Semantic Web 1 (2011) 1 1
10S Press

Context-driven RDF Data Replication on
Mobile Devices !

Editor(s): guest editors
Solicited review(s): Jérdme Euzenat, INRIA Grenoble Rhone-Alpes, France. Martin Raubal, University of California, USA.

Stefan Zander ® and Bernhard Schandl P

& University of Vienna, Research Group Multimedia Information Systems
Liebiggasse 4/3-4, 1010 Wien, Austria

E-mail: {firsthame.lastname} @univie.ac.at

> Gnowsis.com

Graumanngasse 7/B/5, 1150 Wien, Austria

E-Mail: bernhard.schandl@ gnowsis.com

Abstract. With the continuously growing amount of structured data available on the Semantic Web there is an increasing desire to
replicate such data to mobile devices. This enables services and applications to operate independently of the network connection
quality. Traditional replication strategies cannot be properly applied to mobile systems because they do not adopt to changing
user information needs, and they do not consider the technical, environmental, and infrastructural restrictions of mobile devices.
Therefore, it is reasonable to consider contextual information, gathered from physical and logical sensors, in the replication
process, and replicate only data that are actually needed by the user. In this paper we present a framework that uses Semantic Web
technologies to build comprehensive descriptions of the user’s information needs based on contextual information, and employs
these descriptions to selectively replicate data from external sources. In consequence, the amount of replicated data is reduced,
while a maximum share of relevant data are continuously available to be used by applications, even in situations with limited or
no network connectivity.

Keywords: Mobile applications, data replication, context awareness

1. Introduction

Mobile devices have become central parts of our
everyday lives for managing our digital assets and
lifestyle. Due to the convergence of traditionally sepa-
rated networks and information channels and the con-
tinuing technical progress of mobile devices, network
and online services can now be accessed regardless
of spatial or temporal constraints: anytime, anywhere,
and whenever network connection allows to do so. In
parallel, with the emergence of the Web of Data, the
amount of structured data available on the Web and in
particular on the Semantic Web has been continuously

!'This paper is an extended version of [49].

growing throughout the past years. An increasing ad-
vent of applications that utilize and integrate such data
from different, distributed sources can be observed,
providing additional services on top to users or soft-
ware agents. This trend is even more accelerated by
so-called Semantic Web 2.0 [23] applications.

A common strategy to maintain service availability
and to guarantee a certain service quality is replication
of remote data sets. However, traditional replication
mechanisms do not apply properly to mobile scenarios
for the following reasons:

— Technical limitations: mobile devices are re-
stricted in terms of memory capacity, CPU per-
formance, and power supply, which may hinder
the local replication of large data sets.

1570-0844/11/$27.50 © 2011 — IOS Press and the authors. All rights reserved

2 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

— Environmental, infrastructural, and security con-
straints: network connectivity may be limited
technically (no cellular radio coverage), economi-
cally (the network connection may be expensive),
or because of security restrictions (e.g., when the
network does not permit to establish a VPN con-
nection). Consequently, in case of unstable net-
work connections only the most important and
relevant data sets should be replicated.

— Different application and operation models: mo-
bile devices employ different application mod-
els and operating system infrastructures originat-
ing from ad-hoc and situational usage-patterns.
For instance, since mobile devices use differ-
ent modalities in accessing information resources
and are operated in different contexts, it is more
common that current tasks might be intermitted
abruptly or moved to the background.

Due to these significant differences, mobile data
replication should consider the importance of repli-
cated data in relation to user tasks and activities as well
as their operating environments. We therefore adopt
the concepts of context and context awareness and uti-
lize them for replication of RDF data sets to mobile de-
vices. This allows for a proactive, selective, and trans-
parent replication, focusing on the user’s situation and
information needs. Our proposed solution addresses
these issues from two sides: first, it considers the cur-
rent (and future) context of the user and, based on
this information, selects subsets of remote data sources
for replication. Hence, the amount of data to be repli-
cated (i.e., to be transferred to, and stored on the mo-
bile device) is reduced. Second, these subsets are repli-
cated to the mobile device proactively and transpar-
ently, whenever network connectivity allows to do so.
As a consequence, data are still available when no net-
work connectivity is present, while access times are
significantly reduced since data can be reused from the
local replica. As a side effect, semantic technology in-
frastructure is brought to mobile devices, which can be
utilized by any application.

This paper presents the MobiSem Context Frame-
work!, which is designed as a situation-sensible in-
frastructure framework for Semantic Web applications
running on mobile devices. It uses a loosely coupled
combination of context- and data providers to populate

'The MobiSem Context Framework has been developed in the
course of the MobiSem project (see http://www.mobisem.
org) and is currently being transitioned into a commercial solution.

the local triple store with data from remote sources.
It considers context information acquired from the de-
vice itself or the surrounding environment, thus hiding
the tasks of context acquisition and data provisioning
from users and applications.

We want to motivate our approach through a typical
use case of a knowledge worker and its daily working
data items. In this scenario, we assume that the user
will be on travel during the next three days, where a
number of business meetings will take place. The user
cannot rely on a stable network connection during this
trip. Therefore, it is desirable to transfer relevant infor-
mation about the meetings and, in particular, the per-
sons that will participate in the meetings to the mo-
bile phone. This information can originate from a vari-
ety of sources, including public knowledge bases like
Wikipedia/DBpedia®> and GeoNames?®, or the user’s
private data which might be available through their
Semantic Desktop environment (e.g., relevant docu-
ments, email messages, and to-do lists, which are rep-
resented in a machine-processable format).

The next section (Section 2) gives an introduction
to the notion of context and context awareness, and it
elaborates on how they can be augmented using Se-
mantic Web concepts and technologies. It is followed
by an overview of currently available mobile RDF
frameworks and related context-aware Semantic Web
projects (Section 3). The architecture of the MobiSem
framework, which can be deployed to mobile devices,
and technical details are presented (Section 4). The
feasibility of this context awareness approach is shown
through a prototypical implementation of an applica-
tion scenario on the Android platform (Section 5) fol-
lowed by a comparative performance evaluation of the
underlying RDF processing infrastructure (Section 6).

2. Context and Context Awareness

For the intelligent provision of user-related data,
context awareness it is essential to capture the context
in which the user currently operates. We aim to utilize
the notion of context in order to describe and represent
the user’s information needs so that relevant data sets
can be proactively retrieved from external data sources
in a transparent and automated manner. In this sec-
tion, we provide an introduction to the concepts of con-
text and context awareness from a technical perspec-

’http://dbpedia.org/About
3http://www.geonames.org/

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 3

tive and discuss their main problems when used in in-
formation systems. That followed, we present several
areas where concepts and technologies from the Se-
mantic Web can substantially enhance context-aware
computing on mobile systems.

2.1. Context and Context Awareness in Information
Systems

Many definitions have been proposed for the notions
of context and context awareness. Context in its widest
sense is defined as “everything that surrounds a user or
device and gives meaning to something” [43] as well
as “anything that can be used to characterize the sit-
uation of an entity” [14]. We define the term contex-
tual information to refer to any information that is rel-
evant for describing the situation a user or device op-
erates in. Consequently, context can be acquired ex-
plicitly where context related information is manually
specified by the user, or implicitly where context in-
formation is captured using specific technologies such
as sensors or network communication, or by moni-
toring user behavior. The main focus of our frame-
work lies on the implicit acquisition of contextual in-
formation, especially from physical sensors embedded
in the device or ubiquitous sensors located in the im-
mediate vicinity, as well as logical or software sensors
that extract context-relevant information from personal
sources such as emails, calendars, or web services. In
this respect, the challenge is to identify the set of rele-
vant features used for capturing and describing a situ-
ation or parts of the environment sufficiently [4].

In general, two forms of context awareness can
be found in information systems [21]: direct aware-
ness shifts the process of context acquisition onto the
device itself, usually by embodying sensors that au-
tonomously obtain contextual information; e.g., loca-
tion ascertainment using the device-internal GPS sen-
sor. Indirect awareness, in contrast, captures contex-
tual information by communicating with sensors or
services via the surrounding environment or infrastruc-
ture. For instance, to capture the social context of a
user, a mobile device may request data from social
communities or portals; to track the user’s location, a
remote geocoding service (based on the user’s IP ad-
dress) may be employed.

A fundamental problem of context-sensitive sys-
tems is that there exists no general model of context
and context awareness. Especially in mobile comput-
ing, the notion of context is used very ambiguously
across communities and is usually defined according

to specific application domains (cf. [8,37]). This prob-
lem is also reflected in the developments of mobile
context-aware applications since no widely accepted
and well-defined programming model exists, resulting
in a tight coupling and low-level interaction between
application code and context acquisition components.
Consequently, interpretation and exchange of sensed
values is anchored within applications in a propri-
etary manner. Recent approaches propose a more flex-
ible architectural and conceptual design for represent-
ing and processing context-relevant information by us-
ing formal models for context and context awareness
(e.g., [4,6]) complemented with user and task analy-
sis to enable a dynamic interaction between context-
, task-, and user models (e.g., [38]), or employ mid-
dleware infrastructures (e.g., [24,28]) that encapsulate
sensor-specific APIs in dedicated components in or-
der to facilitate communication and interoperability
between context processing components* and the un-
derlying framework, while making use of knowledge
representation frameworks such as RDF for describing
context information [17,35].

The MobiSem framework extends this idea in that
it has been designed specifically to operate on mobile
systems, and to use Semantic Web technologies to ac-
quire, interpret, aggregate, store, and reason on contex-
tual information, independent of any application or in-
frastructure. Semantic Web technologies and practices,
which are designed as an information processing in-
frastructure for heterogeneous environments, can help
to solve some of the issues described before, and are
therefore highly relevant for the design and develop-
ment of ubiquitous and mobile context-aware systems.

2.2. Dynamically Evolving Context Descriptions

Especially in technical disciplines it is a predom-
inant practice to concentrate on sensorial and static
data such as location, time, identity, activity etc. (cf.
[34,41]). In such disciplines, context is predominantly
considered as a representational issue, where the fo-
cus is put on its codification and representation [43].
According to that perception, context can be scoped in
advance, is instance-independent, and separable from
user activities [15]. The reasons for that predominant
practice of utilizing context in information systems

4That is context producers such as context acquisition compo-
nents, and context consumers such as services, applications, or the
device itself.

4 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

can be attributed to the adherence to existing software
methodologies [43].

However, this static perception entirely neglects the
dynamic aspects of context, which arise in the course
of interaction and render the determination of rele-
vance of contextual facts a priori at design time im-
possible. Context should be considered as an emer-
gent phenomenon or feature of interaction that is cen-
tered around user activities [43] and continuously rene-
gotiated between communicating partners [12,15,34].
Therefore, the determination of a relevant set of canon-
ical context properties in advance is very difficult and
nearly impossible [17].

To cope with the dynamic and emergent nature of
context, a context processing and management frame-
work must facilitate flexible, extensible, and open con-
text descriptions that are not restricted to a single static
vocabulary or predefined schema. Static context de-
scriptions are not able to deal with unknown context
information at run time, but require links between dif-
ferent context vocabularies to be specified at design
time [17]. Therefore, a fundamental requirement of our
proposed context framework is the ability to handle
new types of context information dynamically using
well-accepted standard vocabularies to guarantee their
accuracy and evolution. In this respect, one can ob-
serve an analogy to the “real” Semantic Web which
deals with providing infrastructure to process informa-
tion in a distributed and heterogeneous manner.

A general problem of context management and pro-
cessing is that of context ambiguity [14]. Most context-
aware computing approaches are based on the implicit
assumption that the acquired context is a 1-to-1 repre-
sentation of the surrounding real world context. Obvi-
ously, this assumption is wrong due to the inherently
existing differences in the way context is sensed and
represented electronically, and the way it is perceived
by individuals [14,15]. Therefore, a context framework
can only work on a more or less accurate representa-
tion of the surrounding real-world context, where the
degree of accuracy depends on a multitude of differ-
ent factors (e.g., the user’s task at hand, their infor-
mation needs, personal goals, etc.). The dynamic na-
ture of context makes it difficult to specify all relevant
context parameters at a system’s design time, since in
general context is always defined relative to the situ-
ation in which it is used. Modeling context in infor-
mation systems is therefore never universal in that a
context model encompasses all information character-
izing a certain situation, but rather represents a rele-
vant subset of the constituting characteristics [14,15].

This leads to cases of having multiple representations
of the same situation differing in the accurateness and
the contextual aspects they include.

Detecting all artifacts that constitute a specific con-
text is nearly impossible and cannot be fulfilled by
any context framework. However, applying reasoning
and machine learning techniques only increases the
accuracy of context acquisition and context recogni-
tion processes but never accounts for identifying all the
possible artifacts constituting a specific context or sit-
uation respectively. Context-aware computing is there-
fore always an approximation to a real-world situation
rather than a 1-to-1 reflection of it.

To deal with that issue, several techniques and
methodologies from different fields such as activity
theory [36,43], aspect-oriented context modeling and
modularization [11], or situational reasoning [6,33]
have been applied to process context on higher, more
abstract levels by aligning contextual aspects to ab-
stract concepts (e.g., “business meeting”) adhering to
upper-level ontologies. The idea is to aggregate and
transform quantitatively acquired context artifacts into
qualitative statements in order to express complex con-
ceptual relationships and dependencies [6], and for ap-
plying classification-based reasoning techniques [22].
Additionally, high-level representations of contextual
information unify access and utilization among appli-
cations. Context consumers do not need to be famil-
iar with low-level data processing and interpretation,
thus context sharing and exchange are simplified. Such
transformations are considered as a means to make
contextual information domain-independent.

The MobiSem Context Framework follows this
idea in that it provides the technical infrastructure on
which additional more sophisticated layers (e.g., for
situation-awareness) can be deployed. Such layers al-
low for aggregating the contextual artifacts acquired by
the underlying framework and apply different method-
ologies (e.g., Bayesian networks, case-based reason-
ing, stochastic methods, etc.) for their interpretation,
consolidation, and augmentation. Section 5 describes
a use case in which new contextual information can be
derived by intelligently combining independently ac-
quired contextual artifacts to provide a more sophis-
ticated representation of a contextual aspect (in that
case, location).

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 5

2.3. Semantic Web-based Context Representation and
Processing

A general approach to systematically manage con-
text information is to use ontologies, which provide
a common structure for representing and describing
information. The Resource Description Framework
(RDF) enables communication and sharing of context
descriptions between collaboratively communicating
partners; i.e., services or devices. Its open architecture
allows for the integration of different vocabularies so
that context descriptions can dynamically grow and
become more elaborated. Different works in the fields
of pervasive and ubiquitous computing (e.g., [8,17])
have shown that both RDF(S) and OWL are appropri-
ate languages for representing dynamic and evolving
context descriptions [34]. Since these are grounded on
the open world assumption, the possibility of adding
new and more detailed information to existing descrip-
tions makes them applicable in dynamic and unpre-
dictable environments.

Ontologies further help in matching expressed con-
text information to application or service needs in that
only relevant statements are extracted. A context con-
sumer, i.e., a device or application only needs to query
for the information it is interested in, instead of pro-
cessing the entire context description. If parties expose
context descriptions that cannot be understood by oth-
ers, ontology matching algorithms can be applied in
order to reconcile differences in the description seman-
tics. Ontology alignment services [16] can be used to
account for the compatibility between different con-
text models by identifying correspondences between
context descriptions and performing query transforma-
tions to better reflect domain and information space
evolutions [17].

Semantic technologies facilitate both direct and
indirect context awareness, since context-related in-
formation can be acquired from external services or
repositories in a structured and well-defined way based
on explicitly represented semantics using open stan-
dards. Sensorial context data can be mapped to vocab-
ularies so that sensed values are embedded in a con-
trolled context description based on ontological se-
mantics, where new facts can be discovered via aggre-
gation and reasoning. In this respect, RDF simplifies
the aggregation of heterogeneous context information,
both on the semantic and syntactical layer.

Since technologies and concepts from the Seman-
tic Web have been designed for heterogenous environ-
ments, they offer languages and technologies that serve

as standards for expressing contextual information,
and can therefore be shared and exchanged among sys-
tems and applications. RDF further allows one to rep-
resent contextual information in multiple ways by us-
ing different vocabularies and transformation rules so
that it can be used and understood by different compo-
nents or context consumers. RDF thus facilitates trans-
formations or mappings between heterogenous context
representations as well as the reconciliation of context
heterogeneity.

If context-relevant data are represented using Se-
mantic Web languages, they can be integrated and pro-
cessed even if they were not known at design time of
a mobile system (see [17] p.30 for an example). This
also applies to divergent sensor or service feature de-
scriptions where the identification of correspondences
between heterogeneous descriptions serves as a basis
for utilizing services and integrating acquired informa-
tion that were not been anticipated at design time of a
mobile system.

Additionally, ontologies facilitate the interpretation
of sensed or derived values to allow for their aggre-
gation and transformation into symbolic values, i.e.,
transforming collected data into statements adhering
to a prescribed vocabulary. Hence, context acquisition
components do not need to anticipate possible queries
beforehand, but provide the data they have and let the
requesting components decide which information is of
relevance to them.

The Semantic Web community has already devel-
oped a wide range of vocabularies that can be used
to describe contextual information (including physical
parameters like time® and location®, technical param-
eters’, or social aspectsg). The terms defined in these
vocabularies are known across communities and ad-
here to a well-defined and commonly understood se-
mantics. Such vocabularies facilitate data interchange
between heterogeneous systems, and are often main-
tained by a large number of people to guarantee their
accurateness and relevance. Not being bound to a sin-
gle vocabulary also adheres to the idea of dynamic and
flexible context descriptions evolving in the course of
user-relevant activities that can not be determined a
priori—especially not at design time of a mobile sys-
tem or a mobile application.

Shttp://www.w3.org/TR/owl-time
Shttp://www.w3.0rg/2003/01/geo
Thttp://www.w3.org/Mobile/CCPP
8http://www.foaffproject.org

6 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

In this section, we have outlined some of the areas in
context-aware computing where Semantic Web tech-
nologies can make substantial contributions in repre-
senting, processing, and sharing contextual informa-
tion as well as in the reconciliation of heterogeneous
context semantics. The potential benefits of semantic
technologies for related areas such as pervasive com-
puting have been discussed in previous works [17].
In the following, we discuss relevant work in terms
of related mobile replication approaches, mobile RDF
frameworks, and existing context-aware mobile Se-
mantic Web applications, and provide an overview of
the MobiSem Context Framework that implements the
ideas and concepts presented in this section. We de-
note this form of context-aware computing as Seman-
tic Web-based context-aware computing.

3. Related Work

For realizing our idea of making Semantic Web
technologies available on mobile systems for the in-
telligent, context-dependent provision of user-related
data, we analyzed existing Semantic Web frameworks
according to their appropriateness and deployability on
mobile platforms and discuss existing projects that aim
to synthesize semantic technologies, mobile systems,
and context-aware computing.

3.1. Mobile Data Replication

The problem of replicating data to mobile devices
is not new. Standard replication strategies—as known
e.g., from relational data bases—cannot be directly ap-
plied to mobile scenarios because of the special restric-
tions imposed by changing context parameters, as out-
lined in Section 2. Therefore, several algorithms were
proposed that estimate the costs of data usage based on
various context parameters, and adapt the used repli-
cation strategies accordingly (e.g., costs of data trans-
mission [27], access frequency [47], location [48], or
device and environment characteristics [3]). These ap-
proaches are highly optimized towards single specific
context parameters but do not consider the entire user
context; especially they do not focus on the semantics
of replicated data. However, they can be considered
complementary to our approach since they can be used
to determine the frequency of replication updates.

Several approaches follow a more generic strat-
egy and provide architectures that are extensible w.r.t.
the considered context parameters and replicated data

(e.g., [25,32]). However, all these approaches are de-
pending on a server infrastructure, on which context
processing and inference tasks are performed. To the
best of our knowledge, no approach exists that solely
relies on processing executed on the mobile device it-
self, without depending on external components and
services.

3.2. Mobile Semantic Web Frameworks

Typical Semantic Web frameworks like Sesame®,
Virtuoso'®, and Jena'! hide the details of RDF data
processing, serialization, and query execution from
higher-level applications. However, these heavy-weight
systems cannot be deployed on typical mobile devices
because of their limited memory and processing ca-
pacities, latencies as well as incompatible application
models and operating system infrastructures [18,30].
Those frameworks are usually developed for power-
ful server or desktop computing infrastructures incor-
porating many-core architectures, whereas mobile de-
vices in general contain dedicated single-core RISC-
based processors whose architecture was not designed
for processing large data amounts.

Although they have proven to be powerful means
to process, store, and reason over RDF data, they can-
not be efficiently deployed on mobile systems due to
the previously mentioned reasons and are therefore not
considered in our related work analysis. Instead, we
exclusively concentrate on RDF frameworks that have
been specifically designed for deployment on mobile
platforms and are available as Java libraries as well
as mobile query and storage frameworks that are built
on top of existing RDF frameworks and provide addi-
tional functions for local RDF data query and persis-
tence.

3.2.1. Mobile XML Parsers

kXML'? is a lightweight XML pull parser that was
specifically designed for constrained environments
such as Applets or Java ME-based mobile devices. It is
based on the Common XML Pull API'* and combines
advantages of XML DOM and SAX parsers, such as
aligning XML processing routines to the structure of
an XML document and, at the same time, providing
instant access to parsed document elements. It was

9http://www.openrdf.org
Ohttp://virtuoso.openlinksw.com
11http://jena.sourceforge.net
2http://kxml.sourceforge.net/
Bhttp://xmlpull.org/

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 7

specifically designed to be used in CLDC'# applica-
tions. However, development stalled in 2005.

NanoXML for J2ME (+RDF/OWL)" is a J2ME
port'® of the original non-validating XML parser
NanoXML!? for Java, and has been extended with
RDF and OWL support. It is dedicated to mobile en-
vironments and offers convenience methods for navi-
gating and retrieving data from RDF and OWL docu-
ments such as resource or property values, but neither
supports inferencing nor elaborates on RDFS/OWL se-
mantics.

3.2.2. Mobile RDF Frameworks

Mobile RDF'® is a Java-based open source imple-
mentation for the RDF data model, providing a sim-
ple and easy-to-use API for accessing and serializing
RDF graphs. It is specifically designed for Java ME
Personal Profile'® and Connected Device Configura-
tion (CDC)?° compliant devices, which is one of the
main drawbacks of this framework since these appli-
cation environments are only supported by a compar-
atively small amount of devices, namely those that
employ a CDC-specific Java Virtual Machine (JVM).
Most current and older J2ME-compliant devices de-
ploy the more widely-used CLDC profile. It provides
specific packages for creating, parsing, and serializ-
ing RDF/S and OWL ontologies, and supports RDF
Schema type and property propagation rules as well
as rule-based inferencing. However, RDF graph mod-
ifications like deleting or editing RDF triples are not
supported.

pJena?! is a port of the popular Jena Semantic Web
framework, targeted for low-capacity mobile and em-
bedded devices. Although its API is currently in a pro-
totypical state and only allows for processing RDF
data serialized in N-Triples format, it covers the en-
tire set of RDF modeling primitives, provides ontology
and limited inference support, as well as convenience

Yhttp://java.sun.com/products/cldc/

Bhttp://nanoxml-j2me.sourceforge.net

1ohttp://java.sun.com/javame/index. jsp

http://devkix.com/nanoxml .php?lang=en

8nttp://www.hedenus.de/rdf/index.html

Yhttp://java.sun.com/products/
personalprofile/

20CDC is a framework specification for deploying and sharing
mobile Java applications on hardware-constraint devices such as mo-
bile devices or set-top boxes. It defines a basic set of libraries and
virtual machine features that the underlying runtime environment
must exhibit.

2lnttp: //poseidon.elet.polimi.it/ca/?page_
id=59

classes for handling OWL ontologies. Like in Jena,
RDF data are represented on two levels: on the lower
more generic level, pJena stores triple nodes, where a
model API is deployed on top that offers convenience
methods for accessing and manipulating RDF models.

Androjena®? is a more recent Jena port specifically
created for the Android platform. It adopts Jena ver-
sion 2.6.2 and offers all the functions and libraries
Jena includes such as full RDF and ontology sup-
port, inferencing, as well as reading and writing RDF
data in different serialization formats. The Androjena
core libraries—as the original Jena libraries—do not
include specific APIs for querying RDF data, persis-
tence, Named Graphs [10], or support for external rea-
soners. However, to provide at least a minimum of
query functionality, the Androjena project page also
hosts the ARQoid project?®, which is a reduced port
of Jena’s SPARQL query engine ARQ. Currently, AR-
Qoid is in prototypical status and lacks some of ARQ’s
original features such as full-text query support.

In summary, none of the existing mobile RDF
frameworks fully supports queries on RDF data via
SPARQL or other query languages, although Andro-
jena provides a prototypical implementation of the
Jena ARQ libraries. A storage mechanism that trans-
lates RDF data into internal storage formats used by
mobile devices (e.g., the SQLite database provided na-
tively by the Android platform) and vice versa could
also not be found.

3.2.3. Query and Persistence Frameworks

RDF On the Go* is a full-fledged RDF storage
and query framework specifically designed and imple-
mented for mobile devices that feature the Android op-
erating system. It follows an approach similar to An-
drojena, as the Jena core APIs including ARQ have
been adapted to the Android platform to allow de-
velopers to directly operate on and manipulate RDF
data models. The primary storage infrastructure are
B-Trees as provided by a lightweight version of the
Berkeley DB* adopted for mobile usage and deploy-
ment. The internal query processor provides support
for both standard and spatial SPARQL queries, where
an R-Tree based indexing mechanism is used for stor-
ing URIs with spatial properties [31]. The current ver-

2nttp://code.google.com/p/androjena/
Bhttp://code.google.com/p/androjena/wiki/
ARQoid
2http://code.google.com/p/rdfonthego/
Bpttp://www.oracle.com/technetwork/
database/berkeleydb/overview/index.html

8 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

sion as of March 2011 supports a large set of standard
SPARQL query operations where aggregation, sorting,
and some spatial operations are subject to future im-
plementations [31].

SWIP: Semantic web in the pocket?® was de-
veloped in order to support RDF data storage and
exchange in a uniform, schema-less, and system-
wide way based on the Linked Data principles [5].
SWIP represents an Android-specific implementation
of an RDF storage infrastructure that is based on the
Android-internal concept of ContentProviders®’ for
application-wide data storage and exchange across ap-
plications and processes. It maps URIs to data stored
in the local SQLite database deployed on Android sys-
tems and returns data in the form of triple sets or tuple
tables. It employs a simple subject-predicate-object ta-
ble layout for RDF data storage and is currently in pro-
totypical status [13]. For demonstration purposes, data
stored in device-internal data sources such as calendar
entries or contacts have been exposed as RDF-based
Linked Data and visualized through a generic browser
interface.

However, these RDF storage and query infrastruc-
tures are available as experimental prototypes or con-
cept studies and lack specific storage and query op-
timizations for mobile platforms. Nevertheless they
demonstrate that typical RDF processing and storage
tasks can be executed on mobile devices although the
efficient execution of complex processing operations
(e.g., reasoning) or indexing mechanisms is still sub-
ject to further research.

3.3. Mobile Semantic Web Applications

DBpedia Mobile?® [2], a location-aware mobile ap-
plication, allows users to access information from the
DBpedia project? about the physical environment sur-
rounding them. Users are able to receive additional in-
formation by exploring links to other resources located
in the Semantic Web.

mSpace Mobile®® [46] takes a similar approach,
where access to related location-based information
with respect to the user’s current situation is provided
via a spatial browser. Considered contexts are time,
space, and subject.

2nttp://swip.inrialpes.fr/
YThttp://developer.android.com/guide/topics/
providers/content-providers.html
Bnttp://wiki.dbpedia.org/DBpediaMobile
Yhttp://dbpedia.org
http://mspace.fm/projects/mobile

IYOUIT?' [6] collects contextual information about
certain aspects of the user’s lifestyle—such as visited
places, or people met—and displays them on the Web.
People are able to share their personal contexts within
a community portal.

Although these projects make use of Semantic Web
technologies such as RDF, the processing of contex-
tual data is done on external servers or applications
rather than on the device itself. This means, however,
that in case of missing network connectivity the ap-
plications become practically useless. While a system
that is deployed on the mobile device also does not
allow to proactively update data from remote sources
without connectivity, it provides at least a local buffer
of the data that has been replicated so far, and hence
allows the user to continue using the applications, al-
though in a restricted manner. Another distinct aspect
is that context acquisition and context representation
is not limited to a predefined set of contextual aspects,
i.e., the context descriptions created by the framework
are dynamic and include as many aspects as could be
acquired. Applications can process the data they are in-
terested in leading to a greater flexibility in elaborating
on contextual constellations.

In summary, our analysis revealed that context-
driven replication of RDF data to mobile devices has
not been addressed by current or related research yet.
The RDF frameworks currently available for mobile
systems provide the necessary functions for such a
replication infrastructure although much space is left
for optimization. In Section 6 we therefore analyze the
performance of mobile RDF frameworks in creating,
parsing, and storing RDF triples directly on a device.
There exist a few mobile storage and query frame-
works however, but they are mostly in prototypical
status to date although recent developments indicate
an increasing awareness of deploying Semantic Web
technology on mobile devices (cf. exploiting linked
data for mobile Augmented Reality [39], SWIP [13],
i-MoCo [45]).

4. System Design and Architecture

The MobiSem framework has been specifically de-
signed for direct deployment on mobile platforms.
This allows it to acquire, process, store, and manage
contextual information independently of any applica-

3http://www.iyouit.eu/portal

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 9

tion or client-server infrastructure. The main goals of
the MobiSem Context Framework can be summarized
as follows:

— To provide a storage repository for semantic data
on a mobile device. With the increasing prolifera-
tion of services based on Semantic Web technolo-
gies, the need for mechanisms to store, manipu-
late, and retrieve RDF data on mobile devices be-
comes apparent. The local storage of RDF data on
a mobile device not only reduces the dependency
on a permanent network connection, but also en-
ables the implementation of more efficient search
and reasoning algorithms, and extends the user’s
local information space.

— To make efficient use of available context infor-
mation. Modern mobile devices provide a mag-
nitude of options to capture the user’s context,
which can be used to infer future information
needs and adapt application and device behavior.
A semantically appropriate interpretation of these
context data helps to build more user-oriented ap-
plications and services and enhance the overall
mobile user experience.

— To proactively provide context-relevant data on
the device. As stated before, we cannot rely on a
permanent network connection in mobile scenar-
i0s. On the other hand, we can infer future infor-
mation needs from the user’s current context in-
formation and thus proactively retrieve data from
remote data sources to the mobile device that
might become relevant in the future, and buffer it
using the local storage repository.

— To provide the technical infrastructure for high-
level context processing. The dynamic and flex-
ible characteristic of our context framework en-
ables the deployment of additional high-level
context recognition and utilization services on
mobile devices to enable situation-awareness (cf.
[1,19,33,42,44]). The framework facilitates al-
most all aspects of a mobile context process-
ing and management architecture and serves as
a foundation for the systematic management and
exchange of context descriptions using open se-
mantic standards.

To realize these goals it is necessary to combine the
processing of context information with the local repli-
cation of remote data sources. However, it is also nec-
essary to keep the framework design as flexible as pos-
sible: it depends on the capabilities of the mobile de-
vice which context information can be tracked. Fur-

ther, the user’s information needs might evolve over
time, hence the approach cannot be restricted to a
fixed set of remote data sources and should be flexi-
ble enough to enable the dynamic integration of new
potential context sources on the fly.

We have decided to decouple the tasks of context
acquisition and data replication (cf. Figure 1). Context
relevant data are retrieved by dedicated components
(called context providers) and are converted into RDF-
based context descriptions. These descriptions are ag-
gregated to an RDF-based global context model that
is used by data providers to replicate RDF data to
the device. Replicated data are stored in a local triple
store and made available through a data access API. A
loose, data-based coupling between context providers
and data providers is realized through a context dis-
patcher, which is notified every time a context provider
detects a change in a context source it observes. The
context dispatcher aggregates, consolidates, and rea-
sons on context information, and forwards them to the
appropriate data provider components.

This architecture exhibits two significant advantages
in comparison to server-based approaches, as it does
not require context information to be transferred out-
side the mobile device. First, the system does not de-
pend on the availability of an external system. Sec-
ond, all contextual data (which may include highly pri-
vate information, like the current position, contacts,
appointments, and so on) are processed only on the
mobile device, which reduces security and privacy is-
sues.

In the following, we describe in more detail the in-
dividual system components.

Context Providers We employ two types of con-
text providers: primary (i.e., active) and complemen-
tary (i.e., passive) context providers. Primary context
providers encapsulate a hardware or software sensor
and become active whenever a change in a context
source is detected. Complementary, that is passive or
re-active context providers react according to changes
in primary context providers and become active when
a corresponding primary context provider delivers an
updated context model. They complement the contex-
tual data retrieved from primary context providers by
taking these context descriptions as input for initiating
their acquisition tasks (context augmentation).

To provide the necessary flexibility in acquiring
context-relevant data, context providers implement
their own logic and heuristics for transforming any
kind of input data (either sensorial or web-based con-
tent) into an RDF-based context description by using

10 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

Low-level
Context
*«. Acquisition

Physical y- c(acti:e) .
Sensors L_I""""1 ontex
.---| Provider _Context
- — Dispatcher
RDF-based (passive) Aggregation
' Context Context > Merging
e Descriptions Provider = -
Lok S g T Sasenns
3 Notification
Logia/ bast o G
Software § £-*"7 provider
Sensors 28C .-°
] i - T——
.'!." Context Provider
Lot Orchestration

Mobile
Application

+ Mobile Device

B Data Access
API

. Linked
Query Language: Data
Global RDF-based pata |«— ©9-SPARQL

Context Model Provider ;
— ;

Data HTTP Request / Web 2.0

Provider Response Application
—

Data '
Provider | < API/Remote
Procedure Call

Semantic

Replicated
RDFData ~~~~""-- H

MobiSem

Fig. 1. Architecture of the MobiSem Context-Processing Framework

well-defined and well-accepted semantic vocabularies.
As previously outlined, the acquisition of contextual
data should not be restricted to capture sensorial data
exclusively since the Internet and Web 2.0 applica-
tions in particular provide excellent sources for gather-
ing context-relevant data. Context providers therefore
are able to request data from four different types of
sources:

(1) Hardware sensors that are integrated into the
mobile system such as GPS module, luminos-
ity sensor, camera etc. Most modern mobile plat-
forms provide specific APIs for accessing and
utilizing locally deployed hardware sensors.

(i) Ubiquitous sensors or devices that are located
in the physical environment [20]. Such sensors
must provide open accessible interfaces based on
open network and access protocols.

(iii) Web applications such as Facebook?, Linked-
In®? etc. often contain useful information w.r.t
the users’ social relationships. Online and Linked
Data repositories in particular provide magni-
tudes of freely available context-relevant data
that can be exploited for complementing sensori-
ally captured data.

(iv) Software or logical sensors that allow for moni-
toring user or application behavior to deduce on

¥http://developers. facebook.com/
Bnttp://developer.linkedin.com/index. jspa

the type of data that is relevant to the user in a
specific situation.

By employing logical sensors, the acquisition of
user-related contexts is emphasized. Such sensors can
be adjusted towards a particular system infrastructure
to gather context-relevant information by monitoring
system processes to deduce information about the cur-
rently running applications as well as the data they op-
erate on>*. Context providers can make use of context
descriptions from other context providers as well as
external data sources; e.g., a component may use the
GPS coordinates provided by another context provider
to look up names of the current location using an ex-
ternal service®.

Orchestration Framework To facilitate this kind
of cooperation between decoupled context providers,
an orchestration framework dynamically routes data
between context providers based on the type of con-
text information they provide. It orchestrates context
providers in form of a directed acyclic graph. Within
this graph, primary context providers represent start-
ing nodes, while complementary context providers rep-
resent adjacent nodes. Edges represent data flow be-
tween context providers; i.e., they indicate compatibil-
ity in terms of contextual data so that the data deliv-

3We implemented software sensors that track user queries is-
sued to various mobile applications such as browsers or the internal
‘quicksearch’-function on an Android device.

35See Figure 4 in Section 5 for an example.

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 11

ered by one context provider can be further processed
by another context provider.

The orchestration framework analyzes the data de-
scription of each context provider. Such a data descrip-
tion consists of sets of mandatory and optional names-
paces as well as terms, which can be processed as in-
put data by the respective context provider, as well as
namespaces and terms that the context provider uses in
its output data.

Figure 2 depicts an excerpt of an exemplary data
description. This complementary context provider ex-
tracts contact data from acquired calendar data. A
data description consists of an input description (in-
dicated by the ddesc: input property) and an out-
put description (indicated by ddesc:output prop-
erty). The former specifies the data a context provider
needs for performing its acquisition tasks. It may con-
tain multiple ddesc:vocabulary properties, cov-
ering the case that context providers may be capable of
processing data described with different vocabularies.
Multiple vocabulary properties are interpreted by the
orchestration framework as alternatives, that is, they
are interpreted as being connected with a logical or.

A vocabulary specification consists of three parts:
the ddesc:namespace property, which holds the
vocabulary’s namespace that is used for an upper-
level orchestration, and the ddesc:concepts and

ddesc:properties statements, which specify manda-

tory and optional concepts and properties that the
context provider processes. Mandatory elements (in-
dicated by the ddsec:mandatory-property) are
those that are inevitable for a complementary context
provider to perform its acquisition tasks. Optional ele-
ments (indicated by the ddsec: opt ional-property)
refer to those elements that a context provider is capa-
ble to process but they are not necessarily needed for
a successful execution of the context provider’s acqui-
sition tasks. Those specifications allow for a detailed,
element-level orchestration of context providers.
Additionally, a data description specifies the names-
paces and terms that the context provider emits as out-
put data (indicated by the ddesc: output property).
This property is mandatory for all context providers.
The output description follows the schema of the in-
put description, consisting of parts for vocabulary, con-
cepts, and properties. In contrast to the input speci-

fication, the output specification may consist only of
mandatory elements>®.

The orchestration framework can be configured to
either perform a loose orchestration on the namespace
level, or a detailed one by considering concepts and
properties given by the context providers’ data descrip-
tions. When a new context provider is found in the sys-
tem, the orchestration manager analyzes its data de-
scription and based on its configuration integrates the
context provider in the orchestration graph. While run-
ning completely decoupled from the context frame-
work, rebalancing the orchestration graph does not af-
fect context acquisition tasks as such.

The orchestration graph is represented as an adja-
cency matrix whose values are decimal numbers be-
tween 0 and 1, indicating the degree of compatibility
between two context providers. The matching value for
each pair of context providers is computed by a match-
ing algorithm based on configurable scores for corre-
spondences on the namespace, concept, and property
levels. The matching algorithms performs an arith-
metic matching based on data similarities and is ad-
ditionally capable of including RDFS semantics such
as rdfs: subClassOf relationships. For instance, if
one context provider emits foaf :Person instances
and another context provider requires foaf : Agent
instances as input data, the matching algorithm detects
the compatibility between these differing concepts
since foaf:Person is a subclass of foaf:Agent
according to the FOAF ontology [9].

Context Dispatcher The context dispatcher is no-
tified by context providers whenever a context descrip-
tion has changed. Before propagating updated con-
text descriptions to data provider components, the dis-
patcher performs additional processing on the data,
like inference and consolidation. Currently, the rea-
soning component uses (i) a generic lightweight rule-
based reasoner, which allows to specify conditions un-
der which new triples are added to the knowledge base,
and (if) hard-coded rules which are expressed by im-
plementing a Java interface. The combination of these
two mechanisms can, for instance, be used to specify
that if one resource has multiple values for a functional
property, the values denote the same resource (the
corresponding rule (A :ifp X)A (A :ifp Y) =
(X owl:sameAs Y) can be interpreted by the rule-
based reasoner), and that multiple resources that are re-

36 According to the RDF semantics it is possible to specify op-
tional data, although they will not be considered by the orchestration
framework in its current version.

12 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

a ddesc:ContextProvider ;
ddesc:input [
ddesc:vocabulary [

ddesc:concepts [
ddesc:mandatory ncal:Attendee,
ddesc:optional ncal:0Organizer,
ddesc:properties [

ddesc:output [
ddesc:vocabulary [

ddesc:concepts [

<urn:uuid:b772a3a2-46d4-4c43-8£71-7080915ddba7>

ddesc:namespace <http://www.semanticdesktop.org/ontologies/ncal#> ;

ncal:Calendar, ncal:Event ;
ncal:EventStatus] ;

ddesc:mandatory ncal:member, ncal:method ;
ddesc:optional ncal:eventStatus

113

ddesc:namespace <http://xmlns.com/foaf/0.1/> ;

ddesc:mandatory foaf:0rganization, foaf:Person] ;
ddesc:properties [
ddesc:mandatory foaf:knows, foaf:status, foaf:name]]]

Fig. 2. Exemplary data description for a complementary context provider for extracting contact data from calendar entries

lated via a owl : sameAs property can be merged into
a single resource in order to simplify further process-
ing (a corresponding algorithm can be implemented as
a Java class and be integrated into the reasoning pro-
cess).

Context descriptions are forwarded not only to data
providers, but also back to context providers, so that
they are enabled to mutually reuse and augment their
context descriptions’.

Communication between the context providers and
the context dispatcher is realized via a context descrip-
tion queue that not only buffers the most recent con-
text updates, but also stores previous context updates
for compensation strategies in case a context source is
temporarily not available or malfunctioning. In such
cases, the context dispatcher can revert to previously
committed context description to continue the context
acquisition process. However, the context dispatcher
employs some logic to maintain consistency among
aggregated context descriptions.

Global Context Model The global context model
represents an aggregated version of all context providers’
context descriptions received by the context dispatcher.
It is created whenever a primary context provider had
detected a change in the context source it observes and
delivered an updated context description. This con-
text update will first be propagated to all complemen-
tary context providers to enrich it with additional data.

3TFigure 4 depicts an example of augmenting GPS-coordinates
with data from the http://www.geonames.org web service.

When all context acquisition tasks are completed, the
context dispatcher collects the updated context de-
scriptions, aggregates them, applies reasoning rules as
described before, and creates the global context model
while maintaining context completeness, consistency,
and accuracy.

Data Providers Data providers are responsible
for handling RDF data replication tasks. They receive
aggregated context description models from the con-
text dispatcher and subsequently replicate data of any
kind to the triple store. These data are usually retrieved
from external data sources or may be generated by the
data provider itself. For instance, a data provider may
act upon changes of the current location and retrieve
information about nearby points of interest. Each data
provider is assigned a named graph under which it
stores its data replicas in the triple store.

In addition to the default data providers that merely
retrieve data from remote sources and store them in the
triple store, we have implemented a selective check-
out data provider that makes use of a partial version-
ing mechanism for RDF triples based on triple bitmaps
[40] as well as a write-back data provider that synchro-
nizes the partially replicated data back to the reposi-
tory, if the latter supports write operations.

Triple Store Modern mobile platforms provide
transparent access to persistent storage devices (e.g.,
flash memory cards) through a file system API. There-
fore, the most straightforward way to store RDF data
on a mobile device is to serialize it into a file on such
a device using a standard RDF serialization format,

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 13

like RDF/XML or N3. While this storage mechanism
is extremely fast compared to DB-backed mobile stor-
age solutions (cf. Section 6), it also has the signifi-
cant disadvantage that RDF graphs must completely
be loaded into the mobile device’s working memory
(RAM) before they can be further processed (e.g., be-
fore a SPARQL query can be issued). Alternatively,
triples can be stored in a relational database, which
causes an increase of read and write times but provides
the possibility for structured queries over the data.

Regardless of which actual storage solution is used,
it can be wrapped by a Java class that maps all read
and write access methods to corresponding operations
on the underlying physical representation (either flat
files or a relational model). Currently, our triple store
implementation does not perform in-memory buffer-
ing or caching. However, it can be wrapped by an ad-
ditional in-memory Graph instance (which provides
faster access) that regularly synchronizes itself with
the database-backed instance.

Data Access API Applications can use the Mo-
biSem Data Access API to access data stored in the de-
vice’s local triple store. The API assigns to each repli-
cated graph a unique URI, which can be used to ac-
cess and retrieve the data contained in the graph. It ex-
poses insert, update, delete and query methods and of-
fers multi-grained access to data replicas, i.e., applica-
tions can access all replicas cached in the database, a
specific replica, or a specific resource including all ad-
hering triples of a specific replica.*® In the background,
this API hides the details of context processing and
data replication from applications; from the outside the
MobiSem framework looks like a common triple store
whose data are regularly updated.

5. Implementation and Case Study

To demonstrate the feasibility of our architecture,
we have implemented a prototypical framework plus
an initial set of context and data providers. The se-
lection of these components is based on the assump-
tion that the information needs of a mobile user de-
pend on their current context (e.g., their location) as

3 This functionality is implemented through an Android Content
Provider that allows for defining explicit URI schemes for data repli-
cas through which operating system-wide data access and data uti-
lization is offered. By exposing distinct URIs (e.g. content://
org.mobisem.rdfprovider/graph#<graphid>) triples
can be retrieved, added, deleted, and updated.

well as their future context. However, we want to em-
phasize that this framework is to be considered as an
infrastructure, upon which end-user applications that
provide specific functionality, based on specific con-
text information and replicated data, can be built.

Our implementation is based on the Android plat-
form® and uses the yuJena Framework (cf. Section 3.2.2)
to process RDF graphs*. In the following we demon-
strate how the MobiSem framework can be used to
proactively provide RDF data on the mobile device.
Our objective is to permanently equip the user with
data about the locations they are going to visit, about
people they are likely to meet in the upcoming days,
as well as people that are based near the user’s current
position. To accomplish this, different kinds of con-
textual information are utilized, including the device’s
current position and the user’s calendar data.

Context Acquisition We have implemented three
context providers: first, a location context sensor us-
ing the device’s built-in GPS unit to track geograph-
ical coordinates returns context descriptions that con-
tain a context:currentLocation property to
describe the coordinates of the current location (cf.
Figure 3).

A second context provider uses the GeoNames ser-
vice*! to resolve GPS coordinates to geographical en-
tities. This component receives context updates from
the context dispatcher, extracts properties that repre-
sent geographical coordinates, and returns information
retrieved from the web service—in our example, a ref-
erence to a geographical entity as well as its name (cf.
Figure 4).

In parallel, a third context provider regularly scans
the user’s calendar and extracts all appointments
within the next 72 hours. From these appointments the
e-mail addresses of all participants are extracted and
returned, as depicted in Figure 5 (in this case, two e-
mail addresses are returned). Further, the locations of
appointments are extracted and are returned as GeoN-
ames features. This context provider uses terms from
the NEPOMUK ontologies** and from FOAF to de-
scribe the extracted resources.

Mnttp://developer.android.com

40 A5 shown in Section 6, puJena exposes a very weak performance
compared to other RDF frameworks; however, more efficient imple-
mentations have been made available only recently. We plan to port
our implementation to a more efficient RDF framework in the near
future.

4Mttp://www.geonames.org

“nttp://www.semanticdesktop.org/ontologies

14 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

[] a context:Context ;

context:currentLocation [geo:lat "48.175443"

geo:long "16.375493" .]

Fig. 3. Context description retrieved by a GPS sensor

[1] a context:Context ;

<http://sws.geonames.org/2761369/>

a geonames:Feature ; rdfs:label "Vienna"

context:currentLocation [geonames:nearby <http://sws.geonames.org/2761369/> .]

Fig. 4. Context description retrieved by a GeoNames sensor

[] a context:Context ;
context :upcomingEvent [ncal:attendee

ncal:location [a geonames:Feature ;

[foaf:mbox <mailto:bernhard.schandl@univie.ac.at>] ,
[foaf:mbox <mailto:stefan.zander@univie.ac.at>] ;
rdfs:label "Munich"]

Fig. 5. Context retrieved from the user’s calendar

The context dispatcher—which receives notifi-
cations from the context providers every time a
context value changes—buffers, combines, and en-
riches the context description graphs with addi-
tional information. It merges all resources typed as
context:Context into a single one, assigns it a
URI (enabling it to be referenced by other context de-
scriptions), and adds a timestamp as well as a link to
the preceding context descriptor. Moreover, it applies
simple inference rules to the context model: for ex-
ample, the context : currentLocat ion property
has been defined as functional property (since we as-
sume that the user can be at only one location at the
same time), from which the reasoner can deduce that
the two anonymous location resources returned by the
different context providers are actually the same and
can likewise be merged, as shown in Figure 6.

The context dispatcher distributes this aggregated
context description model to all data providers in the
system whenever a contextual change is detected. It
is then up to each data provider to decide whether to
initiate a new replication tasks, and which information
from the context description they use for this purpose.

Data Provisioning We have implemented a num-
ber of data providers that address different informa-
tion needs and replicate data from different sources to
the mobile device. One data provider uses the Sindice

Semantic Web index* to retrieve information from
FOAF descriptions (which are distributed across the
Web) based on the e-mail addresses found in the con-
text description. This includes names, contact and lo-
cation information, and personal interests of the user’s
prospective business partners. Also, it includes the so-
cial network of the meeting participants and is there-
fore valuable information for business negotiations as
well as smalltalk.

A second data provider retrieves triples about peo-
ple that are based near the user’s current location by
looking up resources that are foaf:based_near
the current and future locations. This information al-
lows the user to increase the effectiveness of their trip
by scheduling additional meetings with these persons
without additional travel costs.

A third data provider returns additional data from
DBpedia about the user’s current and future locations,
by reusing the GeoNames URI provided by the loca-
tion context provider (a code excerpt from this data
provider is depicted in Figure 7). By doing so, the user
is automatically equipped with information about the
locations they will visit, and about points of interests
in their vicinity.

From an initial analysis, we can expect a significant
effect on the amount of potentially interested data that
is to be replicated to a mobile device. For instance,

Bhttp://sindice.com

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 15

<urn:uuid:baac630a-5cdb-4c79-92e6-6ce3d07419bc>
a context:Context ;
context:timestamp "2009-06-16T15:58:22"""xsd:dateTime ;
context:previous <urn:uuid:d3ee316b-5704-4893-acb9-df1495c79011> ;
context:currentLocation [
geo:lat "48.175443" geo:long "16.375493"
geonames:nearby <http://sws.geonames.org/2761369/>
13
context :upcomingEvent [ncal:attendee
[foaf:mbox <mailto:bernhard.schandl@univie.ac.at>] ,
[foaf:mbox <mailto:stefan.zander@univie.ac.at>] ;

ncal:location [a geonames:Feature ;
] .
<http://sws.geonames.orqg/2761369/>
a geonames:Feature ;
rdfs:label "Vienna"(@en

rdfs:label "Munich"]

Fig. 6. Aggregated context description model

DESCRIBE ?c WHERE {
{ ?2c rdfs:label 7?1
?1 bif:contains "Vienna"
?c rdf:type dbpedia-owl:Place
} UNION
{ ?c rdfs:label 7?1
?1 bif:contains "Salzburg"
?c rdf:type dbpedia-owl:Place
} UNION
{ ?c rdfs:label 7?1
?1 bif:contains "Munich"
?c rdf:type dbpedia-owl:Place

Fig. 8. An example SPARQL query produced by the
DBpedialocationDataProvider

the public DBpedia data set contains information about
around 462,000 places. While no detailed information
is available, from the overall size of the data set we
can estimate that these places are described by around
88 million triples**. By analyzing the user’s calendar
and querying DBpedia for corresponding resources,
this amount of data can be significantly reduced. For
instance, if the MobiSem Context Framework detects
three locations in the user’s calendar, it can convert
them into a SPARQL query (cf. Figure 7) and query
DBpedia. In case the user’s upcoming events within
the next 72 hours take place in Vienna, Salzburg, and
Munich, the corresponding query (cf. Figure 8) yields

“nttp://blog.dbpedia.org/2011/01/17/
dbpedia-36-released/

around 8,500 triples, which can be handled by com-
mon state-of-the-art smartphones (cf. Section 6).

All replicated data is persisted by a storage com-
ponent that is compatible to the MobiSem Context
Framework (cf. Section 4). In the case of Android,
RDF graphs are either serialized into flat files (which
is very performant but cannot be directly queried) or
are stored into a custom triple store that is backed by
a SQLite database. Its table layout applies the normal-
ized triple store approach; i.e., it stores triples within
a Triple table that holds references to separate ta-
bles for resources and literals. Moreover, it provides
lightweight support for named graphs; therefore the
relational schema contains a separate Graph table.

Any application built on top of this framework is
now enabled to directly access these data via the Mo-
biSem Data Access API. It could, for instance, iterate
over all resources that are typed as foaf:Person
and provide a list of names and phone numbers, disbur-
dening the user from the need to manually search for
these data in case they will miss an appointment and
needs to notify the participants. The MobiSem frame-
work entirely hides all context processing steps: an ap-
plication is presented with a simple view on the triple
store which is always populated with context-relevant
information.

6. Performance Evaluation of Mobile Semantic
Web Platforms

In the resource-limited context of mobile devices,
efficient processing of RDF data is crucial. In order to

16 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

public class DBpedialocationDataProvider extends AbstractDataProvider

{

// called when the context description is updated

@Override
protected void updateContextImpl () {
this.currentResourcelabels = new ArrayList<String>();

// iterate over all geonames features in the context model
StmtIterator sil = this.contextModel.listStatements (

null, RDF.type, GEONAMES.Feature);
while (sil.hasNext ()) {

Resource featureResource = sil.nextStatement () .getSubject ();

// iterate over all properties of these features
StmtIterator si2 = this.contextModel.listStatements (
featureResource, null, (Literal)null);
while (si2.hasNext ()) {
// check if a label property is attached
Statement s = si2.nextStatement ();
this.currentResourcelabels.add(s.getString());

// update data from the remote data source
@Override
protected void updateDatalImpl (Model targetModel) {
// construct DESCRIBE query for all location resources
StringBuffer queryBuffer = new StringBuffer();
queryBuffer.append ("DESCRIBE ?concept WHERE { \n");
for (String featurelLabel: this.currentResourcelLabels) {
queryBuffer.append ("{ ?c rdfs:label 2?1 . " +
"?1 bif:contains \"" + featurelLabel + \"" . " +
"?c rdf:type dbpedia-owl:Place . } UNION \n ");
}
queryBuffer.append("{} }");

// send query to DBpedia

String url = "http://dbpedia.org/spargl?query=" + URLEncoder.encode (
queryBuffer.toString());
try {

// read model into targetModel (for further processing by abstract superclass)
this.targetModel.read(url, "N-TRIPLE");
} catch (Exception e) { // error handling

}

Fig. 7. Code snippet of DBpedialocationDataProvider, querying DBpedia for data about location resources.
updateContextImpl () is called by the context dispatcher every time the global context model is updated, while updateDataImpl () is
called whenever the data provider is requested to actually replicate data from the remote data source.

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 17

obtain insights on the processing capabilities of mod-
ern mobile platforms, we have carried out a perfor-
mance evaluation of the three existing mobile RDF
frameworks Androjena, piJena, and Mobile RDF (cf.
Section 3.2) on three different mobile devices (cf. Ta-
ble 1). A very important factor of efficient processing
is the time needed to create and store an RDF model
in-memory, as this is usually the basis for further com-
putation, analysis, inference, or transmission of data
over a network. We did not include RDF on the Go and
SWIP in our evaluation since they either exist as an im-
plementation of a specific platform-dependent technol-
ogy (SWIP) or have been released after our evaluation
has been conducted (RDF on the Go).

6.1. Test Environment

The Android HTC G1%, released in 2008, was one
of the first Android devices available on the market
and now represents the entry-level device class. It con-
tains a 32-bit Qualcomm MSM7201A RISC CPU that
runs with a clock speed of 350 MHz. Tests on this de-
vice were performed with the standard memory capac-
ity of 192 MB under the Android operating system ver-
sion 1.6 update 4.

The Motorola Milestone*® was released in Decem-
ber 2009 and represents the middle-class of Android
capable devices. It runs on a 32-bit TI OMAP3430 Su-
perscalar ARM Cortex-A8 RISC CPU with a nominal
clock speed of 600 MHz. On this device, the tests were
performed with the standard memory capacity of 256
MB under the operating system version 2.1 update 1.

Finally, we have tested a Samsung Galaxy S 19000*’
smartphone, which was released in Summer 2010. It
uses a Qualcomm S5PC111 ARMv7-compatible CPU
named “Hummingbird” with a nominal clock speed of
max. 1 GHz paired with a PowerVR SGX540 GPU
chip. This device uses 512 MB main memory and runs
the Android system version 2.2.

We analyzed the creation, parsing, and storage time
for RDF models of various sizes, ranging from 10
to 50,000 triples. These models represent the differ-
ent model sizes that are involved in the context pro-

Bhttp://www.htc.com/www/product/gl/
specification.html

4nttp://www.motorola.com/Consumers/
XW-EN/Consumer-Products—and-Services/
Mobile-Phones/ci.Motorola-MILESTONE-XW-EN.
alt

Thttp://pdadb.net/index.php?m=specs&id=
2298&c=samsung_gt-19000_galaxy_s_16gb

cessing and data replication tasks performed by our
framework, as described in Section 4. Typically, a sin-
gle context provider emits very small models in the
range of 10 to 100 triples, while a complete context
model that has been aggregated from the single con-
text providers may have several hundred to thousand
triples in total. Data that are replicated from external
sources may in principle be of arbitrary size, therefore
we have scaled our tests up to 50,000 triples in a single
RDF model.

The distribution of distinct subject, predicate, and
object nodes has been estimated based on an analysis
of the 2009 Billion Triple Challenge data set [40]. In
these data we can observe that typically RDF data sets
have a very high number of distinct object values and a
low number of distinct predicates, while the number of
distinct subjects ranges in between these boundaries.
All benchmarks were performed on the mobile devices
during regular usage of a device where the usual sys-
tem processes were running in parallel to our tests.

For each framework, device, and operation, we mea-
sured the total amount of time needed in milliseconds.
From these measurements we can calculate the stan-
dard deviation between different test runs for each size
as well as the number of triples that the particular com-
bination of a device and a framework is able to process
within one second.

In order to eliminate technological differences be-
tween SD cards in terms of access times as well as
read-/write performance, we first copied data replicas
from the SD card to the internal non-volatile memory
(ROM) of a device from where they are then parsed
and transformed into a working in-memory model.

Before each benchmark was initiated, the device had
been restarted to ensure identical run-time conditions.
At the end of each benchmark, all files and data that
had been created during a test run were deleted and the
test environment was reseted to avert an influence on
consecutive benchmarks.

6.2. Results

Figures 9, 10, and 11 depict the results of our mea-

surements (detailed numbers can be found in the ap-

pendix) for each analyzed device*.

4BRDF/XML’, ‘N3’, and ‘N-TRIPLE’ refer to the different seri-
alization formats supported by the Androjena framework. For read-
ability issues we excluded the framework’s name ‘Androjena’ and
just referred to the respective format for all parsing and storage fig-
ures.

18 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

Table 1

Overview of the Android Devices’ Specification

HTC G1 Motorola Milestone Samsung Galaxy S 19000
Processor Qualcomm MSM7201A™ TI OMAP3430 ARM Cortex A8 Qualcomm S5PC111 (ARMv7-comp.)
Clock speed in MHz 350 MHz 600 MHz 1 GHz
Memory Capacity (RAM) 192 MB 256 MB 512 MB
OS Version Android 1.6-update4 Android 2.1-updatel Android 2.2
Release 09/2008 12/2009 06/2010
1500 Constructing In-memory RDF Graphs. When

creating in-memory RDF graphs of certain sizes, we
can observe a similar behavior on all three tested plat-
forms. Androjena and Mobile RDF exhibit very sim-
ilar results, namely, a nearly constant processing time
per triple, even with increasing model size. Although
‘ processing times of mobile RDF frameworks vary con-

siderably across small context descriptions with sizes
smaller than 500 triples (up to factor 10 on the Sam-

I
By

%
I
o

Processed Triples per Second
~
o
o

; ™ ﬁ::::ena sung Galaxy S 19000 using Mobile RDF for processing
'\-\'\-\.\ MobileRDF a model containing 100 triples), processing times nor-

10 20 50 100 200 500 1.000 2.000 5.000 10.000 20.000 50.000 malize for models of size greater or equal than 1000
4000 # of Triles triples on the two frameworks. In general, we can ob-
serve that Androjena and Mobile RDF are able to han-
dle RDF graphs containing 20,000 or more triples, al-
2250 though the limiting factor is the device’s memory ca-
pacity.

Additionally, the total execution time (in ms) for
Androjena and Mobile RDF scales almost linearly
with the size of context descriptions. The performance
750 of pJena, on the contrary, decreases significantly with

Androjena . . d 1 . 1 d 1 .
= plena 1ncreasing model Sizes, leading to Very 10w processing

"\'\'\.__ MobileRDF times with models larger than 100 triples. pJena tests

10 20 50 100 200 500 1.000 2.000 5.000 10.000 20.000 50.000 with more than 2,000 triples failed on all devices, mak-
of Triples ing it basically unsuitable for the processing of volu-
minous RDF data.

Processing speed of Androjena ranges between 480
a750 and 680 triples per second on an Android HTC G1, and
1000 and 2000 triples per second on a Motorola Mile-
‘ stone. Interestingly, on the Samsung Galaxy we can
observe that the performance increases when models
with more than 200 triples are processed. The perfor-

0

1500

Processed Triples per Second

5000

2500

Processed Triples per Second

1250 mance of pJena decreases with increasing model size

\ . ’:j;’::e”a on all three devices. Mobile RDF exhibits a similar
HA____ MobileRDF performance behavior compared to Androjena where

° 0 20 50 100 200 500 1000 2000 5000 10.000 20.000 50.000 a significant increase in triples per second values on

of Triples a Samsung Galaxy can be observed for models with

Fig. 9. Construction of RDF graphs (Android HTC G1, Motorola more than 500 triples. In general, Mobile RDF has

Milestone, Samsung Galaxy § 19000) shown to be the most performant framework w.r.t. the

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 19

amount of triples processed per second on all tested
devices.

When comparing the different devices, we can ob-
serve the expected behavior that the Android HTC
G1 exposes the weakest results due to its slow CPU
and small main memory, leading to memory problems
when creating models with 20,000 or more triples.
The other devices expose a better performance, mak-
ing them more suitable for processing larger volumes
of RDF data. Only the Samsung Galaxy I S9000 was
able to handle a model of 50,000 triples; on the other
devices tests with this model size failed with “out of
memory” errors.

Parsing RDF Graphs. Androjena scales reason-
ably well with available processing power and yields
best parsing results in terms of triples per second ra-
tios with RDF graphs containing more than 200-500
triples. However, we were not able to notice a remark-
able difference between the different serialization for-
mats on newer mobile device with graphs smaller than
100 triples, i.e., significant differences in benchmark
results among different serialization formats can first
be noticed on newer mobile devices for graphs with
more than 100 triples.

pJena yields best results with very small RDF
graphs containing less than 20 triples. However, we
were able to observe a dramatic decrease in parsing
performance with models containing more than 20 to
50 triples, which renders pJena inappropriate for pro-
cessing larger data replicas.

MobileRDF also scales reasonably well with avail-
able processing power and turns out to be the fastest
RDF framework in terms of parsing performance, es-
pecially for larger RDF graphs with more than 100 to
200 triples. This behavior was more distinctive on less
powerful devices such as the HTC G1 or the Motorola
Milestone but dissolved on recent, more powerful de-
vices such as the Samsung Galaxy*’. The best per-
formance results could be measured with RDF graphs
containing around 5,000 to 10,000 triples on the Sam-
sung Galaxy S 19000.

In summary, the parsing benchmark exhibits simi-
lar behavior on all three devices revealing that Mobil-
eRDF yields the fastest parsing performance followed
by Androjena and pJena. Additionally, Androjena and
MobileRDF scale reasonably well with available pro-
cessing power. Considering the different serialization

49We verified this assertion using a Dell Streak smartphone that
also runs an ARM Cortex A8 CPU clocked at 1 GHz, where we were
able to ascertain a similar behavior.

400

2 300 =X

o

o

o

» HM/'

3

y / RDF/XML
200 +— - N3 M
= N-TRIPLE
o

¢

8

2

o

pJena
+/ ¥ MobileRDF
|
0 20

RDF/XML
= N3
N-TRIPLE

600 uJena
¥ MobileRDF

. /L/'\'\-\-\.

200 |
/
?.

10 20 50 100 200 500 1.000 2.000 5.000 10.000 20.000 50.000
of Triples

=}
S

100 200 500 1.000 2.000 5.000 10.000 20.000 50.000
of Triples

800

Processed Triples per Second

2400

RDF/XML

= N3 /'\\
N-TRIPLE
1800 H pJena /'/

¥ MobileRDF /v/ .

1200

//

0 —
10 200 500 1.000 2.000 5.000 10.000 20.000 50.000
of Triples

Fig. 10. Parsing of RDF graphs (Android HTC G1, Motorola Mile-
stone, Samsung Galaxy S 19000)

Processed Triples per Second

formats supported by Androjena, the best parsing re-
sults were measured with N-Triple serialized graphs
followed by N3 and RDF/XML.

Serializing RDF Graphs. Storage times of all
frameworks are relatively linear with the amount of
triples to be stored, i.e, we were able to observe a linear
scaling between storage run-times and the amount of
triples to be saved on all three frameworks and on each
device. However, no significant difference w.r.t. the file
sizes between the different frameworks and serializa-

20 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

500

RDF/XML
= N3

N-TRIPLE

pdena (|
¥ MobileRDF

w
QL
a

Wl

Processed Triples per Second
N
[
S

.\‘"
\

10 20 50 100 200 500 1.000 2.000 5.000 10.000 20.000 50.000
of Triples

1500

RDF/XML
= N3

N-TRIPLE

pJena

s ¥ MobileRDF ||

750 B e\

Processed Triples per Second

10 20 50 100 200 500 1.000 2.000 5.000 10.000 20.000 50.000
of Triples

2000

RDF/XML
= N3
N-TRIPLE

1500 udena r——v/v\

¥ MobileRDF \\

1000

500 %/

o 4
10 20 50 100 200 500 1.000 2.000 5.000 10.000 20.000 50.000
of Triples
Fig. 11. Serialization of RDF graphs (Android HTC G1, Motorola
Milestone, Samsung Galaxy S 19000)

Processed Triples per Second

tion formats could be found, which indicates that stor-
age algorithms do not make use of e.g. ONames. File
sizes of the serialized data replicas are rather similar
among all frameworks and devices.

Androjena’s saving performance scales reasonably
well w.r.t. available processing power where best re-
sults could be achieved on the Samsung Galaxy; to-
tal storage times were seven times faster compared
to those measured on the HTC G1 for all serializa-
tion formats. Serializing RDF graphs in the N3 for-

mat yields the best triples per second ratio, followed
by RDF/XML and N-Triple. The best storage perfor-
mance results could be measured with graphs of sizes
between 100 and 2,000 triples irrespectively of the se-
rialization format and device.

Although by far the least competitive framework
in terms of creation and parsing performance, pJena
yields the best storage performance on the HTC Gl
and the Motorola Milestone. However, this behavior
disappeared on the Samsung Galaxy and similar de-
vices such as the Dell Streak®® where MobileRDF and
N3-serialized graphs using the Androjena framework
showed the best results’!. Interestingly, the best stor-
age performance results could be measured on the Mo-
torola Milestone that exceeds the results of the other
two devices considerably.

Storage performance of MobileRDF scales with
available processing power for RDF graphs with triple
sizes greater than 200 to 500. Best results could be
measured for graph sizes between 500 and 5,000
triples where the triples per second ratio differs by the
factor 8 between the Samsung Galaxy and the HTC
GlI.

In summary we can see that modern mobile de-
vices, in combination with recent RDF frameworks
that are optimized for mobile devices, can without hes-
itation be used as the basis for Semantic Web applica-
tions on mobile devices. Although the behavior of the
tested frameworks differ across machines, we can ob-
serve certain trends regarding the applicability of RDF
frameworks for specific purposes. In further work, we
aim to analyze the behavior of these devices w.r.t. mod-
ification and deletion operations, as well as querying
and inference over RDF data, depending on the avail-
ability of such implementations.

7. Conclusions and Future Work

The notion of context and context awareness are key
factors in providing a selective RDF-based data repli-
cation infrastructure for mobile devices. We have out-
lined that traditional replication strategies do not hold
in mobile scenarios for several reasons. They should
be improved by considering current and future users’
information needs as well as the different contexts they
are operating in, thus replicating only selected subsets

Ohttp://www.dell.com/us/p/mobile-streak/pd
S1We tested the storage performance also on a Dell Streak smart-
phone, which exhibits similar processing power and clock speed

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 21

of the base data. We therefore adopted the notion of
context and context awareness and synthesized it with
semantic technologies since they provide the neces-
sary flexibility and expressivity for context-dependent
RDF-based data replication on mobile devices. Our
framework employs a loose coupling between context
acquisition and data provisioning components, gained
by applying semantic technologies (data models, vo-
cabularies, inference) to interpret and process context
information. We implemented an example scenario in
which personal information from Linked Data sources
is replicated based on the user’s current location and
upcoming appointments. Our performance evaluation
has shown that the performance of current RDF pro-
cessing frameworks, deployed on state-of-the-art mo-
bile devices, is acceptable for the processing of RDF
models of several thousand triples.

Although we have demonstrated that semantic tech-
nologies can provide substantial contributions in real-
izing a mobile context-aware infrastructure for RDF(-
based) data replication, there are still some open is-
sues that need to be addressed in future research: the
integration of dynamically discovered context sources
is a challenge most context-management frameworks
face, especially in ubiquitous environments. We there-
fore plan to investigate additional methods for dy-
namic context source discovery and integration as well
as heuristics for transforming sensorial data into quali-
tative context descriptions. We further plan to consider
re-using functionality already built into the framework
(namely, the acquisition and combination of contextual
information from varying sources) to decide upon the
optimal time for initiating replication tasks. Currently,
our framework does not include feedback loops that
would allow for adjusting context acquisition and ag-
gregation tasks according to data provisioning needs,
and it lacks advanced reasoning capabilities, which we
plan to implement in the near future.

An approach as proposed by [29] to integrate formal
rule languages like SWRL [26] into context processing
tasks would allow for the user- and application-driven
specification of aggregation, reasoning, and consoli-
dation rules for collected and augmenting contextual
data. Additionally, context processing could be com-
plemented with machine learning techniques for de-
tecting usage patters, as proposed by [6,7]. However,
a context framework by itself can be made context-
aware to adapt its processing rules and policies accord-
ing to specific circumstances, for instance to reduce
replication cycles in case of low battery etc. We plan
to address these issues in future work.

Acknowledgements This work has been funded
by the FIT-IT grant 815133 from Austrian Federal
Ministry of Transport, Innovation, and Technology.
We would also like to thank our reviewers Jérome Eu-
zenat and Martin Raubal for their valuable feedback.

References

[1] C. B. Anagnostopoulos, Y. Ntarladimas, and S. Hadjiefthymi-
ades. Situational computing: An innovative architecture with
imprecise reasoning. J. Syst. Softw., 80(12):1993-2014, 2007.

[2] C.Becker and C. Bizer. DBpedia Mobile: A Location-Enabled
Linked Data Browser. In Workshop on Linked Data on the Web
(LDOW2008), 2008.

[3] A. Beloued, J.-M. Gilliot, M.-T. Segarra, and F. André. Dy-

namic Data Replication and Consistency in Mobile Environ-

ments. In Proc. of the 2nd international doctoral symposium
on Middleware, pages 1-5, New York, NY, USA, 2005. ACM.

G. Biegel and V. Cahill. A Framework for Developing Mobile,

Context-aware Applications. In Proceedings of the Second

IEEE Annual Conference on Pervasive Computing and Com-

munications, pages 361-365, March 2004.

[5] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data: Princi-
ples and State of the Art. In 17th World Wide Web Conference
(WWW2008), W3C track, April 2008.

[6] S. Boehm, J. Koolwaaij, M. Luther, B. Souville, M. Wagner,
and M. Wibbels. Introducing IYOUIT. The Semantic Web -
ISWC 2008, pages 804-817, 2008.

[7]1 S. Bohm, J. Koolwaaij, M. Luther, B. Souville, M. Wagner,
and M. Wibbels. Iyouit - share, life, blog, play. In C. Bizer
and A. Joshi, editors, International Semantic Web Conference
(Posters & Demos), volume 401 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2008.

[8] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and
L. Tanca. A Data-oriented Survey of Context Models. SIG-
MOD Rec., 36(4):19-26, 2007.

[9] D. Brickley and L. Miller. The Friend Of A Friend (FOAF)
vocabulary specification, November 2007. http://xmlns.
com/foaf/spec/.

[10] J.J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs.
Journal of Web Semantics, 3(4):247-267, 2005.

[11] A. Carton, S. Clarke, A. Senart, and V. Cahill. Aspect-oriented
model-driven development for mobile context-aware comput-
ing. In Proc. of the 1st Int’l Workshop on SW Engineering
for Pervasive Comp. Applications, Systems, and Environments,
page 5, Washington, DC, USA, 2007. IEEE Computer Society.

[12] J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context is
Key. Communications of the ACM - Special Issue: The disap-
pearing computer, 48(3):49-53, 2005.

[13] J. David and J. Euzenat. Linked data from your pocket: The
android RDFContentProvider. In 9th International Semantic
Web Conference (ISWC2010), Nov. 2010.

[14] A. K. Dey. Understanding and Using Context. Personal Ubig-
uitous Comput., 5(1):4-7, 2001.

[15] P. Dourish. What We Talk About When We Talk About Con-
text. Personal Ubiquitous Comput., 8(1):19-30, 2004.

[16] J. Euzenat. Alignment Infrastructure for Ontology Mediation
and Other Applications. In MEDIATE2005, volume 168, pages
81-95, 2005.

4

—

22 S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

[17] J. Euzenat, J. Pierson, and F. Ramparany. Dynamic Context
Management for Pervasive Applications. The Knowledge En-
gineering Review, 23(1):21-49, 2008.

[18] G.H. Forman and J. Zahorjan. The Challenges of Mobile Com-
puting. Computer, 27(4):38-47, 1994.

[19] J. D. Gehrke. Evaluating situation awareness of autonomous
systems. In PerMIS *08: Proceedings of the S8th Workshop on
Performance Metrics for Intelligent Systems, pages 206-213,
New York, NY, USA, 2008. ACM.

[20] H. Gellersen, G. Kortuem, A. Schmidt, and M. Beigl. Phys-
ical prototyping with smart-its. IEEE Pervasive Computing,
3(3):74-82, 2004.

[21] H. W. Gellersen, A. Schmidt, and M. Beigl. Multi-sensor
Context-awareness in Mobile Devices and Smart Artifacts.
Mobile Networks and App’s, 7(5), 2002.

[22] F. Gomez and C. Segami. Classification-based reasoning. Sys-
tems, Man and Cybernetics, IEEE Transactions on, 21(3):644
—659, 6 1991.

[23] M. Greaves. Semantic Web 2.0. IEEE Intelligent Systems,
22(2):94-96, 2007.

[24] K. Henricksen, J. Indulska, T. McFadden, and S. Balasubrama-
niam. Middleware for Distributed Context-Aware Systems. In
On the Move to Meaningful Internet Systems 2005. Springer,
2005.

[25] H. Hopfner and K.-U. Sattler. Semantic Replication in Mobile
Federated Information Systems. In Proc.of the Fifth Int’l Work-
shop on Engineering Federated Information Systems (EFIS),
Coventry, UK, 2003.

[26] 1. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Groso-
fand, and M. Dean. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML. W3C, May 2004. Last access
on Dez 2008 at: http://www.w3.org/Submission/SWRL/.

[27] Y. Huang, P. Sistla, and O. Wolfson. Data Replication for Mo-
bile Computers. In Proc. of the ACM SIGMOD international
conference on Management of data, pages 13-24, New York,
NY, USA, 1994. ACM.

[28] C. Huebscher and A. McCann. An Adaptive Middleware
Framework for Context-aware Applications. Personal Ubiqui-
tous Comput., 10(1):12-20, 2005.

[29] C. Kessler, M. Raubal, and C. Wosniok. Semantic rules for
context-aware geographical information retrieval. In Proceed-
ings of the 4th European conference on Smart sensing and
context, EuroSSC’09, pages 77-92, Berlin, Heidelberg, 2009.
Springer-Verlag.

[30] J. Krogstie, K. Lyytinen, A. Opdahl, B. Pernici, K. Siau, and
K. Smolander. Research areas and challenges for mobile infor-
mation systems. International Journal of Mobile Communica-
tions, 2(3):220-234, 2004.

[31] D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth.
RDF on the go: An RDF storage and query processor for mo-
bile devices. In 9th International Semantic Web Conference
(ISWC2010), Nov. 2010.

[32] M. Luther, S. Bohm, M. Wagner, and J. Koolwaaij. Enhanced
Presence Tracking for Mobile Applications. In ISWC’05 Demo
Track, 2005.

[33] M. Luther, Y. Fukazawa, M. Wagner, and S. Kurakake. Situa-
tional reasoning for task-oriented mobile service recommenda-
tion. The Knowledge Engineering Review, 23(1):7-19, 2008.

[34] K. Mihalic and M. Tscheligi. ’Divert: Mother-in-law’: Repre-
senting and Evaluating Social Context on Mobile Devices. In
MobileHCI *07: 9th int. conf. on Human computer interaction

with mobile devices & services, pages 257-264. ACM, 2007.

[35] P. Pawar, A. T. van Halteren, and K. Sheikh. Enabling context-
aware computing for the nomadic mobile user: A service ori-
ented and quality driven approach. In IEEE Wireless Com-
munications and Networking Conference WCNC 2007, pages
2531-2536. IEEE Communication Society, March 2007.

[36] P. Prekop and M. Burnett. Activities, context and ubiquitous
computing. Computer Communications, 26(11):1168 — 1176,
2003. Ubiquitous Computing.

[37] D. Raptis, N. Tselios, and N. Avouris. Context-based Design
of Mobile Applications for Museums: A Survey of Existing
Practices. In MobileHCI *05: 7th int. conf. on Human comp.
interaction w. mobile devices & services. ACM, 2005.

[38] M. Raubal and I. Panov. A formal model for mobile map adap-
tation. In G. Gartner and K. Rehrl, editors, Location Based
Services and TeleCartography II, Lecture Notes in Geoinfor-
mation and Cartography, pages 11-34. Springer Berlin Heidel-
berg, 2009. 10.1007/978-3-540-87393-8_2.

[39] V. Reynolds, M. Hausenblas, A. Polleres, M. Hauswirth, and
V. Hegde. Exploiting linked open data for mobile augmented
reality. In W3C Workshop: Augmented Reality on the Web, June
2010.

[40] B. Schandl. Replication and Versioning of Partial RDF Graphs.
In Proceedings of the 7th European Semantic Web Conference
(ESWC 2010), 2010.

[41] A. Schmidt, M. Beigl, and H.-W. Gellersen. There is More to
Context than Location. Computers and Graphics, 23:893-901,
1998.

[42] T. Springer, P. Wustmann, I. Braun, W. Dargie, and M. Berger.
A comprehensive approach for situation-awareness based on
sensing and reasoning about context. In UIC '08: Proceed-
ings of the 5th international conference on Ubiquitous Intel-
ligence and Computing, pages 143-157, Berlin, Heidelberg,
2008. Springer-Verlag.

[43] H.-S. Teo. An Activity-driven Model for Context-awareness in
Mobile Computing. In MobileHCI *08: 10th int. conf. on Hu-
man Computer Interaction w. mobile devices & services, pages
545-546, New York, NY, USA, 2008. ACM.

[44] K. Thirunarayan, C. A. Henson, and A. P. Sheth. Situation
awareness via abductive reasoning from semantic sensor data:
A preliminary report. Collaborative Technologies and Systems,
International Symposium on, 0:111-118, 2009.

[45] C. Weiss, A. Bernstein, and S. Boccuzzo. i-MoCo: Mobile
Conference Guide - Storing and querying huge amounts of Se-
mantic Web data on the iPhone/iPod Touch, October 2008.

[46] M. Wilson, A. Russell, D. A. Smith, A. Owens, and m. c.
Schraefel. mSpace Mobile: A Mobile Application for the Se-
mantic Web. End User Semantic Web Workshop, ISWC2005,
page 11, 2005.

[47] O.Wolfson, S. Jajodia, and Y. Huang. An Adaptive Data Repli-
cation Algorithm. ACM Trans. Database Syst., 22(2):255-314,
1997.

[48] S. Y. Wu and K.-T. Wu. Dynamic Data Management for Lo-
cation Based Services in Mobile Environments. In 7th Inter-
national Database Engineering and Applications Symposium
(IDEAS), pages 180-191. IEEE Computer Society, 2003.

[49] S. Zander and B. Schandl. A Framework for Context-driven
RDF Data Replication on Mobile Devices. In Proceedings
of the 6th International Conference on Semantic Systems (I-
Semantics), Graz, Austria, 2010.

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices 23
Table 2
Construction of RDF graphs (Android HTC G1, Motorola Milestone, Samsung Galaxy S 19000)
Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
é Execution Time (ms) 20.5 31.8 77.8 150.0 302.3 823.0 1,811.4 3,819.9 10,069.7 20,343.0 41,627.3 DNF
g Standard Deviation 6.40 1.40 2.04 3.46 3.46 63.86 12.47 104.14 78.39 159.39 303.21 DNF
Triples per second 487 628 642 666 661 607 552 523 496 491 480 DNF
g Execution Time (ms) 553 147.0 553.3 2,138.9 99144 67,1683 DNF DNF DNF DNF DNF DNF
= Standard Deviation 327 10.74 2338 7548 308.93 5,054.04 DNF DNF DNF DNF DNF DNF
Triples per second 181 136 90 47 20 7 DNF DNF DNF DNF DNF DNF
é Execution Time (ms) 13.8 21.1 473 92.6 181.4 603.7 1,2229 2,644.2 6,318.2 125154 DNF DNF
% Standard Deviation 7.47 0.74 1.83 2.12 2.88 4.76 7.89 59.62 73.28 174.13 DNF DNF
=]
= Triples per second 724 947 1,057 1,079 1,102 828 817 756 791 799 DNF DNF
Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
g Execution Time (ms) 8.6 18.7 459 76.0 112.9 251.8 5788 1,170.6 2,973.1 6,1443 12,4942 DNF
g Standard Deviation 0.70 3.02 3.03 7.04 2.85 6.97 7.27 21.36 41.75 23.45 74.18 DNF
Triples per second 1,163 1,070 1,089 1,316 1,771 1,986 1,728 1,709 1,682 1,628 1,601 DNF
g Execution Time (ms) 33.9 84.5 2425 858.5 4,107.8 29,055.2 143,648.5 DNF DNF DNF DNF DNF
< Standard Deviation 8.50 525 1547 2296 116.82 277242 12,689.76 DNF DNF DNF DNF DNF
Triples per second 295 237 206 116 49 17 7 DNF DNF DNF DNF DNF
é Execution Time (ms) 53 122 302 533 87.3 234.5 456.9 9214 2,1547 4332.6 9,383.3 DNF
% Standard Deviation 1.57 1.14 4.89 2.21 6.02 6.22 10.05 14.79 11.98 81.84 110.98 DNF
=]
= Triples per second 1,887 1,639 1,656 1,876 2,291 2,132 2,189 2,171 2,321 2,308 2,131 DNF
Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
% Execution Time (ms) 18.2 38.9 97.7 154.8 241.2 364.1 563.7 8544 1,718.1 3,270.3 6,498.8 18,913.7
<
E Standard Deviation 6.25 6.31 1741 3478 15.25 4.07 15.11 28.18 83.38 59.84 38.06 713.87
Triples per second 549 514 512 646 829 1,373 1,774 2,341 2,910 3,058 3,077 2,644
g Execution Time (ms) 55.3 1323 2834 630.0 23455 14,7189 61,784.5 236,003.4 DNF DNF DNF DNF
= Standard Deviation 2625 1659 20.13 36.28 101.60 1,261.50 14,590.10 63,201.29 DNF DNF DNF DNF
Triples per second 181 151 176 159 85 34 16 8 DNF DNF DNF DNF
é Execution Time (ms) 11.1 24.9 64.8 1149 189.9 362.4 461.9 678.5 11,3209 2,358.1 4,824.4 15,404.6
2 Standard Deviation 396 423 329 749 24.04 22.70 33.52 18.34 90.27 39.50 51.57 667.82
= Triples per second 901 803 772 870 1,053 1,380 2,165 2,948 3,785 4,241 4,146 3,246

24

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

Table 3
Parsing performance of data replicas (Android HTC G1, Motorola Milestone, Samsung Galaxy S 19000)

Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
E‘ Execution Time (ms) 7683 2889 4723 917.8 1,771.2 49646 10,360.7 21,795.6 52,643.0 DNF DNF DNF
& Standard Deviation 1,906.75 2.33 2.98 9.33 9.62 96.79 376.72 2,430.40 460.09 DNF DNF DNF
3
Triples per second 13.02 69.23 105.86 108.96 112.92 100.71 96.52 91.76 94.98 DNF DNF DNF
« Execution Time (ms) 1577 2232 3375 655.8 11,2803 3,398.7 7,390.5 14,051.3 DNF DNF DNF DNF
z
Standard Deviation 60.15 2.39 5.13 10.12 28.39 35.67 189.19 341.87 DNF DNF DNF DNF
Triples per second 63.41 89.61 148.15 15249 156.21 147.12 135.31 142.34 DNF DNF DNF DNF
T:l Execution Time (ms) 61.5 102.0 217.8 452.6 853.8 22269 5,013.8 9,623.0 DNF DNF DNF DNF
Z Standard Deviation 12.03 2.40 7.74 30.16 26.54 58.37 143.10 665.70 DNF DNF DNF DNF
Triples per second 162.60 196.08 229.57 22095 23425 224.53 199.45 207.84 DNF DNF DNF DNF
g Execution Time (ms) 36.1 7926 1,576.0 3,496.8 16146 303578 84,5434 568,003.4 DNF DNF DNF DNF
< Standard Deviation 8.08 371.51 56933 874.84 234.65 5555699 12,624.49 119,008.18 DNF DNF DNF DNF
Triples per second 277.01 25.23 31.73 28.60 123.87 16.47 11.83 3.52 DNF DNF DNF DNF
é Execution Time (ms) 772 1232 199.9 334.8 6474 19753 3,932.4 7,644.7 18,536.5 DNF DNF DNF
ié Standard Deviation 35.09 34.66 73.33 31.61 85.85 108.41 304.45 219.08 318.80 DNF DNF DNF
= Triples per second 129.53 162.34 250.13 298.69 308.93 253.13 254.30 261.62 269.74 DNF DNF DNF
Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
g Execution Time (ms) ~ 335.5 138.4 199.7 3144 550.8 1451.6 2963.1 6,0864 150504 31,2319 64,873.3 DNF
% Standard Deviation 747.50 9.00 35.50 5.90 15.40 51.90 41.50 877.70 95.70 168.90 1,021.00 DNF
7
Triples per second 29.81 14451 250.38 318.07 363.11 344.45 337.48 328.60 33222 320.19 308.29 DNF
2 Execution Time (ms) 92.7 153.8 165.9 270.1 493.6 1,2563 22004 4,534.6 11,828.1 24,2577 49,693.6 DNF
Standard Deviation 2640 91.90 24.10 19.90 46.90 77.30 60.10 31.40 56.50 137.50 131.30 DNF
Triples per second 107.87 130.04 301.39 370.23 405.19 397.99 454.46 441.05 42272 412.24 402.47 DNF
_7;1 Execution Time (ms) 41.6 733 1345 2182 331.9 803.3 1,6329 32213 8,176.0 51,243.0 34,5484 DNF
Z Standard Deviation 4.40 0.80 12.50 15.80 26.70 35.80 47.90 62.30 79.70 40,861.10 535.20 DNF
Triples per second 24038 272.85 371.75 458.30 602.59 622.43 612.41 620.87 611.55 195.15 578.90 DNF
g Execution Time (ms) 16.2 382.6 12,491.7 15,209.5 31,491.5 17,5954 10,845.6 DNF DNF DNF DNF DNF
< Standard Deviation 8.02 137.63 24,653.70 23,229.44 41,285.81 1,996.35 1,015.30 DNF DNF DNF DNF DNF
Triples per second 617.28 5227 4.00 6.57 6.35 28.42 92.20 DNF DNF DNF DNF DNF
E Execution Time (ms) 62.9 94.8 143.8 288.3 266.2 644.3 1,291.2 2,666.0 6,671.4 13,3203 26,291.0 DNF
% Standard Deviation 2641 2820 3335 95.12 27.34 22.68 58.29 95.79 93.97 109.76 279.99 DNF
S
= Triples per second 15898 210.97 347.71 346.86 751.31 776.04 77447 750.19 749.47 750.73 760,72 DNF
Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
g Execution Time (ms) 2350 168.0 209.0 269.0 409.6 810.0 1,540.3 3,144.7 7,559.3 18,116.6 33,2562 115,976.8
% Standard Deviation 303.58 2094 2208 2328 116.81 60.37 102.61 535.18 79.75 112.81 2,579.66 12,876.26
4
Triples per second 4255 119.05 239.23 371.75 488.28 617.28 649.22 635.99 661.44 551.98 601.39 431.12
« Execution Time (ms) 1372 1485 1709 226.8 304.3 5920 1,069.3 1,914.9 5281.6 12,2956 26,646.0 DNF
z
Standard Deviation 59.55 19.91 2254 22.02 25.54 48.41 91.69 114.51 90.45 256.86 1,917.43 DNF
Triples per second 72.89 134.68 292.57 440.92 657.25 844.59 935.19 1,044.44 946.68 813.30 750.58 DNF
é Execution Time (ms) 60.2 720 1119 163.9 195.5 318.8 621.3 1,002.7 2,724.1 6,719.1 16,166.0 DNF
Z Standard Deviation 2770 12.10 28.63 20.51 23.61 39.85 200.39 31.53 109.69 556.76 860.41 DNF
Triples per second 166.11 277.78 446.83 610.13 1,023.02 1,568.38 1,609.53 1,994.61 1,835.47 1,488.29 1,237.16 DNF
g Execution Time (ms) 7.8 63.8 1334 3123 877.2 2940.1 72162 67,689.3 352,660.7 DNF DNF DNF
% Standard Deviation 1346 21.15 39.14 46.80 99.00 40241 955.89 17,684.88 63,039.47 DNF DNF DNF
Triples per second 1,282.05 31348 37481 320.20 228.00 170.06 138.58 29.55 14.18 DNF DNF DNF
é Execution Time (ms) 71.6 82.0 98.1 127.3 194.1 330.0 580.8 1,060.0 2,269.2 4789.7 11,959.3 DNF
Té Standard Deviation 44.51 1377 2469 2032 38.81 60.63 75.29 206.26 122.68 156.18 633.84 DNF
= Triples per second 139.66 24390 509.68 78555 1,030.40 1,515.15 1,721.76 1,886.79 2,203.42 2,087.81 1,672.34 DNF

S. Zander et al. / Context-driven RDF Data Replication on Mobile Devices

Table 4
Storage performance of data replicas (Android HTC G1, Motorola Milestone, Samsung Galaxy S 19000)

Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
g Execution Time (ms) 329.2 517.8 478.7 876.8 1999.4 4694.9 10148 20713.5 52946.5 DNF DNF DNF
% Standard Deviation 114.95 11.38 5.58 20.85 29.53 100.08 274.74 740.17 448.72 DNF DNF DNF
o~
Triples per second 30.38 38.62 10445 114.05 100.03 106.50 98.54 96.56 94.43 DNF DNF DNF
« Execution Time (ms) 109 156 242.1 466.8 902.6 2,548.3 5,205.2 10,5984 DNF DNF DNF DNF
4
Standard Deviation 50.95 1.15 2.77 14.90 10.84 24.84 51.53 264.18 DNF DNF DNF DNF
Triples per second 91.74 12821 206.53 21422 221.58 196.21 192.12 188.71 DNF DNF DNF DNF
ﬁx Execution Time (ms) 207.7 395.3 888.7 1,779.8 3,837 10,177.3 20,7389 43,593.9 DNF DNF DNF DNF
z Standard Deviation 10.58 18.00 18.48 25.38 114.07 147.46 77631 1,427.98 DNF DNF DNF DNF
Triples per second 48.15 50.59 56.26 56.19 52.12 49.13 48.22 45.88 DNF DNF DNF DNF
g Execution Time (ms) 354 49.1 119.7 2335 495.1 1,863 2,839.5 5202.1 DNF DNF DNF DNF
= Standard Deviation 21.56 0.88 14.53 28.52 93.90 21.10 171.08 186.73 DNF DNF DNF DNF
Triples per second 282,49 407,33 417,71 42827 403,96 388,71 352,17 384,46 DNF DNF DNF DNF
5 Execution Time (ms) 1,462.2 1411.8 14582 1821.2 23294 35839 5,868 10,4204 27,5779 35,948.7 DNF DNF
Té Standard Deviation 332.58 11948 122,19 132.63 148.70 137.66 148.88 338.46 3,699.14 7,672.72 DNF DNF
= Triples per second 6.84 14.17 34.29 54.91 85.86 139.51 170.42 191.93 181.30 278.17 DNF DNF
Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
g Execution Time (ms) 93.6 141.8 136.1 242.1 6194 1,383.6 27033 56942 14,6163 30,694.6 66,160.3 DNF
% Standard Deviation 46.19 6.76 11.93 1.85 36.82 75.19 62.55 78.90 133.99 236.04 988.00 DNF
7
Triples per second 106.84 141.04 367.38 413.05 322.89 361.38 369.92 351.23 342.08 325.79 302.30 DNF
Execution Time (ms) 333 44.5 68.7 128.1 246.4 892.8 1,4985 2923.6 17,2685 15,8332 33,629.1 DNF
Standard Deviation 7.42 0.53 3.02 5.26 7.75 207.98 43.81 60.84 78.71 1,107.54 425.26 DNF
Triples per second 300.30 449.44 727.80 780.64 811.69 560.04 667.33 684.09 687.90 631.58 594.72 DNF
_T:m Execution Time (ms) 104.5 140.6 298.9 6058 1,303.5 3313.0 65707 13,266.6 33,809.2 238,095.7 1454975 DNF
&
2 Standard Deviation 20.51 11.90 11.52 35.02 52.13 59.96 50.29 84.66 465.27 160,267.56 1,818.58 DNF
Triples per second 95.69 142.25 167.28 165.07 153.43 150.92 152.19 150.75 147.89 42.00 137.46 DNF
g Execution Time (ms) 10.1 18.9 40.2 75.1 157.7 450.6 843.8 DNF DNF DNF DNF DNF
< Standard Deviation 0.32 3.87 4.87 0.74 10.88 22.38 24.30 DNF DNF DNF DNF DNF
Triples per second 990.10 1,05820 1,243.78 1,331.56 1,268.23 1,109.63 1,185.11 DNF DNF DNF DNF DNF
E Execution Time (ms) 76.4 72.8 166.4 280.7 334.8 661.5 1,3264 2,887.8 72272 14,9938 26,380.2 DNF
% Standard Deviation 29.00 13.36 33.06 145.99 104.13 26.90 55.08 61.26 172.31 337.11 5,592.70 DNF
]
= Triples per second 130.89 274.73 300.48 356.25 597.37 755.86 753.92 692.57 691.83 666.94 758.14 DNF
Model Size (Triples) 10 20 50 100 200 500 1,000 2,000 5,000 10,000 20,000 50,000
E Execution Time (ms) 105.6 116.6 97.6 144.4 317.2 7354 14594 27154 74679 17,0420 329105 DNF
% Standard Deviation 1846 13.16 9.44 20.69 22.56 63.44 51.92 122.08 87.76 373.78 1,105.70 DNF
4
Triples per second 9470 171.53 512.30 692.52 630.52 679.90 685.21 736.54 669.53 586.79 607.71 DNF
o Execution Time (ms) 63.9 59.5 70.6 92.6 145.2 349.2 747.1 1,566.9 3,981.7 93062 19,668.5 DNF
Standard Deviation 6.82 4.95 13.13 8.30 7.13 3240 47.28 100.89 199.56 155.59 694.85 DNF
Triples per second 15649 336.13 70822 1,07991 1,377.41 1431.84 133851 127641 125575 1,07455 1,016.85 DNF
‘é Execution Time (ms) 112.7 138.9 199.0 318.4 667.6 1,669.8 3,327.1 6,454.1 17,463.6 41,6450 99,575.2 DNF
=
z Standard Deviation 19.90 2223 9.68 31.21 91.70 64.35 257.44 380.30 197.23 708.54 5,115.08 DNF
Triples per second 88.73 14399 251.26 314.07 299.58 299.44 300.56 309.88 286.31 240.12 200.85 DNF
g Execution Time (ms) 31.6 36.7 69.1 123.3 270.2 642.5 1,3443 26185 64784 DNF DNF DNF
% Standard Deviation 7.96 2.75 5.15 15.24 14.45 17.68 22.56 42.07 205.29 DNF DNF DNF
Triples per second 316.46 54496 723.59 811.03 740.19 778.21 743.88 763.80 771.80 DNF DNF DNF
é Execution Time (ms) 67.1 739 75.9 83.7 276.6 352.6 6554 1,301.3 3,096.3 72154 17,323.0 DNF
fﬁ Standard Deviation 15.80 1240 9.53 6.77 352.16 100.45 33.25 80.30 116.22 298.55 1,200.68 DNF
= Triples per second 149.03 270.64 658.76 1,194.74 723.07 1,418.04 1,525.79 1,536.92 1,614.83 1,385.92 1,154.53 DNF

25

