
Semantic Web-enhanced Context-aware Computing in Mobile
Systems: Principles and Application

Stefan Zander and Bernhard Schandl

University of Vienna, Department of Distributed and Multimedia Systems
{stefan.zander|bernhard.schandl}@univie.ac.at

Abstract. The goal of this chapter is to provide detailed insights into the field of Semantic Web-based
context-aware computing for mobile systems. Readers will learn why context-awareness will be a cen-
tral aspect of future mobile information systems, and about the role semantic technologies can play
in creating a context-aware infrastructure and the benefits they offer. The chapter introduces require-
ments, enabling technologies, and future directions of such systems. It presents a Semantic Web-based
context-sensitive infrastructure that resembles concepts from graph theory and distributed transaction
management. This infrastructure allows for an efficient acquisition, representation, management, and
processing of contextual information while taking into account the peculiarities and operating environ-
ments of mobile information systems. We demonstrate how context-relevant data acquired from local
and remote sensors can be represented using Semantic Web technologies, with the goal to replicate data
related to the user’s current and future information needs to a mobile device in a proactive and trans-
parent manner. In consequence, the user is equipped with contextually relevant information anytime
and anywhere.

1 Introduction

The increasing availability and power of mobile devices has significantly increased data-centric mobile appli-
cations. Mobility not only influences the types of information we need, but also how we access it, and which
tools and mechanisms to process them are at our disposal. To improve mobile application development and
the usability of mobile devices in general it is crucial to understand the information needs of mobile users,
as well as the interaction metaphors they apply [1].

It is known that mobile search differs substantially from desktop search in terms of intra-query diversity [2].
The diversity of queries initiated in mobile setting is significantly lower compared to queries issued from the
desktop. Additionally, query categorization reveals that context searching is similar to desktop, although
query exploration is significantly lower. Further differences can be observed w.r.t. the effort needed to set up
a query, and the total amount of queries initiated in one browsing session.

Therefore, plain internet access is often not sufficient for adequately addressing information needs of mobile
users. Their situational contexts and current activities cannot be sufficiently addressed. Despite the benefits
offered by mobile internet access, issues remain that hinder users from satisfying their information needs.
These include impedimental interaction with the device while browsing for information, as well as the exten-
sive attention needed for interaction and information seeking tasks [1]. Further, it was observed that mobile
users sometimes do not know how to address a specific information need although they had the required
resources and tools at their disposal [1].

It has been shown that 72% of mobile information needs can be attributed or related to context [1]. This
finding indicates that introducing context-awareness into mobile information processing infrastructure can
be of significant benefit to end users. Context allows information processing tasks to focus on the user’s

information needs, depending on their current situation. In a setting where data from various (internal
and external) sources are processed on a mobile device, contextual information can help to determine the
importance of data in relation to user tasks and activities.

1.1 Context-Awareness in Mobile Information Systems

Context-awareness in its simplest form describes a system’s capability to conceive aspects of the physical and
virtual environment it is operating in and tailor its behavior and responses according to the computational
analysis of such aspects. Context-awareness can therefore be defined as a system’s capability of using contex-
tual data for providing relevant information and services with respect to the current situation of the user [3].
A system can be denoted as “context-aware” when it is able to adapt its behavior to ongoing activities, as
well as the operational environment where it is used in [4, 5]. Context-aware applications and systems are
able to react according those changes in an intelligent and user-related manner [6].

This can be accomplished by sensing and interpreting changing conditions, resources, and processes [7, 8].
Context-awareness can also be thought of as the machine-equivalent to the human capability of judging a
situation and taking appropriate actions [9]. From a technical viewpoint, context-awareness refers to the
accurate extraction, combination, and interpretation of contextual information, gathered from various multi-
modal sensors [10], and the objective of context-aware computing lies in the identification of the set of
relevant features that describe and represent a given situation with the greatest possible accuracy [11].

Research in the domain of mobile computing [12] has attempted to use context-awareness for overcom-
ing the technical limitation imposed by current mobile devices in terms of small screen sizes and limited
interaction possibilities. Users often are confronted with multiple simultaneous activities and information
channels, where context-aware computing promises to improve user interaction by reducing explicit user
inputs and attention [12]. Context-awareness can be therefore considered as a methodology for facilitating
human computer interaction by lowering explicit cognitive load and user attention.

One possible field where context-awareness can increase the quality of information management is proactive
information provisioning. We can rightfully expect that an information system should be capable of providing
information relevant to the user’s current task. However, a system that is capable of doing this without the
need for the user to explicitly issue search and retrieval operations can bring significant benefit, because
often users are not capable of explicitly expressing their information needs. This is especially true for mobile
environments and their limited interaction possibilities. In the following we present an example scenario
where a user of mobile devices is supported by such a proactive information provisioning system.

1.2 Motivating Example

John is a representative of a medium-size software company. His tasks include to regularly contact potential
customers in order to create awareness for his company’s most recent products, to maintain relations with
already existing customers in order to ensure their support and maintenance plans still work for them, and
to represent the company at exhibitions, industry conferences, and relevant meetings.

His company maintains a customer relationship management software, a product database, a shared calendar
system, an company-internal Wiki system as collaboration platform, and a shared file server to store all kinds
of documents. Because of his job, John is often required to travel to abroad places. In consequence, he heavily
relies on mobile infrastructure to get his work done. He has a powerful laptop, which he uses as his primary
working device, as well as a mobile phone, which is used as his personal information management device.

2

When he is on travel, it is crucial for him to be equipped with all relevant information for his business
meetings and other activities. However, he can never be sure to have online access to his company’s network
from wherever he goes, since certain limitations are in place: missing network coverage or security restrictions
may prevent him from establishing a connection via the cellular network, and even if he manages to setup
a connection, it may be slow and unreliable. For this reason, John often relies on local replicas of relevant
data, which he stores on his laptop and (to a far lesser extent) on his mobile phone. However, because of
the limited storage capacity of these devices and the necessary infrastructure, he cannot synchronize all data
from all systems mentioned before, so he has to carefully select subsets of these data, which is a tedious and
error-prone task.

This selection needs to be done before each trip, since he needs different information every time: this includes
data about the (potential) customers he is going to meet (this includes organizations as well as persons), the
locations and venues he is going to (including points of interest to visit in his spare time), latest information
about the products he is trying to sell (which requires close cooperation with his company’s product managers
and development department), and data needed for his trip planning and administration (including timetables
and travel accounting information).

A system that would be able to automatically select data for replication from a variety of systems would
be highly desirable for John, since it would save him several hours of preparation time before each longer
trip. Such a system could make use of a number of data sources, which provide valuable hints about which
data could be of importance during his trip. First, John organizes all his upcoming appointments and
travel plans in his digital calendar, which contains dates, locations, and participants of meetings. Additional
information about people and organizations can be found in John’s personal address book, as well as in the
company’s customer relationship management system. There, references to products that customers will use
are mentioned; these refer to entries in the product database.

Additionally, the system could infer potential selling options from the interest topics that are stored for
leads and potentials. Further, it can lookup information about locations and points of interests that John
will visit from external public data sources, e.g., the Linked Open Data cloud. Further, it can find (via
keyword lookups) articles from the company-internal Wiki system and the shared file server and replicate
all these data to John’s both mobile devices. For this purpose the system could rank each information item
according to its assumed relevance, and replicate data according to the mobile devices’ capacities.

During his trip, John will update and extend the replicated data with upcoming information (e.g., contact
data and interests of new potential customers). Whenever his devices have sufficient network connection
to his company network, the system should automatically synchronize his devices, upload changes, and
update his local replicas according to possible changes in his context. After he has returned from the trip, all
information is synchronized back to their origin systems, ensuring that no data are lost. If the system is able
to track John’s actual usage of replicated information during the trip, it can utilize this implicit feedback to
adjust its relevance ranking algorithms, and therefore improve the selection for his next trip.

2 Background

This section is intended to provide fundamental background knowledge about technologies and concepts
that are necessary for building a Semantic Web-based context-management and processing infrastructure for
mobile devices. We provide an introduction to the concepts of context and context-awareness and ascertain
the two main streams wherein context is either considered a representational issue reflecting environmental
aspects, and as an emergent phenomenon that is continuously re-negotiated between communicating partners
and thus cannot be determined beforehand, especially not at the design time of a mobile system. We show,
how such dynamically evolving contexts can be represented and processed using technologies and concepts

3

from the Semantic Web, while preserving/maintaining its unpredictable and dynamic characteristics—a
requirement neglected by most context-aware computing approaches [13]. The section also gives a brief
introduction to the general idea of the Semantic Web, its main constituents and involving technologies, as
well as its most prominent knowledge representation languages. The section concludes with a discussion of
possible areas where context processing and management can be substantially enhanced by the deployment of
Semantic Web technologies, leading to an approach that we denote as Semantic Web-enhanced Context-aware
Computing.

2.1 Context and Context-Awareness

The notions of context and context-awareness have been subject to controversial discussion and differing
perception across communities. Several definitions have been proposed to context, depending on its actual
usage as well as on the domain in which it was utilized. The word context is derived from the Latin word
con, which means ‘together’ or ‘with’, and texere, which is the present infinitive of ’texö’, meaning ‘to weave’
or ‘intertwine’. A well-known and frequently stated definition of context has been proposed by Abowd and
Dey [5] which define context as follows:

Context is any information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves.

This definition describes context as a set of situations and actions (cf. [6]) that are subject of dynamic and
frequent changes including the states of the involved entities (contextual information fragments). Context in
general can be defined as “everything that surrounds a user or device and gives meaning to something” [13].

In [4] context is referred to as an entity that comprises location, identity, objects, as well as changes that apply
to those objects. Ryan et al. [14] add the dimension of environment and time. A more user-related definition
has been provided by [15] and [16] in which context is defined relatively to the user’s emotional state, their
believes, intentions, and concerns. These definitions take into account people in the closest proximity of the
user. Other definitions such as in [17] and [18] define context on more abstract levels and wider scale: context
is considered as “the aspects of current situations” as well as “elements of the user’s environment that are
known by a computer” [19].

Bolchini et al. [20] define context as an abstract process rather than a profile that determines how hu-
mans interweave their experiences with the environment surrounding them to give meaning to something.
Other authors (e.g., [21, 22]) highlight that context is never universal in that it encompasses all information
constituting a specific situation but always defined relative to a concrete situation. Coutaz et al. [23] char-
acterize context as “not simply a state of a predefined environment with a fixed set of interaction resources”
rather than part of an interaction process with the polymorphic and varied environment that is composed
of “reconfigurable, migratory, distributed, and multi-scale resources”.

However, due to the different proliferations on the notion of context, there has not been a clear consensus
established on what context exactly is [22], but there is a common agreement on what it is about: context is
concerned with an evolving, structured, and shared information space that is designed and utilized to serve
a particular purpose [23].

Contextual information, which are constituent parts of surround contexts, can be considered as any informa-
tion that may be used for describing the situation the user or a device is currently operating in. Contextual
information is gathered through a variety of different technologies and considered as computational abstrac-
tions over distinguishable virtual or real-word aspects that have a specific relationship to the current task

4

at hand. Contextual information can be static (e.g., the date of a person’s birthday) or dynamic (e.g., a
person’s location). Dynamic context information is usually captured indirectly using sensors. Additional
characteristics for classifying contextual information have been proposed by [25].

Basically, contextual information can be distinguished according to the way they are acquired: (1) Explic-
itly acquired contextual information is manually specified by the user and refers to information such as
established social relationships or fields of interest. (2) Implicit contextual information is acquired via com-
munication with hardware or software sensors, which capture specific aspects of the surrounding context
by using sensing technologies or by monitoring user and system behavior. Most context frameworks acquire
contextual information implicitly, especially from locally deployed physical sensors or embedded ubiquitous
sensors. The challenge thereby is to identify the set of features that describe a given situation with the great-
est possible accuracy and relevance [10]. Deriving reliable information from multiple heterogeneous sources
in uncertain and rapidly changing environments is mandatory for context-awareness in the domain of mobile
computing [26].

Consequently, two forms of context-awareness can be found in information systems [27]: direct awareness
shifts the process of context acquisition onto the device itself, usually by embodying sensors that au-
tonomously obtain contextual information; e.g., location ascertainment using the device-internal GPS sensor.
Indirect awareness, in contrast, captures contextual information by communicating with sensors or services
via the surrounding environment or infrastructure. For instance, to capture the social context of a user, a
mobile device may request data from social communities or portals; to track the user’s location, a remote
geocoding service (based on the user’s IP address) may be employed.

2.2 Positivist and Epistemological View on Context

The technical or positivist school treats context as a conceptualization of human action and their interaction
with the system. As a consequence, context is considered as a set of features of the environment surround-
ing the user’s tasks at hand and generic actions, which can be computationally captured, represented, and
processed. Especially technical disciplines consider context a representational issue and concentrate on sen-
sorial or static data such as location, time, identity etc. (cf. [11]) putting emphasize on its codification and
representation [24, 13]. Following this argumentation, context is instance-independent, separable from user
activities, and can be scoped in advance [22]. This form of perceiving context has its root in information
system since it adheres very well to existing software methodologies [13] but is contradictory to the phe-
nomenological view of context that is grounded on subjective and qualitative analysis. This view considers
context and activity inextricably connected and fundamental in giving meaning to something [22]:

Rather than considering context to be information, [the phenomenological view] instead argues that
contextuality is a relational property that holds between objects or activities. It is not simply the
case that something is or is not context; rather, it may or may not be contextually relevant to some
particular activity.
[...] the scope of contextual features are defined dynamically.

This consideration emphasizes the aspect of relevance as context as such can not be defined or determined
in advance since its scope is dynamically defined and changes frequently and unpredictably. It should be
considered an occasioned property to emphasize its dynamic, fluent, and relative character as context arises
in the course of action [22]:

Context isn’t just “there”, but is actively produced, maintained and enacted in the course of the
activity at hand. [...] Context isn’t something that describes a setting; it’s something that people do.
It is an achievement, rather than an observation; an outcome, rather than a premise.

5

The epistemological view considers context as an interactional feature inspired by “sociological investigations
of real-world practices” [22]. Context is inextricably linked to the process in which it is conceived, which
renders the positivist and phenomenological view on context incompatible. As [34] points out:

Action and context are inseparable and should be analyzed as a whole. This implies that context-
awareness should be examined in its relationship and consequences to the supported activity or actions.

As a consequence, the dynamic aspects of context are entirely neglected by technically oriented disciplines
as context is a constitutional part of interaction processes that emerge opportunistically. Context should
be rather considered as an emergent phenomenon or feature of interaction that is inextricably linked with
user activities [34, 13] and continuously renegotiated between communicating partners [22–24] wherefore a
pre-determination of the relevance of contextual elements is impossible – especially at design time of a
system [21].

Therefore, a context management and processing framework should expose flexible, extensible, and open
context descriptions that are not bound to a single static vocabulary to facilitate the dynamic and emergent
nature of context. Context descriptions exposed by a context processing and management framework must
be flexible, extensible, and use open vocabularies in order to facilitate the dynamic and emergent nature of
context and should not be restricted to static schemas or single vocabularies. Static context descriptions are
not able to deal with unknown context information at run time, but require links between different context
vocabularies to be specified at design time [21]. The ability to dynamically handle and integrate new types of
context information into existing structures is therefore a fundamental requirement of a context framework
where open, and well-accepted vocabularies help in describing contextual information to guarantee their
evolution and accurateness.

2.3 Context and Context-Awareness in Information Systems

The notion of context is mainly used in the information systems discipline for two reasons (cf. [22]): (1) con-
textual information is encoded to increase the accuracy of information retrieval processes and (2) contextual
information is utilized for adopting systems to the environments in which they are used. In mobile comput-
ing, in contrast, context is used for (1) intelligent service provision, (2) realizing adaptive user interfaces,
and (3) increasing the accuracy of information retrieval processes since context-aware information systems in
general provide a “more natural and less obtrusive way of interaction” [24]. This is achieved by filtering the
flow of information (i) from the device to the user to decrease information overload as well as (ii) from the
user to the device, where user-generated data is augmented with contextual information predominantly in
an automated and transparent manner. A variety of research endeavors elaborated on the nature of context
and proposed a multitude of different definitions as well as—mostly taxonomical—classification schemes.
A large share of classification schemes distinguish between physical context, that is, contextual information
retrieved from physical or hardware sensors referring to the surrounding physical or virtual environment,
and logical context that encompasses user-related information such as a user’s goals, their tasks, emotional
states etc. Such information is acquired by monitoring user interactions, specified by the users themselves,
or inferred from physical contexts. Other works (e.g. [35]) classify context as meaningful if it has a particular
relationship to the user’s current high-level goals, or incidental in case the user enters an unpredicted or
unexpected situation that has no special relationship to their high-level goals.

Due to the diversity of contextual information, several categorization frameworks have been introduced to
manage and comprehend such information systematically. A context model in general is used for the definition
and storage of contextual data in a machine-representational form. The most prominent approaches have
been summarized in [36], ranging from simple key-value models, to complex logic or ontology-based models.

6

The diversity of contextual information is also reflected in the architectures proposed for context management
and processing, which differ in their technical capabilities, acquisition techniques, context representations
and reasoning capabilities etc. Despite the wide variety of different context management and processing
architectures, a common architecture is identifiable [19]1. Figure 1 displays this conceptual architecture
which consists of five separate functional layers:

Application Layer

Storage / Management Layer

Pre-processing Layer

Raw-data Retrieval Layer

Sensors Layer

Fig. 1. Layered conceptual architecture of context frameworks (adapted from [19])

Sensors layer : The sensors layer is the bottommost layer and comprises the set of sensors that a context
framework exploits. Such sensors can be classified into three groups [37]: (i) physical or hardware sensors
for gathering physical context information, (ii) virtual sensors that capture data form software applications
and service by observing user interaction and user behavior, and (iii) logical sensors that are responsible
for deriving higher-level context information usually by augmenting physically or virtually acquired contexts
with additional information from repositories or other data sources.

Raw data retrieval layer : This layer is concerned with the retrieval of raw sensorial data usually by encap-
sulating driver logic or sensor APIs in dedicated wrapper components (cf. Widgets [28]). It offers common
interfaces that encapsulate specific drivers or sensor APIs thus making them exploitable for upper layer com-
ponents. This layer exposes query-functionality that abstracts from low-level raw sensorial data and provides
higher-level representations and functions.

Pre-processing layer : In case sensorial data is too coarse [19] or need to be clustered for further processing,
this is handled by the pre-processing layer. It also provides appropriate abstractions of contextual data whose
representation is too technical (e.g. a bit-wise representation of contextual data). Interpretation, aggregation,
and reasoning tasks are also handled by this layer together with quantization algorithms for aligning raw-
sensorial data with the elements of a framework’s context model.

Storage and Management layer : This layer serves as a context repository as it organizes contextual informa-
tion and offers interfaces to client applications. Components in this layer expose different operation models
where contextual information can be either requested in a polling-based style where the client applications
issues requests to a context server in regular time (synchronous) or via a subscription mechanism where
clients are notified by the context server whenever new contexts are available (asynchronous). Due to the

1 See [19] for a more detailed discussion about the different layers.

7

dynamic and unpredictable nature of context (cf. [22, 23, 13]) the use of an asynchronous communication
style (cf. [38]) is suggested [19].

Application layer : The application layer is the uppermost layer and hosts the client applications that re-
quest and process contextual information from a context repository or a framework respectively. Contextual
information is usually consumed by applications in this layer in order to adopt their actions with respect to
user-related tasks. One popular example is increasing the background luminosity level in case the user enters
an outdoor area.

Context can be acquired from a multitude of different sources, e.g., by applying sensors or sensor networks,
by deriving information from the underlying communication infrastructure or network, or by acquiring
status information and user profiles directly from the device the user currently uses [19]. In general, every
information or any content can be considered context-relevant if it provides information related to the
user’s current tasks and activities [39]. Therefore, context-acquisition should not be restricted to capture
context merely from hardware sensors. Instead, additional information sources should be integrated into the
acquisition process. A social bookmarking service for example could be requested for obtaining information
related to the user’s interests or information needs. Especially when considering Web 2.0 applications in which
users actively contribute, such services likely contain valuable information that can be used for complementing
sensorial data [39].

The way contextual data are acquired significantly influences the architectural style of a context-aware sys-
tem [19]. Context acquisition architectures can be broadly classified into three different groups (cf. [40]):
(1) proprietary architectures that directly access locally deployed sensors where sensor and driver logic is
directly implemented in application code limiting context reuse and exchange, (2) middleware infrastructures
which employ a layered system architecture (e.g. [30, 41, 42]) encapsulating sensor specifics in dedicated com-
ponents and expose uniform interfaces for context utilization, and (3) context server architectures (e.g. [43])
that operate similar to database management systems and offer remote access to contextual information
hosted within a context repository. A detailed discussion about the advantages and limitations of each
architectural style can be found in [40] and [19].

Different classification schemes for context management architectures have been proposed by, e.g., [28, 19, 21].
They distinguish between a (1) direct integration of context management into context-aware applications,
(2) context management services, and (3) context-aware devices and services augmented with context man-
agement functionalities. By directly integrating context management functionality into mobile applications,
such applications need to know in advance which sensors are available and how to communicate with them.
As a consequence, context data semantics are limited to the applications in which they were interpreted
and can, in most cases, not be shared between applications which renders a dynamic integration of new
sensors in running frameworks difficult. Sensors have to be queried by each application separately, which
impede the process of context aggregation, exchange, and dissemination. In contrast, if context management
functionality is implemented in devices or sensors, their functionality can be shared among components and
integrated during run-time (e.g. [10, 21]).

The usage and utilization of the notion of context in information systems raises some technological as well
as human-related challenges. Dey et al. [28] identified the poor understanding on what context constitutes,
how it is to be represented in information systems, and the lack of conceptual models, methods, and tools
that would promote the design of context-aware mobile applications as one of the main reasons why context-
awareness has only insufficiently found its way into the essence of mobile and ubiquitous computing yet.
This additionally hampers empirical investigations in human-computer interaction and interaction design.

Many works indicated the non-existent availability of a general model of context and context-awareness as
one of the main problems of context-sensitive systems. This fact in particular concerns mobile computing
where the notions of context and context-awareness are used ambiguously across communities and reflect

8

specific application domain peculiarities (cf. [20, 29]). This problem also hampers context-aware application
development for mobile systems since a widely-accepted and well-defined programming model does not exist
wherefore sensor-logics are often hard-wired into application code and application developers have to deal
with low-level interactions between sensors and context-acquisition components [28]. Therefore, the semantics
of contextual information are limited to the applications in which they were acquired and are represented us-
ing proprietary formats. Newer approaches (e.g., [10, 30]) employ more flexible designs for context processing
and representation where sensor-logics or sensor-specific APIs are encapsulated in specific components that
can be mutually shared or employ middleware infrastructures (e.g., [31, 32]) for facilitating communication
and interoperability between context processing components while using knowledge representation languages
from the Semantic Web such as RDFS or OWL for representing contextual information [33, 24].

2.4 Problems of Context-aware Computing

A fundamental problem of context-aware computing is that of context ambiguity [3] and context imperfec-
tion [25] which refers to the implicit assumption shared by many context-aware computing approaches that
the computational context is a 1-to-1 reflection of the real-world context. Evidently, this assumption is wrong
since the way context is conceived by individuals differs substantially from the way it is acquired and repre-
sented electronically [3, 22]. A logical consequence of that misperception is that a context framework can only
work on a more or less accurate context representation where the degree of accuracy is determined by numer-
ous technical and soft factors. The unpredictable and relative nature of context renders a determination of
all contextual aspects that constitute a specific context at a system’s design time difficult, if not impossible,
since context is always defined relative to the situation in which it is used. An electronic representation of
context can therefore never be universal in that a context model contains all information that characterize
a given situation; instead it only represents a relevant subset of the constituting real-world context [3, 25,
22]. The problem is that a 1-to-1 relation between a situation and the describing context information does,
in most cases, not exist wherefore a situation can be represented by multiple context models with a specific
degree of accuracy w.r.t. the several viewpoints. Several methodologies such bayesian networks, case-based
reasoning, stochastic models, or machine learning techniques have been proposed for defining precise tran-
sitions between different context descriptions with as little ambiguity and overlapping as possible. However,
such approaches contribute towards increasing the accuracy of context acquisition and context representation
but do not help in identifying all constituting aspects of a specific situation. Context-aware computing in
general is only an approximation to a real-world situation rather than a 1-to-1 reflection of it.

Another problem of context-aware computing is that most architectures are targeted towards a specific
application or domain [21]. The difficulties hereby are that certain high-level context interpretations are not
absolute characterizations per se, since the concept ‘high temperature’ for instance depends on the context
or situation in which it was acquired. This dependency makes it difficult to share context information in an
application and domain-independent manner since implementing new application behaviors based on context
characterizations made for one application might not be appropriate for another one [21]. Some works [12, 44,
13] therefore focus on describing and representing context in an application independent manner by means
of concepts from activity theory [45, 46] using collaborative plans [47], task analysis [48, 49], aspect-oriented
context modeling and modularization [50], or situational reasoning [30, 42] to decouple context from specific
application domains and provide abstract contextual concepts (e.g., “business meeting”) that adhere to
upper-level ontologies. Context and contextual information needs a uniform representation to be effectively
managed, integrated, and processed by reducing the ambiguities inherently attached [8].

The proposed context management and processing framework provides the necessary technical infrastruc-
ture on which additional more sophisticated layers (e.g., for situation-awareness) can be deployed. Such
layers allow for aggregating the contextual artifacts acquired by the underlying framework and apply dif-
ferent methodologies (e.g., Bayesian networks, case-based reasoning, stochastic methods etc.) for context
interpretation, consolidation, and augmentation.

9

2.5 Semantic Web

The Semantic Web [51] is the idea of expressing rich, machine-processable knowledge using the Web infras-
tructure. Descriptions about resources (which are entities of any kind, including digital objects like documents
and media, physical objects like humans, cars, or buildings, and abstract concepts like locations, topics, and
time periods) are published in a structured format and using vocabularies that follow a well-defined seman-
tics. Applications can consume these descriptions, interpret them, merge them with descriptions from other
sources, and infer new knowledge or determine the truth value of statements. In analogy to the World Wide
Web, which nowadays serves as one underlying knowledge-provisioning infrastructure for a wide variety of hu-
man knowledge workers, the Semantic Web is envisioned to serve as an underlying information-provisioning
infrastructure for information-centric applications, whereas the information processing is performed semiau-
tomatically by computer programs.

Broadly, the Semantic Web consists of a stack of technologies that build on each other. The core technologies
are shared with the World Wide Web: Uniform Resource Identifiers (URIs) [52] to identify resources, and
Hypertext Transfer Protocol (HTTP) [53] for the transportation of information. On top of these core tech-
nologies, the Resource Description Framework (RDF) [54] is used as the abstract data model in which all
information is represented. RDF is a triple-based graph model, with the statement being the atomic unit of
information. Each statement consists of three elements (subject, predicate, and object), where the predicate
identifies the relationship that is asserted to exist between the subject and the object. URIs can be used
for all three elements; whenever the same URI is used in multiple statements these statements are referring
to the same resource (or real-world entity). Therefore, a set of RDF statements that shares common URIs
can be interpreted as connected graph (cf. Figure 2). RDF itself is an abstract data model; in turn, there
exist several serialization formats that can be used to exchange RDF statements between parties, including
RDF/XML [55], Turtle [56], and RDF/JSON2.

urn:uuid:
265a887f-5644-4067-9b3e-

d3b7c59f7bf9

http://www.mobisem.org/
2009/01/context#Context

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://cs.univie.ac.at/
stefan.zander#me

"Stefan Zander"

http://xmlns.com/foaf/0.1/name

http://purl.org/dc/terms/creator

Fig. 2. Example RDF Graph

Based on RDF a set of technologies has been developed that aims to make more “knowledge” out of the data
represented in RDF graphs. Higher-level languages like RDF Schema (RDFS) [57], Web Ontology Language
(OWL) [58], and Rule Interchange Format (RIF) [59] can be used to define the constraints of a domain of
discourse based on formal logics; using these languages, valid combinations of statements can be defined
axiomatically. This allows implicit knowledge to be discovered based on asserted information, to detect
inconsistencies in knowledge bases, or to determine the truth value of statements, given a set of background
knowledge. A query language (SPARQL) [60], which resembles similarity to the SQL language for relational
data, can be used to formulate structured information needs, which are evaluated against a set of RDF
graphs.

One line of development within the ongoing Semantic Web research field is Linked Data [61], which denotes
the practice of publishing data on the Web according to simple core principles [61]. Its core idea is to denote

2 http://n2.talis.com/wiki/RDF_JSON_Specification

10

http://n2.talis.com/wiki/RDF_JSON_Specification

resources (which includes real-world entities as described above) exclusively using HTTP URIs, and to allow
data consumers to directly de-reference these URIs (i.e., to fetch their representations using HTTP GET

methods). Upon this de-referencing, structured information about the resources is returned, which contains
links to other relevant resources. These other resources can then, in turn, be retrieved by the client, allowing
it to navigate through a global information network based on the “follow-your-nose” principle.

Since 2007, when the Linked Data W3C community project3 was established, a significant amount of data has
been published according to the Linked Data principles. This includes popular data sets of general interest
like DBpedia (consisting of structured information extracted from Wikipedia pages), geographic information
(like Geonames), media-related content like BBC Programmes, and bibliographic information (e.g., DBLP).
An example of a highly distributed data set is the entirety of all FOAF Profiles, which are usually served on
private infrastructure, and are interconnected based on social relationships between their owners. Through
the (partly indirect) interconnection of these data sets, light-weight data integration can be performed, and
information about the same entities can be gathered and combined from heterogeneous, distributed sources.

2.6 Semantic Web-enhanced Context-aware Computing

For managing context information systematically, a common structure for representing contextual informa-
tion need to be established [26]. The Resource Description Framework, discussed in the previous section, has
proven to be an appropriate representation framework for representing complex contextual constellations
and facilitating the sharing and exchange of context descriptions based on ontological semantics [62]. It can
be used for codifying the semantics of contextual information as well as the relationships among them in
a well-defined, uniform, and systematic way. On top of RDF, RDF Schema (RDFS) offers a simple set of
common language properties that can be used for building context descriptions which can be shared among
different context providers and consumers collaboratively [26]. However, the set of RDFS language elements
is not sufficient for expressing rich contextual constellations, wherefore the use of more expressive languages
such as OWL is suggested [24, 21]. Generally, the use of ontologies as a key component for building a context-
aware computing framework is broadly acknowledged [42, 63, 21, 26], and it has been shown that Semantic
Web technologies are sufficiently mature and performant to be deployed on mobile devices [64].

A context ontology serves as a uniform representation of contextual information and enables a systematic
management of context-relevant aspects; it should be separated from application logic [65]. A number of
approaches use single ontologies for context information representation and for the transformation of raw,
low-level context data into high-level context descriptions [66, 65]. Some of these ontologies refer to the
analogy of physical objects, i.e., their concepts refer to objects in the real world (the studied context).

Several works have already demonstrated that ontologies are appropriate means for expressing and rep-
resenting contextual information since they incorporate some characteristics that are essential for mobile
and ubiquitous environments [21, 41, 67, 68]. Ontologies are highly expressive and widely adopted knowledge
representation techniques, and a multitude of open software tools for their design, creation, management,
and storage are available [33]. Ontologies offer a well-defined set of concepts and relationships to model
the domain of interest, which can be adopted by context-management frameworks to integrate and share
contextual knowledge from other domains to facilitate context exchange and reuse. Ontologies are based on
knowledge representation languages that are open with respect to evolutions of the domain they describe.
This allows ontologies to be adapted and extended according to domain-internal changes.

Building a context-awareness computing infrastructure on the principles and technologies of the Semantic
Web has several implications and advantages: due to the fact that ontologies are based on the open world
assumption, context ontology evolution is a central aspect in context management and allows for adapting

3 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

11

http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

and modifying a context ontology according to changed conditions. Due to the fact that RDF is a system-
and application-independent framework for modeling data and its close relatedness to Web technologies, it is
well suited for the data exchange between components (e.g., using HTTP). This facilitates interoperability
among context frameworks and services since established and well-known vocabularies together with their
inherent semantics can be understood and used across systems.

Since ontologies provide a common structure for representing and describing the relationships and semantics
of context-relevant information in a machine-processable way, they can be conceived as a general approach for
systematic management of context information. In such a setting, RDF can be used as a description syntax
to enable the communication and sharing of context information between collaboratively communicating
partners, i.e., applications, services, and devices. These descriptions are represented as labeled multi graphs,
where the contained entities are referred to through HTTP URIs (see Section 2.5). Its open architecture allows
for the integration of different context-relevant vocabularies so that context descriptions can dynamically
grow and become more elaborated to better reflect intra-domain evolutions.

Ontologies help in expressing application or service needs, and in aligning them to acquired context infor-
mation wherefore only relevant information is extracted. This simplifies query processing since a context
consumer can limit queriers to relevant information, instead of processing the entire context description. In
cases of incompatibility of context descriptions, ontology matching algorithms help in reconciling differences
in description semantics. Euzenat [69] therefore suggests the use of ontology alignment services to identify
correspondences between incompatible context descriptions. Such services perform query transformations
and reflect domain and information space evolutions [21].

Semantic Web technologies allow for mapping low-level sensor data to high-level ontological concepts so
that collected context-relevant information is transformed and embedded in a controlled context description.
Based on ontological semantics, new facts can be deducted by applying aggregation and reasoning heuristics.
In this way, Semantic Web languages such as RDFS and OWL allow for aggregating heterogeneous and
autonomously acquired context information both on a syntactic and semantic layer. By transforming sensorial
data into RDF statements, context acquisition components are not required to anticipate possible queries
beforehand. Instead, the requesting context consumers determine the data that are relevant for them.

In the fields of Semantic Web and Linked Data, a number of vocabularies and ontologies have emerged that
are of interest for the representation of contextual and situational information (e.g., time4 and location5,
technical parameters6, or social aspects7). The elements (terms and concepts) of those vocabularies are
well-known across communities and expose a well-defined and commonly understood semantics that allows
for information integration and exchanges especially in heterogeneous system and network infrastructures.
Additionally, such vocabularies are continuously maintained by communities to guarantee their accurateness
and evolution. By re-using such vocabularies and (implicitly) connecting context descriptions to external
Linked Data sources, we gain two benefits: first, if context descriptions are distributed (either to the public
or within a closed environment, e.g., a corporate network) they can be directly combined with already existing
data, and existing tools can be directly applied to contextual information without the need to adapt existing
software. Second, data from external sources can be imported and used to enrich the context descriptions,
leading to a richer semantics, which facilitates more powerful processing and reasoning.

4 http://www.w3.org/TR/owl-time
5 http://www.w3.org/2003/01/geo
6 http://www.w3.org/Mobile/CCPP
7 http://www.foaf-project.org

12

http://www.w3.org/TR/owl-time
http://www.w3.org/2003/01/geo
http://www.w3.org/Mobile/CCPP
http://www.foaf-project.org

3 Architecture of a Semantic Web-based Context Framework for Mobile
Systems

3.1 Overview

In general, a framework-based approach for context management is broadly suggested to facilitate and speed-
up context-aware application development and allow for gathering, aggregating, and interpreting contextual
data in a structured, well-defined, and controlled way [8]. The MobiSem framework extends this idea in that
it has been designed specifically to operate on mobile systems, and to use Semantic Web technologies to
acquire, interpret, aggregate, store, and reason on contextual information, independent of any application or
infrastructure. Semantic Web technologies and practices, which are designed as an information processing
infrastructure for heterogeneous environments, can help to solve some of the issues described before, and are
therefore highly relevant for the design and development of ubiquitous and mobile context-aware systems.
In the following, we give an overview of the main concepts and functionalities of the proposed framework:

1. Acquisition. The framework allows for acquiring context-relevant data from a wide variety of sources,
ranging from locally deployed hardware and software sensors, over sensors located in ubiquitous envi-
ronments, towards Web 2.0 APIs for retrieving data related to a user’s personal or social networks.
Raw sensor data are represented in form of an RDF-based context description and transformed into a
high-level context description using concepts and languages from the Semantic Web.

2. Representation. The architecture of the context framework has been designed to impose minimal to none
restrictions on the representation of contextual data and allows for using individual vocabularies and
heuristics for explicitly representing data semantics and reason on contextual data.

3. Aggregation. Reuse, exchange, and augment contextual information to built richer and more elaborated
context models is a fundamental principle of the proposed framework. Context descriptions can be
mutually refined and complemented with additional data. Since context descriptions are represented
as RDF graphs using open and well-known Semantic Web vocabularies, their data semantics can be
understood across components.

4. Orchestration. An orchestration framework analyzes the data descriptions of context providing compo-
nents called context providers and use them as a basis for cascading context providers in a directed acyclic
network graphs to dynamically route context descriptions between them. The orchestration framework
has been designed to allow for integrating individual orchestration rules and metrics, where the results
are stored in an adjacency matrix. This matrix is dynamically and transparently re-created whenever a
new context provider is integrated into the framework.

5. Consolidation. To maintain context consistency, accurateness, and completeness, context descriptions
are collected in a central place to guarantee consistency among context descriptions and acquisition
processes while taking into account technical and operating system peculiarities of mobile platforms.It
also incorporate compensation strategies to minimize the impact of malfunctioning or unavailable context
providers and sustain a proper functionality of the context framework’s processes.

6. Reasoning. A lightweight forward-chaining rule reasoner has been developed in order to consolidate
context descriptions, detect inconsistencies, and transforms them into a global, consistent, and coherent
context model that represents the current user context.

7. Dissemination. User context is forwarded to other components deployed in the framework in an auto-
mated and transparent manner using a push-based notification mechanism. Additionally, external context
services can request a model of the user’s current context via an elementary HTTP server.

8. Replication. Data is replicated in a transparent and automated fashion to the device where no restrictions
are imposed to the data sources, which might range from file systems, data bases, web repositories,
towards web applications etc. Data replication is completely decoupled from context acquisition where
mobile applications can access data replicas from a local triple store in a controlled and uniform way.

13

9. Storage. The framework incorporates a persistence layer that allows for storing replicated data sets in a
local database from where they can be accessed and utilized. The persistence layer also includes support
for named graphs and contains projections for transforming RDF graphs into a relational database
scheme and vice versa.

10. Data Access and Provision. Access to replicated data stored in the local SQLite database is provided
via an Android content provider that has been adapted for RDF data provision and storage. The RDF
content provider assigns a unique URI to each replicated data sets and allows other mobile applications
to access and utilize data replicas.

To realize these concepts, we synthesized concepts form graph theory, distributed transaction management,
and the Semantic Web to build an architectural infrastructure for mobile systems that combines context
acquisition and data replication to replicate data related to the user’s current and future information needs in
a transparent and proactive manner. The framework cascades context providers within so-called orchestration
trees that resemble concepts of a workflow scheme. They allow for a controlled execution of combined context
acquisition tasks in a decoupled manner while maintaining data and process consistency. This form of context
provider orchestration allows for an efficient acquisition and aggregation of contextual information while
taking into account the mobile operating system peculiarities [70, 71].

Our approach exposes two significant advantages compared to existing server-based approaches: contextual
information is acquired, processed, and disseminated directly on a mobile device and does not depend on
the availability of external systems. This reduces security and privacy issues since highly private data such
as contact information or appointments do not need to be transferred outside a mobile system. It also serves
as a technical infrastructure for the deployment of high-level context processing and recognition services to
enable situation awareness (cf. [72, 73]).

3.2 Components

Context Providers As illustrated in Table 1, the context framework is able to acquire contextual in-
formation from a variety of context sources and sensors. Those sources are wrapped by context providers,
which employ two operation modes. Primary context providers are self-contained components that operate
independently and autonomously, and provide contextual information in a proactive manner. They become
active whenever a change in the corresponding context source is detected. In contrast, complementary context
providers react according to updates received from primary context providers and complement contextual
information acquired by primary context providers by taking those context descriptions as input data for
initiating their acquisition tasks.

Table 1. Types of context sensors

Local Remote

Hardware Device-internal hardware sensors for cap-
turing physical context (e.g., location, in-
clination, orientation, etc.)

External ubiquitous sensors deployed in
ubiquitous environments that allow for ac-
quiring mostly physical context

Software Locally deployed software or logical sen-
sors for monitoring application and user
behavior to deduce current and future mo-
bile user information needs

Software sensors that wrap interfaces or
APIs of remote data sources mostly for
complementing primarily acquired context
information (e.g., Web services, APIs, on-
line repositories, etc.)

14

Data
Provider

Data
Provider

Triple Store

LOD
Repository

Web 2.0
Application

Semantic
Web

Service

Query Language
e.g. SPARQL

 API / RPC -
Remote

Procedure Calls

HTTP
Request/
Response

Low-level
Context

Acquisition

(passive)
Context
Provider

Physical
Sensors

(active)
Context
Provider

Logical /
Software
Sensors

(active)
Context
Provider

Context Provider
Orchestration

Data
Provider

RDF
Graphs

RDF-based
Context

Descriptions

Aggregated and
Consolidated

Context Model

Replicated
RDF Data

RDF
Content
Provider

Mobile
Application

Mobile
Application

Mobile
Application

Context Configuration
(Global Context Model)

Replication
Manager

Orchestration
Framework

 Context Dispatcher

Model
Manager

Workflow
Manager

Ag
gr

eg
at

io
n

Co
ns

ol
id

at
io

n
Re

as
on

in
g

Di
ss

em
in

at
io

n
Registry

(Context Provider and
Data Provider)

Fig. 3. Architecture of the MobiSem Context Processing Framework

A context provider captures a specific and relevant contextual aspect of the user’s current context. A con-
textual aspect is represented in structured and well-defined ways using semantic technologies (RDF, RDFS,
OWL) to facilitate context information exchange and integration. This allows them to be enriched and com-
plemented with additional and related information in order to enhance the richness and accuracy of the
contained information.

Context Dispatcher The context dispatcher is the central component within the context framework. It
handles all communication between context providers and propagates context models between them. It is
notified whenever a new context model has been acquired by a context provider. The context dispatcher
collects such updated context models, aggregates them, performs additional processing like inference and
consolidation, and creates the so-called context configuration (see below), which is a complete, accurate, and
consistent representation of the current context, and is subsequently propagated to data providers. Currently,
reasoning and consolidation is performed on the basis of hard-coded rules. In order to dynamically deploy
new reasoning rules to the context dispatcher, a lightweight rule-based reasoner has been developed and
integrated into the framework.

Context Description Queue The context description queue is part of the context dispatcher8 and han-
dles the communication between the context providers and the context dispatcher. It implements specific
logic for the management and exchange of context models to enable the recovery of lost descriptions and also
serves as a compensation mechanism in case of temporarily unavailable context sources or malfunctioning
context providers. Therefore, it not only buffers the most recent context updates, but also stores previously
committed context updates. This allows the context framework to revert to previous context models to
sustain the proper execution of context acquisition processes.

8 Please note that the context description queue is not included in the Figure 3.

15

Model Manager The model manager is used for storing and tracking the context providers’ context
models that have been acquired in the course of context acquisition processes. For every context provider
deployed in the framework, the model manager stores the most recently updated context model together
with status information about the corresponding provider.

Orchestration Framework The orchestration framework dynamically orchestrates compatible context
providers in form of a direct acyclic graph based on the type of context information they provide. This graph
is called orchestration tree and resembles the concepts of a workflow scheme that allows for a controlled
execution of combined context acquisition tasks in a decoupled manner while maintaining data and process
consistency. By analyzing such data descriptions, the orchestration framework computes compatibility mea-
sures so that relationships between context providers can be inferred. Every context provider must therefore
provide an RDF description about the type of data it acquires and the vocabularies it uses for representing
that data. The orchestration framework operates completely independent from other framework components
and is initiated automatically whenever a new context provider is deployed in the framework.

Workflow Manager The workflow manager is responsible for the management and coordination of the
context providers’ acquisition processes where compatible context providers are orchestrated in an orchestra-
tion tree. Those orchestration trees are executed in context acquisition workflows, that control and manage
the acquisition tasks of the involved context providers to sustain a deterministic and consistent behavior.
Context updates are propagated through context acquisition workflows and routed between compatible con-
text providers. When all context acquisition tasks have finished, the workflow manager sets the corresponding
entries in the model manager and notifies the context dispatcher that a new global context model can be
created.

Registry The registry is the central storage component where all context and data provider deployed in the
framework must register in order to be integrated in acquisition and replication workflows. It automatically
notifies the orchestration framework whenever a new context provider has been registered so that it can be
automatically orchestrated with compatible providers.

Context Configuration The context configuration represents an aggregated version of all context providers’
context models. It is created by the context dispatcher when all context acquisition workflows completed
and the updated context models of their containing context providers are available.

Replication Manager The replication manager controls and orchestrates all data replication tasks. It
operates completely decoupled from the other framework components and gets notified by the context dis-
patcher whenever a new context configuration has been created. The replication manager is responsible for
the instantiation of the data provider control threads which control and monitor data replication tasks and
propagates the context configuration to each data provider. The replication manager also receives notifica-
tions about changed data replicas in order to initiate write-back and synchronization operations.

Data Providers Data providers replicate any kind of RDF data to the mobile device; they can request
data from virtually any external data sources or generate data replicas themselves and operate completely
decoupled and independent from each other. Each data provider is assigned a unique identifier that is used
as part of the addressing scheme to store data in the local triple store. Data provider adjust and initiate their
data replication tasks based on the analysis of the context configuration that they receive by the replication
manager. For instance, a data provider can analyze data regarding the current location of a device and
retrieve information about nearby points of interest.

Triple Store Our triple store implementation is designed to be a lightweight, efficient storage and retrieval
mechanism for RDF triples. It abstracts over the concrete storage mechanism that is used by the mobile

16

platform9 and provides support for named graphs [74], persistence, and RDF serialization and de-serialization.
It employs a normalized table layout (cf. [75]) where resources, literals, and blank nodes are stored in separate
tables10 and provides support for named graphs.

RDF Content Provider Replicated data sets are provided to external applications via the RDF content
provider. This provider is an individual implementation of an Android content provider (see [80]) for the
system-wide provision of RDF data and contains the projections for transforming RDF graphs into the
relational database schema of the local SQLite database and vice versa. It exposes a common interface
applications can use for performing query, update, insert, and delete operations on replicated data. It has
been extended with named graphs support [74] where each data replica is stored using a unique URI. Content
providers expose configurable content URIs that can be used for addressing specific parts of replicated data.

3.3 Orchestration of Context Providers

To facilitate this kind of cooperation between decoupled context providers, the context framework dynami-
cally routes data between context providers based on the type of context information they provide. Therefore,
the orchestration framework analyzes the data description of each context provider. Such a data description
consists of sets of mandatory and optional namespaces as well as terms, which can be processed as input
data by the respective context provider, as well as namespaces and terms that the context provider uses in
its output data.

Figure 4 depicts an excerpt of an exemplary data description. This complementary context provider extracts
contact data from acquired calendar data. A data description consists of an input description (indicated by
the ddesc:input property) and an output description (indicated by ddesc:output property). The former
specifies the data a context provider needs for performing its acquisition tasks. It may contain multiple
ddesc:vocabulary properties, covering the case that context providers may be capable of processing data
described with different vocabularies. Multiple vocabulary properties are interpreted by the orchestration
framework as alternatives, that is, they are interpreted as being connected with a logical or.

A vocabulary specification consists of three parts: the ddesc:namespace property, which holds the vocabu-
lary’s namespace that is used for an upper-level orchestration, and the ddesc:concepts and ddesc:properties

statements, which specify mandatory and optional concepts and properties that the context provider pro-
cesses. The latter specifications allow for a detailed, element-level orchestration of context providers.

Additionally, a data description specifies the namespaces and terms that the context provider emits as output
data (indicated by the ddesc:output property). This property is mandatory for all context providers. The
output description follows the schema of the input description, consisting of parts for vocabulary, concepts,
and properties. In contrast to the input specification, the output specification may consist only of mandatory
elements11.

The orchestration framework can be configured to either perform a loose orchestration on the namespace level,
or a detailed one by considering concepts and properties given by the context providers’ data descriptions.
When a new context provider is found in the system, the orchestration framework analyzes its data description
and based on its configuration integrates the context provider in the orchestration graph. While running
completely decoupled from the context framework, rebalancing the orchestration graph does not affect context

9 Most mobile systems use specific storage systems such as the Record Management System (J2ME compatible
devices) or a SQLite database (Google Android).

10 A discussion regarding other database layouts for storing RDF triples including their advantages and limitations
can be found in [76].

11 According to the RDF semantics it is possible to specify optional data, although they will not be considered by
the orchestration framework in its current version.

17

1 <urn:uuid:b772a3a2-46d4-4c43-8f71-7080915ddba7>

2 a ddesc:ContextProvider ;

3 ddesc:input [

4 ddesc:vocabulary [

5 ddesc:namespace <http://www.semanticdesktop.org/ontologies/ncal#> ;

6 ddesc:concepts [

7 ddesc:mandatory ncal:Attendee, ncal:Calendar, ncal:Event ;

8 ddesc:optional ncal:Organizer, ncal:EventStatus

9] ;

10 ddesc:properties [

11 ddesc:mandatory ncal:member, ncal:method ;

12 ddesc:optional ncal:eventStatus

13]

14]

15] ;

16 ddesc:output [

17 ddesc:vocabulary [

18 ddesc:namespace <http://xmlns.com/foaf/0.1/> ;

19 ddesc:concepts [

20 ddesc:mandatory foaf:Organization, foaf:Person

21] ;

22 ddesc:properties [

23 ddesc:mandatory foaf:knows, foaf:status, foaf:name

24]

25]

26] .

Fig. 4. Exemplary data description for a complementary context provider for extracting contact data from calendar
entries

18

acquisition tasks as such. The matching value for each pair of context providers is computed by a matching
algorithm based on configurable scores for correspondences on the namespace, concept, and property levels.
The matching algorithms performs an arithmetic matching based on data similarities and is additionally
capable of including RDFS semantics such as rdfs:subClassOf relationships. For instance, if one context
provider emits foaf:Person instances and another context provider requires foaf:Agent instances as input
data, the matching algorithm detects the compatibility between these differing concepts since foaf:Person

is a subclass of foaf:Agent according to the FOAF ontology [77].

3.4 Formal Model for Orchestrating Context Providers

The idea of orchestrating context providers is to augment and complement contextual information to build
richer, more expressive and elaborated context descriptions while maintaining data and processing consis-
tency, accurateness, and completeness. Therefore, context providers are orchestrated in a directed acyclic
tree called orchestration tree based on the type of context information they acquire and provide.

Let P be the set of all primary context providers Pi with P := {Pi|i = 1, . . . , x} and C the set of all
complementary context providers Cj with C := {Cj |j = 1, . . . , y}. A context source that is wrapped by a
context provider is denoted as Sk; let S be the set of all potential context sources Sk ∈ S and let A be the set
of all context providers Ak where A := {Ak|k = 1, . . . , x + y} that are deployed on the context framework
and wrap a specific context source Sk irrespectively of their concrete type. Therefore, we can state that
the set of context providers A is the union of the sets of all primary and complementary context providers
(P ∪C) where P and A can be equal in case only primary context providers are deployed on the framework,
whereas C is always a real subset of A since complementary context providers always require a primary
context provider to be operational:

A = P ∪ C with P ⊆ A ∧ C ⊂ A and P ∩ C = ∅ (1)

Context providers specify the data they provide in a data description (see Section 3.3) that serves as a basis
for defining relations between compatible context providers in terms of the contextual data they acquire and
require for performing their acquisition tasks. These relations are analyzed by the orchestration framework
and recorded in an adjacency matrix (cf. Figure 6). For each primary context provider Pi ∈ P we can derive
an orchestration tree OP

i from the adjacency matrix (cf. Figure 7). An orchestration tree O is a directed
acyclic tree whose root element is always a primary context provider Pi and the adjacent nodes represent
complementary context providers Cj that complement the data acquired by the corresponding primary
context provider Pi. Therefore, there is always a 1:1 relationship between a primary context provider Pi and
it corresponding orchestration tree OP

i where a projection Pi 7−→ OP
i exists for all Pi ∈ P and OP

i ∈ O.

An orchestration tree OP
i can be represented as a directed acyclic graph (V,E, α, ω), where the vertices V

represent context providers, and the edges E represent relations between them in the form of exchanged
context models, where the context model of a predecessor node is consumed by its successors. α and ω are
projections and specify concrete relations between predecessor and successor context providers.

More specifically, an orchestration tree O = (V,E, α, ω) can be described as follows:

1. V is defined as the non-empty set of a primary context provider Pi and its corresponding complementary
context providers CP

i : V := {Pi} ∪ CP
i

2. R is the defined as the set of relations r that exist between the context providers contained in V where
r is defined as the tuple r ∈ {Pi} × CP

i ∪ CP
i × CP

i

3. V ∩R = ∅

19

4. α : R → V and ω : R → V are projections where α(r) is the starting or direct predecessor context
provider and ω(r) the ending or direct successor context provider of the relation r. α(r) and ω(r) are
adjacent to each other.

5. ∀r ∈ R : α(r) 6= ω(r)

With this definition, orchestration trees can be represented in an adjacency tableau as depicted in Figure 5
that represents the relations ri together with preceding and adjacent context providers Pi ∈ P and Cj ∈ C.

α ω

r1 P1 C1

r2 P1 C2

r3 P2 C5

r4 C2 C3

r5 C2 C4

Fig. 5. Example of an adjacency tableau for eight context providers

The set V O
i ∈ OP

i contains the primary context provider Pi ∈ P as well as all compatible complementary
context providers orchestrated in the orchestration tree OP

i . Therefore, let CP
i be the set of complementary

context provider Cj ∈ C, which are orchestrated in an orchestration tree OP
i where CP

i ⊆ C. Hence, V O
i ∈ OP

i

can be defined as the union of the primary context provider Pi ∈ P and the set of compatible context providers
Cj ∈ CP

i :

V O
i := {Pi} ∪ CP

i where CP
i ⊆ C (2)

As a consequence, the set of all complementary context providers C can also be defined as the union of the
partial sets of complementary context providers CP

i orchestrated in an orchestration tree OP
i and the set of

providers Ck that are also deployed on a system but not part of any orchestration tree OP
i :

C :=

|P|⋃
i=1

CP
i ∪ Ck with

|P|⋂
i=1

CP
i = ∅ (3)

Since an orchestration tree OP
i contains only distinct elements, where a context provider Pi or Cj can only

be part of one orchestration tree, we can state that all sets V O
i and V O

j are pairwise disjunct:

∀V O
i ∈ OP

i , V
O
j ∈ OP

j , i 6= j : V O
i ∩ V O

j = ∅ (4)

Further, let O denote the union of all orchestration trees OP
i with Pi ∈ P and |O| = |P |, and V O

i the set of
all context providers orchestrated within an orchestration tree OP

i . Therefore, V O
i can be defined as:

O :=

x⋃
i=1

OP
i and

x⋂
i=1

V O
i = ∅ where x = |P| (5)

For building an orchestration tree, the orchestration framework analyzes the data description of each context
provider and builds an adjacency matrix. The adjacency matrix represents a graph G = (V,E) with V =

20

{v1, ..., vn}, n = |A| where vertices vi represent context providers orchestrated in an orchestration tree. Then,
E can be represented in a n× n-matrix, where

aij =

{
1→ {vi, vj} ∈ R
0→ otherwise

(6)

The adjacency matrix servers as a basis for building the orchestration trees OP
i of primary context providers

Pi and associated complementary context providers Cj ∈ CP
i . It contains a separate row and column for

every element Pi ∈ P and Cj ∈ C. Each element in the matrix corresponds to a distinct tuple (Pi, Cj) or
(Cj , Ck) from the cartesian products P× C and C× C. In case there is a relation between Pi and Cj or Cj

and Ck, the matrix coefficient is set to 1 at the corresponding position. All other coefficients remain at 0.

Figure 6 depicts an example of an adjacency matrix containing three primary context providers P1,...,3 and
five complementary context provider C1,...,5. Each row represents a particular context provider where the
matrix coefficients in each column indicate a relationship to the context provider given in each column in
case its value is set to 1. Likewise, 0 indicates no relationship r between the context provider of the current
row and the context provider of the current column. Primary context providers can not be connected among
each other, i.e., primary context providers always have complementary context providers as successors.
Complementary context providers in contrast can be connected among each other in a non-cyclic way.

P1 P2 P3 C1 C2 C3 C4 C5

P1 0 0 0 1 1 0 0 0
P2 0 0 0 0 0 0 0 1
P3 0 0 0 0 0 0 0 0
C1 0 0 0 0 0 0 0 0
C2 0 0 0 0 0 1 1 0
C3 0 0 0 0 0 0 0 0
C4 0 0 0 0 0 0 0 0
C5 0 0 0 0 0 0 0 0

=

0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Fig. 6. Example of an adjacency tableau and corresponding matrix for eight context providers

As an example, let there be three primary context providers P1,...,3 and five complementary context providers
C1,...,5 deployed within the framework. By analyzing the data descriptions exposed by each context provider,
the adjacency matrix depicted in Figure 6 can be created based on the compatibility indicators computed by
the orchestration framework. The first three rows represent the adjacent complementary context providers
Cj ∈ C of P1, P2, and P3 that take their context models as input. For instance, P1 has the two complementary
context providers C1 and C2 as direct successors that are able to refine and augment the context model
delivered by P1.

The values in row 4 show the direct successors of the first complementary context provider C1. Since the
matrix coefficients in the entire row are set to 0, there exist no relationships to other complementary context
providers. C2 in line 5 for instance has two adjacent context providers C3 and C4, which both do not have
any further successors that take their context models as input for their acquisition tasks. By analyzing the
given adjacency matrix, the orchestration trees OP

i depicted in Figure 7 can be derived for each primary
context provider P1,...,3

12. Those orchestration trees represent atomic units of context acquisition workflow
schemes.

12 The orchestration tree OP
3 for context provider P3 can be considered a special case of an orchestration tree that

only contains a root element and no further adjacent elements.

21

P1

C2C1

C3 C4

P2

C5

P3

Orchestration Tree 1 Orchestration Tree 2 Orchestration Tree 3

Fig. 7. Orchestration graphs derived from the adjacency matrix

3.5 Context Model Aggregation

The following paragraph provides an overview of the context acquisition workflows from a data-centric view
and illustrates the process of building a global context model, the so-called context configuration from the
context providers’ context models.

Let MP
i be the context model created by a primary context provider Pi, and MC

j the context model created
by a complementary context provider Cj . Since there is a 1:1 relation between a context provider and the
context model it creates, we can define a projection Ak 7−→MA

k with Ak ∈ A between any context provider
and its context model. A context model M is represented as an RDF graph consisting of a finite set of
resources represented by their URIs and denoted as U, a finite set of blank nodes B, and a finite set of
literals L13. Those elements are the building blocks of an RDF statement which is represented as a triple
T = (S,P,O) consisting of a subject S which is either a URI reference or a blank node, a predicate P which
is a URI reference, and an object O that can either be a URI reference, a blank node, or a literal. A context
model M itself can be defined as an element from the power set M that is defined as the cartesian product
of the union of U and B, U, and the union of the sets U, B, and L:

M ∈M where M := P(U ∪ B× U× U ∪ L ∪ B) (7)

An orchestration tree OP
i for a primary context provider Pi is considered as an atomic unit, which—when all

acquisition tasks of the contained context providers have finished—provides an aggregated context model MO
i

that is composed of the context models of contained context providers. Since OP
i denotes the orchestration

tree of a primary context provider Pi ∈ P, let MO
i denote the compounded context model acquired by

the context providers orchestrated within the orchestration tree OP
i . As there is a 1:1 relationship between

an orchestration tree OP
i ∈ O and the compounded context model MO

i acquired by its containing context
providers, we can define the projection OP

i 7−→MO
i . Further, let MC

i be the set of context models acquired
by all Cj ∈ CP

i . Hence, the compound context model MO
i of orchestration tree OP

i is defined as

MO
i := {MP

i } ∪
|CP

i |⋃
j=1

MC
j ∈MC

i (8)

When the context models MA
k ∈ M of all context providers being part of all orchestration trees OP

i ∈ O
were acquired successfully, the context configuration CC can be created. Therefore, let CC be the union

13 For the purpose of this model, no distinction is made between plain and typed literals (cf. [54]).

22

of all compounded context models MO
i of the orchestration trees OP

i where i = |O|. Then, we can define
CC as the result of a function f(x) that processes the compounded context models of all orchestration trees
OP

i ∈ O and infers additional information by applying reasoning techniques.

CC := f(MO
i |i = 1 . . . |O|) (9)

The orchestration tree OP
i of a primary context provider Pi ∈ P delivers an aggregated context model MO

i

that is compounded of the context models of the constituting context providers MP
i and MC

i . The context
configuration is then built by the context dispatcher by integrating, aggregating, and consolidating those
compounded context models.

3.6 Processing Workflow

For processing contextual information represented as RDF graphs, we apply concepts from graph theory
and distributed transaction management to maintain context accuracy, consistency, and completeness while
guaranteeing computational efficiency in terms of required resources and processor load. An orchestration
tree OP

i is executed within a context acquisition workflow denoted as WFP
i that serves as a workflow scheme

for the execution of the contained context providers and monitors acquisition progress. At any point in time,
multiple context acquisition workflows can be active while there is a 1:1:1-relationship between a primary
context provider Pi, the corresponding orchestration tree OP

i , and its workflow scheme WFP
i . Every workflow

scheme is considered an atomic unit where the containing context providers acquire their context models
independently from context providers contained in other workflow schemes. This concepts resembles the idea
of the atomicity and isolation properties defined in the ACID paradigm for database transactions [78]. In
that sense, the context models acquired within the course of their corresponding acquisition workflows are
considered as a single transaction where only the corresponding compound model MO

i ⊆ CC is updated as
a whole in the context configuration CC.

Information about adjacent providers Cj ∈ CP
i are requested from the orchestration framework that returns a

context provider’s direct descendants. Those complementary context providers are executed in self-contained,
dedicated, and independent control threads called context acquisition control threads denoted as PCT (Cj)
that control and coordinate acquisition tasks and set the corresponding entries in the model manager when the
control thread finishes, i.e., when a context update has been acquired. Context acquisition control threads are
instantiated on demand in separate threads whenever the context of a preceding context provider has changed.
The acquisition processes of the involved context providers are completely decoupled and independently
executed in form of a single atomic transaction [78].

Algorithm 1 describes the relevant steps in the acquisition workflow carried out by the context dispatcher
for processing and aggregating context descriptions to built a global context model. The context dispatcher
regularly checks whether there are new context descriptions available. A context description DA

k for a context
provider Ak can be defined as the quadruple D = (M,ρ, σ, τ) where M represents the context model MA

k

of the corresponding context provider Ak, ρ and σ represent status information and a status code, and τ a
time stamp when the context model was created. Therefore, a context description DA

k can be considered a
projection of a context model MA

k for a given context provider Ak at a given time τ : MA
k 7−→ DA

k (τ).

In case a new context description DA
k is available, the context dispatcher retrieves the new context description

and stores it in the model manager. For each context description DA
k , the corresponding context provider Ak

is requested from the registry. The context dispatcher then checks the context description DA
k and calculates

a unique value that reflect certain characteristics and the current status (see Table 2) of the corresponding
context provider Ak. Therefore, we have defined some basic conditions derived from the requirements of
the proposed mobile context framework (see Section 3.1). Each condition is assigned a unique value of the
form 2n where n refers to a certain condition. This allows to represent unique states by simply summarizing

23

Input: ContextDescription Di

Output: -

while ContextDispatcher is running do
if all acquisition workflows have finished then

collect and aggregate context models MA
j where 1 ≤ j ≤ |A| ;

create ContextConfiguration CC ;
notify ReplicationManager ;
reset ModelManager ;

end
if ContextDescriptionQueue contains new ContextDescriptions then

forall the ContextDescriptions Di ∈ ContextDescriptionQueue do
obtain context description Di from ContextDescriptionQueue ;
retrieve corresponding context provider Aj ↔ Di ;
calculate status value for Di ;

if Aj ∈ P and MA
j /∈ ModelManager then

store MA
j in ModelManger ;

if hasSuccessor(Aj) then
WFA

j ← new ContextAcquisitionWorkflowThread ;

forall the Successors Ck ∈ CA
j do

PCT (Ck)← new ContextAcquisitionControlThread ;
PCT (Ck).start() ;

end

end

end

else if Aj ∈ C and Aj ∈WFP
x then

store MA
j in ModelManger ;

if hasSuccessor(Aj) then
forall the Successors Ck ∈ CA

j do
PCT (Ck)← new ContextAcquisitionControlThread ;
PCT (Ck).start() ;

end

end

end

else if Aj ∈ P and MA
j ∈ ModelManager and exists(WFP

x , x 6= j) then
replace MA

j in ModelManager ;
if hasSuccessor(Aj) then

WFA
j ← new ContextAcquisitionWorkflowThread ;

forall the Successors Ck ∈ CA
j do

PCT (Ck)← new ContextAcquisitionControlThread ;
PCT (Ck).start() ;

end

end

end

end

end

end
Algorithm 1: Algorithm for processing context descriptions in pseudo code

24

Table 2. Conditions for determining a context provider’s state

Condition Value Description

A 20 checks whether a context model has been sent by the context provider and thus is already
contained in the model manager.

B 21 indicates whether the context provider has adjacent complementary context providers that
are orchestrated within a context acquisition workflow.

C 22 indicates whether an acquisition workflow thread that coordinates the execution of the context
providers orchestrated within that workflow has already been initiated for the given primary
context provider.

D 23 indicates whether the given complementary context provider is part of an already instantiated
acquisition workflow.

E 24 indicates whether the corresponding entry for a given context provider in the model manager
is locked, meaning that no context model propagation is possible until the corresponding
workflow thread has finished.

F 25 checks whether the given context provider is an active, that is, primary context provider.

G 26 checks whether the corresponding context acquisition workflow or control thread has been
finished depending on the context provider’s type.

the distinct property values that match for a given provider. For instance, if a context provider is primary
typed and has adjacent providers but no acquisition workflow has been initiated yet, its status value is 34
(0 ∗ 20 + 1 ∗ 21 + 0 ∗ 22 + 0 ∗ 23 + 0 ∗ 24 + 1 ∗ 25 + 0 ∗ 26). If a condition evaluates to true, the corresponding
value is added to the provider’s status value that determines how a context provider as well as its context
model and adjacent providers are to be processed. In accordance to this value, the corresponding processing
steps (see Table 3) will be executed; if the context description DA

k was sent by a primary context provider
Pi whose context model MP

i has not been stored in the model manager yet, it will be extracted from
the context description DP

i and stored in the model manager. If Pi has complementary context providers
Cj ∈ CP

i , 1 ≤ i ≤
∣∣CP

i

∣∣ associated to it in an orchestration tree OP
i , a new instance of an context acquisition

workflow WFP
i is created. The direct descendants of Pi (cf. the adjacency matrix depicted in Figure 6) are

requested from the orchestration framework and the context acquisition control threads PCT (Cj) which
executes and controls the acquisition tasks will be created and initiated.

If Ak is a primary context provider with Ak 7−→ Pi has already committed its context model MP
i but has

no direct descendants, that is, no relations to complementary context providers and there are other context
acquisition workflows WFP

k where i 6= k running in parallel, its already stored context model MP
i can be

replaced by the new one in the model manager without violating consistency requirements. The same applies
to primary context providers Pl whose context acquisition workflows are finished, that is, all associated
complementary context providers Cj ∈ CP

i , 1 ≤ k ≤
∣∣CP

x

∣∣ have delivered their context models, but other
context acquisition workflows are still running. In this case, a new context acquisition workflow WFP

l will
be initiated and the previous context models can be replaced by new (updated) models.

In case a context acquisition workflow WFA
i has finished, it notifies the workflow manager, which then checks

whether there exist further context acquisition workflows WFA
j where j 6= k. If all acquisition workflows

have finished, the workflow manager notifies the context dispatcher that a new context configuration CC
can be built. The context dispatcher then starts the merging and consolidation process by collecting all
updated and unaltered context models MA

k . Updated context models are retrieved from the model manager
whereas unaltered context models are retrieved from the context description queue. Those models will then
be aggregated (merged) where consolidation and reasoning rules are applied by a lightweight rule reasoner.
After the context configuration is built, it will be forwarded to the replication manager to initiate the
replication tasks of the deployed data providers.

25

Table 3. Excerpt of the calculation and processing matrix for context providers including descriptions and rules

Condition A B C D E F G

Value 20 21 22 23 24 25 26 Sum Description & Rule

#1 0 1 0 0 0 1 0 34 This is a primary context provider with adjacent context providers but no
context acquisition workflow has been created yet;
rule: create a new context acquisition workflow for the given context provider

#2 0 1 0 1 0 0 0 10 This complementary context provider is part of a context acquisition workflow
and has adjacent complementary context providers attached to it that further
augment its context model.
rule: retrieve complementary context providers and initiate acquisition tasks

#3 0 1 0 0 0 0 0 2 This is a complementary context provider that has further complementary
context providers attached to it as successors that take its context model as
input data for their acquisition tasks.
rule: retrieve complementary context providers and initiate acquisition tasks

#4 0 0 0 1 0 0 0 8 This is a complementary context provider that is part of a context acquisition
workflow. It has no adjacent providers attached to it and its context model
isn’t stored in the model manager yet.
rule: store model in model manager

#5 1 1 1 0 1 1 0 55 This is the status of a primary context provider with adjacent complementary
context providers that has already delivered a context model stored in the
model manager. The corresponding context acquisition workflow is still in
progress since not every complementary context provider contained in the
corresponding orchestration tree has finished its acquisition task yet.
rule: refuse the context provider’s updated context model

#6 1 1 0 0 1 1 1 115 A primary context provider whose context acquisition workflow has already
finished sends an updated context model. Since there are other acquisition
workflows currently running, its updated context model can be accepted and
a new context acquisition workflow can be initiated.
rule: reset corresponding entries in model manager, store context model and
initiate new context acquisition workflow

#7 1 0 0 0 0 1 1 97 A primary context provider without adjacent complementary context providers
as sent an updated context model.
rule: update corresponding entires and store context model in model manager

...

26

4 Implementation

4.1 The Google Android Platform

Android is an open software stack for mobile devices consisting of a Linux-based operating system kernel, a
middleware, key applications, and a set of API libraries for accessing native system functions and natively
deployed sensors [79]. It was released in 2007 under the auspices of the Open Handset Alliance14, a coalition
of 79 technology and mobile companies15 and has gained noticeable attentions since it represents a new
generation of mobile application development platform and software development kit [80]. One of the key
architectural features of the Android platform is the open communication infrastructure where application
can reuse functionality and exchange data in a controlled and flexible way. Android includes a highly spe-
cialized virtual machine, called Dalvik VM that was designed for low-powered handheld devices as those
devices “lag behind their desktop counterparts in memory and speed by eight to ten years” [81]. In contrast
to conventional Java virtual machines which use a stack-based architecture for data storage, the Davlik VM
is built upon a register-based architecture and transforms generated Java classes into a performance and
memory optimized Dalvik specific file format.

Android includes a lightweight and powerful relational SQLite database that offers dedicated libraries for
its utilization within application and services to store data persistently. Such data can be shared across
applications in a controlled manner using Android’s inter-process communication model. In contrast to the
hard-wired application models of desktop operating systems, Android offers an intend-based application
model that allows an application to specify a certain kind of functionality it requires for data processing
where the operating system chooses the application that best matches. Access to core-system libraries and
functions is offered via native APIs that can be used by both native and non-native applications. Android
employs an equal, non-prioritized execution policy for native and non-native applications that are executed in
the same runtime, and offers a complete multithreading environment where applications can place extensive
computational tasks in separate threads [82].

This environment brings the following options for deploying a framework that provides the desired function-
ality necessary for an efficient acquisition, management, storage, and dissemination of context information:

– A service can constantly scan the environment for exploitable context sensors and ubiquitous devices
and integrate them dynamically in a context framework.

– A context framework can be realized as a background service that is executed transparently and au-
tonomously from the user while not affecting any of their tasks nor requiring explicit user attention.

– The concept of content providers can be deployed for the controlled and fine-grained provision of repli-
cated data as well as for the provision and utilization of context data.

– Broadcast receivers can notify the user about relevant events in a non-disruptive manner while providing
specialized configuration views in case explicit user inputs are necessary, e.g, for integrating a recently
discovered ubiquitous sensor.

– The open and uniform architecture of Android allows for a broad utilization of locally deployed sensors
where native APIs offer uniform and controlled access to those peripheral hardware.

4.2 Context and Data Providers

All the basic data of context and data providers such as name, identifier, data description, and status is held in
the AbstractBasicProvider class and specified by the IBasicProvider interface. The AbstractContextProvider

14 Open Handset Alliance: http://www.openhandsetalliance.com/
15 see http://www.openhandsetalliance.com/oha_faq.html

27

http://www.openhandsetalliance.com/
http://www.openhandsetalliance.com/oha_faq.html

Fig. 8. Structured class diagram for context and data providers

28

class implements methods regarding the communication with the framework as well as for the creation and
management of the context providers’ models. The method declarations defined in the IContextProvider

interface represent a minimum functionality a context provider must expose and are implemented in the
sub classes or delegated to concrete context provider implementations (e.g. contextChanged() method).
Primary context providers must be inherited from the abstract class ActiveContextProvider whereas com-
plementary context provider are deduced from the abstract class PassiveContextProvider. Both classes are
by itself subclasses of AbstractContextProvider and implement specific behavior for each provider type.
Both methods specify the abstract methods detectContextImpl() which contains the concrete acquisition
logic and buildRdfModelImpl() which holds the code for building the RDF context models. These abstract
methods must be implemented in each context provider individually. Primary context providers acquire
context-relevant data independently from any requests in a proactive and autonomous manner whereby they
run in a separate thread where their super class includes the infrastructure for their control. Passive context
providers initiate their context acquisition tasks when they were notified by the ContextDispatcher about
the availability of a required context input model.

The generic functionality of data providers are implemented in the abstract class AbstractDataProvider

that is a subclass of AbstractBasicProvider. It contains member variables for storing the context configura-
tion and specifies the two abstract method declarations updateContextImpl() and updateDataImpl() that
must be implemented by individual data provider. The updateContextImpl()-method allows concrete data
providers to implement an individual processing logic for analyzing the context configuration. The actual
replication code must be implemented in the updateDataImpl()-method, which is called by the replication
manager. We decided to decouple the replication process so that a data provider can perform additional pro-
cessing before it initiates its replication workflow. The two interfaces ISelectiveCheckoutDataProvider

and IWriteBackDataProvider contain method declarations for more complex data replication tasks, e.g.,
for replicating only subsets of data sets [83] or bidirectional synchronization of replicated data.

So far, a number of concrete context providers were implemented:

– GPSContextProvider is an active (primary) context provider that utilizes the device’s internal GPS
module for retrieving GPS coordinates. It can further be configured to use a WiFi-based location as-
certainment method. The GPS context provider returns its data as latitude and longitude coordinates
using the W3C WGS84 vocabulary16.

– GeonamesContextProvider is a passive (complementary) context provider that is able to interpret any
geographical coordinates expressed using the W3C WGS84 vocabulary and requests the GeoNames.org
web service in order to resolve the GPS coordinates to a concrete geographical location identified by
a GeoNames URI. Therefore it is an ideal complement to the GPSContextProvider, whose output is
enriched with logical location concepts in addition to physical GPS coordinates; however, it can in
general be used to process any GPS coordinate information regardless of its source.

– GoogleCalendarContextProvider is an active (primary) context provider that retrieves appointments
from the user’s calendar within a configurable time span (e.g., 72 hours) starting from the current time.
For all events, a set of metadata are extracted and added to the context model, including the event’s
names and start/end times, location descriptions associated to the events, and information about each
event’s attendees. It uses terms from the popular Dublin Core vocabulary17 as well as the NEPOMUK
calendar ontology18 for modeling extracted metadata.

– LocalAddressbookContextProvider is an active (primary) context provider that exposes the contacts
found in the use’s local address book to make them available for relevant data providers. Properties like
name, email addresses, phone numbers, postal addresses, and instant messaging contact IDs are extracted
and inserted into the context model, where they are expressed using the popular FOAF vocabulary19.

16 http://www.w3.org/2003/01/geo/
17 http://purl.org/dc/terms/
18 http://www.semanticdesktop.org/ontologies/2007/04/02/ncal/
19 http://xmlns.com/foaf/0.1/

29

http://www.w3.org/2003/01/geo/
http://purl.org/dc/terms/
http://www.semanticdesktop.org/ontologies/2007/04/02/ncal/
http://xmlns.com/foaf/0.1/

1 // handle location updates

2 // (called by Android location manager)

3 public void onLocationChanged(Location location) {

4 this.location = location;

5 }

6

7 @Override

8 // detect context model

9 // (called by ActiveContextProvider)

10 protected void detectContextImpl() {

11 // read data from the location object (location object is provided by)

12 double lat = this.location.getLatitude();

13 double lon = this.location.getLongitude();

14 String gpsProviderType = this.location.getProvider();

15

16

17 // clear context model

18 this.getCurrentContextModel().removeAll();

19

20 // create new context resources

21 Resource context = getCurrentContextModel().createResource();

22 context.addProperty(RDF.type, Vocabulary.Mobisem.CONTEXT);

23 Resource location = getCurrentContextModel().createResource();

24 context.addProperty(Vocabulary.Mobisem.CURRENT_LOCATION, location);

25

26 // attach coordinates to location resource

27 location.addProperty(Vocabulary.Geo.LAT, lat);

28 location.addProperty(Vocabulary.Geo.LONG, lon);

29 if (gpsProviderType != null)

30 location.addProperty(Vocabulary.Mobisem.LOCATION_PROVIDER_TYPE, gpsProviderType);

31 }

Fig. 9. Code snippet of GPSContextProvider, converting location data into an RDF-based context model

Typically, context providers use any kind of input data and convert it to an RDF model that represents
this data in machine-processable form. Ideally, context providers use standardized, publicly available, and
community-accepted vocabularies for this purpose in order to enable interoperability between components
from different manufacturers. As an example, Figure 11 shows how the GPSContextProvider builds a sim-
ple RDF model representing containing GPS coordinates obtained from the device’s location service. In this
example, the context provider registers itself as a location listener in the Android location subsystem; in con-
sequence, the onLocationChanged() method is called every time the device’s location changes. In this case
the context provider buffers the most recent Location object. In turn, the detectContextImpl() method is
regularly invoked by the ActiveContextProvider class. It creates a resource of type mobisem:Context and
uses the property mobisem:currentLocation to associate the context with another resource, representing
the actual location. This second resource is described with two properties for the latitude and longitude
values, as well as one property for the type of the used location provider, if applicable.

In our motivating example (cf. Section 1.2) a component that provides location information can be used
to update information while John is on travel. It can be used for a variety of purposes, including the
provisioning of general information about his location. It could be combined with information about John’s
personal interests in order to suggest points to visit in his spare time, or it could be combined with his
calendar information in order to suggest public transport routes to the address where his next meeting takes
place.

30

1 @prefix mobisem: <http://www.mobisem.org/2009/01/context#> .

2 @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

3

4 [] a mobisem:Context ;

5 mobisem:currentLocation [geo:lat 48.175443 ; geo:long 16.375493 .] .

Fig. 10. Context description as returned by the GPSContextProvider (Turtle notation)

Data providers are built upon the abstract classes and interfaces of context provides, AbstractBasicProvider
and IBasicProvider; they actually expose very generic and common interfaces for managing their basic data
as depicted in Figure 8. Data providers are responsible for handling all data replication tasks. They retrieve
the context configuration from the replication manager which signals them to initiate their replication tasks
based on their analysis of the relevant entities contained in the context configuration. Each data provider
wraps a specific data source and replicates data to the local SQLite data base deployed on the Android plat-
form. The framework does not expose any restrictions on the data sources to be wrapped by data providers;
they can wrap a remote file system object, a remote data base, web services and web applications respectively,
or generate data themselves. For instance, a data provider may act upon changes of the current location and
retrieve information about nearby points of interest. Each data provider is assigned a named graph under
which it stores its data in the triple store. The only requirement exposed is that replicated data must be
available as RDF. The following concrete data providers were implemented so far:

– DBpediaLocationDataProvider is able to process geo coordinates as well as Geonames ids of location
resources (which are taken from the global context model). For all resources of type geonames:Feature,
the data provider retrieves relevant location information from DBpedia.org by querying the DBpedia
SPARQL endpoint for relevant resources, based on their label. For all returned resources, descriptive
triples are stored on the mobile device.

– MobiSemDataProvider is the default data provider for replicating data from a (versioned) MobiSem
repository [83] to the mobile device. Through this client-/server-based infrastructure, any data source
that can be expressed as RDF triples (e.g., file systems, relational data bases, etc.) can be exposed as
versioned RDF graph repository, and can be replicated to a mobile device. For this purpose, a REST-style
protocol has been developed that is used to specify additional metadata (like context information or the
current graph version) in the form of additional HTTP headers. In addition to serving and versioning
RDF graphs, the MobiSem repository is able to perform ranking and selection of RDF triples based on
a context model that may be sent from the client alongside a checkout request. In this case, only parts
of RDF graphs are replicated to the mobile device, saving transmission and storage capacity [83]. The
SelectiveHomebaseDataProvider, in addition to providing support for such partial replicas, enables
the client to write changes to replicated data back to the remote repository, which then takes care of
merging and conflict detection [83].

– SindiceTopResultsDataProvider extracts possible search terms from the global context model by an-
alyzing all literals found therein. It tokenizes the literals and constructs a list of most frequent keywords,
which are in turn sent to the Sindice.com Semantic Web indexing service. From there it retrieves the
top results and converts them into an RDF model, which is then stored on the mobile device. Option-
ally, the data provider is able to retrieve more information about the top results by de-referencing the
resource URIs, according to Linked Data principles. Any data retrieved via this option is also stored on
the mobile device’s data store.

To illustrate the basic functionality of a data provider, we describe the DBpediaLocationDataProvider in
more detail. It consists of two main methods: the first one, updateContextImpl(), is called by the data
provider’s implementation base class (AbstractDataProvider) whenever it receives an updated context
model from the context dispatcher. In this method, the data provider analyzes the context model and

31

1 // analyze the current context model (stored in this.contextModel)

2 @Override

3 protected void updateContextImpl() {

4 this.currentResourceLabels = new ArrayList<String>();

5

6 // iterate over all geonames features in the context model

7 StmtIterator si1 = this.contextModel.listStatements(null, RDF.type, GEONAMES_Feature);

8 while(si1.hasNext()) {

9 Resource featureResource = si1.nextStatement().getSubject();

10

11 // iterate over all statements of these features

12 StmtIterator si2 = this.contextModel.listStatements(featureResource, null, (RDFNode) null);

13 while(si2.hasNext()) {

14 // check if a label property is attached

15 Statement s = si2.nextStatement();

16 if(s.getObject().isLiteral() && ! this.currentResourceLabels.contains(s.getString())) {

17 this.currentResourceLabels.add(s.getString());

18 }

19 }

20 }

21 }

22

23 // update data from the remove data source

24 @Override

25 protected void updateDataImpl(Model targetModel) {

26 // construct DESCRIBE query for all location resources

27 StringBuffer queryBuffer = new StringBuffer();

28 queryBuffer.append("DESCRIBE ?concept WHERE { \n");

29 for(String featureLabel: this.currentResourceLabels) {

30 queryBuffer.append("{" +

31 "?concept rdfs:label \"" + featureLabel + "\"@en . " +

32 "?concept rdf:type dbpedia-owl:Place . " +

33 "} UNION \n");

34 }

35 queryBuffer.append("{} }");

36

37 // send query to DBpedia

38 HttpClient client = new DefaultHttpClient();

39 String url = this.serviceUri + "?query=" + URLEncoder.encode(queryBuffer.toString());

40 HttpGet method = new HttpGet(url);

41 method.addHeader("Accept", "text/plain"); // accept only N-TRIPLES

42 try {

43 // execute request

44 HttpResponse response = client.execute(method);

45

46 // read model into targetModel (which is then further processed by the context framework)

47 targetModel.read(response.getEntity().getContent(), "N-TRIPLE");

48 }

49 catch (Exception e) {

50 // error handling

51 }

52 }

Fig. 11. Code snippet of DBpediaLocationDataProvider, querying DBpedia for data about location resources

32

iterates over all resources of type geonames:Feature; i.e., all logical locations. For all these resources it
extracts the labels and stores them in a list of resource labels. In the second method, updateDataImpl()
(which is again called by the implementation base class whenever the data provider is requested to update
data) a SPARQL DESCRIBE query is constructed that incorporates all resource labels (in this example we
assume the user is interested only in information in English). Additionally it restricts the query to resources
of type dbpedia-owl:Place. This query is sent to the DBpedia query endpoint, and the results are read
into the targetModel variable, which is subsequently processed by the context dispatcher.

Since DBpedia provides a large amount of information about locations (including names, descriptions, geo-
graphic and statistical data, as well as links to related persons, buildings, and events) such a data provider
can be of great use in the case of our motivating example (cf. Section 1.2). John will be enabled to browse
relevant information about the places that he will visit during his next trip without the need to actually
search for it. By matching location information with John’s interests (which could be derived from his Web
browsing history, or tags he has used to annotate his photos) the system could recommend points of interests
to him; by combining location data with publicly available personal profiles (e.g., from FOAF data) John
could be notified of people that live in cities John is going to visit, and based on their interests it could
suggest meetings with potential customers or cooperation partners.

4.3 Utilization and Data Provision

Replicated data are provided to other applications through an RDF content provider which is automatically
instantiated and started by the Android when the provider is first requested. Content providers are treated
as singleton classes but can communicate with multiple ContentResolver-objects across system processes
and applications. This is the reason why the operations a content provider offers must be implemented in a
thread-safe manner to avoid side-effects and data inconsistencies.

Content providers usually expose their data using a table-based data model, where columns represent specific
types of data and rows a single record. Each data set a content provider exposes is identified via a unique
and public-accessible URI called the content URI that follows a well-defined scheme. A content URI always
starts with the content:// scheme to signal the system that the data is exposed by a content provider
followed by an authority part that specifies the content provider, e.g., org.mobisem.rdfprovider, a path
segment that can be used to address specific types of data in case a content provider exposes multiple data
sets, e.g., /binary for a binary serialization, and an optional ID segment that allows for addressing specific
records, e.g, the URI or name of a data replica.

Figure 12 provides a example of storing an RDF graph to the database using the RDFContentProvider’s
insert()-method, which supports three different types of insertions: (1) inserting a complete graph, (2)
adding a partial graph to an existing one, and (3) adding single triples. The URI determines which insert oper-
ation is to be performed; for instance, by specifying the URI content://org.mobisem.rdfprovider/graphs,
a complete RDF graph is to be stored in the database. If only a partial graph is to be added to an existing
graph, the content://org.mobisem.rdfprovider/graph URI can be used instead. In case a graph already
exists under the given URI, the existing graph will be overwritten. We assume that the new graph is an up-
dated replica that results from a context update. All the data to be stored in the database must be wrapped
in a µJena model and serialized as a byte array.

Line 2 stores the graph’s URI (indicated by the GRAPH NAME variable) in the ContentValues using the name
key (indicated by the RDFContentProvider.ContentValues.NAME constant). In the next line, the RDF
graph is serialized as a byte array before it is added to the ContentValues. Finally, the insert()-method of
the RDFContentProvider is requested using the URI for adding a complete graph together with the graph
data stored in the ContentValues-object. In case storage was successful, the graph’s URI is returned.

33

1 ContentValues values = new ContentValues();

2 values.put(RDFContentProvider.ContentValues.NAME, GRAPH_NAME);

3 values.put(RDFContentProvider.ContentValues.MODEL, serializeModelAsByteArray(model));

4 URI uri = this.mResolver.insert(RDFContentProvider.CONTENT_URI_GRAPH, values);

Fig. 12. Example of storing an RDF graph using the RDFContentProvider’s insert()-method

The query()-method allows to query for data replicas stored in the local database. Depending on the
content URI, the RDFContentProvider either returns a collection of all data replicas’ names together with
the amount of triples included in each graph, an N-Triple-based representation of the triples contained in a
specific replica, or a serialized µJena model of a replica that can be parsed for further processing. Figure 13
depicts a code fragment for retrieving a byte array serialized data replica that can directly transformed to
an in-memory RDF model.

1 Cursor c = this.mResolver.query(

2 RDFContentProvider.CONTENT_URI_BINARY, null, REPLICA_UUID, null, null);

3 assertTrue(c.moveToFirst());

4 Model m = transformToRdfModel(c.getBlob(0));

Fig. 13. Example of transforming a data replica to a workable in-memory RDF model

The data replica retrieved from the triple store is stored in a cursor-object that allows for iterating over
the data contained in the result set. Therefore, the cursor is moved to the first entry (line 3) and the byte
array-based serialization of the requested data replica is passed to a transformation method that parses the
byte stream and creates an in-memory model of the data replica (line 4).

In general, the RDFContentProvider also allows for adding and removing triples (update)20 as well as deleting
all replicas stored in the database, a specific replica, or all the triples of a specific replica’s resource.

5 Conclusion and Future Work

In this chapter, we have introduced the concepts of Semantic Web-enhanced context-aware computing for
mobile systems and presented the MobiSem context framework that provides an infrastructure for intelli-
gently assisting mobile users by selectively replicating RDF data from remote data sources to a mobile device
according to their current and future information needs and the different contexts they are operating in. Since
research in context-aware computing and mobile systems shows that context and context-awareness should
be central parts of future mobile information systems, we drafted an application scenario that outlines how
Semantic Web-enhanced context-aware computing can support mobile users in fulfilling their information
needs that also serves as a motivating example.

This chapter provided an overview on how context is used in information system and discussed problems
and limitations of current context-aware computing approaches in information systems. Areas were pre-
sented where the introduction of concepts and technologies from the Semantic Web can make substantial
contributions in representing, processing, and managing contextual information. For this purpose, concepts
from graph theory, distributed transaction management, and the Semantic Web were adopted in order to

20 Updates to RDF graphs usually consist of two sets: one set that contains the triples to be added to an RDF graph
and another set that contains the triples to be removed from a graph.

34

demonstrate that a synthesis of those fields can serve as an architectural infrastructure for the efficient acqui-
sition, management, and processing of contextual information directly on a mobile device. In consequence,
dependencies to external systems can be reduced, and security and privacy issues are reflected since private
data do not need to be transferred outside the mobile system.

The proposed architecture allows for a controlled acquisition, aggregation, and consolidation of contextual
information taking into account mobile operating system peculiarities. At the same time it guarantees con-
sistency, accurateness, and completeness among contextual data and acquisition workflows. It employs a
loose coupling between context acquisition and data provisioning components, which is gained by applying
semantic technologies (data models, vocabularies, inference) to interpret and process context information.
Practical insights into implementation details of context and data providers were discussed, and concrete ex-
amples were shown on how context-relevant data can be acquired from locally deployed sensors, represented
using semantic vocabularies, and utilized by external applications.

Although this framework demonstrates that semantic technologies can make substantial contributions in
realizing a mobile context-aware infrastructure assisting users in satisfying their mobile information needs,
there are still some open issues that need to be addressed in future research. For instance, the integration of
dynamically discovered context sources is a challenge most context-management frameworks face, especially
in mobile and ubiquitous environments. We therefore suggest to direct future research towards finding and
integrating such sources and develop common interfaces and protocols for this purpose. For this, Semantic
Web technologies are a candidate because they have been proven to be an appropriate infrastructure for the
explicit representation and exchange of data semantics. Those semantics can be used not only for describing
contextual information, but also for sensor interfaces to facilitate discovery and integration in running sys-
tems, as well as the exchange of contextual information. We therefore plan to investigate additional methods
for dynamic context source discovery and integration as well as heuristics for transforming sensorial data
into qualitative context descriptions.

Further, our framework could be extended to include feedback loops that would allow for adjusting context
acquisition and aggregation tasks according to data provisioning needs. Further, more sophisticated reasoning
capabilities are missing, which we plan to address in future work. A context framework as such should be
aware of the operating system conditions to adapt itself to changing conditions. Finally, support for efficient
and complex inferencing techniques is still an open issue on mobile systems and should be addressed in future
research.

References

1. Timothy Sohn, Kevin A. Li, William G. Griswold, and James D. Hollan. A diary study of mobile information
needs. In CHI ’08: Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in computing
systems, pages 433–442, New York, NY, USA, 2008. ACM.

2. Maryam Kamvar and Shumeet Baluja. A large scale study of wireless search behavior: Google mobile search. In
CHI ’06: Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 701–709, New
York, NY, USA, 2006. ACM.

3. Anind K. Dey. Understanding and Using Context. Personal Ubiquitous Comput., 5(1):4–7, 2001.
4. B.N. Schilit and M.M. Theimer. Disseminating active map information to mobile hosts. Network, IEEE, 8(5):22–

32, Sep/Oct 1994.
5. Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith, and Pete Steggles. Towards a better

understanding of context and context-awareness. In HUC ’99: Proceedings of the 1st international symposium on
Handheld and Ubiquitous Computing, pages 304–307, London, UK, 1999. Springer-Verlag.

6. Christos B. Anagnostopoulos, Athanasios Tsounis, and Stathes Hadjiefthymiades. Context awareness in mobile
computing environments. Wirel. Pers. Commun., 42(3):445–464, 2007.

7. Anind K. Dey. Providing architectural support for building context-aware applications. PhD thesis, Georgia
Institute of Technology, 2000.

35

8. Damien Fournier, Sonia Ben Mokhtar, Nikolaos Georgantas, and Valérie Issarny. Towards ad hoc contextual
services for pervasive computing. In MW4SOC ’06: Proceedings of the 1st workshop on Middleware for Service
Oriented Computing (MW4SOC 2006), pages 36–41, New York, NY, USA, 2006. ACM.

9. Sung Woo Kim, Sang Hyun Park, JungBong Lee, Young Kyu Jin, Hyun-Mi Park, Amy Chung, SeungEok Choi,
and Woo Sik Choi. Sensible appliances: applying context-awareness to appliance design. Personal Ubiquitous
Comput., 8(3-4):184–191, 2004.

10. G. Biegel and V. Cahill. A Framework for Developing Mobile, Context-aware Applications. pages 361–365, March
2004.

11. Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is More to Context than Location. Computers
and Graphics, 23:893–901, 1998.

12. M. Kaenampornpan and B. Ba Ay. An Intergrated Context Model: Bringing Activity to Context. In Workshop
on Advanced Context Modelling, Reasoning and Management - UbiComp, 2004.

13. Hong-Siang Teo. An Activity-driven Model for Context-awareness in Mobile Computing. In MobileHCI ’08: 10th
int. conf. on Human Computer Interaction w. mobile devices & services, pages 545–546, New York, NY, USA,
2008. ACM.

14. N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced reality fieldwork: the context-aware archaeological assis-
tant. In V. Gaffney, M. van Leusen, and S. Exxon, editors, Computer Applications in Archaeology 1997, British
Archaeological Reports, Oxford, October 1998. Tempus Reparatum.

15. Anind K. Dey, Gregory D. Abowd, Mike Pinkerton, and Andrew Wood. Cyberdesk: A framework for providing
self-integrating ubiquitous software services. In ACM Symposium on User Interface Software and Technology,
pages 75–76, 1997.

16. Anind K. Dey. Context-aware computing: The cyberdesk project. In AAAI 1998 Spring Symposium on Intelligent
Environments, pages 51–54, Palo Alto, 1998. AAAI Press.

17. Richard Hull, Philip Neaves, and James Bedford-roberts. Towards situated computing. In In Proceedings of The
First International Symposium on Wearable Computers, pages 146–153, 1997.

18. P. J. Brown. The stick-e document: a framework for creating context-aware applications. In Proceedings of EP’96,
Palo Alto, pages 259–272. also published in it EP–odd, January 1996.

19. Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-aware systems. Int. J. Ad
Hoc Ubiquitous Comput., 2(4):263–277, 2007.

20. C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca. A Data-oriented Survey of Context
Models. SIGMOD Rec., 36(4):19–26, 2007.

21. J. Euzenat, J. Pierson, and F. Ramparany. Dynamic Context Management for Pervasive Applications. The
Knowledge Engineering Review, 23(1):21–49, 2008.

22. Paul Dourish. What We Talk About When We Talk About Context. Personal Ubiquitous Comput., 8(1):19–30,
2004.

23. J. Coutaz, J. L. Crowley, S. Dobson, and D. Garlan. Context is Key. Communications of the ACM - Special
Issue: The disappearing computer, 48(3):49–53, 2005.

24. K. Mihalic and M. Tscheligi. ’Divert: Mother-in-law’: Representing and Evaluating Social Context on Mobile
Devices. In MobileHCI ’07: 9th int. conf. on Human computer interaction with mobile devices & services, pages
257–264. ACM, 2007.

25. Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling context information in pervasive
computing systems. In Pervasive ’02: Proceedings of the First International Conference on Pervasive Computing,
pages 167–180, London, UK, 2002. Springer-Verlag.

26. P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.J. Malm. Managing Context Information in Mobile
Devices. Pervasive Computing, IEEE, 2(3):42–51, 2003.

27. H. W. Gellersen, A. Schmidt, and M. Beigl. Multi-sensor Context-awareness in Mobile Devices and Smart
Artifacts. Mobile Networks and App’s, 7(5), 2002.

28. Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A conceptual framework and a toolkit for supporting the
rapid prototyping of context-aware applications. Human-Computer Interaction, 16(2):97–166, 2001.

29. D. Raptis, N. Tselios, and N. Avouris. Context-based Design of Mobile Applications for Museums: A Survey of
Existing Practices. In MobileHCI ’05: 7th int. conf. on Human comp. interaction w. mobile devices & services.
ACM, 2005.

30. S. Boehm, J. Koolwaaij, M. Luther, B. Souville, M. Wagner, and M. Wibbels. Introducing IYOUIT. The Semantic
Web - ISWC 2008, pages 804–817, 2008.

31. K. Henricksen, J. Indulska, T. McFadden, and S. Balasubramaniam. Middleware for Distributed Context-Aware
Systems. In OTM Conferences (1), 2005.

36

32. C. Huebscher and A. McCann. An Adaptive Middleware Framework for Context-aware Applications. Personal
Ubiquitous Comput., 10(1):12–20, 2005.

33. P. Pawar, A. T. van Halteren, and K. Sheikh. Enabling context-aware computing for the nomadic mobile user:
A service oriented and quality driven approach. In IEEE Wireless Communications and Networking Conference
WCNC 2007, pages 2531–2536. IEEE Communication Society, March 2007.

34. Ivo Widjaja and Sandrine Balbo. Spheres of role in context-awareness. In OZCHI ’05: Proceedings of the
17th Australia conference on Computer-Human Interaction, pages 1–4, Narrabundah, Australia, Australia, 2005.
Computer-Human Interaction Special Interest Group (CHISIG) of Australia.

35. Nicholas A. Bradley and Mark D. Dunlop. Toward a multidisciplinary model of context to support context-aware
computing. Hum.-Comput. Interact., 20(4):403–446, 2005.

36. Thomas Strang and Claudia L. Popien. A context modeling survey. In UbiComp 1st International Workshop on
Advanced Context Modelling, Reasoning and Management, pages 31–41, Nottingham, September 2004.

37. Jadwiga Indulska and Peter Sutton. Location management in pervasive systems. In ACSW Frontiers ’03:
Proceedings of the Australasian information security workshop conference on ACSW frontiers 2003, pages 143–
151, Darlinghurst, Australia, Australia, 2003. Australian Computer Society, Inc.

38. Fei Xia, Alex V. Yakovlev, Ian G. Clark, and Delong Shang. Data communication in systems with heterogeneous
timing. IEEE Micro, 22:58–69, November 2002.

39. M. Wojciechowski and J. Xiong. Towards an open context infrastructure. Proceedings of the Workshop on Context
Awareness for Proactive Systems (CAPS’06), pages 125–136, 2006.

40. Harry Chen. An Intelligent Broker Architecture for Pervasive Context-Aware Systems. PhD thesis, University of
Maryland, Baltimore County, December 2004.

41. Harry Chen and Anupam Joshi. An Ontology for Context-Aware Pervasive Computing Environments. Special
Issue on Ontologies for Distributed Systems, Knowledge Engineering Review, 18(3):197–207, May 2004.

42. Marko Luther, Yusuke Fukazawa, Matthias Wagner, and Shoji Kurakake. Situational reasoning for task-oriented
mobile service recommendation. The Knowledge Engineering Review, 23(1):7–19, 2008.

43. Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, Josef Altmann, and Werner Rets-
chitzegger. Context-awareness on mobile devices - the hydrogen approach. In HICSS ’03: Proceedings of the 36th
Annual Hawaii International Conference on System Sciences (HICSS’03) - Track 9, page 292.1, Washington, DC,
USA, 2003. IEEE Computer Society.

44. Guoray Cai and Yinkun Xue. Activity-oriented context-aware adaptation assisting mobile geo-spatial activities.
In IUI ’06: Proceedings of the 11th international conference on Intelligent user interfaces, pages 354–356, New
York, NY, USA, 2006. ACM.

45. Bonnie A. Nardi, editor. Context and consciousness: activity theory and human-computer interaction. Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1995.

46. Kari Kuutti. Activity theory as a potential framework for human-computer interaction research, pages 17–44.
Massachusetts Institute of Technology, Cambridge, MA, USA, 1995.

47. Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex group action. Artif. Intell., 86(2):269–357,
1996.

48. Janice Redish and Dennis Wixon. The human-computer interaction handbook. chapter Task analysis, pages
922–940. L. Erlbaum Associates Inc., Hillsdale, NJ, USA, 2003.

49. Dan Diaper. Task Analysis for Human-Computer Interaction. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1990.

50. Andrew Carton, Siobhan Clarke, Aline Senart, and Vinny Cahill. Aspect-oriented model-driven development for
mobile context-aware computing. In SEPCASE ’07: Proceedings of the 1st International Workshop on Software
Engineering for Pervasive Computing Applications, Systems, and Environments, page 5, Washington, DC, USA,
2007. IEEE Computer Society.

51. Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific American, 284(5):34–43, 2001.
52. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax (RFC 3986).

Network Working Group, January 2005.
53. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext Transfer

Protocol – HTTP/1.1 (RFC 2616). Network Working Group, 1999.
54. Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax

(W3C Recommendation 10 February 2004). World Wide Web Consortium, 2004.
55. David Becket. RDF/XML Syntax Specification (W3C Recommendation 10 February 2004). World Wide Web

Consortium, 2004.
56. David Beckett and Tim Berners-Lee. Turtle – Terse RDF Triple Language (W3C Team Submission 14 January

2008). World Wide Web Consortium, http://www.w3.org/TeamSubmission/turtle/, 2008.

37

57. Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema (W3C Recommendation
10 Februar 2004). World Wide Web Consortium, 2004.

58. Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2 Web Ontology Language Structural Specification
and Functional-Style Syntax (W3C Recommendation 27 October 2009). World Wide Web Consortium, October
2009. Available at http://www.w3.org/TR/owl2-syntax/.

59. Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, and Dave Reynolds. RIF Core
Dialect (W3C Recommendation 22 June 2010). World Wide Web Consortium, June 2010. Available at http:

//www.w3.org/TR/rif-core/.
60. Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF (W3C Recommendation 15

January 2008). World Wide Web Consortium, 2008.
61. Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data — The Story So Far. International Journal on

Semantic Web and Information Systems, 5(3), 2009.
62. Stefan Zander and Bernhard Schandl. A Framework for Context-driven RDF Data Replication on Mobile Devices.

In Proceedings of the 6th International Conference on Semantic Systems (I-Semantics), Graz, Austria, 2010.
63. D. Preuveneers, J. Van den Bergh, D. Wagelaar, A. Georges, P. Rigole, T. Clerckx, Y. Berbers, K. Coninx,

V. Jonckers, and K. De Bosschere. Towards an Extensible Context Ontology for Ambient Intelligence. In Panos
Markopoulos, Berry Eggen, Emile Aarts, and James L. Crowley, editors, Second European Symposium on Ambient
Intelligence, volume 3295 of LNCS, pages 148 – 159, Eindhoven, The Netherlands, Nov 8 – 11 2004. Springer.

64. Stefan Zander and Bernhard Schandl. Context-driven RDF Data Replication on Mobile Devices. Semantic Web
– Interoperability, Usability, Applicability, under review. available at http://www.semantic-web-journal.net/

content/new-submission-context-driven-rdf-data-replication-mobile-devices.
65. P. Korpipää, E. Malm, I. Salminen, T. Rantakokko, V. Kyllönen, and I. Känsälä. Context management for end

user development of context-aware applications. In MDM ’05: 6th int’l conf. on Mobile data management, pages
304–308. ACM, 2005.

66. F. Ramparany, J. Euzenat, T. H. F. Broens, A. Bottaro, and R. Poortinga. Context management and semantic
modelling for ambient intelligence. Technical Report TR-CTIT-06-52, Enschede, April 2006.

67. T. Heath, M. Dzbor, and E. Motta. Supporting User Tasks and Context: Challenges for Semantic Web Research.
Proc. ESWC2005 Workshop on End-User Aspects of the Semantic Web (UserSWeb), 2005.

68. Tom Heath, Enrico Motta, and Martin Dzbor. Context as a foundation for a semantic desktop. In Stefan Decker,
Jack Park, Dennis Quan, and Leo Sauermann, editors, Proc. of Semantic Desktop Workshop at the ISWC, Galway,
Ireland, November 6, volume 175, November 2005.

69. J. Euzenat. Alignment Infrastructure for Ontology Mediation and Other Applications. In MEDIATE2005, volume
168, pages 81–95, 2005.

70. George H. Forman and John Zahorjan. The Challenges of Mobile Computing. Computer, 27(4):38–47, 1994.
71. J. Krogstie, K. Lyytinen, A. Opdahl, B. Pernici, K. Siau, and K. Smolander. Research areas and challenges for

mobile information systems. International Journal of Mobile Communications, 2(3):220–234, 2004.
72. C. B. Anagnostopoulos, Y. Ntarladimas, and Stathes Hadjiefthymiades. Situational computing: An innovative

architecture with imprecise reasoning. Journal of Systems and Software, 80(12):1993–2014, 2007.
73. Thomas Springer, Patrick Wustmann, Iris Braun, Waltenegus Dargie, and Michael Berger. A comprehensive

approach for situation-awareness based on sensing and reasoning about context. In UIC ’08: Proceedings of the
5th international conference on Ubiquitous Intelligence and Computing, pages 143–157, Berlin, Heidelberg, 2008.
Springer-Verlag.

74. Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs. Journal of Web Semantics,
3(4):247–267, 2005.

75. Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Sw-store: a vertically partitioned
dbms for semantic web data management. The VLDB Journal, 18(2):385–406, 2009.

76. Alice Hertel, Jeen Broekstra, and Heiner Stuckenschmidt. RDF Storage and Retrieval Systems. On-line, 2008.
77. Dan Brickley and Libby Miller. Foaf vocabulary specification 0.91, 2007.
78. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1st edition, 1992.
79. Android developer’s guide, 12 2010.
80. Rick Rogers, John Lombardo, Zigurd Mednieks, and Blake Meike. Android Application Development: Program-

ming with the Google SDK. O’Reilly, Beijing, 2009.
81. Sayed Y. Hashimi, Satya Komatineni, Dave MacLean, Sayed Y. Hashimi, Satya Komatineni, and Dave MacLean.

Pro Android 2. Apress, 2010.
82. Reto Meier. Professional Android 2 application development. Wiley Pub., 2010.
83. Bernhard Schandl. Replication and Versioning of Partial RDF Graphs. In Proceedings of the 7th European

Semantic Web Conference (ESWC 2010), 2010.

38

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/rif-core/
http://www.w3.org/TR/rif-core/
http://www.semantic-web-journal.net/content/new-submission-context-driven-rdf-data-replication-mobile-devices
http://www.semantic-web-journal.net/content/new-submission-context-driven-rdf-data-replication-mobile-devices

