
Technical Report

Karin Anna Hummel, Zoltan Juhasz

Towards a Service-Oriented Architecture (SOA) for
Performance-Aware Mobile Grid Services

April 2008TR-20080403



Towards a Service-Oriented Architecture (SOA) for Performance-Aware Mobile
Grid Services: A Survey on Decentralized Performance Monitoring, SOAs, and

Selected Meeting Application Use Cases for Mobile Devices

Technical Report: TR-20080403

Karin Anna Hummel
Dep. of Distributed and Multimedia Systems

University of Vienna, Austria
1010 Vienna, Lenaugasse 2/8
karin.hummel@univie.ac.at

Zoltan Juhasz
Dep. of Information Systems

University of Pannonia, Hungary
8200 Veszprem, Egyetem u. 10.

juhasz@irt.vein.hu

Abstract

When using grid technologies for scientific and non-
scientific applications, ubiquitous access to these ap-
plications is useful for many scenarios. Hereby mobile
devices provide a technology supporting this aim. By
addressing multimedia integration into these services
(like video streaming), the Quality of Service (QoS) is
a major cause for user experience (QoE) and accep-
tance. The aim of this paper is to present a Service-
Oriented Architecture (SOA) based on recent decen-
tralized performance monitoring approaches and SOA
based approaches able to support mobile grid clients.
We first present a survey on decentralized performance
monitoring and SOA and propose a general architec-
ture. Additionally, we describe two application use
cases including mobile devices which have been se-
lected due to their different QoS constraints which re-
quire service adaptations due to dynamic changes in
performance. These two use cases dedicated to the
meeting application domain are: smart picture shar-
ing and seamless video streaming.1

1This work has been funded by the WTZ Program Hun-
gary/Austria 2006/2007. The technical report is published on
http://www.cs.univie.ac.at/.

1 Introduction

By including multimedia services into Grids, the
need for QoS assurance arises. To support these ser-
vices, we present a performance-aware Grid architec-
ture based on the SOA paradigm. We extend JGrid[7],
a Jini based SOA, by introducing distributed perfor-
mance monitoring and persistent storage of perfor-
mance data in a shared communication space. As it
is already included in the Jini technology, we propose
the use of JavaSpaces as an example space. Hereby
the approach for distributed performance monitoring
can be centralized or decentralized. The latter avoids
a single point of failure and thus increases robustness
while having to solve the problem of gathering a com-
mon system-wide status.

The survey presented in this paper provides a sum-
mary of the two approaches relevant for our architec-
ture: (i) decentralized performance monitoring and (ii)
SOAs. Together with a summary of standard perfor-
mance metrics applicable, this survey presents an in-
troduction into performance-aware SOA Grid infras-
tructures.

We further provide the description of two example
use case for SOA-based services which need QoS as-
surance and adaptation depending to the Grid’s and the
mobile client’s performance status. The use cases are
targeted to the business and meeting domain, they are:



smart picture sharing and seamless video streaming.
The remainder of this document is structured as fol-

lows: In Section 2 a summary of traditional perfor-
mance metrics is given and their application to mobile
Grids. In Section 3 we survey decentralized perfor-
mance approaches and SOAs which leads to the con-
cluding performance-aware SOA mobile Grid archi-
tecture presented in Section 4. Then we present a de-
tailed description of the use cases benefiting from the
approach in Section 5 and conclude our work.

2 Performance Metrics

According to the work of Jain [4], pp. 30 – 43, the
two steps of performance evaluation are the selection
of the evaluation technique and the metrics to use. The
metrics are derived by distinguishing between three
system states: (i) correct systems (providing correct
answers and events), (ii) incorrect systems (providing
wrong answers or events), and (iii) not responding sys-
tems. The corresponding classes of metrics are related
to Speed, Reliability, andAvailability. Figure 1 shows
the hierarchical classification of the metrics used. In
addition to the metrics commonly used for availabil-
ity, we will further use the ratesnumber of connecting
nodesandnumber of disconnecting nodesin order to
give a self-descriptive overview of the dynamics in a
mobile grid system, that is a grid consisting of mobile
nodes. In a system where the number of participat-
ing nodes is known and the failure isdisconnection,
these rates can be estimated by using the MTTF (Mean
Time To Failure) and the MTTR (Mean Time To Re-
pair). From a mobile distributed system’s perspective,
this rate is a major characterization of the dynamics
of the system and thus, we will include them on the
system level (see also thechurn ratesdescribing con-
nection/disconnection rates in peer-to-peer systems).

By using these well-known metrics, we aim to de-
rive high quality metrics in terms of low variability,
non-redundancy, and completeness. Since we are in-
vestigating distributed systems, individual node met-
rics will be considered as well as global metrics.

In order to measure the speed of a (mobile) grid sys-
tem, metrics related to time, rate, and utilization are
used. Related totime, the following metrics definitions
are used:

Response Time.Here, theResponse Timeis defined

as the duration between the completion of a re-
quest by the user to the completion of the re-
sponse of the system.2 In case of a batch stream,
the termTurnaround Timeis used alternatively.

Reaction Time. TheReaction Timeof a system is de-
fined as the duration between the completion of
the user request and the point in time the systems
starts to execute the request.

Stretch Factor. This factor is used in order to de-
scribe the relation of the response time under a
specific workload to the response time under min-
imal load.

The commonly used metrics describingratesare as
follows:

Throughput. The Throughput is measured asre-
quests per unit of timeand varies depending on
the load. Typically, the throughput increases
with increasing load up to a certain point. Then
the increase of the throughput might significantly
slow down until it finally decreases or it de-
creases immediately. Depending on the system
(and the system level of investigation), through-
put is, e.g., measured as requests per unit of
time (interactive systems), jobs per unit of time
(batch systems), Millions of Instructions Per Sec-
ond (MIPS) or Millions of FLoating Point OPer-
ations (MFLOPS) (CPU), packets or bits per sec-
ond (pps/bps) or Transactions Per Second (TPS)
(transaction processing).

Nominal Capacity. Under ideal load conditions, this
rate defines the maximum achievable throughput.
For computer networks, the termBandwidthis of-
ten used. In case the response time is too high
when the nominal capacity is reached, the rate
Usable Capacityrefers to the maximum through-
put with restricted response time.

Efficiency. The efficiency is defined as

Efficiency =
Usable Capacity

Nominal Capacity
.

2It is also possible to define theResponse Timeas the duration
between the completion of the user request to the point in time, the
systems starts to respond [4].

2



Speed


System


Availability


Reliability


Time


Rate


Utilization


Response Time


Reaction Time


Stretch Factor


Throughput


Nominal Capacity


Efficiency


MTBF


Error probability


MTTF


MTTR


Figure 1: Performance metrics after [4].

Additionally, the utilization of a resource describes
the workload processed during operation. This metric
is defined as:

Utilization =
Timebusy

Timeelapsed

.

The reliability of a system describes the degree of
confidence about correct operation of a system. Cor-
rect operation can be related to the value domain and
the time domain. In particular for hard real-time sys-
tems, a late calculation may end in disaster as well as a
wrong calculation. Thefault-hypothesisdescribes the
failures that are considered in the system. Independent
of the type and semantic of a failure, the following two
metrics can be used to describe a system’s reliability:

Mean Time Between Failure (MTBF). This metric
represents a time value which describes the av-
erage time between the occurrence of a failure.

Error Probability. This metric describes the proba-
bility of an error, that is, an observed system fail-
ure.

The availability of a system should be observed in
cases where system may partially be unable to answer.
In contrast to stationary distributed system where the
availability is a measure of dependability of a sys-
tem, in mobile systems, mobile devices are expected to

roam in and out of the coverage area of wireless net-
works and, thus, to become unavailable from time to
time. The availability metric values of a stationary grid
system using wired lines are expected to differ signif-
icantly from their mobile counterparts. The following
two metrics are considered:

Mean Time To Failure (MTTF). This time value de-
scribes the average time observed between the
start of the observation period or a failure to the
next failure.

Mean Time To Repair (MTTR). The mean time to
repair describes the time needed for the system
to become operational and responding again after
a system failure.

Consequently, the availability of a system is de-
scribed by the following ratio:

Availability =
MTTF

MTTF + MTTR
.

3 Related Work

Performance monitoring in distributed systems is an
important issue as stated in [6] by presenting a mar-
ket survey of real network management user’s require-
ments. As a result, among the common appreciated

3



functions are the ability to monitor the complete sys-
tem on a single console and the ability to use history
information.

From an adaptive distributed Service-Oriented Ar-
chitecture (SOA) point of view, these functions can
be transformed into the desirable system requirements
that SOA wide current and history performance data
should be available to trigger the adaptation. If the
system is decentralized, this aim might not be reached
for 100 percent, but only approximated. In this sec-
tion, related work in the area of network and service
monitoring will be discussed (including decentralized
approaches) as well as the second technology related
to our work: SOA.

3.1 Distributed Performance Monitoring

In [6], most importanttiming metricsand quanti-
tative metrics(statistics) are defined for system wide
performance monitoring. Timing metrics are mea-
sured response times in total (from the time the client
issues an request to the time the result is received by
the client) and response times within the system it-
self like a middleware response time describing the
time spent to process the client request in the mid-
dleware. Quantitative metrics are defined as the mid-
dleware throughput, the number of clients and servers
active, (average) number of different messages ex-
changed, most used server (hotspot), and a deadlock
count. An approach termedClearing Housesupports
these metrics for a data-base centric system consisting
of exchange modules, which might be distributed. The
architecture makes use of a central register facility for
managing these exchange modules.

For scientific networking experiments, PlanetLab3

is a well known testbed which provides networked
computers on a world wide scale. Applications are run
in virtual machines and sharesliceswhich can be re-
served on selectable machines in the network. The ad-
ministrators use slices as well for monitoring the sys-
tem’s performance on nodes in terms of workload (re-
lation betweenactive– i.e., containing a process – and
live slices – i.e., in the past five minutes the slice has
used at least 1% (300ms) of the CPU), CPU, memory,
bandwidth, disk space, and jitter caused by scheduling
latencies. To allow access for many users, PlanetLab

3see http://www.planet-lab.org/

implements a graceful degradation of the node’s per-
formance if a resource is becoming over-utilized.

For grid environments, in [5] a tool for testing and
monitoring network performance has been introduced
and developed as a part of the Globus toolkit4. This
tool namedGloperf probes the network connecting
grid nodes and calculates the bandwidth estimate ac-
cordingly (based on TCP end-to-end measurements).
In order to keep the overhead for probing low, the tool
supports a group membership which allows, for exam-
ple, that a remote cluster is tested only once per group
and not by all group member nodes. The overhead is
further limited by allowing only a fraction of the avail-
able bandwidth to be used for probing. If this frac-
tion is not sufficient for the probing frequency, the fre-
quency is decreased. The group membership in this
approach has been simply based on manual configura-
tion.

The ASKALON framework [2] has been introduced
to monitor the performance of scientific workflows by
instrumentation of distributed grid management mod-
ules (engines). Workflow events can be monitored and
reported to a central AKALON performance monitor-
ing client. Example events are the initialization, sus-
pension, and cancellation of activities.

When addressing decentralized systems, message
overhead for the exchange of performance data should
be minimized. In [3] the trade-off between commu-
nication costs and global performance, i.e., faults, in
terms of false alarms and miss rates are analyzed in
sensor networks. The approach ofvirtual coordinate
systemsallows to predict the latency in large scale net-
worked systems like the Internet. Virtual coordinate
systems allow nodes to map themselves into a coor-
dinate systems and to derive distances to other nodes.
Actual distance estimates only exist to nodes in aref-
erence set. Latencies are calculated based on the dis-
tances in the virtual coordinate system which is usu-
ally either landmark based or decentralized [10]. In
decentralized coordinate systems, the system can be
described in terms of the reference set (e.g., neighbors
in the network) the node uses to calculate the latency,
the distance prediction mechanisms based on the dis-
tance definition (e.g., Euclidean distance), and an error
minimization technique. In [10] attacks in a decen-

4see http://www.globus.org/

4



tralized virtual coordinate system are investigated and
mechanisms are proposed to increase the system’s ro-
bustness.

To provide mechanisms for effective self-healing
in distributed systems, performance problems have to
be first localized. An approach based on Bayesian
networks is proposed in [11]. Hereby, the inference
model and simulation results are described without
considering the problem of decentralization (and, thus,
partial knowledge). Based on collected response time
and elapsed time data, the system automatically infers
elapsed times if current data is missing and estimates
response times. Thus, it is possible to estimate the ser-
vice causing the longest delays and apply self-healing
mechanisms to these services.

3.2 Service Oriented Architecture

Service-orientation is a new paradigm in distributed
software construction, rapidly gaining popularity in
business and science applications. It is based on the
notion of services (entities exporting some function-
ality through well-defined interfaces) and clients us-
ing these services for carrying out tasks. A crucial
difference between client-server and service-oriented
systems is the level of abstraction. In client-server sys-
tems, servers are physical resources represented by an
IP address and port number. Services, on the other
hand, hide implementation details behind their inter-
face; the physical resource, its type and location typi-
cally is irrelevant to the user of the service.

A software architecture based on service-
orientation is called a Service-Oriented Architecture
(SOA). A service-oriented architecture can overcome
several problems of classic distributed systems as we
will discuss below. Figure 2 demonstrates a minimal
service-oriented architecture. A service publishes its
interface description in a directory. The information
stored in the directory enables clients looking for a
service with a particular functionality to connect and
use the selected service. The use of the directory
provides naming and location transparency, i.e., a
service can be accessed without explicit knowledge of
its address or location.

The use of service interfaces decouples ser-
vice functionality definition from its implementation.
Clients and services are loosely coupled in the sense

that changes in the service implementation will not af-
fect clients.

Figure 2: A minimal service-oriented architecture.

Service-orientation is only a concept. It requires a
physical implementation technology to be usable. The
two most well-known such technologies are Web Ser-
vices, and Jini Technology. Web Services Technol-
ogy [1] is a language-independent SOA environment
due to its reliance on the XML language. A web ser-
vice describes its interface and invocation details in an
XML (Web Service Description Language) document
stored in a UDDI directory5. The advantage of this
scheme is that clients written in arbitrary programming
languages can invoke services implemented in differ-
ent languages. Clients can invoke services by sending
SOAP6 messages either by using Remote Procedure
Call or message passing semantics.

Jini Technology [9] provides a service-oriented ar-
chitecture for the Java Platform. Jini services are de-
scribed by Java interfaces; clients use these interfaces
to look for suitable services. Central to Jini is the no-
tion of discovery. Participants in a Jini community
use multicast or unicast messages to locate available
Lookup Services (service directories) on the network.
Lookup services are used to register and look up the
services of interest. Jini relies on object mobility in its
operation. Java objects are passed to the Lookup Ser-
vice during registration and this object is forwarded to
the client as a lookup result. The downloaded object
is used as a service proxy in the client enabling con-
nection and service invocation in - typically - Remote
Method Invocation fashion.

Jini has been designed for dynamic communities in

5see http://www.oasis-open.org/specs/index.php#uddiv3.0.2
6see http://www.w3.org/TR/soap/

5



which services and clients join and leave the system in
unpredictable ways. Resource management is a prob-
lematic issue in such environments. Jini uses the no-
tion of leasing to address these problems. Resource
usage (e.g., service registration in the Lookup Service)
is normally allowed on a timed basis. Entities must re-
new their lease period before it expires if they need to
continue with that activity. If the lease is not renewed –
either deliberately or due to system failure – the corre-
sponding resource is released (e.g., registration object
deleted). This scheme is well suited to systems with
unreliable network connection and intermittently op-
erating devices.

4 Architecture

The architecture proposed should support the adap-
tation of services due to QoS achievable within
the grid. In the following sections, performance-
awareness is introduced to the SOA JGrid [7].

4.1 JGrid

JGrid [7] is an experimental service grid framework
developed at the University of Pannonia in collabora-
tion with MTA SZTAKI and Eotvos University Bu-
dapest. Its aim is to create a reliable environment in
which various services provide capabilities to clients
in a reliable way despite the geographical disparity,
presence of failures, and the dynamically changing
topology.

It is built on top of Jini Technology, hence relying
on its discovery, leasing and platform independence
features. There are a set of core services that provide
fundamental functionalities for the system. TheAu-
thentication Serviceis responsible for identifying grid
users and allowing access for them to the system. The
Registration Serviceis used to store access right-user
role pairs for services. This is an extension to the secu-
rity architecture of Java.Compute Services are special
entities that enable clients to execute Java objects (sent
from the client program) on a remote location. The
Compute Service is highly configurable and supports
a number of sequential and parallel execution modes.
TheBatch Serviceis used as a wrapper service to ex-
port native batch execution environments as services in
order to provide traditional batch execution facilities in

JGrid. Finally, theStorage Serviceprovides access to
remote files and directories through a service interface.

The core JGrid services along with the standard Jini
services, such as Transaction, Event Mailbox, JavaS-
paces, etc services form a rich platform for creating
dynamic service-oriented applications. Several case
studies demonstrate the success of this approach in-
cluding video stream, Internet radio, weather instru-
ment services, and computationally intensive applica-
tions using several compute services.

An important feature of JGrid with respect to per-
formance monitoring and providing QoS is its ability
to provide static and dynamic information about the
service’s capabilities and performance. Jini attribute
objects are used to describe static properties, e.g., pro-
cessor speed, memory size, network bandwidth, screen
size, etc., that clients can use in service selection de-
cisions. Services can be assigned so called monitor
proxies that clients can retrieve via the main service
proxy to monitor dynamically changing performance
metrics, e.g., latency, processor load, etc.

4.2 Introducing Distributed Performance

Gathering to JGrid

This section presents a performance framework
which defines the metrics used to evaluate three differ-
ent levels of a mobile SOA grid: the mobile client’s
perspective, the system’s perspective, and the grid
node level’s perspective including connection charac-
teristics. The main three questions arising are:

¦ What should be measured?

¦ Where and how should the measurement take
place?

¦ How can the measurements be stored and dis-
tributed in a mobile and decentralized environ-
ment?

We propose a generic approach, thus, metrics can
be easily added. However, we will start with a sample
set of the following metrics necessary to trigger adap-
tations for multimedia services QoS: available net-
work bandwidth, CPU utilization, availability in terms
of MTTF and MTTR, and reliability in terms of the
MTBF.

6



The approach proposed is based on the space-based
paradigm (which can be supported by JavaSpaces in-
cluded in Jini but also implemented on top of Jini and
the communication infrastructure), the measurement
results are stored by means of the space. Depending
on the decomposition level, the following views can
be defined:

Node view. Here, the metrics are applied to each sin-
gle grid node. In order to describe network con-
nection as point-to-point links, which are needed
to describe ad-hoc networking mode, a matrix is
used to describe the link performance measures
as depicted by Table 1. This matrix represents
also the topology of the node network.7 Matri-
ces are very useful to describe the links between
nodes and, for example, have already been used in
performance oriented grid research, like thenet-
work weather servicepresented in [8]. Usually,
this matrix will be symmetric due to the symme-
try of the link.8

System view.Here, the metrics are used to describe
the grid as a whole. The measurements on node
level are aggregated in order to provide the sys-
tem view metrics for thecollective layer. For
example, the variance of node utilization might
be a useful means to determine under-utilized re-
sources. Additionally, the overhead caused by
brokering and scheduling can be observed on sys-
tem level.

Client view. From the client’s perspective, the appli-
cation’s performance characteristics are impor-
tant. These metrics are applied accordingly and
represent theapplication layerpoint of view. Fur-
thermore, selected metrics are used to describe
the mobile grid client itself, like, for example, the
disconnection frequency.

The measurements take place on different nodes
and should be stored persistently. Here, both time se-
ries, that are, thehistory of of measurementsand the
current statusare considered. We address performance

7Note, that this matrix might be sparse for ad-hoc networks.
8In case of, for example, satellite links, up- and down-link ca-

pacity differ.

Node1 Node2 Node3 ... Noden

Node1 x11 x12 x13 x14 x1n

Node2 x21 x22 x23 x24 x2n

Node3 x31 x32 x33 x34 x3n

... ... ... ... ... ...

Noden xn1 xn2 xn3 ... xnn

Table 1: Connectivity performance matrix

evaluation completely on software layer by means of
code instrumentation and generation of logs.

Each JGrid node is responsible for generating logs
on node level. The JGrid management which includes
brokering and scheduling is responsible for measure-
ment and generation of logs in terms of system met-
rics. The system measures will be executed in a cen-
tralized or decentralized manner depending on the sys-
tem management policy. The client measures will be
generated at the client side. However, these measures
should be available to the monitoring framework for
evaluation purposes.

We propose to use the persistent layer provided by
the space-based paradigm for storing the measures.
Both JGrid clients and JGrid nodes may disconnect
from the grid while the measures which have been gen-
erated previously should remain available. Since JGrid
is based on Jini, we propose to use JavaSpaces for per-
sistent storage of performance data. Figure 3 depicts
the principle of using the space for logging purpose.
The log information should contain meta-information
about the measurements, which can easily be achieved
by using XML.

5 Use Cases

We will now define two use cases for mobile grids
for SOA based applications exhibiting different QoS
requirements, they are: smart picture sharing and
seamless video streaming.

Smart picture sharing. In business and technical
meetings, it is generally a problem to easily share pre-
sentations and pictures during the meeting. Copying
slides to the computer driving the projector or switch-
ing projector cable from one laptop to the other are
cumbersome (although, this should in principle work).
We envision a service-oriented picture sharing envi-
ronment that greatly reduces the above complexity and

7



Figure 3: Logging of performance measures in JGrid extended by space-based technology.

enhances meetings with additional collaborative func-
tionalities.

Participants can use PDA or laptop devices with
client programs with which they can discover the pro-
jector service as they enter the meeting room. The
projector service provides presentation and picture dis-
play facilities for each user. Access to the projector can
be controlled manually or by a policy component that
grants the display right to the requesting client base on
pre-set rules.

If required, clients can request the currently dis-
played picture to be transferred from the projector ser-
vice to the client device on which they can place an-
notations or add drawings. These can be displayed on
the projector if so wished.

The devices and the projector exchange QoS pa-
rameters (most importantly screen resolution and color
depth) in order to perform automatic conversion and
transformation during picture transfer.

The service-oriented nature of the environment al-
lows the use of other services; e.g., one can connect
to his or her remote file service to load a presentation
or picture not available locally on the device. Another
possibility is to use a shared white-board service or a
printer to print out pictures or notes.

Communication network parameters can be moni-
tored during operation to change, e.g., picture quality
if communication bandwidth is not adequate for the
current image format. Similarly, image conversion be-
yond what is required for the devices screen size could
be triggered if, e.g., the memory constraints of a PDA
device must be met.

In this scenario, important characteristics of the ser-
vice quality are:

¦ Latency caused by auto-configuration

¦ Response time for the service (when sharing, pro-
jecting, updating pictures, slowing down the slide
show, etc.)

¦ Latency and jitter effects for the slide show.

A first prototypical implementation of the picture
sharing scenario on PDAs shows the feasibility of ac-
cessing this JGrid service via mobile devices.

Seamless video streaming.The streaming of video
should be seamlessly supported. The user should be
able to watch a video on the device best fitting and
change the output/input devices while watching. For
example, when moving around, the video might be
streamed to a PDA. When the user enters the working
room, the video will be displayed on the PC screen.
When the user enters his or her own private house-
hold’s living room, the video should be displayed on
a wall display. Here, the seamless migration of the
video is demanding.

Important quality characteristics are:

¦ Video quality, that is, degree of absence of the
following faults: artifacts, stalls, blurring, added
edge energy, “mosquito noise”

¦ Service and network quality: latency and jitter ef-
fects, packet loss, and response time.

Figure 4 depicts the architecture of a smart business
environment where the applications described should
be embedded. Mobile devices of different types work
together with services provided by smart devices like a
smart bookshelf capable of tracking books that are put
into or taken out of the bookshelf enhanced by RFID
technology, and beamers. Mobile devices are expected

8



Figure 4: Service architecture.

to act as interfaces to Jini services and the JGrid infras-
tructure provides computing services for computing
intensive tasks (like video coding). Hereby, the quality
of the services provided should be permanently moni-
tored to allow automatic system adaptation. Each com-
ponent should be self-descriptive in terms of classic
performance metrics (like utilization, response time,
availability, etc.), and thus, the performance measure-
ment framework emerges within the distributed sys-
tem. The availability of the framework may be in-
creased by replicating the performance information or
services.

6 Conclusions

In this paper, we have surveyed decentralized
performance monitoring approaches and described
the main aspects of Service-Oriented Architectures
(SOAs). We have further proposed a performance
aware architecture which generates a system view
based on aggregating node performance measure-
ments. For persistent performance data storage we
proposed to use space based approaches. We applied
the general concept to JGrid, a Jini based SOA. We
further defined and described two use cases for mul-

timedia services:smart picture sharingandseamless
video streaming.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web
Services: Concepts, Architecture and Applications.
Springer Verlag, 2004.

[2] P. Brunner, H.-L. Truong, and T. Fahringer. Perfor-
mance Monitoring and Visualization of Grid Scien-
tific Workflows in ASKALON. In 2nd Int. Confer-
ence on High Performance Computing and Commu-
nication, 2006.

[3] E. Ermis and V. Saligrama. Adaptive Statistical Sam-
pling Methods for Decentralized Estimation and De-
tection of Localized Phenomena. In4th Int. Sympo-
sium on Information Processing in Sensor Networks,
2005.

[4] R. Jain. The Art of Computer Systems Performance
Analysis. Wiley, 1992.

[5] C. Lee, R. Wolski, C. Kesselman, and I. Foster. A
Network Performance Tool for Grid Environments.
In 1999 IEEE/ACM Conference on Supercomputing,
1999.

[6] J. McCann and K. Manning. Tool to Evaluate Per-
formance in Distributed Heterogeneous Processing.
In 6th Euromicro Conference on Parallel and Dis-
tributed Processing, 1998.

9



[7] S. Pota and Z. Juhasz. High-Level Execution and
Communication Support for Parallel Grid Applica-
tions in JGrid. In20th IEEE International Parallel
and Distributed Processing Symposium, 2006.

[8] M. Swany and R. Wolski. Building Performance
Topologies for Computational Grids.International
Journal of High Performance Computing Applica-
tions, 18(2), 2003.

[9] J. Waldo and K. Arnold. The Jini Specifications.
Addison-Wesley, 2000.

[10] D. Zage and C. Nita-Rotaru. On the Accuracy of De-
centralized Virtual Coordinate Systems in Adversarial
Networks. In14th ACM Conference on Computer and
Communications Security, 2007.

[11] R. Zhang, S. Moyle, S. McKeever, and A. Bivens.
Performance Problem Localization in Self-Healing,
Service-Oriented Systems Using Bayesian Networks.
In 14th ACM Conference on Computer and Commu-
nications Security, 2007.

10


