et al. [22] discuss three different traceability issues during SPL derivation, 
and they focus on those traceability links between feature models and structural 
models (i.e.: architecture-level decisions). In [23], a Dependency Structure Matrix 
(DSM) is used to represent and manage dependencies in complex software 
architecture and to reveal underlying architectural patterns. Acceptable and 
unacceptable dependencies are expressed using design rules to describe the    
semantics of such dependencies. 

All the aforementioned approaches lack explicit support for runtime decisions that 
can be deferred and tracked back from code to the architecture and to the design 
decision. Furthermore, in most cases they support coarse grained links between 
decisions and other software artifacts. Evolution is only partially supported in two 
existing tool prototypes. Hence, our approach improves these features and enriches 
previous metamodels and tools with runtime decisions. Other approaches that 
consider fine grained traceability paths between different artifacts do not consider the 
inclusion of design decisions as we do. 

Traceability between decisions and from decisions to artifacts is related to 
traceability between requirements and model elements in general. This general 
problem of establishing and maintaining traceability has been studied in the literature 
and different approaches exist. Maeder et al. [24] present an approach for automating 
traceability maintenance under changes by classifying changes and automating 
updates of the traceability graph. Such an approach could in principle also be applied 
to traceability management for architectural decisions.  Cleland-Huang and Chang 
[25] propose a traceability method that is based on the publish-subscribe architecture 
in order to keep traceability links up to date. It remains for future work to investigate 
the best approach to maintain traceability links between architectural decisions and 
requirements. 



7   Conclusion and Future Work 

Our approach revisits and enhances previous models and tools as we provide full 
traceability between individual decisions and other software artifacts using fine 
grained links, even if the decision networks becomes more complex to manage and to 
maintain. We are aware that capturing fine grain trace links introduces additional 
costs to maintain the links over time and this cost should not be higher than the 
expected benefits, but the architect must decide when to define such links to smaller 
parts of the architecture that must be traced (e.g., a critical software component in a 
system composed by a few number of classes is replaced at runtime by a new 
component with extended functionality and defined by a new UML for which a new 
trace link must be create for its corresponding design decision). With such links we 
achieve a better control of individual decisions and we are able to find out in detail 
which parts of the architecture are affected by a change in the requirements or code. 
Because certain software systems may vary their context conditions during runtime, 
they require adequate models to support runtime decisions that can be deferred. 
Hence, we extend previous works to track runtime decisions and make software 
architects aware of changes that may affect the design. Other extensions would 
include supporting the full context of decisions that evolve and store not only the 
decisions but also the issues, drivers, and requirements that accomplish a particular 
solution. Finally, other non-SOA domains like self-adaptive systems can benefit from 
tracking runtime decisions as a way to monitor better those changes that happen 
during system execution. 
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