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Abstract. Interoperability is a qualitative property of computing in-
frastructures that denotes the ability of sending and receiving systems
to exchange and properly interpret information objects across system
boundaries. Since this property is not given by default, the interoper-
ability problem and the representation of semantics have been an active
research topic for approximately four decades. Early database models
such as the Relational Model used schemas to express semantics and
implicitly aimed at achieving interoperability by providing program-
ming independence of data storage and access. Thereafter the Entity
Relationship Model was introduced providing the basic building blocks
of modeling real-world semantics. With the advent of distributed and
object-oriented databases interoperability became an obvious need and
an explicit research topic. After a number of intermediate steps such as
hypertext and (multimedia) document models, the notions of semantics
and interoperability became what they have been over the last ten years
in the context of the World Wide Web. With this article we contribute
a retrospective on semantics and interoperability research as applied in
major areas of computer science. It gives domain experts and newcomers
an overview of existing interoperability techniques and points out future
research directions.

1 Introduction

Whenever an application processes data it must reflect the meaning — the se-
mantics — of these data. Since this awareness is not given by default, the ap-
plication designer needs to define a model, identify and structure atomic data
units, and describe their meaning. Only if an application is aware of the struc-
ture and semantics of data it can process them correctly. In this context, we
often find the distinction between data, information, and knowledge, which has
been subject of intensive discussions in the Information Science literature for
years. For a more comprehensive and actual discussion on these term we refer to
Rowley [49]. Here we simply define data as being symbols without any meaning
and information objects as being a collection of data that carry semantics, which
is a pre-condition for correct interpretation.

Interoperability problems arise when distinct applications communicate and
exchange information objects with each other: often the structure and semantics



of these objects is defined by autonomous designers, each having an individual
interpretation of the real world in mind. When an object leaves the boundary of a
sending system or application, the interpretation of these objects in an receiving
application is often not possible due to the heterogeneities between the involved
applications.

The problem of how to represent semantics and how to establish interoper-
ability between information objects in distinct autonomous, distributed, and het-
erogeneous information systems was a central and very active topic in database
and information systems research throughout the past four decades. While the
motivation in early database systems was to achieve data independence and in-
teroperation for data-oriented programs, the topic has become increasingly im-
portant with the advent of distributed (multimedia) databases and information
systems. Today it is still a major research issue in the largest currently existing
(multimedia) information system — the World Wide Web.

The heterogeneities that impede systems and applications from being inter-
operable were investigated several times in different domains (e.g., [50, 46, 55,
57]). Although the notions vary, we can broadly categorize them as follows:

– Technical Heterogeneities: denotes all system platform and exchange proto-
col differences that prevent applications from sending and receiving informa-
tion objects

– Structural and Syntactic Heterogeneities: occur when data units in informa-
tion objects are represented using different structures and syntax conven-
tions.

– Semantic Heterogeneities: are conflicts that occur because of the differences
in the semantics of data units

Analogous to these heterogeneity definitions we can define the various types
of interoperability that can be achieved: technical, structural and syntactic, and
semantic interoperability. In the following, when we use the term interoperability
we mainly refer to the latter two notions.

Before proceeding with our analysis of the various approaches that were
developed for achieving interoperability, we introduce an illustrative example,
which we will use throughout this work to explain the technical characteristics
of these approaches. We assume a scenario in which two film studios, denoted
as studio A and studio B, independently set up internal movie databases. Over
the years both studios collected a large amount of data about movies; now they
decide to share and exchange these data. Figure 1 depicts the differences in how
these two studios represent information about the same real-world movie. We can
assume that an actor can play in several movies and a movie has several actors.
The notation we are using here is abstract and represents only the available
information. It is not bound to any semantic modeling technique because this is
what we want to do in the subsequent sections.

The goal and major contribution of this paper is to provide a retrospective on
the developments in semantics and interoperability research throughout the past
four decades from the perspective of database and information system research.
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Sample movie data in studio A Sample movie data in studio B

Title =  Casablanca

Year = 1943

Genre = Drama

Length = 102

Stars = Humphrey 
Bogart, Ingrid Bergman

Movie

Title =  Casablanca

ReleaseYear = 1943

Genre = Drama

Length = 102

Starring = 

Name = Humphrey Bogart

BirthDate = 1899-12-25

Name = Ingrid Bergman

BirthDate = 1915-08-29

Film Actor

Actor

Fig. 1. Illustrative Example. Studio A records for each Movie its title, the year
when it was first presented, the genre, its length, and the stars playing in the movie.
Studio B records for each Film the title, the releaseYear, the genre, the length,
and for each starring the name and birthDate of the Actor.

Solutions developed by other disciplines (e.g., Information Retrieval, Data Min-
ing, or Artificial Intelligence), that of course encounter similar problems, are out
of the scope of this paper. We will present a selected but representative set of
approaches that enable the expression of data semantics and/or allow us to deal
with the heterogeneities between applications. Our illustrative example will help
us to explain the technical characteristics of some of these approaches.

1970 1980 1990 2000 2010

Early
Database
Models

Distributed and Object-Oriented
Database Systems

Semantics in Distributed and Heterogeneous
 Information Systems

Web Semantics

Fig. 2. Semantics and Interoperability Research in Computer Science.

As illustrated in Figure 2, we start our retrospective in the early 70s and
present early database models in Section 2. Then, in Section 3, we move along to
distributed databases and object-oriented database models, which allow application-
oriented and context-dependent design of databases. In Section 4, we describe
major models and languages for the representation of semantics in distributed
and heterogeneous information systems. Then, in Section 5, we describe the Se-
mantic Web and the ideas behind the currently ongoing Linked Data movement
as a way to represent data semantics on the Web. Finally, we summarize our
retrospective in Section 6 and give an outlook on future research topics in the
area of semantics and interoperability research.
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2 Early database Models

Very early in the development of file systems and databases it was realized
that a model-driven approach to data storage would allow a better separation
between the data stores and the application programs using those data. In a
way this so-called data independence was a first step to allow for data-oriented
interoperation of programs. At the same time this data independence brought
semantics into play, in the sense that a data model reflected on the real world
and allowed programmers and end users to better understand the meaning of
those data and therefore to utilize them more effectively.

In this section, we will first focus on the Relational Model (Section 2.1),
which, until today, builds the formal basis for modern database systems. Then
we describe the Entity Relationship Model (Section 2.2) and other logical and
conceptual data models (Section 2.3) from that period.

2.1 The Relational Model

In the 70s a large number of modeling approaches were proposed, quite a number
of them still in use today. A seminal influence on this field had the Relational
Model [17] since the simplicity of the table-oriented visualization allowed easy
understanding and use of the data in a data storage independent way. With its
keys and normal forms (2nd, 3rd, Boyce-Codd etc.) early examples of semantics,
i.e., reflections on the properties of the real world, became expressible. Figure 3
shows our illustrative example represented in the Relational Model.

Movie(title, year, genre, length, star)

title genre length star
Casablanca 1943 Drama 102 Humphrey Bogart

year

Casablanca 1943 Drama 102 Ingrid Bergman

Film(title, releaseYear, genre, length)

Actor(name, birthDate)

Starring(title, releaseYear, name, birthDate)

title genre length
Casablanca 1943 Drama 102

releaseYear

title name birthDate
Casablanca 1943 Humphrey Bogart 1899-12-25

releaseYear

Casablanca 1943 Ingrid Bergman 1915-08-29

name
Humprey Bogart 1899-12-25

birthDate

Ingrid Bergman 1915-08-29

Sample movie data in studio A Sample movie data in studio B

Fig. 3. Relational Model Sample. It shows how studio A and B could structure
their data in relations. Studio A stores the information about movie and stars in a
single relation, which can lead to data redundancies as well as update and deletion
anomalies. Studio B decomposed its data into separate relations and thereby eliminates
these shortcomings. The choice of keys in B causes a large data load in the Starring
relation because the relationship between films and actors is established via their keys.
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However, it soon became clear that the Relational Model was too restric-
tive to allow an easy expression of more sophisticated semantic situations that
would be needed when designing databases for multiple applications and usage
environments. As a consequence, semantically richer models were being devel-
oped. One of the first conferences oriented strongly towards semantics was the
IFIP TC 2 Working Conference on Database Management Systems held 1974
in Corsica. There J.R. Abrial introduced the Binary Relational Model [4] by
defining Objects as models of concrete or abstract objects of the real world and
binary relations between them. In doing so he introduced unique internal identi-
fiers and showed that binary relations were sufficient to model the data-related
properties of the real world. Semantics was expressed by object properties like
synonyms, equivalence or relational symmetry, reflexivity and transitivity but
also by handling three valued logic (true, false, unknown) to allow for an open
world assumption. Today we can still find some of these concepts in the RDF
model (see Section 5.1).

In the same conference, Bo Sungren introduced his thesis [52] where he ap-
plied, for the first time, the Meta-Information concept for database models. This
allows for the representation of even richer semantics about the real world mod-
eled in the database including formal and informal information about objects,
properties and relations. Another important aspect of meta-data is information
like quality of the data, changeability of the model, reliability of the informa-
tion, the source of the data, e.t.c. Meta-data help the designer of the database
to decide on the proper schema and the user when locating relevant information
in the database.

2.2 The Entity Relationship Model

In 1975 Peter Chen published the Entity Relationship Model (see [15] and [16]).
This model streamlined a number of the earlier approaches into the somewhat
simpler to understand concepts of Entities, Attributes and Relations as the basic
building blocks for modeling the real world. Again, the constraints placed on
entities (e.g., cardinality, atomicity), relations (e.g., n:m) and attributes (single-
multi valued, type) allow for the expression of semantics. The ER model gave
rise to a series of conferences starting in 1979 and continuing up until today. The
semantic modeling aspect for designing databases as well as the interoperability
of programs using those databases was considered in the development and the
extensions of the ER model. Up until about 1985 the ER model did, for instance,
not discuss is-a and inheritance. Figure 4 shows the Entity Relationship model
for our illustrative example.

2.3 Other Models

Over the 70s but even later quite a number of additional models were proposed.
The Object Role Model (ORM) originally proposed by Falkenberg [22] and Sjir
Njissen as NIAM [42] was later adopted for the ORM modeling technique which
in turn influenced (e.g., Halpin [30])) the data modeling part of the nowadays
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Movie

TitleYear

Genre

Length Star

Sample movie data in studio A Sample movie data in studio B

Movie

TitleRelease
Year

Genre

Length

ActorStarringM N

Name

Birth
Date

Fig. 4. Entity Relationship Model Sample. The example shows how studio A and
B could model their data structures using the Entity Relationship Model (in original
Chen notation). Studio A models the names of the movie stars asmultivalued attributes
(marked with double circles). Studio B models the associations between instances of
movies and actors as a relationship. The underlined attributes indicate primary keys.

predominant Unified Modeling Language (UML). Mostly all these models were
developed to allow semantic-oriented design of databases and data independence
respectively. Interoperability aspects were only mentioned as borderline criteria.

That, however, changed with the Architecture Model of the ANSI/X3/SPARC
proposal [5]. This model differentiates between three levels of database schemas:
an internal model (e.g., a relational model), a conceptual model (e.g., a global
ER Model), and multiple external models representing the usage views of the
database and reflecting the individual semantic needs of the usage. This imme-
diately led to a number of issues on how to map the different levels into each
other without loss of essential information.

3 Distributed and Object-Oriented Database Systems

The powerful (relational) database systems developed in the 70s ensured data
independence and interoperability of application programs. At the same time it
was realized that more powerful data models were needed that reflect more of the
semantics of these data and allow application-oriented and context-dependent
design of databases. In the late 70s and early 80s the rise of powerful computer
networks began. It was henceforth possible to place data on various computer
nodes, either locally or distributed throughout larger networks.

In this section, we first describe the research area of distributed databases
and how they deal with semantic heterogeneities (Section 3.1). Then we intro-
duce the central characteristics of object-oriented database models and systems
(Section 3.2).
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3.1 Distributed databases

In the late 70s, the research field of distributed databases1 grew rapidly in im-
portance. Early papers on distributed databases were Distributed INGRES [51]
and POREL [41], both approaches based on the Relational Data Model. They
introduced the concept of global versus local schemas and the three-level archi-
tecture for centralized database systems, which was later extended to five layers:
the multiple local internal models, the local conceptual models, the local (con-
ceptual) export models, the global (conceptual) model, and the multiple external
models. In order to design such a system, additional semantic meta information
was needed, as, for example, on the data distribution, the size and break-up of
entity sets, the relations between them, the cardinality respectively selectivity
of attributes, etc. The data models had to be extended accordingly, but in many
cases those extensions were attached to an underlying relational model and not
to the conceptual models of the various layers. The interoperability of applica-
tions and databases was then assured via the single global schema that would
be used both by the local databases as well as by all of the global applications.

It was recognized that in principle two situations for distributed databases
can exist: (i) homogenous and (ii) heterogeneous distributed databases. Figure 5
shows how our illustrative example can be deployed in a distributed setting.

Starring(...)

Actor(...)

Film(...)

Film(...) Actor(...)

Starring(...)

Q/R

Q'/R' Q''/R''

(a) Homogeneous

Starring(...)

Actor(...)

Film(...)

Movie(...)

Q/R

Q'/R' Q/R

Starring(...)

Actor(...)

Film(...)

M

(b) Heterogeneous

Fig. 5. Homogeneous and Heterogeneous Distributed Databases Sample. In
(a), we assume that studio B distributes the relations of its schema on two distinct
database systems. In (b), the schema of studio B serves as global schema and also as
local export model of B’s database. A mapping M between the global schema and the
local schema of database of studio A needs to be established in order to bridge the
heterogeneities between the involved databases.

In the first case, a top down design is realized by integrating external schemas
into a single global schema. Guided by application-oriented meta data the de-
1 See Ceri et al. [13] for an overview of distributed databases
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sign of the local schemas for the different computers in the network then follows.
Here considerable research effort was spent on strategies for splitting relations
horizontally or vertically but in hindsight difficulties did arise from the low level
of available semantic information. Some other research prototypes next to Dis-
tributed Ingres and POREL are SDD-1 of the Computer Corporation of Amer-
ica [34] and R* of IBM [28].

In the second case, heterogeneous systems follow a bottom up design to cover
situations where a number of pre-existing or autonomous databases must be in-
tegrated into a single data management system in order to be shared by global
applications. Using the information contained in the local conceptual schemas
and the global knowledge about the applications the export schemas can be
developed and then be integrated into a single global schema by means of a
mapping specification. The research prototype MULTIBASE [37] uses Daplex,
a logical data specification language, for modeling the various schemas. Hetero-
geneous SIRIUS-DELTA [38] uses the relational model only and demonstrates
the integration of PHLOX, which is a database system of the CODASYL Model
family. However, it does not provide full functionality as no real global schema is
assumed, no local users are allowed, and mapping functions are to be provided
by the local database management systems.

As it turns out, homogeneous distributed database systems became a fea-
ture of the major database products, whereas heterogeneous systems are still
difficult to handle, even today. The main problems arise from the scarcity of
semantics that can be provided for the external schemas and the global applica-
tions that use those schemas as well as the semantics for the local schemas used
for designing the local databases.

With the advent of heterogenous distributed database systems the need for
data consistency and object identity became apparent. In our illustrative exam-
ple, studio B uses the attribute BirthDate as part of the primary key for the
relation Actors. Studio A represents actors as a multivalued attribute with the
consequence that actors can only be identified by their names; information about
an actor’s birthdate is not available in studio A’s database. Therefore, studio A
cannot distinguish between authors having the same names and runs into prob-
lems when integrating its data with those of studio B: if the schema of studio B
is used as global schema, it is not possible to define identity for the actors from
studio A’s database, because birth dates are not given.

The models discussed so far neither allow for the specification of behavior nor
are they flexible enough to allow for the expression of properties like equivalence,
inheritance, and composition. As a consequence, the attention of the database
research community shifted to object-oriented databases that allow for the spec-
ification of object identity structures, semantics, behaviors, and constraints for
the objects to be stored in the database (see Section 3.2).

3.2 Object-Oriented database Models and Systems

The main stream of databases — the relational model based systems, central
or distributed — even when enhanced with Entity Relationship type semantic
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descriptions did not show enough flexibility to support, for instance, the inter-
operation of heterogeneous systems or the extensibility for new appearing data
types like semi-structured and unstructured information. BLOBs (Binary Large
Objects) used as a first solution actually led to the loss of data independence, a
paradigm that originally gave rise to the databases concept.

In the early 80s, object-oriented programming (Smalltalk, C++) became
popular and the need for the persistent storage of those new types of data
arose. This triggered research in Object-Oriented Database Management Sys-
tems (OODBMS) and OO Data Models (OODM), which started simultaneously
in many locations. Many prototypes and even some commercial systems became
available in the late 80s. An extensive description of those systems can be found
in Dogac et al. [19] and also in Bukhres et al. [11].

Basically an object-oriented database model introduces application behavior
(semantics) into databases by supporting a number of concepts, some of them
well known in the object-oriented programming world, others specific to the
persistence of the storage.

– Object Identity : every object has a unique identifier attached permanently at
object creation time for object recognition. Unfortunately, this does not solve
the object identity problem in heterogeneous systems where for the same real
world object two different database objects could have been created.

– Type Extensibility : the basic data types in the database can be extended
with new basic types and their handling functions. Type constructors would
allow for new complex (abstract) data types. The typing systems could allow
static binding or dynamic binding of data to the operations.

– Object Classes: objects of the same kind (in real world terms), that is, having
the same data types, object attributes, behavior and relationships to other
objects, will be collected in to a single class.

– Inheritance: objects of a subclass (a more specific description) inherit proper-
ties of a superclass via the semantic concept of an is-a relationship including
inheritance from multiple superclasses, e.g., as in case of the two superclasses
SUV and Truck and the subclass SportTruck that has properties of both the
SUV and Truck classes.

– Object Instance: some OODM allow that an object instance can populate
all the superclasses where it inherits properties from, others only allow the
instance in the ultimate subclass where its most specific description is lo-
cated. Missing information, later added, would change the class of an object
whereas in the first case the object instance only would be added to the
newly relevant subclass. The first case would also simplify the problem of
interoperability in heterogeneous multi-OODBMSs. Of course it would still
not solve the problem of object identity.

We believe that no single prototype or product fully supported all the pos-
sible features and also that no clear winner has ever been established in the
OODBMS world. As it happens, object oriented features were added by the re-
lational database vendors and today the OODBMS’s can only be found in niche
application fields. A simple example of and OODBM schema is given in Figure 6.
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Title
ReleaseYear
Genre
Length

Movie

Name
BirthDate

Person

ActivePeriod
ActorhasStarring1..* 1..*

Fig. 6. Object-Oriented (UML) Model. The example shows the schema of studio
B in an object-oriented representation using the UML notation. To illustrate the in-
heritance feature of OO model, we introduced a super-class Person that defines all the
attributes that would describe persons (not only actors) in the real world. The class
Actor inherits all the properties from Person and introduces the additional attribute
ActivePeriod.

To tackle the problem of heterogeneous distributed OODBMSs with their
sometimes distinct formal semantics, more (formal) semantic flexibility was de-
sirable. The VODAK Modeling Language (VML) [35] was an attempt to solve
the problem by extending the two level models Application Class and Instance
and the relationship is-instance-of with two additional levels, the Meta Class
(MC) Level and the Meta-Meta Class (MMC) level (or Root Metaclass). The
MC classes would specify the behavior of the specific class model, e.g. inheri-
tance of all properties for all subclasses or only for specific properties or no in-
heritance at all could be specified. In case of heterogeneous OODBMSs a global
schema could then be used to integrate the individual different (formal) models
and achieve interoperability between the databases. Today the idea of multi-level
model architectures is reflected in the Object Management’s Group (OMG) MOF
model [44] and serves as formal basis for UML [45], which is now the de-facto
standard for object-oriented application design.

However, as it soon turned out, even with the powerful object-oriented mod-
els that allowed for the expression of many real world semantic properties and
behaviors via concepts like meta classes, classes and inheritance, the expressive
power needed in the opening-up world of multimedia and the World Wide Web.
As a consequence the OODBMSs never became THE database concept envi-
sioned in the late 80s and early 90s, despite the fact that some of their features
can be found even today in multimedia, document, streaming, etc. data models.
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4 Semantics in Distributed and Heterogeneous
Information Systems

Distributed databases split data across several nodes and increased the perfor-
mance and scalability in data management. The distinction between different
types of schemas and the development of more application-oriented data models
such as the Object Oriented Data Model introduces novel ways of expressing the
semantics of data. With the rapidly increasing size of local and wide area com-
puter networks, however, already established database-oriented interoperability
mechanisms turned out to be insufficient due to the technical heterogeneities of
the involved network nodes.

In the late 80s and early 90s information integration started to become an
active research field having the goal to provide uniform access to data stored in
distributed, heterogeneous, and autonomous systems. The Semistructured Data
Model (Section 4.1) plays a central role in this context. In parallel, research
on Markup Languages (Section 4.2) evolved to a first agreed-upon standard
(SGML), a derivative of which (XML) was later integrated with the Semistruc-
tured Data Model. Hypertext and Hypermedia research (Section 4.3) not only
focused on data and document representation but also on navigation and access
to documents in distributed environments. All these efforts had a direct impact
on Multimedia Data and Document Models, which aimed at representing the
semantics and behaviors of non-textual multimedia objects. Representative for
these developments we discuss MPEG-7 (Section 4.4) and briefly outline other
metadata interoperability approaches (Section 4.5).

4.1 The Semistructured Data Model

In all models available so far (Relational Model, ER Model, OO Model) data had
a fixed schema describing the semantics of data. This leads to problems when
data are exchange across systems, because the underlying databases usually
do not share the same schema even if they maintain similar data. This was
the primary motivation for developing a more flexible data model, called the
Semistructured Data Model.

The original model evolved from the LORE [3] and TSIMMIS [14] projects
at Stanford University and was first described by Papakonstantinou et al. [47].
Unlike the other existing data models at that time, the semistructured model
doesn’t separate the schema from the data. It is self-describing, meaning that
the data themselves carries their schema information. Data represented by the
semi-structured model takes the form of a directed labelled graph. The nodes
in such a graph stand for objects or attribute values. An edge indicates the
semantics of the relationship two nodes have with each other. Different from
previous models, an edge merges the notions of attributes and relationships into
a single primitive. Figure 7 shows our illustrative example in a semistructured
representation.

The semi-structured data model provides the necessary flexibility for ex-
changing data across system boundaries. However, the price for this flexibility is
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cb hb

Root

Film

Title
LengthReleaseYear Genre

Actor

Name BirthDate

ib

Name BirthDate

Actor

Casablanca 1943 Drama 102 Humphrey
Bogart 1899-12-25 Ingrid

Bergmann 1915-08-29

starring

starring

Fig. 7. Semistructured Model Example. A directed labelled graph represents the
data of studio B. The graph is self-describing because the data also carry schema
information.

the loss of efficiency in query processing. This is one of the reason why most of
today’s data are still represented in the very efficient relational model and the
technologies based on the semi-structured model are primarily used for exchang-
ing data. An architectural pattern combining the benefits of the static-schema
and schema-less approaches is the mediator-wrapper architecture proposed by
Wiederhold [58]. An extensive explanation of the Semistructured Data Model
and its succeeding technologies is provided by Abitebul et al [2].

4.2 Markup Languages

The motivation for the development of markup languages comes from the pub-
lishing industry and early works on electronic document management systems.
Without any markups, documents are simply files containing a sequence of char-
acters. Applications processing these documents cannot anticipate, for instance,
what are the section headings to be presented to the user or where in the char-
acter sequence the information about the authors is located. Therefore, the goal
of markup languages is to add semantics to plain character sequences. Markers
(tags) allow for the annotation of electronic documents in order to add data,
presentation, and processing semantics to character subsequences.

The IBM Generalized Markup Language (GML) invented by Mosher, Lorie,
and Goldfarb (cf., [24]) was the first technical realization of a markup language.
Scribe [48] was the first language that introduced the separation of content and
format and applied a grammar controlling the usage of descriptive markup el-
ements. These works lead to the standardization of the Standard Generalized
Markup Language (SGML) [32] in 1986. SGML is a metalanguage for describing
markup languages and defines a common syntax for the markup or identification
of structural textual units as well the a grammar — the document type defini-
tion (DTD) — for defining the structure and allowed for tags in a document.
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Prominent derivatives of the SGML are HTML, developed in 1991, and XML,
standardized in 1998.

HTML [7] is a presentation-oriented markup language that allows users to
easily create Web sites without adhering to the strict formal requirements im-
posed by the SGML DTDs. The extensibility and flexibility of HTML was one
of the key factors for the success of the World Wide Web, with the result that
until today HTML is the most widely used markup language.

While HTML mainly provides markup elements that define presentation se-
mantics of document parts, XML [56] provides a simplified meta markup lan-
guage for defining documents that contain data to be communicated between
applications. Hence, the elements in XML documents indicate the semantics of
contained data values. Since XML is backward-compatible to SGML, DTDs can
be applied for imposing element definitions and document structures on XML
documents. Nowadays, however, DTDs are superseded by XML Schema, which
offers the great advantage that not only data but also the schema information
is represented in XML. Figure 8 shows our illustrative example represented in
XML.

<?xml version="1.0" encoding="UTF -8"?>
<movie>

<title >Casablanca </title>
<releaseYear >1946</releaseYear >
<genre >Drama</genre >
<length >102</length >
<starring >

<actor>
<name>Humphrey Bogart </name>
<birthDate >1899 -12 -25</birthDate >

</actor >
<actor>

<name>Ingrid Bergman </name>
<birthDate >1915 -08 -29</birthDate >

</actor >
</starring >

</movie >

Fig. 8. XML Document Example. It shows the movie data of studio B represented
in XML.

Soon it was realized that the freedom of the original HTML specification
lead to interoperability problems among web browsers. Around the year 2000,
XHTML was developed in order to bind the features of HTML to an XML for-
mat. The goal was to represent Web documents as well-formed XML documents,
which promised greater interoperability but less freedom in the creation of Web
sites. With the development of XHTML22 and HTML53 a competition on the

2 http://www.w3.org/TR/xhtml2/
3 http://www.whatwg.org/specs/web-apps/current-work/multipage/
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next generation markup language started. At the time of this writing, HTML5
seems to be the winner because of its less strict, more evolutionary design ap-
proach.

4.3 Hypertext and Hypermedia

Inspired by Vannevar Bush’s vision of Memex [12], Ted Nelson and Douglas
Engelbart started their research on hypertext and hypermedia systems in the
late 60s (cf., [40, 21]).The goal of hypertext was to extend the traditional notion
of linear flat text files by allowing a more complex organization of the material.
Hypertext systems should allow direct machine-supported references from one
textual chunk to another. Via dedicated interfaces the user should have the
ability to interact with these chunks and to establish new relationships between
them. Thus, hypertext was considered as a non-linear extension of traditional
text organization. Hypermedia is an extension of hypertext that also includes
non-textual multimedia objects such as audio, video, and images. A detailed
survey on early hypertext research and existing hypertext systems is available
in [18].

In its simplest form, hypertext consists of nodes and plain links, which are
just connections between two nodes. They carry no explicit semantics but simply
serve for the navigation between hypertext nodes. But links can also be used to
connect a comment or annotation to the text it writes about. In such a case,
the links that connect data with other data express semantics. When links have
explicit types assigned, as described in Trigg et al. [54], they explicitly define the
semantic relationship between nodes. There is a clear analogy between explicitly
typed links in hypertext systems and the semistructured model described in
Section 4.1: the underlying models are directed labelled graphs.

For exchanging hypertext and hypermedia documents between applications,
it soon became clear that a standardized exchange format is required in order to
provide interoperability. HyTime is an example for such a standard (see Gold-
farb [25]). Also the work in the Dexter Group focused on hypertext exchange
formats and architectural models that should facilitate the exchange of hyper-
text [29, 26].

The Synchronized Multimedia Integration Language (SMIL) and Scalable
Vector Graphics (SVG) specifications are based on hypertext and hypermedia
research and find their application in the World Wide Web, the most popular hy-
pertext application in use today. One of the success factors of the Web was that
several technologies were integrated into an easy-to-use technology stack: Uni-
form Resource Identifiers (URIs) for addressing documents in the Web, HTML
as a flexible markup language for creating hypertext documents, and HTTP as
a protocol for the communication between clients and servers.

4.4 The MPEG-7 Metadata Interoperability Framework

With the release of the MPEG-7 standard in February 2002, a powerful meta-
data system for describing multimedia content came up. The goal was to provide
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higher flexibility in data management and interoperability of data resources. The
difference between MPEG-7 and other already existing MPEG standards is that
MPEG-7 does not specify any coded representation of audio-visual information
but focuses on the standardization of a common interface for describing multi-
media materials [39]. MPEG-7 should not be a single monolithic system for mul-
timedia description but rather an extensible metadata framework for describing
audiovisual information.

MPEG-7 standardizes an extensive set of content Descriptors (D) and De-
scription Schemas (DS) and offers a mechanism to specify new Description
Schemas, such as the Description Definition Language (DDL). MPEG-7 is still
the most complete description standard for all kind of media (audio, image,
video, graphics, etc.) and in that way it creates a common basis for describing
different media types by a single standard.

MPEG-7 uses XML for encoding content descriptions into a machine-readable
format. XML Schema serves as the basis for the DDL that is used for the syntac-
tic definition of the MPEG-7 description tools and that allows for extensibility
of the description tools. Further details on MPEG-7 are available in Kosch [36].

MPEG-7 was not developed with a restricted application domain in mind.
With the ability to define media description schemas by means of the DDL,
MPEG-7 is intended to be applicable to a wide range of multimedia applications.
Application domains range from home entertainment (e.g., personal multimedia
collections) over cultural services (e.g., art galleries) to surveillance (e.g., traf-
fic control). This wide application spectrum, however, resulted in an enormous
complexity of that standard, which is considered as one of the reasons why the
ambitious goals of MPEG-7 are yet unreached.

4.5 Other Metadata Interoperability Approaches

The 90s were characterized by the emergence of the World Wide Web and an
increasing need for interoperability among distributed applications. The avail-
ability of markup languages such as XML promoted the development of meta-
data interoperability standards that should allow the exchange of information
objects across system boundaries. These standards ranged from rather generally-
applicable schemas such as Dublin Core [20] to very domain-specific schemas such
as ONIX [53], which provides standardization for the publishing industry.

Also the idea of global models covering the semantics of whole application
domains emerged. Those models are supposed to define the common notions
used in a domain and serve as a global schema for the integration of data in a
heterogeneous distributed environment. The CIDOC CRM4 model, for instance,
is such a model. It defines a conceptual model that aims at providing inter-
operability among information systems in cultural heritage institutions. This is
architecturally similar to the idea of heterogeneous databases (cf., Section 3.1)
where a global schema defines the model primitives for querying the under-
lying databases. The difference is that now the global model interoperability
4 http://cidoc.ics.forth.gr/
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approaches are being applied in an open-world environment such as the Web.
However, they inherit the problems distributed databases need to encounter in
their much smaller closed-world environment. As in databases, one must always
deal with semantic ambiguities in the interpretations of the involved schemas
and provide adequate mappings to bridge the heterogeneities.

For a more detailed discussion on techniques for achieving metadata inter-
operability, we refer to a recent survey provided by Haslhofer and Klas [31].

5 World Wide Web Semantics

In the late 90s the success of the World Wide Web became obvious. The com-
bination of results from hypertext and markup-language research led to the
specification of URI, HTML, and HTTP, which until today are the fundamental
technologies the World Wide Web is built on (see Jacobs et al. [33]). The URI
specification introduced a simple generic syntax for identifiers and unified pre-
viously existing identification mechanisms. HTML, as a simple to use markup
language without formal schema binding, suddenly allowed also non-technical
end users to easily create documents, which was one of the reasons for the rapid
spreading of the Web. HTTP defines a simple protocol to access and manipu-
late resources and resource representations in a distributed environment. From a
technical point of view, these technologies provided the necessary interoperabil-
ity that allows Web users to access information objects via their Web browser.

The Semantic Web is an extension to the existing Web and has the goal to use
the Web as a universal medium for the exchange of data. The Web should become
a place where data can be shared and processed by automated tools as well as by
people5. Section 5.1 focuses on early Semantic Web activities and briefly describe
the major specifications in place. Section 5.2 summarizes current activities in the
area of Linked Data.

5.1 The Semantic Web

The term Semantic Web was coined by Tim Berners-Lee et al. [8] in an article
published in the Scientific American in 2001. There the Semantic Web is de-
scribed as a new form of Web content that is meaningful to computers and will
unleash a revolution in new possibilities. In the early Semantic Web vision intel-
ligent agents should act on behalf of their users and automatically fulfill tasks
in the Web (e.g., making a doctor’s appointment). This of course requires that
these agents understand the semantics of the information exposed on the Web.

Based on this vision the Semantic Web Activity was started at the W3C and
lead to the specification of four major standards that technically enable this
described vision: RDF/S, OWL, SKOS, and SPARQL.

Since one of the major design principles was to build the Semantic Web upon
the existing Web architecture, URIs provide the basis for all these standards.

5 http://www.w3.org/2001/sw/Activity
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Hence, all resources representing real-world objects in the Semantic Web should
have URIs assigned.

The Resource Description Framework (RDF) serves as data model for repre-
senting metadata about a certain resource. It allows us to formulate statements
about resources, each statement consisting of a subject, a predicate, and an
object. The subject and predicate in a statement must always be resources iden-
tified by a URI, the object can either be a resource or a literal node. A statement
is represented as a triple and several statements form a graph. We will give an
example of an RDF graph in Figure 9 in Section 5.2.

The RDF Vocabulary Description Language RDF Schema (RDFS) and the
Web Ontology Language (OWL) are means to describe the vocabulary terms
used in an RDF model. RDFS provides the basic constructs for describing
classes and properties and allows to arrange them in simple subsumption hi-
erarchies. Since the expressiveness of RDFS is limited and misses some fun-
damental modeling features often required to construct vocabularies, the Web
Ontology Language (OWL) was created. It is based on RDFS and allows the dis-
tinction between attribute-like (owl:DatatypeProperty) and relationship-like
(owl:ObjectProperty) properties and provides several other expressive mod-
eling primitives (e.g., class union and intersections, cardinality restrictions on
properties, etc.) that allow us to express more complex models, which are then
called ontologies.

The Simple Knowledge Organization System (SKOS) is a model for express-
ing the structure and constituents of concept schemas (thesauri, controlled vo-
cabularies, taxonomies, etc.) in RDF. With SKOS one can attach multi-lingual
labels to concepts and arrange them in two major kinds of semantic relation-
ships: broader and narrower relationships for constructing concept hierarchies
and associative relationships for linking semantically related concepts.

The SPARQL Query Language for RDF is an expressive query language for
formulating query patterns over RDF graphs. Additionally it defines a protocol
for sending queries from clients to a SPARQL endpoint and for retrieving the
retrieved results via the Web. Currently, the abstract protocol specification has
bindings for HTTP and SOAP. The important distinction between SPARQL and
other languages such as SQL is that it operates entirely through the Web: a client
executes a query against a given endpoint (e.g., http://dbpedia.org/sparql)
and retrieves the result set through common Web transport protocols.

A central believe in the early Semantic Web was that intelligent agents must
be able to reason and draw conclusions based on the available data. This is why
in the Semantic Web the meaning of terminology used in Web documents, that
is the semantics of data, is expressed in terms of ontologies. The term Ontology
has its technical origin in the Artificial Intelligence domain and is defined as
a specification of a conceptualization (see e.g., [27]). In its core, an ontology
is similar to a database schema: a model defining the structure and semantics
of data. Noy and Klein [43] describe several features that distinguish ontologies
from database schema, most importantly that ontologies are logical systems that
define a set of axioms that enable automated reasoning over a set of given facts.
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This aspect is also reflected in OWL, the language for expressing ontologies. It is
formally grounded in Description Logics and allows to perform useful reasoning
tasks on Web documents.

Although intensive research was conducted in the Semantic Web domain for
over ten years, the early vision of the Semantic Web is not yet implemented.
Probably also because of the computational but also conceptual complexity in-
troduced by the automated reasoning requirement.

5.2 Linked Data

In 2006 Tim Berners-Lee postulated the so called Linked Data principles [6] as
a guideline or recommended best practice to share structured data on the Web
and to connect related data that were not linked before. These are:

1. Use URIs to identify things.
2. Use HTTP URIs so that people can look up those names.
3. When someone looks up a URI, provide useful information, using the stan-

dards (RDF, SPARQL).
4. Include links to other URIs, so that one can discover more things.

These principles accentuated the data-centric aspects of the existing Semantic
Web technologies and thereby demystified their application in real-world environ-
ments. A central point in the Linked Data principles is the application of HTTP
URIs as an object (resource) identification mechanism. When an application
dereferences such a URI it receives data expressed in RDF. Structured access to
RDF data within data sources is provided by SPARQL. This, in fact, resembles
the central features provided by traditional (relational) database systems. The
goal of the fourth principle is to interlink semantically related resources on the
Web. If, for instance, two studios maintain a data record about the same movie,
they shall be interlinked. The semantics of the link depends on the application
scenario; existing Semantic Web languages provide a set of pre-defined properties
(rdfs:seeAlso, owl:sameAs, skos:closeMatch, etc.) for defining the meaning
of links. Figure 9 shows how our illustrative example is represented in the Web
of Data.

The Linked Data idea rapidly raised interest in various communities. Shortly
after the formation of the W3C Linking Open Data Community project6, DBpe-
dia [10] was launched as first large linked data set on the Web. It exposes all the
information available in Wikipedia in a structured form and provides links to
related information in other data sources such as the Linked Movie Database7.
As of November 2009, the DBpedia knowledge base describes more than 2.9
million things such as persons, music albums, or films in 91 different languages.

6 http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/
LinkingOpenData

7 http://www.imdb.com/
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dbpedia:Casablanca_(film)Casablanca

1943

102 minutes Humphrey 
Bogart

Ingrid 
Bergman

1899-12-25

1915-08-29

dbpedia:Humphrey_Bogart

dbpedia:Ingrid_Bergman

foaf:name

dbpprop:
dateOfBirth

foaf:name

dbpprop:
dateOfBirth

dbpedia-owl:starring

dbpedia-owl:starring

dbpedia-owl:Film

dbpedia-owl:Actor
rdfs:label

dbprop:years

category:
1940s_drama_films

skos:subject

rdf:typedbpprop:runtime rdf:type

rdf:type

Fig. 9. Linked Data Example. The example how the data of studio B
are exposed on the Web following the Linked Data guidelines. The pre-
fixes expand as follows: dbpedia to http://dbpedia.org/resource, dbpprop to
http://dbpedia.org/property/, dbpedia-owl to http://dbpedia.org/ontology/,
and category to http://dbpedia.org/resource/Category:.

It provides a user-generated knowledge organization system comprising approxi-
mately 415,000 categories and millions of links to semantically related resources
on the Web.

After DBPedia, many other data sources followed. Today this so-called Web
of Data comprises an estimated number of 4.7 billion RDF triples and 142 million
RDF links [9]. For data consumers this has the advantage that data as well as
schema information is now available on the Web (see The Best Practice Recipes
for Publishing Vocabularies8) and can easily be accessed via widely accepted Web
technologies, such as URI and HTTP. RDF simply serves as a model for repre-
senting data on the Web. This pragmatic Web of Data guidelines also resembles
the notion of dataspaces [23] that was coined in the database community.

6 Summary and Future Research Directions

Interoperability is a qualitative property of computing infrastructures. It enables
a receiving system to properly interpret the information objects received from
a sender and vice versa. Since this is not given by default, the representation of
semantics has been an active research topic for four decades.

In this article, we gave a retrospective on semantics and interoperability
research as applied in major areas of computer science. We started with the
Relational Model developed in the the 70s and ended with the currently ongoing
activities in the Semantic Web community. The technical outcome of all these
activities were models that allow for the expression of data semantics and system
architectures for the integration of data from several (heterogeneous) sources.
From the late 90s on, when research was driven by the evolving World Wide
8 http://www.w3.org/TR/swbp-vocab-pub/
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Web, the semi-structured data model gained importance. Different from previous
models, it is self-describing, meaning that data itself carries schema information.

In essence, all presented models and system architectures enable the repre-
sentation of data and the description of the semantics of these data. If one and
the same model was used for exchanging information objects, interoperability
would be established at least on a technical level and to some extent also on a
syntactic and structural level. The Web is a good example for that; it provides
a uniform way for identifying resources, a common exchange protocol, and a
simple standardized markup language.

If the involved parties also agree on the semantics of terms, as it is the goal
of the various metadata standardization attempts, interoperability can also be
established on a semantic level. In practice, however, such an agreement is hard
to achieve, especially when multiple parties from a broad range of application
domains are involved. We can observe numerous attempts of defining general
(ontology) models for a complete domain (e.g., MPEG-7 for multimedia meta-
data, CIDOC CRM for the cultural heritage domain); although they provide
a very detailed domain description, they hardly found their implementation in
practice.

Similarly the currently ongoing Semantic Web / Linked Data activities do
not solve the complete stack of interoperability problems. The proposed tech-
nologies (RDF/S, OWL, etc.) provide the necessary technical and structural
interoperability but they do not solve the semantic interoperability problem.
Different people still use different vocabularies to describe semantically related
real-world concepts and even if one and the same vocabulary is used for a specific
concepts, the interpretation of the terms still vary, which in turn leads to data
heterogeneities.

In the foreseeable future, it seems that standardization and global model
attempts can hardly solve the semantic interoperability problem. As long as
people are the designers of models there will always exist different conceptions
and interpretations, even for superficially homogenous domains and application
contexts. We therefore believe that computer science research should take this
situation into account and find solutions that deal with a multitude of models
and allow for their reconciliation. The establishment of mappings between ex-
isting models is such an approach. Rather than imposing a single “agreed-upon”
mapping mechanisms we should accept the variety in existing models and es-
tablish semantic relationships between the components of these models. Since at
the end it is important to implement interoperability on a technical level such
semantic relationships must be tightly bound to technical mapping specifications
defining the necessary transformations of data representations.

We believe that the World Wide Web will continue to be the predominant
area for semantics and interoperability research. Applications that were avail-
able on the Desktop before (e.g., Email, Calendar, Office Suites, etc-) are now
on the Web. A more Web-centric solution for data management will is a logi-
cal consequence. The Linked Data movement is definitely an important starting
point in this direction. However, it will require further research on performance
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and scalability of the underlying (graph-based) data stores. Additionally, since
data exposed on the Web, should at the end also be consumable my machines,
further research must be conducted in the areas of data quality, changeability of
models, reliability of information, and data provenance. In fact, these research
topics were already identified in the early years of database research. Now, how-
ever, the open, distributed, and uncontrolled nature of the Web call for a review
and possible also their adaption to a novel setting.

Also the evolution of schemas and ontologies in decentralized semantic struc-
tures such as the World Wide Web calls for further research. Aberer et al. [1]
coined the term Emergent Semantics, which denotes a research field focusing
on the understanding of semantics by investigating the relationships between
syntactic structures using social networking concepts for the necessary human
interpretations.
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