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Abstract. Software architects create and consume many éded artifacts

during the architecting process. These artifacty mnepresent functional and
nonfunctional requirements, architectural patteimsastructure topology units,
code, and deployment descriptors as well as aathily significant design

decisions. Design decisions have to be linked tankd of architecture

description in order to achieve a fine-grained odnvhen a design is modified.
Moreover, it is imperative to identify quickly theey decisions affected by a
runtime change that are critical for a system’ssiois. This paper extends
previous work on architectural knowledge with a ameddel for architectural
decision capturing and sharing to: (i) create andintain fine-grained

dependency links between the entities during datigilentification, making,

and enforcement, (ii) keep track of the evolutidntlte decisions, and (iii)

support runtime decisions.

Keywords: architectural design decisions, architectural kreolge, metamodel,
runtime decisions, traceability, evolution.

1 Introduction

Existing software architecture design processesldtk adequate mechanisms to
explain the line of reasoning that architects follm order to make design decisions.
Reasoning about the architectural design is coreida tacit process that exists only
in the architect’s mind; the decisions that leadatsoftware architecture are often
overlooked during architecture design and thus systematically documented. In
recent years, the software architecture commuratydstablished design decisions as
first-class entities that should be captured almiegsvith other design elements.
Therefore, the creation of software architectusasow also seen as the result of a set



of design decisions rather than just as an asseafldgmponents and connectors [2].
Making decisions explicit preserves architecturadwledge when staff is exchanged,
e.g., when subject matter experts join the devetogirteam only temporarily or when
transitioning from development to maintenance. Asntioned in [3], long-term
benefits such as reduced maintenance effort shodtivate users to capture the
design rationale explicitly in the form of architeal decisions. This particularly
holds true in successive iterations of the systeiih @/olves.

This paper extends previous work on architecturavwkedge with a metamodel for
architectural decisions to: (i) create and mainthire-grained dependency links
between the entities during decision identificatioraking, and enforcement, (ii) keep
track of the evolution of the decisions, and @pport runtime decisions. Section 2
describes the background and the motivation ofrégsarch. In Section 3 we present
a metamodel supporting traceability to keep tratkhe decisions made and their
relations to design elements and artifacts. Seetitimen outlines the implementation
of the metamodel in several prototype tools. Secfadiscusses a case study in the
Service-Oriented Architecture (SOA) domain to destate how the extensions of
the metamodel are of practical use for SOA desBgttion 6 describes the related
work and section 7 summarizes the conclusions atudef work.

2 Motivation and Problem Identification

A variety of research prototype tools have beereliged to support design decisions
in software architecture. From our experience dmpiah and using various tools for
architectural decision modeling, e.g., the Architeal Decision Knowledge WiK#],
Architecture Design Decision Support System [5H de Knowledge Architect [6],
we observed three major shortcomings related taitbation and maintenance of the
traceability links between the architectural knadge and other artifacts:

1. The coarsdink granularity in existing metamodels makes models easy to
populate, but does not support a fine-grained rigacand tracking of
decisions in relation to atomic design elementhag attributes in a class
model or tasks in a business process model. Suppofine-grained trace
links in current architectural decision modelingl®is weak or inexistent as
some of the tools import UML design models extdynaihd decisions can be
only linked to coarse-grained artifacts.

2. Existing metamodels do not put special attentioristory and evolution of
decisions. Only a few of them treat evolution of decisiomslarchitecture
partially. One reason for this limitation is thabsh commercial and open
source UML modeling tools do not offer explicit gupt for architecture
evolution (e.g., Jude Community, Magicdraw).

3. The decision making process suggested by existetgmodels assumes that
all decisions can be made at design tiaeferring decisions to runtime is
not supported. At present, the existing architectdiecision modeling
prototype tools do not offer support for runtimecidens that can be traced
back to the architecture or to requirements whereee of code or a system
module change.



The first problem area addressed in this papknksgranularity. Links connecting
key design decisions to architectural artifactsusthanclude relationships to smaller
parts of the design. Such an approach helps toewaehihe precision required to
estimate the impact of changes accurately. Smalirbportant decisions should also
be captured and linked properly. For instance, @sim to introduce a new UML
package or class seemingly constitutes a more eapesned decision than the
decision to add a new attribute to an existingsslaswever, the attribute may express
a key architectural concern, e.g., it might flagaachitecture component to be subject
to financial and general IT controls audits or ight demarcate a system transaction
boundary in a service composition. In many casas;drained decisions are derived
from coarse-grained ones made before; howeverJaitle of accuracy of existing
traceability models do not offer a way to track tmpact on the design or code. Thus,
it is required to introduce trace links with naremvand more precise scope to achieve
more precision in the traceability of architecturdécisions during decision
identification, making, and enforcement.

The second problem pertains to the maintenance efstem, as the design
decisions made in the past might become obsolate treehistory and evolution of
decisions should be recorded in the same way versioningsiepges store the history
and evolution of source code. This is useful foruamber of reasons. In certain cases
during system evolution, the architects have tdsieypast decisions and revert to
them if a new decision appears to be wrong. Inrathses, architects may need to roll
back the design, and start a new decision path ftbat point. Finally new
stakeholders that become involved in a projecttmerducated much more efficiently
by studying the evolution of decisions over timead ahe rationale that lead to the
existing set of decisions and the present design.

As a third problem, we observed that today the dyoity of certain systems may
imply that certain decisions affect architecturest thave already been deployed but
have to be modified during runtime. For instancepmposite service which replaces
an atomic service with another one due to new tyuafiservice conditions during
execution requiredeferring decisions to runtime. Such deferred decisions have to be
tracked back to the architecture and requiremenmtha conformance to them can be
ensured. Supporting runtime decisions becomes dsirgly relevant in modern
operating environments and deployment infrastr@stusuch as virtualized data
centers: each instantiation of a virtual softwamage may decide for a slightly
different set of quality properties. Examples imgduthe heap and disk size of virtual
UNIX machines infrastructure-as-a-service scenario), Java and relational data
source settings of Web application servepkat{orm-as-a-service), and login and
encryption policies of hosted Web conferencesftfare-as-a-service). These
decisions are based on user preferences and cuesmirce consumption (system
load); these two types of decision drivers only dmee known at runtime.
Consequently, it makes sense to defer the detaiiguitectural decisions about these
infrastructure settings to runtime (while at desiigne certain architectural templates
that constrain the runtime configuration options ba predefined).

In our previous work [4, 7] we introduced a conceptframework for decision
modeling with reuse to extend recent research sigdalecisions. Our work focused
on the following main contributions:



1. A decision-making process which comprisesdecision identification to
delimit the scopeglecision making to choose a feasible design alternative for
each design issue, adecision enforcement to share the results of the decision
making step with relevant stakeholders.

2. A decision-capturing and sharing metamodel supporting the decision
making process. This metamodel is specified asifddrModeling Language
(UML) class diagram and a formal definition based elementary set and
graph theory [4]. The metamodel, illustrated inlFgg 1, relies on three main
core domain entitieADIssue, ADAlternative, andADOutcome (AD stands for
Architectural Decision). An ADIssue captures an architectural problem that
requires a design solution wheregsdAlternative instances capture the pros
and the cons of the design choices an architec(ileasthe possible solutions
available and the criteria for choosing or not diong such option). Finally,
ADOutcome instances capture project-specific knowledge iiclg the
justification and the consequences of decisionsaiigtmade. This metamodel
is implemented in the Architectural Decision Knodgde Wiki/Architectural
Decision Knowledge Web Tool, which is a collabayatsystem and decision
modeling tool [4]. Other existing tools are basedsimilar metamodels [5],

[6].
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Fig. 1. Metamodel for architectural design decisions immated in the Architectural Decision
Knowledge Wiki tool.

With regards to the problems of link granularitigtbry and evolution of decisions
and deferring decisions, the existing metamodeb das offer support. We will later
explain how it can be extended to support theseaqus. We worked with more than
one hundred practicing architects, who applied aputeciated the metamodel as well
as the SOA guidance model instantiated from it [4], As part of our validation
activities, we conducted a user survey. Among atfiegs, users pointed out:



1. Decisions have to be visited multiple times and etirmes revised as the
design evolves; any waterfall process or big desjgfnont is not adequate for
most real-world projects. Decisions are hardly madseolation.

2. The lifetime of decisions transcends their ideasifion, making, and
enforcement; they have to be evaluated once amyistamplemented, at least
in prototypical form. Only then it becomes evidevtiether made decisions
have led to a design and implementation that alldwessystem to meet the
quality attributes that have been stated for it.

3. There is a desire to model links from decision®tteer model elements and
artifacts represented more explicitly (e.g., tymdsrequirements appear as
decision driver text in the metamodel in Figureblt are not first class
metamodel entities that can be linked to). The scaitribute of an issue (in
the metamodel in Figure 1) can identify the typadesign model element an
issue pertains to, but at present this textualrmédion does not link to any
artifacts used in the design process.

The metamodel extensions specified in this paper raotivated in this user
feedback. We base our proposed metamodel extensionthe metamodel that
underlies in Architectural Decision Knowledge Wikithitectural Decision
Knowledge Web Tool because this tool is populatéith & SOA guidance model
comprising more than 500 issues and 2000 alteewmtirecurring in SOA design;
architectural patterns described in the literafame among these alternatives (only a
subset of these issues and alternative descripiiavns been published so far). Hence,
we count on a significant amount of knowledge tectlibe different types of design
issues from a realistic point of view. However, ometamodel extensions are
designed in such a way that they can be implemeantether tools as well (assuming
that these tools support extensibility of theirpextive metamodels). To support this
claim, we outline how we implemented the new cote@pan extensible commercial
requirements engineering product later in this pape

3 Enhanced TraceLinksand other Metamodel Extensions

To overcome the three problems mentioned before,emtended the conceptual

metamodel of Figure 1. Our main rationale for addimew elements is to support

explicit trace links to small architectural artifa¢hat help to check the integrity of the

decision network, to evaluate the impact of changeg&eep track of the history and

evolution of changes, and to record the root caoéetanges. This new metamodel

is shown in Figure 2. In the remainder of this mectve describe the new classes and
new elements highlighting them in italicized text.

Links to Design Artifacts Two new classes, ADDesignElement and
ADDesignArtifact, specify the parts of the architecture that reBoltn one or more
design decisions represented by outcome instantBfesignElement instances
represent elements of modeling languages. For eeanijpwe map to Unified
Modeling Language (UML), it refers to a UMLNamed&ent (i.e., any UML
element that can be named). This includes coarsénegt elements such as



components and connectors, but also more fine eplaielements such as class
attributes. ADDesignArtifact aggregates and assembles such elements into tprojec
deliverables such as a platform-independent, tdohgeneutral functional
component model. ADDesignElement instances are defined to have an
ADDesignElementType, which also becomes the type of the scope attilmitthe
ADIlssue class. In the architectural decisions viewpoim, telationships between two
newly introduced subclasses ofADOutcome, ADDecidedOutcome and
ADDeferredOutcome (the existing metamodel introduced tA®Outcome class to
record actual decisions made to solve a problentuditeg its rationale), and
ADDesignElement (with subclas?ADRuntimeElement, introduced below) allows us to
define trace links to individual parts of an arebtture. ADDecidedOutcome and
ADDeferredOutcome indicate that enforcing a decision at design tiiféers from
enforcing a decision at runtime (with respect te #rtifacts in which the decision
materializes; e.g., UML class or conceptual appibeaserver node at design time vs.
Java class or XML deployment descriptor at runtin®)ich fine-grained linkage
down to the level of individual architectural eleme (e.g., UML components and
connectors, physical topology units and hostingdjrattributes of UML components
or Java classes or XML elements) increases theisgvacand expressivity of the
decision models. In summary, we have now introdweddrnal links from decisions
to structural and behavioral models, which weresupported previously.
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Fig. 2. UML metamodel for capturing design decisions vidhus on maintenance, evolution,
and runtime concerns.

In the decision making process, several alternatiggDAlternative) can be
captured, considered, and evaluated before a dadsimade. An external link, from
requirements to decisions, can be establishecheia¢w claséDDriver Type, which
gathers the origins and influencers of decisionshsas types of functional and non-
functional requirements. Because an issue is aabdeisknowledge entity, the
ADDriver Type class supports only types of requirements (eulity attributes such
as performance and modifiability), but not realtamces of such requirements: the



additional classADRequirement serves this purpos@DRequirement instances may
represent analysis artifacts such as business sgagedels, use cases, or user stories
as well as non-functional requirements such asvsoét quality attributes (e.g., sub-
second response time performance, modifiability wialti-platform support, etc.).
ADRequirementsArtifact instances compile a number of individual requirateeEach
ADRequirement instance is classified by its kind, which is exgm®ed by the
ADRequirementType class. As a result of the improvement, we removed
decisionDrivers attribute initially defined in thlssue class (e.g., a problem that
has to be solved). Thus, the new metamodel supmpants full traceability from
requirements to decisions and other design arsifact

Decision History and Evolution: The evolution of decisions is described by means
of the ADOutcomeEdition class, which establishes a chain of decisions ¢hahge
over time. For instance, a corporate system mag baveplace its middleware after
several years of successful production use beaaawweenterprise-level requirements
demand a technological change in the organizati@mce, this decision made in the
past for selecting the right middleware may haveab®e obsolete and may have to be
replaced by a new one. TH®OutcomeHistory class keeps track of the history of
changes to a decision made years or months agq ¢odlections of related
ADOutcomeEdition instances, each of which referring to a singi®Outcome
instance).

Support for Runtime Decisions. Some systems may change their status, operation
mode (e.g., a system that updates its softwardovehanges its operation mode
from normal operation to maintenance mode untilrfe®nfiguration process finishes
and the system returns to the normal mode), origaration during runtime due to
external or internal conditions. Hence, the deaisithat led to, for instance, a given
product architecture might have to be modified, andome cases lead to a different
architecture. In such cases, certain decisions tmbe replaced temporarily by new
ones or they can also become obsolete for a giiaa period. Therefore, we
introduce theADRuntimeElement class (atomic) and th&DRuntimeArtifact class
(composite) to reflect such situations and reprietien code pieces that enforce the
decisions represented by instances ofAh®eferredOutcome class. As decisions that
change during runtime cause the architecture tmadified according to the depth of
the change, adding support for runtime decisionpraves traceability between
artifacts; runtime artifacts can serve as link ¢éasg These finer grained traceability
links can determine the parts of architectures hiaae to be modified when changes
happen. To our knowledge, this feature has not hegemented before in other
tools and models capturing design rationale. Heweeextend and enhance previous
works for systems that require more surveillancedaptability due to, for instance,
new context conditions. Examples of issues thahatalways fully be resolved at
design time are:

» Specifically to Service-Oriented Architecture (SQA&apturing runtime decisions
and linking these to code assets is required. Kamele, our metamodel can
describe the decision in a composite Web Ser{actpe of design element) to
dynamically modify the Business Process Executiandguage (BPEL) workflow
that realizes the composite Web service, e.g.,ngage a new subprocess to



reflect a certain business rule or other runtimedit®n. Such late decision is
often based on new quality-of-service conditioret timodify the Service Level
Agreement (SLA) for a given period (e.g., regardingranteed response times).
Our metamodel uses the clasg&RuntimeArtifact and ADDeferredOutcome to
express such situations.

» The decision how to route a service invocation estjgthat represents an atomic
activity in an executable business process modd., (dynamic service
composition). Note that this decision can only be deferreduntime if such
flexibility does not violate regulatory constrairgach data privacy and system
and process assurance compliance (such concerns beammodeled as
ADDriverType and linked to issues according to the metamodesgmted in
Figure 2).

e The decisions enable to customize certain softWeatures when reusing a
particular application package, middleware comptnen product family (e.g.,
using variation points in software product line§ [9]). For instance, a database
management system might support distributed twe@lmmmit (2PC) protocol
at an extra performance and license cost; whemnl¢késion to use the system is
made, it might not be known yet whether the 2PCpsetipis required. This
decision might even change over time, which carexgressed as a series of
chained ADDutcomeEdition instances.

e The decision to delegate some of the responsdslito end users that are
performed by architects/developers in traditionabftvgare engineering
(situational application development via Web-centric container architecture
such as mashups). For instance, such design issghs deal with user interface
patterns, data formats (e.g., MIME types), andrimition provider selections.

4 Implementation in Existing and Emerging Tools

This section outlines how the enhancements in tktended metamodel can be
supported by three existing architectural knowledgmagement and modeling tools:
ADDSS [5], The Knowledge Architect [6], and Architaral Decision Knowledge

Wiki/Web Tool [4]. These tools share several gaald usage scenarios, but differ in
their origins, use cases, and tool architecture. di¢euss all three independently
developed tools to illustrate the generality of amproach by explaining how the
extended metamodel can be supported by them. Iitiagdwe present an actual
implementation of the extended metamodel on tom afommercial requirements
engineering and management platform which supportamodel extensions and
Web-based artifact linking.

4.1 Architecture Design Decision Support System (ADDSS)

In this tool [5], the model underlying the tool gapts explicit traces to requirements
(ADDriverType) and architecturesADDesignElement, ADDesignArtifact) as well as

between design decisions, but links between detwsiand smaller parts of the
architecture can not be specified in a fine graifsethion. To overcome this, Figure 2



specifies a clas#®\DDesignElement and establishes links from th&DOutcome to
provide fine grained links to small design artifacEvolution in ADDSS is only
supported by several attributes; there is no wagefine a chain of decisions history
as in the proposed metamodel of Figure 2 (using AEOutcomeEdition and
ADOutcomeHistory classes). Finally, ADDSS does not support runtil@eisions like
in our proposed solution. Hence, tA®RuntimeElement, ADRuntimeArtifact and
ADDeferrredOutcome classes should be incorporated into ADDSS’ metashaal
enable tracking runtime decisions.

4.2 The Knowledge Architect (KA)

This tool suite [6], [10] is comprised of a numlzdrspecialized tools for capturing,
(re)using, translating, sharing, and managing saofwarchitectural knowledge. The
Knowledge Architect entails specialized support fimtegrating the various
architecting activities [11] and supporting colladtion between the stakeholders of
these activities. The different tools support difg activities (e.g. analysis, design,
sharing) and therefore each tool has a specialfethitectural Knowledge (AK)
metamodel to deal with the different types of knedge produced and consumed
during the architecting process. The different mmetdels are integrated into the
central knowledge repository of the tool suite. cBability can be achieved in two
ways: a) within each metamodel, traceability lirdeg established between the AK
concepts (e.g., between “decisions”, “concernsgcidions topics” and “alternatives”
in the document knowledge client of the KA) b) awodifferent metamodels
traceability links can be established within the@kiedge repository (e.g. “decisions”
and “concerns” are common concepts of both the mieot knowledge client and the
analysis model knowledge client of the KA). The K&n be extended in two ways to
support the metamodel of Figure 2: a) all the tdwlse extensible metamodels (not
hard-coded but completely customizable), thus #h& concepts and relations can be
added in a straightforward way; b) the central kieolge repository itself stores
knowledge in Resource Description Framework (RD&)Mfat and can directly
accommodate the metamodel extensions of Figure 2am example the classes
ADDecideOutcome and ADDeferredOutcome can simply inherit from the class
Decision, while ADDriver Type can inherit from the clagsoncern (both Decision and
Concern belong to the document knowledge clientametlel). The extensions for
history and evolution are not necessary to be implged as the KA, as the tool suite
uses the versioning system of Sesame to trackvitiaten of each knowledge entity.

4.3 Architectural Decision Knowledge Wiki/Ar chitectural Decision Knowledge
Web Tool

Architectural Decision Knowledge Wiki is a Web Z6llaboration tool supporting
the decision modeling capabilities and original Uktietamodel first published in [7].
A version 1.0 was originally implemented in PHP amtbased in March 2009; in
October 2009, a Java reimplementation of the toa$ weleased under the name
Architectural Decision Knowledge Web Tool [4]. Ttw®! supports about 50 decision
modeling and making use cases. It assembl@ssue and theirADAlternative on a



decision identification tab (these metamodel entity types are jointly rref to as
decisions required). ADOutcome instances are created and updated on a second
decision outcome tab (capturingdecisions made), which exposes a simple decision
state management workflow to the user (with openidgel/approved/rejected states).
To support the extended metamodel introduced imptaeious sections, the following
additional features and components are required:

1. TheADDriverTypeclass is a result of refactoring the decision draitribute
in ADIssue; hence, the new capability can be implementedefactoring the
user interface components displaying the decisiemtification tab as well
as the underlying server-side business logic andbdae schema. Having
performed these refactorings, the fine-grainedehdity links can be added
to the decision identification tab; advanced useerface features such as
pop-ups can be added.

2. The ADOutcomeHistory and ADOutcomeEdition classes can be realized by
implementing theedition pattern. The business logic and the database
schema of the existing implementation already dp oo top of that, an
additionaldecision evolution tab can be added to the user interface to display
the decision making history.

3. Deferring decisions to runtime can be supportednbyducing anew state
“deferred” for outcome instances; this requiresupalate the user interface
components supporting the decision making tab,edkas the state machine
implemented in the business logic realiziAPOutcome instance creation
and lifecycle management.

4.4 Implementation in IBM Rational Requirements Composer

To investigate and demonstrate the technical fé@gjtpracticality, and usability of
these enhancements, we created a demonstratorréguarements modeling and
management platform prior to implementing themhba &ctual tools (following the
well-established design principles such as useerfeste storyboarding and
prototyping).

For our proof-of-concept we used a recently releasguirements engineering and
storyboarding tool|BM Rational Requirements Composer (RRC). Version 2.0 of this
Jazz repository-based product became generallyabl@ion jazz.net in November
2009. The RRC metamodel by default supports atifacich as business process
models, use case diagrams, storyboards, but afguesnental rich text documents
representing features and non-functional requirésngxl artifacts as well as external
resources can be linked to each other via Web URissattribute groups, the default
metamodel can be extended.

We first created custom attribute groups to repretiee original metamodel and
then added new attribute groups representingDDriverType and
ADDeferredOutcome. ADOutcomeHistory does not require product configuration; it is
supported by the server component of the RRC ptodua the snapshotting
capabilities which stores model versions in thez fapository). Next, we instantiated
SOA model elements (instances) via templates watedefrom sample rich text
artifacts which use the newly defined attributeup® The sample model elements



were populated from the existing SOA guidance maelilable in Architectural
Decision Knowledge Web Tool (via copy-paste). Hinafine grained traceability
links were added to demonstrate requirements tsides linkage.

The sample links from requirements to issues aie# fiatroduced in the previous
section and shown in the extended UML diagram igufé 2) demonstrate the
technical feasibility of our concepts; the linkssitee on the individual
requirement/issue/outcome instance level, not ccuhent-to-document level. This
paves the way for requirements to decisions integraas suggested by our
metamodel extensions. Concerns expressed\ZBriverType become first class
citizens in the user interface (tagged as architally significant requirements) and
the architecture of the tool (unlike in the oridimaplementations). In conclusion, this
implementation demonstrated that the extended nuetahis generic and expressive
enough to be supported in multiple tools.

5 Instantiation for SOA Enterprise Applications

We applied our extended metamodel to an industaak study from the telecom-
munications industry. This industrial case studycens the modernization of an
existing, business-to-businessrder management system (OM) in a major
telecommunications company employing a wholesataier business model [12]. In
this business process-centric scenario, a key éssirequirement (concern) was to
ensure enterprise resource integrity over multghlennel interactions and time. User
channels included the Internet (providing end gsdfrservices) and call centers. Two
of the order management processes consisted af 1§ $teps and could run for up to
24 hours. Market deregulation and increasing coitipet caused the concrete
problem of having to coordinate competing requéstshe same physical resources
in the shared telephony network. This coordinaticas seen to improve customer
satisfaction (measured as number of successful cedeests).

This business environment led to many architecta@dign challenges. Key
technical requirements in this order managementexbrwere multi-channel request
coordination and process instance and timeout nganagt. A business transaction
started via the Internet-based self-service chahaélto be able to continue via call
center (back office) interaction. Different VSPaitdrs reserved resources in a single
network owned by the wholesaler, so incomplete estpuhad to be undone after a
certain amount of time. The system context and w&so integrity management
requirement suggested introducing a process lagera agoverning architecture
element. This process layers serves one user dhpaneiser type. These channels
reside in the presentation layer of the order mamamnt system. The required long-
running process instance tracking and timeout mamagt could be implemented in a
macroflow engine [13] dedicated for this task (@d)l Short-running, transactional
flows could be handled by dedicated microflow ergifiL3].

All these concerns are addressed in the logicatiteture of the production
solution which is outlined in Figure 3 and explain@ detail in [12]. While such
UML class diagram can give an architectural ovewyienany detailed concerns
cannot be covered on this level of refinement. iRstance, many technology- and
product-specific design issues and the rationalthefdecision outcomes should be



explained in detail elsewhere. More specifically ffie context of this paper and the
proposed metamodel extensions), the architectemaezits should be traced back to
the outlined requirements, the evolution of thetesys from a plain Java Web
application to a process-based SOA should be caghtiand the necessity to defer
certain decisions to runtime should be captured.

«subsystens
Presentation Layer
«Control» ) «Control:
© Create Use Case Controller e @ Move Use Case Controller
«call» «subsysterne «use»
Process Layer
- «processs . «processs
= Create PSTN Service = Move PSTN Service
«use»
«subsysterne>

Service and Component Layer
xuses

«subsystems
Persistence Layer

<Entity» «Entitys»
@ Move Use Case Storage @ New Use Case Storage

Fig. 3. Functional components of the order managemengisyst

Let us map the model elements in Figure 3 backdéometamodel from Figure 2.
All UML classes representing functional componentse instances of
ADDesignElement (irrespective of their stereotypabg class diagram itself is an
instance of ADDesignArtifact. The ADDesignArtifagte of this class diagram
artifact is “functional component model”; the ADDgsElementType of the
ADDesignElement instances is “(functional) UML cooment” (we can view
component stereotypes such as “subsystem”, “comtomhponent”, and “process
component” as subtypes; however, this subtypimpiexpressed by our metamodel).
Example of traceability links will be given in theext subsection and Figure 5. We
uses the extended metamodel of Figure 2 to illtestreow these design/modeling
problems in the Order Management (OM) case studypeamodeled.

Early in the project, a decision was required toidie for the main architectural
concepts. In particular, a process-based SOA aeddlated architectural patterns
were chosen because the solution was supposedftexiide and adaptable. One of
the important conceptual decisions in this conteas to decide whether a service
composition layer should be introduced into thehdecture (the outcome of this
decision led to the inclusion of the Process Laysnponent in Figure 5).

Figure 4 shows a (heavily simplified) instance loé imetamodel for this decision,
working with a subset of the design elements fragufe 3. Both instances of the
core classes of the existing metamod&Dlssue, ADAlternative, ADOutcome) and
our metamodel extensions are illustrateADRequirement, ADDesignElement,
ADOutcomeHistory, etc.). A sample decision <<ADReqType>> Portapilitnd a



concrete <<ADRequirement>> Runs on 2 Platforms, (¢@lution can on at least two
platforms) were identified for one required and madecision (<<ADlssue>>
Workflow Language with selected <<ADAlternative>PBL).

Design/Development/

Requirements Viewpoint AD Viewpoint
sEE <<ADOutcHistory>> Operations Viewpoints
SOA for OM Sol.
<<ADReqartifact>> |, AU apissuess
Use Case Model Architectural Style

<<ADOutcEdition>> <<ADDesElemType>>
Functional Comp.

SOA for OM Sol.

<<ADAlternative>> <<ADOutcome>> P |
SOA SOA for OM Sol. s
A |
SOA — Service Oriented S~o - Y - <<ADDesElement>>
Architecture S~ o /~ Process Layer

OM — Order Management
BPEL — Business Process <<ADlssue>> ’
Execution Language Service Composition Layer p

'3

<<ADDesArtifact>>
Component Model

<<ADAlternative>> <<ADOutcome>>

<<ADRegArtifact>> Process-Based Integr. P-E SOA for OM Sol. . X
Quality Attributes == Not shown in this figure:
~ -
Soe <<ADDecidedOutcome>>
= ProcessLifetimePattern
<<ADReqType>> <<ADlssue>>
qTyp <<ADDeferredOutcome>>

Workflow Language

Portability

1
1
1
¥
1
1
1
1
i LoggingPolicy
y

<<ADRuntimeElem>>
BPEL Process

<<ADRuntimeArtifact>>
BPEL File (XML)

<<ADAlternative>> <<ADOutcome>>
BPEL BPEL for OM Sol.

<ADRequirement>>
IRuns on 2 Platforms

Fig. 4. Architectural decisions made in case study wittkdito design model context a.k.a.
exemplary application (instantiation) of the AD am@bdel for the case study

At this stage, we couldn’t test the evolution oé ttecisions as we only produced
the first version of the architecture of the OM teys using, but we captured the
evolution of the system from a plain Java Web ajilon to a process-based SOA.

Furthermore, decisions that might change at runteae be tracked using the
proposed metamodel extension (i.e.: RDtimeArtifacts, ADRuntimeElements) and
the class that enforces the decisions P&f&rredOutcome). In the order management
SOA, the system transaction boundary and the lggggttings might differ for certain
components in the process layer and for comporiantise service layer shown in
Figure 3. This metamodel extension is not illugdain Figure 4.

6 Reated Work

Several research prototype tools [11], [14] for tadpg, using, and documenting
architectural design decisions have recently aggktanany of these use templates
and metamodels for capturing knowledge attributesl ananaging decision
dependencies [15], [16]. Tools such as PAKME, ADD&&hium, The Knowledge
Architect, and AREL offer traceability mechanismstween decisions and other
software artifacts at different levels. Some ofsthéools support the evolution of trace
links between decisions and forward and backwardes. The traceability supported
by the tools can be used to estimate those adithett are impacted by the change in
a decision, as the majority of the mentioned tdatk fine grained links between
decisions and small architectural artifacts (adJML class or component instead of



an entire subsystem). In addition, the approackgmted in [17] highlights the role of
traceability in software architecture evolution atebscribe a method to manage such
traceability for design decisions using a modeleii development approach.

Software product lines (SPL) need to model also dependencies of feature
models (i.e.: in practice they constitute a decisiwodel) for different phases of the
software life-cycle. Modeling dependencies and idgalith traceability problems in
SPL is discussed in [18], where a wide list of defsncy types between features are
defined as constraints a software product mussfgativhile in [19] the authors
explain how metamodels from PAKME and ADDSS tods e merged to support
product lines concepts and model dependency lirdksvden architectural design
decisions and the variability rules associated teature model. Other works refer to
Dynamic Software Product Lines (DSPLs) [20] to pdevthe necessary binding for
runtime variation points to adapt the software barges in the environment. The
authors state that it is impossible to foresedalvariability a SPL requires, and use
dynamic architectures and support for runtime decssto be able to support system
configuration and binding at runtime (for automatixision-making). Designing and
managing runtime variation points in architectusealso described in [21], where
patterns are used to provide such facility in SRl add the necessary flexibility for
domain-specific applications (e.g.. custom Web eexthat cannot be stopped when
deploying or configuring components).

Lago et al. [22] discuss three different traceapiilssues during SPL derivation,
and they focus on those traceability links betwéesture models and structural
models (i.e.: architecture-level decisions). In][28 Dependency Structure Matrix
(DSM) is used to represent and manage dependenciesomplex software
architecture and to reveal underlying architectupatterns. Acceptable and
unacceptable dependencies are expressed usingndesigs to describe the
semantics of such dependencies.

All the aforementioned approaches lack explicitpgurp for runtime decisions that
can be deferred and tracked back from code to tbkitacture and to the design
decision. Furthermore, in most cases they suppoatrse grained links between
decisions and other software artifacts. Evolutisronly partially supported in two
existing tool prototypes. Hence, our approach impsothese features and enriches
previous metamodels and tools with runtime decisio®ther approaches that
consider fine grained traceability paths betwedfeint artifacts do not consider the
inclusion of design decisions as we do.

Traceability between decisions and from decisions attifacts is related to
traceability between requirements and model elesnémt general. This general
problem of establishing and maintaining traceaplis been studied in the literature
and different approaches exist. Maeder et al. f2dsent an approach for automating
traceability maintenance under changes by clasgjfythanges and automating
updates of the traceability graph. Such an appreaaid in principle also be applied
to traceability management for architectural decisi Cleland-Huang and Chang
[25] propose a traceability method that is basedhenpublish-subscribe architecture
in order to keep traceability links up to daterdinains for future work to investigate
the best approach to maintain traceability linkéMeen architectural decisions and
requirements.



7 Conclusion and Future Work

Our approach revisits and enhances previous madelstools as we provide full
traceability between individual decisions and otlseftware artifacts using fine
grained links, even if the decision networks becomere complex to manage and to
maintain. We are aware that capturing fine graacter links introduces additional
costs to maintain the links over time and this cgtsbuld not be higher than the
expected benefits, but the architect must decidermib define such links to smaller
parts of the architecture that must be traced,(a.gritical software component in a
system composed by a few number of classes is aeghlat runtime by a new
component with extended functionality and defingdabnew UML for which a new
trace link must be create for its correspondinggieslecision). With such links we
achieve a better control of individual decisionsl ave are able to find out in detalil
which parts of the architecture are affected byange in the requirements or code.
Because certain software systems may vary theitegbieonditions during runtime,
they require adequate models to support runtimasides that can be deferred.
Hence, we extend previous works to track runtimeisiens and make software
architects aware of changes that may affect thégue®ther extensions would
include supporting the full context of decisionsttlevolve and store not only the
decisions but also the issues, drivers, and reqeangés that accomplish a particular
solution. Finally, other non-SOA domains like satfaptive systems can benefit from
tracking runtime decisions as a way to monitor drethose changes that happen
during system execution.
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