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ABSTRACT
Linked data (LD) is an increasingly important way for pub-
lishing structured data on the Web. Applications that rep-
resent their (meta) data as LD benefit from the flexibility,
the semantic elaborateness and the simplicity of this ap-
proach. There are, however, several issues with such a solu-
tion in real-world scenarios, e.g., (i) mechanisms for writing
LD such as SPARQL UPDATE are still under development,
(ii) the generic, flexible nature of the used RDF data model
makes the development of data- and user interfaces com-
plex, and, (iii) descriptions of LD resources are treated as
“atomic” entities, no mechanisms for accessing or delivering
partial resource descriptions via HTTP are available.

In this work, we introduce a model for a LD store that
enforces structuring of its data in two dimensions: named
graphs are used to separate logical aspects of the contained
data into “horizontal” layers. Extraction functions are used
to decompose these graphs into“vertical” records, collections
of sub-graphs “centered” around some resource of interest.
This model can be implemented using established technolo-
gies and formats from (Semantic) Web research and we dis-
cuss a prototypical implementation in this paper. Our pro-
totype implements a REST interface for read/write access
to the stored records. Further, clients can access partial
records based on HTTP header settings.

The higher structuredness of the data in such a store,
when compared to arbitrary RDF graphs, brings practical
advantages for implementing data or user interfaces. The
strong data compartmentalization can be exploited in many
ways, e.g., for more fine-grained access control or for con-
current write access to various layers of the store.
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1. INTRODUCTION
The goal of the linked data (LD) initiative is to build a

global network of interlinked data that can be processed
by both, human and machine actors. LD resources, basi-
cally anything that can be named, such as people, genes,
products or movies, are identified by HTTP URIs that can
be dereferenced (accessed). One of the core LD ideas is
that dereferencing such a URI leads to useful representa-
tions (descriptions) of the respective resource that usually
serve a particular purpose, such as human or machine con-
sumption. Technically spoken, LD services often return ei-
ther HTML or RDF resource representations (descriptions).
The decision what representation is returned depends on
HTTP header settings: sending an HTTP GET request to
the URI http://example.org/X would in one case return
an HTML representation, in another (e.g., when the HTTP
Accept header is set to “text/rdf+n3”) an RDF document.
This enables clients to negotiate with the server in what
content format they want to access a resource’s description.

LD provides some advantageous features for using it as a
(meta) data access layer for common (Web) applications. In
this paper, we discuss benefits and shortcomings of such an
approach with the help of the following two scenarios:

Scenario 1: A consumer-to-consumer (C2C) Web ap-
plication.

Imagine a C2C Web application that enables users to di-
rectly sell items to other consumers. Such a service would,
at its core, provide descriptions of users (profiles) and items
including user names, email addresses or item prices. Users
may contribute item profiles but also links to related items
or other Web resources. Further, the service might include
some reputation mechanism based on user votings as com-
mon in current Web 2.0 services.

Scenario 2: A file metadata store.
As a second scenario, consider a local store for file-related

metadata (such as textual descriptions, keywords, seman-
tic tags and links to other files or external Web resources)
that contains metadata contributed by various applications
(photo management software, word processors, link mining
algorithms). As a concrete example for such an application,
consider some music management software that extracts ID3
tags from MP3 files and stores them in this metadata store.
Such a store1 could then expose its metadata as LD in order

1We are actually implementing such a metadata store based
on the model discussed in this paper.



to share it with remote consumers but also as a common
access interface in a local, heterogeneous environment itself.
Users or applications could, for example, query this store
(locally or remotely) to learn what music is available in this
system.

Representing the core resources (user profiles, items, files)
of these two exemplary scenarios as LD has several advan-
tages: First, the used data and schema modeling languages
(RDF, OWL, etc.) allow the flexible yet exact expression
of these data and their semantics. In scenario 1, for ex-
ample, users may unambiguously specify what items they
wish to sell by using respective semantic vocabularies. Sec-
ond, reusable semantic vocabularies in combination with a
common data model (RDF) greatly facilitate the integration
of these data with related data sets. E.g., a service might
search the metadata storage in scenario 2 for all descriptions
of human users (e.g., document authors, music composers,
people depicted on a photo) by considering resources de-
scribed with common vocabularies for describing people or
their user profiles (e.g., FOAF). It may then retrieve ad-
ditional metadata about these users from other data sets.
Third, LD provides a uniform way to address and access
stored resource descriptions. Resources (items, user profiles,
files) would be identified by globally unique URIs, which
enables external actors to reference them unambiguously
and thus also enables them to express additional knowledge
about them. Further, resource descriptions are accessible
via standard HTTP requests, no specialized transmission
protocol/layer is required. A standardized query language
(SPARQL) for querying LD is available.

However, the relatively young LD approach still suffers
from some major shortcomings. Above all, a standardized
approach for writing LD itself is currently missing, which
may be considered a major issue [1, 8]. Current LD (e.g.,
in the LOD cloud) is usually created by some mapping pro-
cess that converts “conventional” data sources (e.g., RDBs)
to RDF, as in the case of DBpedia. Such data cannot be
updated by sending RDF graphs to the LD endpoint, but
rather by changing the underlying data source, in the case of
DBpedia by modifying data stored in a database using the
Wikipedia Web interface. However, this forces applications
to switch between two “worlds” for writing and reading data
which adds undesirable complexity.

Further, descriptions of LD resources are currently treated
as atomic entities by current LD servers. When a content-
format was negotiated successfully, the whole resource de-
scription is delivered by the server in the respective format.
In some situations it would, however, be beneficial if a server
could deliver only parts of a (possibly large) resource descrip-
tion for reasons of restricted access or to reduce processing,
I/O and transmission costs.

In this paper, we discuss a novel model for a storage layer
directly on top of LD that enables CRUD (create, read, up-
date, delete) operations on sub-graphs of LD descriptions.
Named graphs are used to model multi-layered descriptions
of things (records), the various layers of a record represent
arbitrary partial aspects of item descriptions. Such records
are treated as units that can be created, read, updated and
deleted in a storage that may be realized using, for instance,
a common triple-store implementation. Serialized records
are read/written via an HTTP REST interface [6], record
layers are realized as named graphs which enables efficient
access and clean compartmentalization of these data. CRUD

operations on records can be restricted to (groups of) layers
that can be specified using an HTTP 1.1 standard compliant
selection mechanism based on range headers.

We start the remainder of this paper by formally intro-
ducing our model, followed by an informal discussion of its
advantages and shortcomings. We continue by discussing
our prototypical implementation and our approach in the
context of related work.

2. FORMAL MODEL
Our model disallows the use of blank nodes and strongly

discourages the use of RDF reification in the used RDF
graphs. Both are also discouraged for LD publishing in gen-
eral [3]. The main reasons for this are that (i) bnodes are
not referenceable and make graph merging much more com-
plex and (ii) that reification results in increased storage re-
quirements and makes querying more difficult. We start this
section by introducing some derivations of well-known sets
from the RDF specifications by excluding bnodes:

Definition 2.1 (Initial definitions). Let U be the set
of URI references, B the set of RDF blank nodes and L the
set of literals as defined in [13]. Further let T = (U∪B)×U×
(U∪B∪L) be the set of RDF triples and T′ = U×U×(U∪L)
the set of triples without blank nodes.
Further let P(X) be the powerset of an arbitrary set X.
Then G = P(T) is the set of all RDF graphs and G′ = P(T′)
is the set of all RDF graphs without bnodes. Further, anal-
ogously to the definitions in [4], we define a named graph
without bnodes as a pair (u, g) ∈ (U×G′).

Having introduced these basic sets, we continue by de-
scribing our concepts of facets, RDF graphs“centered”around
a subject resource. This subject resource is identified in a
sub-graph by being the only one having an asserted OWL
class y2:RecordFacet, that stems from our vocabulary in-
troduced in Section 4. A second type of facets, so-called ex-
tension facets, are defined analogously using a second OWL
class y2:RecordExtensionFacet. Facet graphs may not con-
tain other facet subjects but apart from that they are not
further restricted as shown in Definition 2.2.

Definition 2.2 (Facets). We call fx
core ⊆ G′ a core

facet of a resource identified by the URI x ∈ U iff
y, z ∈ U and ∃!(y, rdf:type, y2:RecordFacet) ∈ fcore

x with
y = x and @(z, rdf:type, y2:RecordExtensionFacet) ∈ fx

core.
We call fx

ext ⊆ G′ an extension facet of x iff
y, z ∈ U and ∃!(y, rdf:type, y2:RecordExtensionFacet) ∈
fx
ext with y = x and @(z, rdf:type, y2:RecordFacet) ∈ fx

ext.

A slice of a subject x is a named graph created by merg-
ing2 one core facet of x with an arbitrary number of exten-
sion facets (Definition 2.3).

Definition 2.3 (Slices). Let ⊕ be an RDF merge op-
erator as defined in [11]. We call the named graph (n, Sx) ⊆
(U × G′) a slice with name n of the core facet fx

core and a
(possibly empty) set of extension facets {fy1

ext, . . . , f
ym
ext} iff

Sx = fx
core ⊕m

i=1 (fyi
ext).

A layer is a named graph created by merging multiple
slices sharing a common name (Definition 2.4).

2A merge of a set of RDF graphs that do not share blank
nodes is simply the set union of the contained triples.



Definition 2.4 (Layer). We call the named graph
(n,L) ⊆ (U×G′) a layer with name n of the (possibly empty)
set of slices {(n, Sx1

1 ), . . . , (n, Sxm
m )} iff L = ⊕m

i=1(Sxi
i ).

A store is a set of layers including one mandatory core
layer named by a special URI reference ncore ∈ U that is a
configuration parameter of this store (Definition 2.5).

Definition 2.5 (Store). A store Sncore is a set of lay-
ers {(ncore, Lcore), (n1, L1), . . . , (nm, Lm)} with distinct names
ni. (ncore, Lcore) is called the core layer of the store.

Finally, a record is an arbitrary set of slices sharing a com-
mon subject x. It thus represents multiple partial aspects of
this subject resource. In order to integrate records into a
store, its slices should be named according to the layers of
the store. In particular, such records have to contain a core
slice named by ncore.

Definition 2.6 (Record). A record Rx is a set of slices
{(ncore, S

x
core), (n1, S

x
1 ), . . . , (nm, S

x
m)} with distinct names

ni and a common subject x. (ncore, S
x
core) is called the core

slice of the record.

Integration of such a record into a store is then achieved by
simply merging all slice-graphs with the respective (equally
named) layer-graphs in the store.

3. INFORMAL DISCUSSION
At its core, a store in our model is a set of named graphs

with some associated metadata. Such a store could thus be
realized by a single RDF data set [15], where the default
graph corresponds to the core layer of the store. Most cur-
rent triple store implementations support this concept and
provide a SPARQL service for querying such data sets. Note,
however, that the simplest useful store compliant with our
model contains only one single (core) layer and can be repre-
sented by one single RDF graph. Further note, that is is also
easily possible to realize multiple stores in one single triple
store, as long as distinct layers have distinct names. In such
a scenario, it would even be possible that different stores
share common layers, which would, however, require some
kind of concurrency handling to preserve data integrity.

The named graphs in a data set are layers that should be
used to group logical aspects of the stored data. For scenario
1, one could, for example, foresee a layer for storing the
user profiles, another one for storing item descriptions and a
third layer for storing annotations (e.g., reviews) regarding
both. The benefit of this logical separation is that it is
now straightforward to deliver or modify these data aspects
separately or attach differing access policies to them. If, for
example, one would like to make certain parts of an item
profile readable only to a particular group of (registered)
users, the item descriptions themselves could be split up into
two actual layers: One would be publicly readable while the
other would require a valid login. The same is obviously
applicable for restricting write access.

3.1 Two-dimensional compartmentalization
The proposed data compartmentalization has further prac-

tical advantages. For example, a system could allow concur-
rent access to these layers which would, for example, clearly
be beneficial in scenario 2 where multiple applications write
exclusively to “their” layers.

While layers structure a store“horizontally”, records group
resource-related descriptions from all layers, thus being a
kind of orthogonal (“vertical”) structuring concept. A (com-
plete) record describes all available partial aspects of a re-
source and may thus be conceived as the current “view” on a
resource in the respective linked data set.3 However, records
are also layered (layers of a record are called slices to make
them distinguishable). This enables the retrieval and manip-
ulation of partial records that represent only certain aspects
of a resource.

3.2 Faceted Records
Records are logical entities in our store to which CRUD

operations are applied. This does not mean, that our store
cannot be queried like any other LD set, e.g., using SPARQL
queries that fulfill certain triple patterns. Records are fur-
ther assembled by so-called facets, sub-graphs of a particular
slice of a record. A single, mandatory core facet (per slice)
describes the data that is exclusively related to the particu-
lar subject of the record: when the record is removed from
the store, these triples are removed in any case. A slice may,
however, further contain an arbitrary number of extension
facets. These facets may be used for descriptions that are
shared between multiple records.

U

x

Y

V

Figure 1: A store layer containing 2 records (X, Y)
which have 2 core facets (denoted by the dashed
lines around X and Y ) and 2 extension facets
(dashed lines around U and V ) each. In the depicted
situation, the reference count of these extensions is
2 each. Deleting one of the two records would re-
move only its core facet and reduce the reference
counts to one. Consecutively removing the other
record would then remove this record’s core facet as
well as both extension facets.

Consider, for example, the mentioned ID3 extractor in sce-
nario 2. When representing extracted ID3 tags as RDF, this
component could create a core facet for describing the MP3
file, using literals to describe directly related metadata such
as the title of this piece of music. For representing an MP3’s
artist, however, an own resource with associated metadata
(e.g., including owl:sameAs links to respective DBpedia re-
sources) could be created and linked via an object-property
to the MP3 resource. This artist sub-graph represents data
that is potentially shared between multiple records as many
MP3s may share the same artist(s).

3Note, that we actually do call a set of layers a “view” in
our implementation.



In this example, the sub-graph describing the MP3 would
be the core facet while the artist sub-graph(s) would be ex-
tension facets. Figure 1 depicts such a situation. The re-
sources X and Y represent two MP3 files that are associated
with two artist resources (U , V ) each. The difference be-
tween core and extension facets becomes clear when consid-
ering what happens when the respective records are deleted
from the store. As core facets describe exclusive metadata
about the record, they are deleted in any case. Extension
facets, however, may only be deleted if they are not refer-
enced by any other record. Thus a deletion of record X in
Figure 1 leaves its extension records untouched. A subse-
quent deletion of Y , however, would trigger the deletion of
U and V as well.

3.3 Facet extractors
The core issue regarding our model is how (core and ex-

tension) facets are extracted from a given RDF graph (i.e.,
a store layer or a record slice). As described above, facets
are “centered” around some resource. More formally, we are
looking for a function
ε : U×G′ −→ P(G′) that extracts a set of facets describing
a record-resource (identified by a URI) from a given RDF
graph without bnodes. Several methods for the extraction
of a resource-centered sub-graph have been proposed:

Simple extractors.
A simple way to extract a useful sub-graph is to consider

only triples that have the resource as subject. Stickler [17]
and others call this kind of representation “asymmetric”,
whereas a “symmetric” description would also include in-
bound arcs (i.e., triples that have the center-resource at the
object position). Other proposed methods, such as Concise
Bounded Descriptions (CBD) [17], RDF molecules [5] and
Minimum Self-contained Graphs (MSG) [19] are basically
reduced to these simple asymmetric or symmetric “shells”
when considering graphs without bnodes.

Pattern-based methods.
More complex graphs may be extracted using SPARQL

CONSTRUCT queries where the graph patterns of the se-
lection clause match the graph template used for construct-
ing the result graph. Note, that formalizing such queries re-
quires prior knowledge about the“structure”of the extracted
sub-graphs in order to formulate the proper query graph pat-
tern. Further note that such an extraction function would
require the execution of one SPARQL query per extraction
process which might be costly. Fresnel Selector Language
(FSL) [14] expressions are another method for sub-graph
extraction based on predefined patterns.

Explicit methods.
A further possibility is to use named graphs: one could

reuse the URI of the center-resource also as the name of a
named graph that contains all triples describing the respec-
tive facet. This explicit method for defining a sub-graph
does not restrict what triples are contained in a facet graph
and does not require a special function for extracting them.
This approach is, however, not applicable in our scenario
for the following reasons: (i) we already use named graphs
for representing layers. As facets are sub-graphs of layers
this scenario would require a concept for embedding named
graphs into named graphs. We are currently not aware of

an appropriate storage infrastructure for this; (ii) it would
further require a format for serializing such hierarchically or-
ganized named graphs which is currently not available; (iii)
it would lead to a large number of named graphs (one per
facet), something that is not efficiently handled by current
triple store implementations; (iv) further, compartmental-
izing the layer graph into named sub-graphs would make
querying more complex and probably slow.

Custom algorithms.
Finally, custom algorithms can be used to extract sub-

graphs of arbitrary complexity. Such individual implemen-
tations have the benefit that they might also resort to exter-
nal data and contextual information for this task and might
be specialized for a particular domain.

Whatever sub-graph extraction function is chosen, the
fundamental requirement is that it enables lossless graph
decomposition and merging. This means that adding, re-
moving or updating records in a store should not interfere
with other records (except for updating shared descriptions,
i.e., extension facets). One way to achieve this is to avoid
that facets overlap within a layer, i.e., that they do not
share triples. This is, for example, achieved when the sim-
ple asymmetric shell mentioned above is used (which, how-
ever, allows only the representation of name/value pairs and
links). The symmetric shell would obviously not show this
property as each extracted facet would contain all triples
having the center-resource as subject or object.

As distinct layers represent varying aspects of a data set, it
is likely that they will require differing models for expressing
their data. Allowing different extractors for distinct layers
is thus a logical consequence from this. Consider, for ex-
ample, scenario 2: here, the different actors will use very
different metadata models that probably differ in their com-
plexity. While one application might get along with simple
name/value pairs (and could use a simple yet effective asym-
metric shell extractor for the layer it writes to), another,
such as the above-mentioned MP3 handler, would probably
require a custom-tailored extraction function that extracts,
e.g., the extended “artist” facets from an RDF graph by re-
sorting to a certain semantic vocabulary (e.g., a property
from this vocabulary could be used to connect a MP3 re-
source to its artist resources).

Reference counting.
In our model, each layer in a store is assigned exactly

one record extractor that implements the above-mentioned
extraction function ε as well as a “reference counting” func-
tion ρ : G′ × (U × G′) −→ N0. This function accepts an
extension facet and a layer as parameters and returns the
number of core facets contained in the layer that reference
this extension facet. This reference count (refcount) is then
used by the store to decide whether an extension facet is
removed together with its core facet or not (Figure 1). A
simple method for this is to count the number of triples that
directly link core facet subjects with a particular extension
facet subject. In case of the above-mentioned ID3 example,
a refcount could be determined by counting only the triples
with the predicate that was used to connect core and ex-
tension facets. Another possibility is to explicitly represent
the reference count in a literal attached to the extension
subject. In this case, however, respective functionality is
required that keeps this value up-to-date.



Record index.
Although the data in our model is strongly compartmen-

talized into layers, an index of all records contained in a store
can easily be retrieved. Reconsider that each record contains
a mandatory core facet which has to include a triple that as-
serts the RDF type of the record’s core facet using a special
OWL class. This core record slice will then be merged with
the core layer of the store and thus a list of all contained
records is easily retrievable from this graph using a trivial
SPARQL query. Such an index is useful in many scenarios,
e.g., for search engines or other indexing applications.

4. VOCABULARY AND IMPLEMENTATION
We have implemented a prototypical LD store as described

in this paper. The central classes and interfaces of our im-
plementation are depicted in Figure 2. A store starts an
embedded Web server that implements a REST interface
realizing the CRUD operations that can be applied to the
store. We have further developed a simple OWL light vo-
cabulary (the “Y2 model vocabulary”), an excerpt of which
is depicted in Figure 3, for expressing the core concepts of
our model in RDF.

Store Layer
«interface»
Extractor

Record

Facet ExtensionFacet

View

*
*

extractsstores

*

*

*core facet

1

* 11 *

Figure 2: Main classes and interfaces of our proto-
typical implementation.

A store is consequently represented as a resource identi-
fied by a dereferenceable HTTP URI. Dereferencing this URI
(with content-type “text/rdf+n3”) leads to an RDF descrip-
tion of this store that includes references to all its contained
layers. Dereferencing a layer URI leads to a description con-
taining: (i) a dataLocation URI that can be used to link,
for example, to a local file storing this layer’s RDF model;
(ii) a readonly property that, when set to true, disallows
write access to this layer via the REST interface; (iii) a
recordExtractor property that is used to link to a resource
describing an extractor. As we used Java for our prototype
implementation, we foresaw an implementingClass prop-
erty that stores the FQN of the Java class that actually
implements an extractor. This class, that complies with a
simple extractor interface (cf. Figure 2), is loaded and in-
stantiated dynamically by our store implementation. The
extractor instance is then used to extract a collection of
facets (including exactly one core facet) from a given layer
RDF graph. Our implementation comes with some basic but
easily extensible extractor implementations that decompose
a layer into non-overlapping facets as described above.

Two OWL classes are used to represent RecordFacets and
RecordExtensionFacets. It is notable that resources con-

tained in the merged RDF graph, that is returned when
dereferencing a record URI, may be rdf-typed by both classes
as a resource may be the center resource of a core facet in
one layer and the center resource of an extension facet in
another one.

layer

implementingClass

RecordFacet

recordExtractor

void:Dataset

Layer

coreLayer

Store

isReadonly

xsd:uri xsd:string

RecordExtensionFacet

dataLocation

xsd:boolean
RecordExtractor

Properties

Classes

rdfs:domain

rdfs:domain

rdfs:range

rdfs:subPropertyOf

rdfs:domain

rdfs:subClassOf

rdfs:domain

rdfs:range

rdfs:subClassOf

rdfs:range

rdfs:domain

rdfs:range

rdfs:domain

rdfs:range

Figure 3: Y2 model vocabulary.

4.1 REST interface
Our store implements a REST interface for executing CRUD

operations on its contained records. Reading records from a
store can thus be done using standard HTTP GET requests.
The store responds to such requests by (i) extracting all ac-
cording record facets from each layer using the respective
extractors, (ii) merging the respective record slices to one
RDF graph4 and (iii) serving this graph in serialized form
via HTTP5.

As with most other LD services clients can negotiate the
content type of the returned representation (HTML or RDF)
with our server. As our model is layered, however, we added
a second kind of “negotiation” possibility. Clients may re-
quest that the server assembles the returned description only
from a sub-set (called a view) of layers. This is done by
passing a list of layer names (i.e., URIs) in the HTTP range
headers of the request.

The HTTP range mechanism [7] allows the access of par-
tial resource representations. The main intention of this
mechanism is the reduction of unnecessary data transfer.
HTTP 1.1 enables clients to select byte-ranges of resource
representations (e.g., 500-999/1234 selects the second 500
bytes of a 1234 bytes long representation) and a range-
header-aware server answers such requests with a message
containing an HTTP 206 (Partial Content) response code.
The HTTP range mechanism explicitly foresees the possi-
bility to define custom “range units” that can be used to
specify a range6. We therefore propose this mechanism for
selecting what layers a delivered record description should

4It is is also possible to access a decomposed version of a
record serialized in TriG via content negotiation.
5Note, that our model does not specify what description is
returned for non-core facet resources. Our implementation
handles this case by returning their asymmetric shell.
6Note that RFC 2616 (HTTP 1.1) is a bit vague regarding
whether custom range units may be used for the Content-
Range header. Although the running text states that such
custom ranges can be used, they are not foreseen in the
EBNF of section 14.16 Content-Range. We understand that



contain. The following command, for example, requests the
annotation layer representation of resource X in N3 nota-
tion:

curl -H "Accept: text/rdf+n3"
-H "Range: layers=<http://mystore.com/y2/conf/anno>"
-X GET http://mystore.com/y2/r/X

Record creation.
Records can be created by sending RDF descriptions to their

HTTP URIs using HTTP PUT or HTTP POST requests7. Our
current implementation accepts only record descriptions serialized
as TriG [2], a simple text format for serializing named graphs.
The server de-serializes the record from a TriG document in the
following way: (i) for each named graph in the TriG document, a
corresponding layer (i.e., a layer with the same name) is looked-
up in the store; (ii) the record extractor of these layers is used to
extract the record facets from the named graph; (iii) the extracted
facets are merged to create the record slices.

A record might be invalid with respect to such a create opera-
tion, e.g., if not all named graphs have corresponding store-layers,
if no core slice was found or if some layers are not writable. In
such a case, the server answers with a respective HTTP status
code (e.g., 416 Requested Range Not Satisfiable or 403 Forbid-
den). Otherwise, the record is added to the store by merging its
slice graphs with the respective layer graphs. This results in the
integration of layered records into a layered LD store as depicted
in Figure 4.

YX

Z

Layered graph

L2

L1

core

extraction integration

Layered Linked 
Data Store

Figure 4: A record with three layers (core, L1, L2)
is extracted and integrated into a layered LD store
that is linked to other LD sources. Record subject
resources are depicted as black circles.

Record deletion and update.
Analogously, the server accepts HTTP DELETE requests to

the respective resource URIs. The server extracts the respective
record from its layers and deletes these triples. Note that the
above-mentioned range negotiation is used for the whole REST
interface. Thus, replacing the HTTP method by “DELETE” in
the above-mentioned curl request results in deleting only the an-
notation layer of resource X, leaving all other layers untouched.

Sending HTTP PUT or POST requests to the URIs of already
existing records results in an update operation. In this case, the
old record is deleted from the storage and the new one is parsed
from the request body and created in the store. Note, that this
may also result in an update of shared extension facets.

this issue is work in progress and designed our solution with
regard to the latest IETF draft published in [7].
7Note, that this obviously works only if the respective URIs
are part of this stores’ dereferenceable URI space.

Bulk creations/deletions.
In order to support bulk creation and deletion operations (use-

ful, e.g., for store synchronization, etc.), there is also the possibil-
ity to send a collection of records to a special resource of a store:
its RDF sink. This resource is backed by a servlet that accepts
HTTP POST and DELETE requests. Collections of records are
parsed from the TriG document embedded in the HTTP request
and the respective storage operations (create, update or delete)
are executed on each contained record.

5. RELATED WORK AND DISCUSSION
Obviously, consuming and updating LD sets via SPARQL in

general and the currently discussed SPARQL 1.1 Update [9] ex-
tension in particular are related work to ours. Our proposed
model should, however, not be considered in any way as some
kind of replacement for SPARQL but rather as a complement-
ing strategy for storing and accessing LD that is pre-structured
in some form. The record extraction functions that determine
the “silhouettes” of the various record layers in our model en-
force a common structure of the stored graphs respectively their
facet sub-graphs. This may be beneficial when consuming these
data as less-generic data handling interfaces (e.g., import inter-
faces, GUIs) are required. On the downside, this also restricts
the modeling possibilities for the LD in such stores. Although
this restriction is alleviated by the possibility to provide multiple
layers, each containing differently structured aspects of the data,
our approach cannot be a general but rather a domain-specific so-
lution for LD. Generally spoken, the main difference between our
solution and SPARQL is, that the latter acts on the triple level
of RDF graphs while we introduce logical, decomposable enti-
ties and act on the descriptions of these entities (i.e., on layered
records).

The form of these entities is determined by extractors on the
server side which is comparable to the SPARQL DESCRIBE se-
mantics. In both approaches, the client requires no prior knowl-
edge about the structure of the returned description. As our
records are decomposable into layers, we additionally enable fil-
tering of such descriptions by layer and thus also the retrieval
of partial descriptions of a LD resource. SPARQL also provides
methods for filtering triples from a result set, even on a per-
named-graph basis (namely, graph patterns and FILTER con-
straints) which could, arguably, also be used for the retrieval of
partial records. The difference is, however, that in this case the
data consumer explicitly decides how these partial records look
like while in our approach the writer(s) actually determine the
contents of a record slice. This is also reflected in the ways how
such partial descriptions are requested: In SPARQL, the respec-
tive filter and selection statements would be part of the query
itself (and thus part of the HTTP message payload), while our
solution relies on negotiation via HTTP headers. This allows
it to handle the availability or accessibility of partial records on
the transport protocol layer which might be beneficial in certain
situations, e.g., for caching purposes.

Writing to our store is also handled differently from SPARQL
UPDATE. Although clients may send any RDF data to our ser-
vice, only properly extracted sub-graphs will be further processed.
The parts of the transmitted descriptions that do not match the
structure predefined by the given extractor functions are filtered
out. This is different in SPARQL UPDATE where there are no
restrictions for the client to specify what would be updated in a
graph store.

Nevertheless, our store is in the end represented by a single
RDF dataset that can be accessed via SPARQL like any other
graph store. Actually, we do believe that a combination of both
access methods could be beneficial in many scenarios where both
levels of granularity (triple and record) are useful. Reconsidering
scenario 1, SPARQL could be used to query a store as usual (e.g.,
“return all URIs of items that cost less than x USD”), accessing
these URIs via the REST interface could then be used to exchange
whole logical entities (e.g., the respective item descriptions, as
foreseen by the store implementer), and SPARQL UPDATE could
be used to update the store in situations where client-control over
the data representation is useful (e.g, users could annotate their



profiles with own FOAF graphs that are sent to a particular graph
layer using SPARQL UPDATE requests).

Tabulator.
A generic user interface that uses SPARQL to build a kind of

readable and writable “data wiki” is Tabulator [1]. Tabulator is
not restricted to a single data source and treats LD in a generic
fashion on the triple level, i.e., no logical containers comparable to
our records are available. The decision where modified triples are
written to depends on their provenance; new item-related triples
are added to the documents that mentioned them. Writable RDF
documents are flagged by HTTP headers as such. Technically,
WebDAV and SPARQL UPDATE are used to write RDF data.

Tabulator does not introduce any actual restrictions to the
structure of the edited RDF graphs. This genericity is the main
strength but also weakness of this approach in our opinion. Any
data source can be filled with any triples which basically dissolves
this compartmentalization mechanism as one cannot predict what
data is found in what source anymore. This, however, raises ques-
tions of practicability. Besides the difficulties to develop appro-
priate read and write interfaces, the existing “hard” boundaries
between data sources are usually exploited in many ways, e.g.,
for deciding on the provenance and reliability of the data or for
access restrictions. It is further exploited to actually navigate to
the data one wants to consume: certain data sources are “known”
to contain certain kinds of data. For this reason one does not have
to search the Web every time but may bookmark Web resources
as consuming them at a later point in time is likely to return the
same or comparable information.

Social rules may practically restrict what data is written in
what “structure” to what data sources with Tabulator-like soft-
ware and this might work quite well, e.g., for a data wiki. Other
applications, however, might require some explicit and control-
lable mechanism for data structuring. Not only the structure of
these data but also their compartmentalization (respectively, the
possibility to group data sharing some common feature) is im-
portant in real-world situations. One practically highly relevant
application for this is access control. Both our introductory sce-
narios obviously require some restrictions of read and write access
to the stored resource descriptions. E.g., in scenario 1, parts of
the resource descriptions, such as user names or item labels, would
be publicly available while others, such as email addresses, would
be accessible only to registered users. Further, while possibly all
registered users may create new items, write access to user pro-
files or item descriptions would be restricted to the “owners” of
these resources. In scenario 2, where many applications write into
one common metadata store, it should be possible to manipulate
and access the contributed metadata independently to avoid that
the various applications mutually overwrite these data.

Finally, the generality of the Tabulator approach raises user
interface design questions: How to build user-friendly GUIs for
entering new/editing existing RDF data? One possible approach
to this is shown by RDFauthor [18], an approach for editing RDF
graphs embedded in RDFa annotated HTML pages. RDFauthor
also uses SPARQL UPDATE for propagating changes to a re-
spective SPARQL endpoint. It consists basically of a JavaScript
API that parses RDFa annotations from HTML pages and auto-
matically builds a user interface using appropriate input widgets
for the various properties. This user interface hides much of the
complexity of the underlying RDF data model and is more user-
friendly than the Tabulator. Nevertheless, such generic user in-
terfaces can never reach the usability of specialized GUIs as they
are possible when one knows about the basic structure of the
edited data, especially when patterns more-complex than simple
name/value pairs are used.

6. CONCLUSIONS
In this paper we proposed a model for a structured and layered

read/writable LD store. We introduced logical compartmental-
ization of resource descriptions in two dimensions: “horizontal”
layers and “vertical” records. Records are layered RDF graphs,
each layer representing some logical aspect of the description of

a record’s subject. This subject is a LD resource: dereferenc-
ing its HTTP URI leads to a representation of this resource (the
record) available in different formats (N3, TriG, XHTML). Par-
tial records can be requested by providing lists of layer names in
HTTP range headers which leads to partial descriptions of only
these aspects of a resource. An index of all records contained in
a store, usable by indexing applications, such as semantic search
engines, is automatically maintained.

Our proposal relies only on well established technologies and
formats from (Semantic) Web research, such as named graphs,
TriG, HTTP and REST, and can be implemented using standard
triple store and Web server technology. We have developed a
prototypical Java implementation of this model based on the Jena
Tuple Database (TDB)8 and the Jetty Web server9. A demo of
our implementation is available at http://purl.org/y2/.

Our proposed solution does not touch the complex topics of se-
curity, privacy, access control and related issues. Although these
are clearly missing features for using our implementation in real-
world scenarios as described in this paper, we are confident that
existing research on these topic may be integrated with our solu-
tion (cf., e.g., [12, 10, 16]).

We have discussed advantages and disadvantages of our model
in comparison to generic methods that directly operate on the
triple level based on SPARQL (UPDATE). Our solution is no
replacement for such generic solutions. It operates on a differ-
ent “level” of abstraction and may be used as a complementing
strategy for manipulating LD.

The main intention of our model is to introduce some struc-
turing into LD resource representations while not restricting the
flexibility and expressiveness of the graph-based RDF model too
much. These structures are determined by extraction functions
that are pluggable into a LD store. Extractors may define the
space of allowed structures for a record description based on all
levels of the Semantic Web Stack and even based on external
(e.g., contextual) data. They must, however, ensure (together
with the way the data is stored) that lossless graph decomposi-
tion is possible to enable CRUD operations on RDF subgraphs.
Developing non-trivial, efficient extraction functions that fulfill
this property is the hardest thing when implementing our model
for real-world data sources. However, when this task succeeds,
one is benefited with a store whose data structuredness lies some-
where between the fixed structures of object-oriented or frame-
based systems and the extreme flexible structures achievable by
arbitrary RDF graphs.
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