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Abstract. The design of truthful auctions that approximate the optimal expected revenue is a central
problem in algorithmic mechanism design. 30 years after Myerson’s characterization of Bayesian optimal
auctions in single-parameter domains [9], characterizing but also providing efficient mechanisms for
multi-parameter domains still remains a very important unsolved problem. Our work improves upon
recent results in this area, introducing new techniques for tackling the problem, while also combining
and extending recently introduced tools.
In particular we give the first approximation algorithms for Bayesian auctions with multiple heteroge-
neous items when bidders have additive valuations, budget constraints and general matroid feasibility
constraints.

1 Introduction

Assume n bidders are competing for m items. Each bidder i has a private valuation vij ≥ 0 for
item j, drawn from a publicly known distribution. Assume further there is either an individual
matroid Mi for each bidder i such that each bidder can only receive an independent set of items
(the individual matroid case) or a global matroid M for all bidders (the global matroid case) such
that the set of all bidder-item pairs assigned should be an independent set. What is the optimal
revenue maximizing auction?

In his seminal paper [9] Myerson gave a complete characterization of the optimal auction for the
case m = 1 if the distributions of valuations are uncorrelated. Papadimititriou and Pierrakos [10]
recently showed that for n > 2 bidders with correlated distributions finding the optimal (dominant
strategy incentive compatible) deterministic auction is NP-hard, even if m = 1. Thus, one of the
main open questions in this area is to deal with multiple items, i.e., the case of m > 1, when the
bidders’ distributions are uncorrelated. This is the problem we study in this paper together with
matroid and budget constraints.

Truthfulness. For any mechanism there are various criteria for evaluation. One criterion is
which notion of truthfulness or incentive compatibility it fulfills. Every definition of truthfulness
involves some notion of profit or optimality for a bidder. In our setting we assume bidder i receives
a set Si and has to pay pi for it. Then the profit of bidder is

∑
j∈Si

vij−pi. An optimal outcome for a
given bidder is an outcome that maximizes his profit. We distinguish three notions of truthfulness.
(1) A mechanism is dominant strategy incentive compatible (DSIC) if truth-telling is optimal for
the bidder even if he knows the valuations of the other bidders and the random choices made by the
mechanism1. (2) A mechanism is truthful in expectation if revealing the true value maximizes the
expected profit of every bidder, where the expectation is taken over the internal random coin flips
of the mechanism. (3) If a prior distribution of the bidders’ valuations is given, then a mechanism
is Bayesian incentive compatible (BIC) if revealing the true value maximizes the expected profit of
every bidder, where the expectation is over the internal random coin flips of the mechanism and
the valuations of the other bidders.
? This project has been funded by the Vienna Science and Technology Fund WWTF grant ICT10-002.
1 This is independent of whether a distributions of the valuations are given or not.



Optimal or approximate. The revenue, of a mechanism is the sum of the payments collected
by the auctioneer

∑
i pi. If a mechanism returns the maximum revenue out of all mechanisms

fulfilling a certain type of constraints (e.g. all BIC mechanisms), it is an optimal mechanism. If it
returns a fraction k of the revenue of the optimal mechanism, we call it a k-approximation.

Value distributions. If a prior distribution on the bidders’ valuations is assumed then there
are also multiple cases to distinguish. In the correlated bidders setting the value distributions of
different bidders can be correlated. Except for [6] and [10], all prior work and also our work assumes
that the distributions of different bidders are uncorrelated. We further distinguish the case that for
each bidder the distributions of different items are uncorrelated (the independent items case), and
the case that the value distributions of the same bidder for different items to be correlated (the
correlated items case). There is strong evidence that it is not possible to design an optimal DSIC
mechanism for the correlated items case [1]: Even if there is just one unit-demand bidder, but his
valuations for the items are correlated, the problem of assigning the optimal item to the bidder can
be reduced to the problem of unlimited supply envy-free pricing with m bidders [8]. For the latter
problem the best known mechanism is a logarithmic approximation and there is strong evidence
that no better approximation is possible [2].

Running time model. A final criterion to evaluate a mechanism is whether it runs in time
polynomial in the input size. Of course this depends on how the input size is measured. We use the
model used in [1], where the running time has to be polynomial in n, m, and the support size of
the valuation distributions. All the results we list take polynomial time in this model.

Related work. Correlated bidders. Dobzinski, Fu, and Kleinberg [6] gave an optimal truthful-
in-expectation mechanism for m ≥ 1 in the correlated bidders and items setting but without any
matroid or budget constraints.

Uncorrelated bidders. Chawla et al. [4] studied the case m ≥ 1 with a universal matroid con-
straint and general valuation distributions, but with only unit-demand bidders without budget
constraints. For a variety of special matroids, like uniform matroids and graphical matroids, they
gave constant factor approximations. Very recently, Chawla et al. [5] gave a constant factor approx-
imation for general matroid constraints with budgets, but again only with unit-demand bidders.
Bhattacharya et al. [1] studied the case of individual uniform matroid constraints and budget con-
strained bidders. For the correlated items case they presented a BIC mechanism whose revenue is
within a factor 4 of the optimal BIC mechanism. Their mechanism is truthful only in expectation.
For the independent items case if the valuations additionally fulfill the monotone hazard rate as-
sumption (MHR) (see Section 4) they gave a DSIC mechanism that achieves a constant factor of
the revenue of the optimal BIC mechanism. For the independent items case where the valuations
do not fulfill MHR they gave a DSIC mechanism that achieves an O(logL) approximation of the
revenue of the optimal DSIC mechanism and they showed that no better posted-price (defined
below) mechanism exists. Here L is the maximum value that any bidder can have for any item. In
a very recent work Cai et al. [3] give almost optimal mechanisms for the case when either the items
or the bidders are i.i.d. and there exist budget and uniform matroid constraints.

Our results. We use the same model as Bhattacharya et al. [1], i.e., both matroid and (pub-
lic) budget constraints. We improve upon their work since they studied only individual matroid
constraints where the matroid is a uniform matroid. Specifically we show the following results. (1)
For the correlated items with individual matroid constraints case we present a BIC mechanism
whose revenue is within a factor 2 of the optimal BIC mechanism. In [1] a 4-approximation for uni-
form matroids was given. (2) For the independent items case we study general matroid constraints,



both in the global and the individual setting. Our mechanisms are DSIC sequential posted price
mechanisms 2. Our results are summarized in the following table:

Individual matroids Global matroid

General matroids O(logL) O(logL)

Uniform matroids (previous: O(logL) [1]) O(logL)

General matroids & MHR O(logm), O(k) O(logm), O(k)

Uniform matroids & MHR 9, (previous: 24 [1]) 9

Graphical matroids & MHR 16 64 with budgets and 3 without

Fig. 1. Independent distributions case: A summary of our results and previous results from the work of Bhat-
tacharya et al. [1]. All approximation ratios are with respect to LP3 and LP3 achieves an 8e2 approximation of the
optimal mechanism.

Our results on global matroid constraints are a generalization of the work by Chawla et al. [4,
5]. They gave a constant approximation for global uniform matroids and global graphical matroids,
and very recently in [5] also for general matroids (in [5] however the authors do not provide a
polynomial-time algorithm), but only for the special case when the bidders are unit demand (which
is reducible to the single-parameter problem). We give constant approximations for bidders with
arbitrary demands (i.e. for the general multi-parameter problem) for the case of global uniform
and graphical matroids however with the assumption that the valuation distributions fulfill the
monotone hazard rate condition. All our results take polynomial time.

Our tools and techniques. The basic idea of [1] and [6] is to solve a linear program to deter-
mine prices and assignment probabilities for bidder-item pairs. We use the same general approach
but extend the linear programs of [1] by suitable constraints that are (i) “strong enough” to enable
us to achieve approximation ratios for general matroids, but also (ii) “weak enough” so that they
can still be solved in polynomial time using the Ellipsoid method with a polynomial-time separation
oracle. In the correlated items case the results of this new LP together with a modified mechanism
and a careful analysis lead to the improved approximation factor over [1], even with general matroid
constraints.

In the independent items case Bhattacharya et al. [1] used Markov inequalities to reason that
uniform matroid constraints and budget constraints reduce the expected revenue only by a constant
factor. This approach, however, exploits certain properties of uniform matroids and cannot be gen-
eralized to graphical or general matroids. Thus, we extended ideas from Chawla et al [4] to develop
different techniques to deal with non-uniform matroid constraints: (1) For graphical matroids we
combine a graph partitioning technique and prophet inequalities [12]. (2) For general matroids we
use Lemma 3 (see also Theorem 10 in [4]) together with a bucketing technique. The lemma says
roughly that if a player is asked the same price for all items then the matroid constraints reduce
the expected revenue by at most a factor of 2 in the approximation. As we show it holds both in the
global as well as in the individual matroids setting. In combination with a bucketing technique that
partitions the items into buckets so that all items in the same bucket have roughly the same price

2 In [1] a sequential posted-price (spp) mechanism is defined as follows: The bidders are considered sequentially in
arbitrary order and each bidder is offered a subset of the remaining items at a price for this item and bidder; the
bidder simply chooses the profit maximizing bundle out of the offered items. These mechanisms have the advantage
of being more practical as they do not require from the bidders to report their valuations but only to take or leave
items with posted prices. Experimental evidence also suggests that in spp players tend to act more rationally and
they are more likely to participate.



the lemma allows us to tackle general matroid constraints in all of our non-constant approximation
algorithms. The generality of the lemma makes it very likely that it is further applicable.

We also develop a new way to deal with budget constraints that simplifies the proofs and enables
us to improve the approximation factors, e.g. for uniform matroids from 24 [1] to 9.

Apart from improving and extending recent results, more importantly our paper sheds light on
multi-parameter Bayesian mechanism design and evolves, combines and proposes alternatives for
important recent techniques. Thus it represents one further step towards the better understanding
of this very important, timely and still wide open problem.

The paper is organized as follows. The next section contains all necessary definitions. Section 3
presents the result for correlated, Section 4 for independent valuations.

2 Problem Definition

There are n bidders and a set J of m distinct, indivisible items. Each bidder i has a private valuation
vij ≥ 0 for each item j drawn from a publicly known distribution Di,j . Additionally each bidder
has a budget Bi and cannot be charged more than Bi. If bidder i receives a subset Si of items and
is charged pi for it then the profit of bidder i is

∑
j∈Si

vij − pi. Bidders are individually rational,
i.e. bidder i only selects Si if his profit in doing so is non-negative. A bidder is individually rational
in expectation if his expected profit is non-negative. The goal of the mechanism is to maximize its
revenue

∑
i pi under the constraint that pi ≤ Bi for all i, that all bidders are individually rational

or individually rational in expectation, and that each item can be sold only once. Additionally there
are matroid constraints on the items. We analyze two types of matroid constraints: In the universal
matroid constraint problem there exists one matroid M such that ∪iSi has to be an independent
set inM. In the individual matroid constraint problem there exists one matroidMi for each bidder
i such that Si has to be an independent set in Mi.

Assumptions. We make the same assumptions as in [1, 6] (1) For all i and j the number of
valuations with non-zero probability, i.e., the support of Dij is finite and non-zero only at rational
numbers. The running time of our algorithms is polynomial in n, m, and the size of the support
of Dij for all bidders i and items j, i.e., in the size of the input. (2) The random variable vij takes
only rational values and that there exists an integer L polynomial in the size of the input such that
for all i, j, 1/L ≤ vij ≤ L. (3) For each of the matroids Mi if given a subset S of J we can in time
polynomial in the size of the input compute rankMi(S) and determine whether S is independent
in Mi or not.

3 Correlated item valuations

Here we study the setting that the distribution of the valuations of a fixed bidder for different items
can be arbitrarily correlated, while the distributions of different bidders are independent. To model
this setting we assume that (a) the valuations of a bidder i are given by its type, (b) there is a
publicly known probability distribution fi(t) on the types of bidder i with finite support, and (c)
(vt1, . . . , vtm) is the vector of valuations for item 1, . . . ,m for a bidder with type t. Additionally we
assume in this section that every probability fi(t) is a rational number such that 1/L ≤ fi(t) ≤ 1,
where L is polynomial in the size of the input. We present a BIC mechanism that gives a 2-
approximation of the optimal revenue.

The mechanism works as follows: Based on the distributions Dij the mechanism solves a linear
programming relaxation of the assignment problem, whose objective function is an upper bound
on the value achieved by the optimal mechanism. The linear program returns values for variables



yiS(t), where S is an independent set in Mi, for “payment” variables pi(t) for each i and t, and
for variables xij(t) for each i, j, and t. Then the mechanism interprets yiS as the probability that
the optimal BIC mechanism assigns S to i and picks an assignment of items to i based on the
probability distribution yiS(ti), where ti is the type reported by bidder i. The constraints in the
linear program guarantee that the mechanism is BIC.

(LP1) Maximize
∑

i,t fi(t)pi(t) such that

∀i, j, t mij − xij(t) ≥ 0 (1)

∀j −
∑
i

mij ≥ −1 (2)

∀i, t, s
∑
j

vtjxij(t)−
∑
j

vtjxij(s)− pi(t) + pi(s) ≥ 0 (3)

∀i, t
∑
j∈Ji

vtjxij(t)− pi(t) ≥ 0 (4)

∀i, t, j
∑

independent S with j∈S
yiS(t)− xij(t) = 0 (5)

∀i, t
∑

independent S

−yiS(t) ≥ −1 (6)

∀i, j, t − xij(t) ≥ −1 (7)

∀i, t − pi(t) ≥ −Bi (8)

∀i, j, t : xij(t) ≥ 0, ∀i, t : pi(t) ≥ 0,∀i, t, S : yiS(t) ≥ 0,∀i, j : mij ≥ 0 (9)

Note that the optimal BIC mechanism is a feasible solution to LP1: Set xij(t) to the probability
that the mechanism assigns item j to bidder i when the bidder reports type t and yiS(t) to the
probability that the mechanism assigns set S to bidder i when the bidder reports type t. This
assignment fulfills all constraints of LP1, i.e. it gives a feasible solution to LP1. Thus LP1 has
a solution and its optimal solution gives an upper bound on the revenue of the optimal BIC
mechanism. LP1 has an exponential number of variables but using the fact the dual LP has only
a polynomial number of variables and a polynomial time separation oracle, we show that LP1 can
be solved in polynomial time.

Lemma 1. The linear program LP1 can be solved in polynomial time.

Proof (of Lemma 1). Note that LP1 might have an exponential number of variables but it has
only a polynomial number of inequalities and equations. Thus the Ellipsoid method with the greedy
algorithm as separation oracle can be used to solve the dual of LP1 in polynomial time. More
precisely the dual uses the following variables: (a) for each item j a variable gj , (b) for each bidder
i and types t and s a variable bits, (c) for each bidder i and type t variables cit, eit, and hit, and
(d) for each bidder i, item j, and type t variables aijt, dijt and zijt. The dual has the following
constraints:



(DLP1) Minimize
∑

j gj +
∑

i,t hit +
∑

i,j,t dijt +
∑

i,tBieit such that

∀i, j, t aijt −
∑
s

vtjbits +
∑
s′

vtjbis′t − vtjcit + dijt + zijt ≥ 0 (10)

∀i, t
∑
s

bits −
∑
s′

bis′t + cit + eit ≥ −fi(t) (11)

∀i, t, independent S −
∑
j∈S

zijt + hit ≥ 0 (12)

∀i, j gj −
∑
t

aijt ≥ 0 (13)

∀i, j, t : aijt ≥ 0 and dijt ≥ 0, ∀i, t, s : bits ≥ 0 (14)

∀i, t : cit ≥ 0, eit ≥ 0 and hit ≥ 0, ∀j : gj ≥ 0 (15)

By assumption all values in the constraints are rational numbers and can be turned into integers
by multiplying them by L. Additionally setting all variables to 0 gives a feasible solution. Thus,
if there exists a polynomial-time separation oracle then the ellipsoid algorithm can solve the dual
linear program in time polynomial in the size of the input [7]. Since the Ellipsoid method runs in
polynomial time it considers only a polynomial number of inequalities in its computation. Consider
a new dual program that contains only these inequalities. It must have the same optimal solution
as the original dual. Thus its dual gives rise to new primal program with a polynomial number of
variables, whose maximum value is the same as the maximum value of the original primal program.
The new primal program can be solved in polynomial time. All variables that are not in the new
primal program have value 0.

It remains to give a polynomial-time separation oracle. Note that the greedy algorithm finds in
polynomial-time a maximum weight independent set for a matroid. Thus, for every bidder i and
every type t it can be used to find a maximum-weight independent set Wi, where the weight of item
j is zijt. If

∑
j∈Wi

zijt ≤ hit for all i and all t then constraint (12) holds for all i, t and independent
sets S. If for some i and t it holds that

∑
j∈Wi

zijt > hit, we have found a violated constraint. There
are only a polynomial number of other constraints and they all can be checked in polynomial time
each. Thus there exists a polynomial-time separation oracle for the above dual, which leads to a
polynomial-time algorithm to solve the above primal program.

For each bidder i we treat yiS as a probability distribution over the independent sets S of Mi

and pick an independent set Ti according to that probability distribution. We define for all items
j, Z0j = 1 and for all items j and bidders i let Zij = 1−

∑
i′<i xi′j(ti′)/2. Note that Zij ≥ 1/2 and

thus 1/(2Zij) ≤ 1. The mechanism assigns the items to bidders as follows:
1. A = J
2. For i = 1, 2, . . . , n

(a) Pick an indep. set Ti using the distribution yS,i(ti); set Si = ∅
(b) for each j ∈ Ti: if j ∈ A then with probability 1/(2Zij) do:

i. Si = Si ∪ {j}; A = A− {j}
(c) Bidder i gets Si and pays pi(ti)/2 .

We show in the proof of Theorem 1 that P (j ∈ Si) = xij(ti)/2. Thus (3) and (4) of LP1 together
with the fact that pi = pi(ti)/2 guarantee incentive compatibility in expectation and individual
rationality in expectation.

Theorem 1. The above mechanism is Bayesian incentive compatible, individually rational in ex-
pectation, and its revenue is a 2-approximation to the optimal BIC mechanism.



Proof (of Theorem 1). Due to constraints (1) and (2) in LP1 for each item j
∑

i xij(ti) ≤ 1. Thus
Zij = 1 −

∑
i′<i xij(ti′)/2 ≥ 1/2. Thus, 1/(2Zij) ≤ 1. During the execution of the mechanism A

is the set of items that are still available, while the items in J \ A have already been assigned to
a bidder. Let Eij be the event that item j belongs to A after bidder i − 1 has been processed (if
it exists) and before bidder i is processed. We show by induction that (a) Pr(Eij) = Zij and (b)
Pr(j ∈ Si) = xij(ti)/2. Note first that, due to Constraint (5) of LP1, for each bidder i item j is in
Ti with probability xij(ti).

For i = 0, the probability that j is in Ti is x0j(t0), E0j holds and Z0j = 1. Thus, Pr(E0j) =
1 = Z0j . The probability that j is in Si is Pr(j ∈ T0) · 1/2 = x0j(t0)/2.

For i > 0 note that Pr(Eij) = 1 − Pr(j ∈ S0 ∪ j ∈ S1 ∪ · · · ∪ j ∈ Si−1). For all 0 ≤ i′, i′′ < i,
the event j ∈ Si′ is disjoint from the event j ∈ Si′′ . Thus, Pr(j ∈ S0 ∪ j ∈ S1 ∪ · · · ∪ j ∈ Si−1)
=
∑

i′<i Pr(j ∈ Si′) =
∑

i′<i xi′j(ti′)/2. The latter equation holds by induction. This proves that
Pr(Eij) = 1−

∑
i′<i xi′j(ti′)/2 = Zij . Next we analyze Pr(j ∈ Si). The event Eij only depends on

the picked sets Ti′ and the coin flips for bidder i′ with i′ < i, while the event j ∈ Ti only depends
on the randomly chosen set Ti for bidder i. Thus the event Eij is independent from the event j ∈ Ti
and both are independent from the event that the biased coin flip in line (2c) is a success. Thus,
Pr(j ∈ Si) = Pr(Eij) · Pr(j ∈ Ti) · 1/(2Zij) = Pr(j ∈ Tj)/2 = xij(ti)/2.

By linearity of expectation, the expected profit bidder i acquires is
∑

j vijxij(ti)/2−pi(ti)/2 ≥ 0.
The latter inequality holds by Constraint (4) in LP1, regardless of the type that bidder i declared.
It shows that every bidder is individually rational in expectation. Constraint (3) guarantees that
the mechanism is Bayesian incentive compatible.

The expected revenue is
∑

i,t fi(t)pi(t)/2. This is half the value maximized in LP1. Since LP1
is an upper bound to the revenue achieved by the optimal mechanism, our mechanism is a 2-
approximation of the optimal revenue.

4 Independent item valuations

In this section we assume that for each bidder i the distributions of vij for different j are indepen-
dent. The goal is to achieve for this case a stronger notion of truthfulness, namely a DSIC instead
of a BIC mechanism. All mechanisms in this section are sequential-posted-price mechanisms.

For each item j and bidder i let Vij := min{vij , Bi/4} and let fij be its density function, i.e.
Vij ∼ fij . We assume that for all i, j and r all values fij(r) are rational numbers.

Bhattacharya et al. [1] formulated an LP with variables xij(r), where xij(r) denotes the expected
amount of item j bidder i gets when Vij = r. We modify their LP by generalizing their constraint
for uniform matroids to general matroids and call it LP2.

(LP2) Maximize
∑

i,j

∑
r rfij(r)xij(r)

∀i,∀S ⊆ J
∑
j∈S

∑
r

fij(r)xij(r) ≤ rank(S) (16)

∀i
∑
j

∑
r

rfij(r)xij(r) ≤ Bi (17)

∀j
∑
i

∑
r

fij(r)xij(r) ≤ 1 (18)

∀i, j, r xij(r) ∈ [0, 1] (19)

Remark 1 (Universal matroid constraints). We give here the LPs for the case of Individual
matroid constraints (the kind of matroid constraints studied in [1]). If there is a Universal ma-
troid constraint M for all players (like the matroid constraints studied in [4]), then the whole



set of items allocated to the players has to be an independent set in M. For this setting we just
need to change the LP inequality that corresponds to the matroid constraint from ∀i,∀Si ∈ Mi,∑

j

∑
r fij(r)xij(r) ≤ rank(Si) to ∀S ∈M,

∑
i,j

∑
r fij(r)xij(r) ≤ rank(S). The proof of Lemma 2

applies also to this setting.

Note that LP2 has an exponential number of constraints, but only polynomially many variables
and, as the next lemma shows, it can still be solved in polynomial time.

Lemma 2. (a) The maximum value of the optimal solution for LP2 achieves at least 1/4 of the
revenue of the optimal BIC mechanism. Additionally there exists an optimal solution for LP2 such
that xij(r) is a monotonically non-decreasing function of r. (b) The solution can be computed in
time polynomial in the size of the input.

Proof (of Lemma 2). (a) The proof that the maximum value is a 4-approximation and that xij(r)
is a monotonically non-decreasing function of r closely follows the proof of [1] and is omitted.

(b) To show that the problem can be solved in polynomial time note that all values in the con-
straints are rational numbers. Additionally, setting all variables to 0 gives a feasible solution. Using
the same arguments as in the proof of Lemma 1 we just have to show that we can give a polynomial-
time separation oracle. Constraints (17) and (18) require to check a polynomial number of inequal-
ities, each taking polynomial time. We are left to show how to check Constraint (16). For given i
and j, let wij =

∑
r fij(r)xij(r). Note that for any set S the function f(S) =

∑
j∈S wj − rank(S) is

a supermodular function. A set S that maximizes f(S) can found in time polynomial in n and m
as long as the values wj are rational numbers as it is identical to minimizing a submodular function
(see [11, 13]). The values wj are rational numbers based on our assumptions on the rationality of
the input. Thus, if f(S) is larger than 0, we found a violated constraint. If f(S) is less than 0, then
Constraint (16) holds for all subsets S of J . Thus, we can in polynomial time either find a violated
constraint or verify that all constraints are fulfilled.

The following lemma is an important tool that we repeatedly use. It says that by giving the
bidder the freedom to choose the independent set he likes, and not assigning him the set with the
maximum revenue the mechanism will not loose more than a factor of 2 of the expected revenue.

Lemma 3. Assume that bidder i is offered a set S of items where each item has the same price
ri. Let qij be the probability, that i is offered item j and picks it. Assume that for every subset T
of S,

∑
j∈T qij ≤ rank(T ). Let Si be the independent set of Mi picked by the individually rational

bidder i, and let Ri =
∑

j∈Si
qijri be the expected revenue from Si. Then

∑
j∈S\Si

qijri ≤ Ri.

The equivalent lemma for the case of universal matroid constraints is the following:

Lemma 4. Assume that each bidder i is offered a set of items where all items have the same
price r for all players. Let S = ∪iSi be the independent set of the matroid picked by the individ-
ually rational bidders, let qij be the probability that i is offered item j and picks it, and let R =∑

i

∑
j∈S qijr be the expected revenue from S. If for every subset T of S,

∑
i

∑
j∈T qij ≤ rank(T ),

then
∑

i

∑
j∈span(S) qijr ≤ R.

Proof (of Lemma 3). Let span(Si) be the set of elements of the matroid that are blocked by the
elements of Si. Since the bidder is individually rational, he will pick, out of all items that give him
a profit, i.e., where vij ≥ ri, a maximal independent set.

Then, as all items are sold at the same price ri, the expected revenue lost due to the matroid
constraints of bidder i, given that the set of elements assigned to i is Si, is

∑
j∈span(Si)

qijri ≤
ri
∑

j∈span(Si)
qij ≤ ri rank(span(Si)) ≤ ri · rank(Si), where the last term is the revenue obtained.



Thus the expected revenue lost is then less than or equal to
∑

Si
ri ·rank(Si) ·P (Si is served), which

is exactly the expected revenue obtained.

Proof (of Lemma 4). Let span(S) be the set of elements of the matroid that are blocked by the
elements of S. Since the bidder is individually rational, he will pick a maximal independent set out
of all items that give him a profit, i.e., where vij ≥ r.

Thus, as all items are sold at the same price r, the expected revenue lost due to the uni-
versal matroid constraints, given that the set of elements assigned to i is Si and S = ∪iSi, is∑

i

∑
j∈span(S) qijr ≤ r

∑
i

∑
j∈span(S) qij ≤ r · rank(S), where the last term is the revenue obtained.

Then the expected revenue lost is then less than or equal to
∑

S r · rank(S) ·P (S is served), which
is exactly the expected revenue obtained.

Using a bucketing technique we show the following result, which does not make any assumptions
on the hazard rate.

Theorem 2. Assume for all i and j, vij ∈ [1, L] follow independent distributions fij. Then there is
a O(logL) approximation of the revenue of the optimal BIC mechanism through a sequential posted
price mechanism under any matroid constraint.

Proof (of Theorem 2 for Individual matroids). The idea for getting a O(logL) approximation
under any matroid constraint is to compute based on the results of LP2 for each bidder i a price
r∗i and for each item j a probability x∗ij . Then the mechanism offers each bidder every remaining
item with probability x∗ij at the same price r∗i . Note that different bidders can set different prices.

To prove Theorem 2 we first solve LP2 to get xij(r) for all i, j, and r. Then for each bidder
i we group the r values in powers of 2 so that there are logL groups. Let Gk denote the interval
[2k, 2k+1). Let k∗i := argmaxk

∑
j

∑
r∈Gk rfij(r)xij(r), that is pick the interval that maximizes

the expected welfare. We set the price charged to bidder i for each item at r∗i := 2k
∗
i and set

x∗ij =

∑
r∈G∗

ki

fij(r)xij(r)∑
r∈G∗

ki

fij(r)
. Then we use the following mechanism to assign items to bidders.

1. A = J .
2. Order the bidders arbitrarily.
3. For i = 1, 2, . . . , n

(a) Let S = ∅.
(b) For every item j ∈ A with probability x∗ij/2 add item j to S with a price of r∗i .
(c) Let the bidder pick an independent subset Si of S such that |Si|r∗i ≤ Bi. Assign Si to i at

a cost of |Si|r∗i and set A = A \ Si.
We will now show that the revenue of this mechanism is at least Ω(1/ logL) of the optimal BIC

revenue. Let q∗ij = P (Vij ≥ r∗i ). LetOPT =
∑

ij

∑
r rfij(r)xij(r) be the optimal solution of LP2. Re-

call that (by Lemma 2) OPT is at least a constant fraction of the optimal BIC revenue. Thus it suf-
fices to show that the revenue of our mechanism is Ω(OPT/ logL). Let OPTi =

∑
j

∑
r fij(r)xij(r)

be the contribution of bidder i to OPT . We will show that for every bidder i our mechanism receives
in expectation Ω(OPTi/ logL) from bidder i.

By the second constraint of LP2, OPTi ≤ Bi. Our mechanism achieves a revenue of |Si|r∗i from
bidder i. Thus, if |Si|r∗i ≥ 3Bi/4 then our mechanism receives for bidder i a constant fraction of
OPTi. Hence in the following we only need to consider bidders for which |Si|r∗i < 3Bi/4. Since
Vij ≤ Bi/4, it follows that no item of S was omitted from Si because of the budget constraint.
Said differently, if Ti is the subset of items of S such that Vij ≥ r∗i , then Si is a maximum rank
independent set of Ti.



We show that (1) r∗i
∑

j x
∗
ijq
∗
ij ≥ OPTi/(2 logL) and (2) our mechanism expects to achieve at

least r∗i
∑

j x
∗
ijq
∗
ij/8.

We first show (1). (a) By the definition of the buckets and of x∗ij we have∑
r∈Gki∗

rfij(r)xij(r) ≤ 2r∗i
∑
r∈Gk∗

i

fij(r)xij(r) = 2r∗i x
∗
ij

∑
r∈Gk∗

i

fij(r) ≤ 2r∗i x
∗
ijq
∗
ij .

By the choice of k∗i we have that (b)
∑

j

∑
r∈Gk∗

i

rfij(r)xij(r) ≥ 1
logL

∑
j

∑
r rfij(r)xij(r), as

there are totally logL intervals. Putting (a) and (b) together we get that

r∗i
∑
j

x∗ijq
∗
ij ≥

1

2 logL

∑
j

∑
r

fij(r)xij(r) =
OPTi
2 logL

.

Next we show (2). Lemma 2 shows that xij(r) is monotone in r. Thus x∗ij ≤ xij(r) for r ∈
Gk, with k > ki. Together with the definition of x∗ij this implies (c) x∗ijq

∗
ij =

∑
r≥r∗i

fij(r)x
∗
ij ≤∑

r fij(r)xij(r). Thus by (c) and the third constraint of LP2 we know that (i) for each item j it
holds that

∑
i x
∗
ijq
∗
ij ≤ 1. This implies that the probability that j was assigned to a bidder i′ < i is

upper bounded by
∑

i′<i(x
∗
ij/2)q∗i′j ≤

1
2 . Thus, with probability at least 1/2, j was taken by none

of the earlier bidders, which implies that with probability at least 1/2, j is still in A when bidder
i is considered.

By (c) and the second constraint of LP2 we know that (ii) for each subset S of J ,
∑

j∈S x
∗
ijq
∗
ij ≤

rank(S). Assume for the moment that bidder i had no matroid constraints. Then the expected
revenue of bidder i would be

Ri :=
∑
j

P (j ∈ A)r∗i (x
∗
ij/2)q∗ij ≥

∑
j

(1/2)r∗i (x
∗
ij/2)q∗ij .

However, bidder i has to respect the matroid constraints and chooses a maximum independent set
of Ti. By (ii) we can use Lemma 3. It shows that that the expected revenue of the items in Si
is at least Ri/2. Thus, the expected revenue that our mechanism achieves for bidder i is at least∑

j r
∗
i x
∗
ijq
∗
ij/8. Together with (1) this shows that the expected revenue that the mechanism achieves

for bidder i is at least OPTi/(16 logL).
Since the mechanism is a sequential posted price mechanism it is DSIC and individually rational.

Proof (of Theorem 2 for Global matroids). For one global matroid the mechanism uses one k∗

value and one price r∗ for all bidders and items. This results in some simplifications in the proof.
For completeness we give the full proof.

We first solve LP2 to get xij(r) for all i, j, and r. Then we group the r values in powers of 2 so
that there are logL groups. Let Gk := [2k, 2k+1) and k∗ := argmaxk

∑
i,j

∑
r∈Gk rfij(r)xij(r), that

is pick the interval that maximizes the expected welfare. We set the price charged for each item at

r∗ := 2k
∗

and set x∗ij =

∑
r∈Gk∗

fij(r)xij(r)∑
r∈Gk∗

fij(r)
. Then we use the following mechanism to assign items to

bidders.
1. A = J .
2. Order the bidders arbitrarily.
3. For i = 1, 2, . . . , n

(a) Let Gi = ∅.
(b) For every item j ∈ A with probability x∗ij/3 add item j to Gi with a price of r∗.
(c) Let the bidder pick an independent subset Si of Gi such that |Si|r∗ ≤ Bi. Assign Si to i at

a cost of |Si|r∗ and set A = A \ {Si ∪ span(Si)}.



We will now show that the revenue of this mechanism is at least Ω(1/ logL) of the optimal
BIC revenue. Let OPT =

∑
i,j

∑
r rfij(r)xij(r) be the optimal solution of LP2. Recall that (by

Lemma 2) OPT is at least a constant fraction of the optimal BIC revenue. Thus it suffices to show
that the revenue of our mechanism is Ω(OPT/ logL). We will show that our mechanism receives
in expectation Ω(OPT/ logL) from the bidders.

Let q∗ij = P (Vij ≥ r∗) =
∑

r≥r∗ fij(r). Lemma 2 shows that xij(r) is monotone in r. Thus
x∗ij ≤ xij(r) for r ∈ Gk, with k > k∗. Together with the defiition of x∗ij this implies (a) x∗ijq

∗
ij =∑

r≥r∗ fij(r)x
∗
ij ≤

∑
r≥r∗ fij(r)xij(r).

We show that (1) r∗
∑

i,j x
∗
ijq
∗
ij ≥ OPT/(2 logL) and (2) our mechanism expects to achieve at

least r∗
∑

i,j x
∗
ijq
∗
ij/27.

Proof of (1). By the definition of the buckets and of x∗ij we know that,∑
i,j

∑
r∈Gk

rfij(r)xij(r) ≤ 2r∗
∑
i,j

∑
r∈Gk∗

fij(r)xij(r) = 2r∗x∗ij
∑
r∈Gk∗

fij(r) ≤ 2r∗x∗ijq
∗
ij .

By the choice of k∗ and as there are totally logL intervals we have that∑
i,j

∑
r∈Gk∗

rfij(r)xij(r) ≥
1

logL

∑
i,j

∑
r

rfij(r)xij(r).

Combining the two previous inequalities we get that

r∗
∑
i,j

x∗ijq
∗
ij ≥

1

2 logL

∑
i,j

∑
r

fij(r)xij(r) = OPT/(2 logL).

Proof of (2). By the second constraint of LP2 and (a) we get that for all i,

Bi ≥
∑
j

∑
r

rfij(r)xij(r) ≥ r∗
∑
j

q∗ijx
∗
ij .

Since r∗
∑

j q
∗
ij(x

∗
ij/3) ≤ Bi/3 and from the Markov inequality we get P (

∑
j r
∗q∗ij(x

∗
ij/3) ≥

3Bi/4) ≤ 4/9. Next we show (3). By (a) and the third constraint of LP2 we know that (i) for each
item j it holds that

∑
i x
∗
ijq
∗
ij ≤ 1. This implies (using the Markov inequality) that the probability

that j was assigned to a bidder i′ < i is upper bounded by
∑

i′<i(x
∗
ij/3)q∗i′j ≤

1
3 .

Thus, by union bounds with probability at least 1 − (1/3 + 4/9) = 2/9, when the pair (i, j) is
considered, j was taken by none of the earlier bidders, and the player also has enough budget to
take the item, as Vij ≤ Bi/4.

Assume for the moment that there are no matroid constraints. Then the expected revenue R
would be at least

∑
j(2/9)r∗(x∗ij/3)q∗ij . However, the allocation has to respect the matroid constraint

and chooses a maximum independent set. By (a) and the second constraint of LP2 we know that
for each subset S of J

∑
i

∑
j∈S x

∗
ijq
∗
ij ≤ rank(S). We can then use Lemma 4. It shows that that

the expected revenue is at least R/2. Thus, the expected revenue that our mechanism achieves for
bidder i is at least

∑
i,j r
∗
i x
∗
ijq
∗
ij/27. Together with (1) this shows that the expected revenue that

the mechanism achieves for bidder i is at least OPT/(54 logL).
Since the mechanism is a sequential posted price mechanism it is DSIC and individually rational.

4.1 Valuation distributions with Monotone Hazard Rate

In this section we give mechanisms with better approximation ratios by placing restrictions on the
distribution function fij . Following Myerson [9] we call the function h(r) = f(r)/(1 − F (r)) the



hazard rate of f . The probability distribution fij has a monotone hazard rate (MHR) if 1/hij(r) is
non-decreasing as a function of r. The function φij(r) = r− 1/hij(r) is called the virtual valuation
of player i for item j. The distribution is called regular if the virtual valuation is a non-decreasing
function of r. Clearly, MHR distributions are regular, but the converse does not always hold.

In the previous section we gave a Θ(logL) sequential posted price mechanism for general ma-
troids. Since this matches the known lower bound for sequential posted price mechanisms and the
lower bound is achieved by a distribution that satisfies regularity [1], the natural question to ask is
whether we can do better for valuations vij whose distributions satisfy the monotone hazard rate
condition.

We modify the LP given by Bhattacharya et al [1] for the special case of uniform, individual
matroids to work for both general, individual matroids and general universal matroids. The resulting
LP3 has an exponential number of constraints but the same argument as in Lemma 2 shows that
the LP can be solved in polynomial time. We then generalize the proof of the two subsequent
lemmata to work for the modified LPs. We start by giving LP3.

(LP3) Maximize
∑
i,j

∑
r

fij(r)φij(r)xij(r)

∀i,∀S ⊆ J
∑
j∈S

∑
r

fij(r)xij(r) ≤ rank(S)

∀i
∑
j

∑
r

fij(r)φij(r)xij(r) ≤ Bi

∀j
∑
i

∑
r

fij(r)xij(r) ≤ 1

∀i, j, r xij(r) ∈ [0, 1]

Lemma 5 ([1]). If the valuations follow distributions that fullfill the MHR condition, then the
revenue of LP3 is at least 1

2e2
times the revenue of LP2.

Lemma 6 ([1]). The optimal solution to (LP3) satisfies the following property. For all i, j xij be
decomposed in polynomial time in the following way: xij = pijyij + (1− pij)zij, where r∗ij + 1 ≤ Bi

4 ,
r∗ij ≥ 1,

yij(r) :=

{
0 for r < r∗ij
1 for r ≥ r∗ij

zij(r) :=

{
0 for r < r∗ij + 1

1 for r ≥ r∗ij + 1.

Define Rij := pijr
∗
ijP (Vij ≥ r∗ij) + (1− pij)(1 + r∗ij)P (Vij ≥ r∗ij + 1), and

qij := pijP (Vij ≥ r∗ij) + (1− pij)P (Vij ≥ r∗ij + 1).

Then (a)
∑

r xij(r)φij(r)fij(r) = Rij, and (b)
∑

r xij(r)fij(r) = qij .

An O(k) Approximation for General Matroids assuming MHR To warm up we show that
a very simple mechanism achieves an O(k) approximation ratio.

Theorem 3. Assume for all i and j, vij ∈ [1, L] follow independent distributions fij and satisfy
the monotone hazard rate condition. Then there is an O(k) approximation of the revenue of the
optimal BIC mechanism, through a spp mechanism under any matroid constraint.



Proof (of Theorem 3 for both Individual and Global matroids). Since the proof is practically
the same for Individual and global matroids we simply note in parentheses the points where the
proof for global matroids differs. We first solve LP3 to get the xij values and then decompose
x̃ij = xij/(2k) according to Lemma 6 to get pij , r

∗
ij and qij values. For each bidder i in the case of

Individual matroids it follows that
∑

j qij =
∑

j

∑
r(xij(r)/(2k))fij(r) ≤ rank(J)/2k = 1/2 where

the equality is by Lemma 6 and the inequality from the first constraint of LP3. (For global matroids
it holds that

∑
i

∑
j qij =

∑
i

∑
j

∑
r(xij(r)/(2k))fij(r) ≤ rank(J)/2k = 1/2.)

Let r̃ij be the random variable that is equal to r∗ij with probability pij and equal to r∗ij +
1 with probability 1− pij .

1. A = J .
2. Order the bidders arbitrarily.
3. For i = 1, 2, . . . , n

(a) For every item j ∈ A post for it a price of r̃ij .
(b) Ask bidder i to select at most one item j from A without violating his matroid and budget

constraints. Set A = A \ {j}.

(In the case of one global matroid in step (b) the algorithm should stop when the first item is
selected by a bidder, so we set A = ∅ as soon as the first item is allocated.)

Note that the optimal solution to LP3 achieves a value of 2k
∑

i,j Ri,j and by Lemma 2 and 5 the
revenue of the optimal BIC mechanism is O(k

∑
ij Ri,j). We will show that the revenue achieved by

our mechanism is a constant factor of Rij for each bidder item pair (i, j). By Lemma 6, r̃ij ≤ Bi/4
so that bidder i will not be budget constrained. Also the matroid constraints pose no challenge:
If bidder i cannot take item j because of the matroid constraints, then no independent set can
contain j and thus the optimal mechanism cannot get any revenue from j for bidder i either. Thus
it suffices to consider items j that belong to at least one independent set ofMi (resp.M for global
matroids).

Let C1 denote the event {j ∈ A when bidder i is considered} and C2 denote the event {bidder i
picks no item from A\{j}}. The expected revenue our algorithm extracts for bidder i and item j is
at least P (C1∩C2) ·Rij = P (C1) ·P (C2 | C1) ·Rij while, due to the definition of x̃ij(r) the optimal
mechanism extracts a revenue of at most 2k · Rij . Thus it suffices to show that P (C1) ≥ 1/2 and
P (C2 | C1) ≥ 1/2 to show that our mechanism has an expected revenue of Rij/4.

The probability P ({j ∈ A when bidder i is considered}), i.e., the probability that j has not been
allocated to any of the previous bidders, is 1/3, because from Lemma 6 and the first constraint of
LP3 we have that for each j, E[

∑
i qij ] = E[

∑
i

∑
r fij(r)xij(r)] ≤ 1/2 and consequently by the

Markov inequality P [
∑

i qij ≥ 1] ≤ 1/2 and, hence, P [
∑

i′<i qij < 1] ≥ P [
∑

i qij < 1] ≥ 1/2.

Additionally we have that P (C2 | C1) = P ({i picks no other item from A | C1}) ≥ P ({i has
a value below the price for all items of A \ {j} | C1} ≥ P ({i has a value below the price for
all items of J \ {j} | C1}. Now the crucial observation is that the two events C1 and “bidder
i has a value below the price for all items in J \ {j}” are independent of each other: Whether
j ∈ A when bidder i is considered depends on the valuations of the earlier bidders and not
on bidder i’s valuations. Whether bidder i has a value above the price for no item in J \ {j}
only depends on valuations of bidder i and not on the valuations of the other bidders. Thus,
P ({i has a value below the price for all items of J \ {j} | C1} = P ({i has a value below the price
for all items of J \ {j}}) ≥

∏
j′∈J\{j}(1 − qi,j′) ≥ 1 −

∑
j∈J\{j} qi,j′ ≥

1
2 since

∑
j∈J\{j} qi,j ≤∑

j∈j qi,j ≤ 1/2.



In the case of global matroid constraints the formulas change slightly as follows:

P ({i has a value below the price for all items of J \ {j} | C1}) =

P ({i has a value below the price for all items ofJ \ {j}} ≥∏
j′∈J\{j}

(1− qi,j′) ≥ 1−
∑

j∈J\{j}

qi,j′ ≥
1

2
(since

∑
j∈J\{j}

qi,j ≤
∑
i

∑
j

qi,j ≤ 1/2).

An O(log m) approximation for general matroids assuming MHR To achieve an O(logm)
approximation we bucket for each bidder i all the items above a certain threshold according to their
r∗ij value. Note that this is different from the bucketing in the proof of Theorem 2, where we placed
the r values into buckets. Then we pick the bucket with the largest expected revenue, assign all
items in it the same price, and let the bidder pick an independent set of items from the bucket.
We use Lemma 3 to show that the expected revenue lost due to the matroid constraints is only a
factor of 2.

Mechanism for Individual matroid constraints
1. Solve LP3 to get the xij(r) values, set for all i, j and r, x̃ij(r) = xij(r)/2. Decompose x̃ij(r) to

get pij and r∗ij values for all i and j. Set Rij = pijr
∗
ijP (Vij ≥ r∗ij)+(1−pij)(1+r∗ij)P (Vij ≥ r∗ij+1).

2. For each bidder i do
(a) Set OPTi =

∑
j Rij , let rmaxi = maxj{r∗ij + 1}, and let rmini = OPTi/m

2.

(b) For l = blog(rmini )c to blog(rmaxi )c do: Set Γl = ∅
(c) For all items j with r∗ij ≥ rmin do:

i. Set k = blog r∗ijc, Γk = Γk ∪ {(j, pij · P (Vij ≥ r∗ij)/P (Vij ≥ 2k))}, set k′ = blog(r∗ij + 1)c
and Γk′ = Γk′ ∪ {(j, (1− pij) · P (Vij ≥ r∗ij + 1)/P (Vij ≥ 2k

′
))}

(d) Set Bi := Γki with ki = argmaxk
∑

(j,p)∈Γk
p2kP (Vij ≥ 2k).

3. A = J and order the bidders arbitrarily.
4. For i = 1, 2, . . . , n

(a) Let S = ∅.
(b) For every item j ∈ A: If (j, p) ∈ Bi then with probability p add item j to S with a price of

2ki .
(c) Let the bidder pick an independent subset Si of S such that |Si|2ki ≤ Bi. Assign Si to i at

a cost of |Si|2ki and set A = A \ Sj .

Theorem 4. Suppose that the valuations vij ∈ [1, L] follow independent distributions fij for dif-
ferent (i, j) satisfying the monotone hazard rate condition and that the items allocated are subject
to a matroid constraint. Then for every bidder i the above mechanism is an O(log (rmaxi /rmini ))
approximation of OPTi under any individual matroid constraint.

Proof (of Theorem 4 (Individual matroids)). Due to division of xij by 2 we have that
∑

iOPTi
is at least half of the revenue of the optimal BIC mechanism. We will show that our mechanism
receives a revenue of at least (

∑
iOPTi)/(8blog (rmaxi /rmini )c), which shows that the mechanism is

a O(log (rmaxi /rmini )) approximation of the optimal BIC mechanism.
Fix a bidder i. The total revenue discarded by ignoring all items j with rij < rmini = OPTi/m

2 is
at most OPTi/m ≤ OPTi/2. Thus

∑
j with rij≥rmin

i
Rij ≥ OPTi/2. We will show that (A) the above

mechanism collects a revenue of at least a 1/(16blog (rmaxi /rmini )c) fraction of
∑

j with rij≥rmin
i

Rij .

Note that OPTi ≤ Bi. Our mechanism collects from bidder i the revenue |Si|2ki . If |Si|2ki ≥
3Bi/4, our mechanism received a constant fraction of OPTi, which shows (A). Thus, we only need



to analyze bidders i where |Si|2ki < 3Bi/4. Since 2ki ≤ r∗ij + 1 ≤ Bi/4 no item of S was rejected
by such bidders i because of the budget constraint. This implies that the subset Si picked by such
bidders i is a maximum independent subset of Ti, the subset of all items j of S with Vij ≥ 2ki . We
first need to show the following three claims.

Claim.
∑

(j,p)∈Bi p2
kiP (Vij ≥ 2ki) ≥ OPTi/(4blog(rmaxi /rmini )c).

Proof. Recall that only items with rij ≥ rmini are placed into buckets. Thus

blog(rmax
i )c∑

k=blog(rmin
i )c

∑
(j,p)∈Γk

p2k P (Vij ≥ 2k)

≥
∑

j with r∗ij≥rmin
i

pijP (Vij ≥ r∗ij)/P (Vij ≥ 2blog r
∗
ijc)(r∗ij/2)P (Vij ≥ 2blog r

∗
ijc)+

(1− pij)P (Vij ≥ r∗ij + 1)/P (Vij ≥ 2blog (r
∗
ij+1)c)((r∗ij + 1)/2)P (Vij ≥ 2blog (r

∗
ij+1)c)

=
∑

j with rij≥rmin
i

Rij/2 ≥ OPTi/4.

The claim follows by the fact that there are blog(rmaxi /rmini )c many buckets and by the choice of
Bi.

Claim. For every bidder i, let Ai be the set A when the processing of bidder i starts. Then for
every item j, it holds that j belongs to Ai with probability at least 1/2.

Proof. Item j belong to Ai iff none of the bidders i′ < i selected j. The probability that bidder
i′ selected j is at most pi′jP (Vi′j ≥ r∗i′j) + (1 − pi′j)P (Vi′j ≥ r∗i′j + 1) = qi′j =

∑
r x̃i′j(r)f(r) =∑

r xi′j(r)f(r)/2. By constraint three of LP3 we have that
∑

i′,i

∑
r xi′j(r)f(r)/2 < 1/2. Thus the

probability that any earlier bidder selected j is at most 1/2.

Claim. For every bidder i and subset S of J , it holds that∑
j∈S and (j,p)∈Bi pP (Vij ≥ 2ki) ≤ rank(S).

Proof. Note that by the first constraint of LP3∑
j∈S and (j,p)∈Bi

pP (Vij ≥ 2ki) ≤
∑
j∈S

qij ≤ rank(S).

Assume for the moment that bidder i did not have any matroid constraints. Then by the second
claim the expected revenue of bidder i would be X :=

∑
(j,p)∈Bi P (j ∈ A)p2kiP (Vij ≥ 2ki) ≥∑

(j,p)∈Bi p2
kiP (Vij ≥ 2ki)/2. Thus by the first claim X ≥ OPTi/(8blog(rmaxi /rmini )c). Note that

bidder i is offered all items in Bi for the same price and picks a maximum independent subset of
Ti. Additionally for every subset S of J it holds that

∑
j∈S and (j,p)∈Bi pP (Vij ≥ 2ki) ≤ rank(S) by

the third claim. Thus, by Lemma 3, the expected revenue of bidder i is at least X/2. It follows that
the expected revenue of bidder i is at least OPTi/(16blog (rmaxi /rmini )c).

Corollary 1. If fij(r) ≥ 1/mc for all i, j, and r and some constant c, then our mechanism is an
O(logm) approximation of the optimal revenue.



Proof (of Corollary 1). Recall that rmini = OPTi/m
2. If we assume that fij(r) ≥ 1/mc for all i, j,

and r and some constant c, then it follows that P (Vij ≥ r∗ij + 1) ≥ 1/mc. Since we know that for
all i and j r∗ij · P (Vij ≥ r∗ij + 1) ≤ Rij ≤ OPTi and r∗ij ≥ 1, it follows that

rmaxi ≤ max
j
r∗ij + 1 ≤ 2 max

j
r∗ij ≤ 2mcOPTi ≤ mc+1OPTi.

Thus under this assumption rmaxi /rmini ≤ mc+3 and, hence, our mechanism is an O(logm) approx-
imation of the optimal revenue.

Mechanism for Global matroid constraints

1. Solve LP3 to get the xij(r) values and set for all i, j and r, x̃ij(r) = xij(r)/3. Decompose x̃ij(r) to
get pij and r∗ij values for all i and j. Set Rij = pijr

∗
ijP (Vij ≥ r∗ij)+(1−pij)(1+r∗ij)P (Vij ≥ r∗ij+1),

let OPT =
∑

i,j Rij , let rmax = maxij{r∗ij + 1}, and let rmin = OPT/m2.
2. For each bidder i do

(a) For l = blog(rmin)c to blog(rmax)c do: Set Γl = ∅
(b) For all items j with r∗ij ≥ rmin do:

i. Set k = blog r∗ijc, Γk = Γk ∪ {(j, pij · P (Vij ≥ r∗ij)/P (Vij ≥ 2k))}, set k′ = blog(r∗ij + 1)c
and Γk′ = Γk′ ∪ {(j, (1− pij) · P (Vij ≥ r∗ij + 1)/P (Vij ≥ 2k

′
))}

3. Find the bucket B := Γk∗ with k∗ = argmaxk
∑

i

∑
(j,p)∈Γk

p2kP (Vij ≥ 2k).
4. A = J .
5. Order the bidders arbitrarily.
6. For i = 1, 2, . . . , n

(a) Let S = ∅.
(b) For every item j ∈ A: If (j, p) ∈ B then with probability p add item j to S with a price of

2k
∗
.

(c) Let the bidder pick an independent subset Si of S such that |Si|2k
∗ ≤ Bi. Assign Si to i at

a cost of |Si|2k
∗

and set A = A \ {Si ∪ span(Si)}.
The main technical challenge for proving the same result as in Theorem 4 for global matroid

constraints is that the argument cannot be applied to each bidder individually and thus the argu-
ment that deals with budget constraints cannot be used. Thus in the mechanism we need to divide
xij(r) by 3, which allows us to show that with constant probability the budget constraint of bidder
i is not violated.

Theorem 5. Suppose that the valuations vij ∈ [1, L] follow independent distributions fij for dif-
ferent (i, j) satisfying the monotone hazard rate condition and that the items allocated are subject
to a matroid constraint. Then the above mechanism is an O(log (rmax/rmin)) approximation of the
optimal BIC revenue under any global matroid constraint.

Proof (of Theorem 5 (Global matroids)). Due to division of xij by 3 we have that OPT is at
least 1/3 of the revenue of the optimal BIC mechanism. We will show that our mechanism receives
a revenue of at least (OPT )/(2 · 4 · 9blog (rmax/rmin)c), which shows that the mechanism is a
O(log (rmax/rmin)) approximation of the optimal BIC mechanism.

The total revenue discarded by ignoring all items j with rij < rmin = OPT/m2 is at most
OPT/m ≤ OPT/2. Thus

∑
i

∑
j with rij≥rmin

Rij ≥ OPT/2 and consequently by ignoring all items
with rij < rmin we loose at most a factor of 2 in the approximation of the optimal revenue.

Claim.
∑

i

∑
(j,p)∈B p2

kP (Vij ≥ 2k) ≥ OPT/(4blog(rmax/rmin)c).



Proof. Recall that only items with rij ≥ rmin are placed into buckets.

blog(rmax)c∑
k=blog(rmin)c

∑
i

∑
(j,p)∈Γk

p2k P (Vij ≥ 2k)

≥
∑
i

∑
j with rij≥rmin

pijP (Vij ≥ r∗ij)/P (Vij ≥ 2blog r
∗
ijc)(r∗ij/2)P (Vij ≥ 2blog r

∗
ijc)+

(1− pij)P (Vij ≥ r∗ij + 1)/P (Vij ≥ 2blog r
∗
ij+1c)((r∗ij + 1)/2)P (Vij ≥ 2blog (r

∗
ij+1)c)

=
∑
i

∑
j with rij≥rmin

Rij/2 ≥ OPT/4.

The claim follows by the fact that there are blog(rmax/rmin)c many buckets and the choice of B .

Claim. For every bidder i and item j, it holds that none of the bidders i′ < i selected j with
probability at least 1/3.

Proof. The probability that bidder i′ selected j is at most pi′jP (Vi′j ≥ r∗i′j) + (1 − pi′j)P (Vi′j ≥
r∗i′j + 1) = qi′j =

∑
r x̃i′j(r)f(r) =

∑
r xi′j(r)f(r)/3. By constraint three of LP3 we have that∑

i′
∑

r xi′j(r)f(r)/3 < 1/3. Thus the probability that any earlier bidder selected j is at most 1/3.

Claim. For every bidder i and subset S of J it holds that∑
j∈S and (j,p)∈B pP (Vij ≥ 2k

∗
) ≤ rank(S).

Proof. Note that
∑

i

∑
j∈S and (j,p)∈B pP (Vij ≥ 2k

∗
) ≤

∑
i

∑
j∈S qij ≤ rank(S) by the first con-

straint of LP3.

Claim. For every bidder i and subset S of J it holds that∑
j∈S and (j,p)∈B p2

k∗P (Vij ≥ 2k
∗
) ≤ Bi/3.

Proof. From the LP constraints we have∑
j∈S and (j,p)∈B

p2k
∗
P (Vij ≤ 2k

∗
) ≤

∑
j

Rij =
∑
j

∑
r

fij(r)φij(r)xij(r)/3 ≤ Bi/3.

Assume for the moment that bidder i did not have any matroid constraints. Let Pij denote the
revenue extracted from the pair (i, j), (which is zero if item j is not sold to player i) and Xij ∈ {0, 1}
the random variable denoting whether item i was taken by player j. Let E1 denote the event
{
∑

l 6=j Xil ≥ 1} and E2 the event {
∑

k 6=j Pik ≥ 3Bi/4}.
By the previous two claims, applying the Markov inequality, we get P (E1) ≤ 1/3 and P (E2) ≤

4/9. Thus we have P (E1 ∪ E2) ≤ P (E1) + P (E2) = 7/9 and consequently with probability at
least 2/9 none of these two events occurs. So when the pair (i, j) is considered, with probability
at least 2/9, j was taken by none of the earlier bidders, and the player also has enough budget
to take the item, as Vij ≤ Bi/4. Then if we denote the expected revenue by X, it would be
X ≥

∑
(j,p)∈B 2/9p2k

∗
P (Vij ≥ 2k

∗
). Thus by the first claim X ≥ 2 · OPT/(4 · 9blog(rmax/rmin)c).

Note that bidder i is offered all items in B for the same price and picks a maximum independent
subset of Ti. Additionally for every subset S of J it holds that

∑
j∈S and (j,p)∈B pP (Vij ≥ 2k

∗
)

≤ rank(S) by the third claim. Thus, by Lemma 3, we loose at most another factor of 2 in the
expected revenue. It follows that the expected revenue is at least OPT/(4 · 9blog (rmax/rmin)c).

Thus using the same proof as for Corollary 1 with OPTi replaced by OPT we get the following
result.

Corollary 2. If we assume that fij(r) ≥ 1/mc for all i, j, and r and some constant c, then our
mechanism is an O(logm) approximation of the optimal revenue.



4.2 Constant approximations for specific matroids with the MHR assumption

If the valuations vij follow regular distributions and the feasibility constraint is described by a
k-uniform matroid, [1] gives a constant approximation algorithm for the optimal expected revenue.
We improved the approximation ratio from 24 [1] to 9, by arguing differently (and more simply)
about the fulfillment of the budget constraints: If the expected revenue from a bidder i is at least
3/4Bi, the mechanism achieved a constant factor of the optimal revenue for i. Otherwise, since
Vij ≤ Bi/4, the budget constraints did not keep i from taking more items and can be ignored in
the future analysis of the revenue collected from i. The proof also easily extends for the case of a
universal matroid constraint.

Theorem 6. Assume that for all i and j, vij ∈ [1, L] follow independent distributions fij and
satisfy the monotone hazard rate condition. There is a constant approximation of the revenue of the
optimal BIC mechanism, that achieves a 9-approximation to LP3, through a spp mechanism under
global or individual k-uniform matroid constraints.

Proof (of Theorem 6 for individual and global matroids). We first solve LP3 to get the xij
values and then decompose xij/3 according to Lemma 6 to get pij , r

∗
ij and qij .

1. A = J .
2. Order the bidders arbitrarily.
3. For i = 1, 2, . . . , n

(a) For every item j ∈ A add it to the set of offered items with probability xij/3 post for it a
price of r̃ij .

(b) Ask bidder i to pick the items he prefers (without violating his budget and matroid con-
straints). Denote by Si the set of elements picked by bidder i and set A = A \ Si.

Let Pij denote the revenue extracted from the pair (i, j), (which is zero if item j is not sold to
player i) and Xij ∈ {0, 1} the random variable denoting whether item i was taken by player j. Note
that OPTi ≤ Bi. Our mechanism collects from bidder i the revenue

∑
j Pij . We take two cases:

Let Pij denote the revenue extracted from the pair (i, j), (which is zero if item j is not sold
to player i) and Xij ∈ {0, 1} the random variable denoting whether item i was taken by player j.
Note that OPTi ≤ Bi. Our mechanism collects from bidder i the revenue

∑
j Pij .

(a) If
∑

j Pij ≥ 3Bi/4, then
∑

j Pij ≥ 3Bi/4 ≥ 3OPTi/4 so our mechanism receives a 3/4
fraction of OPTi and the proof is complete.

(b) If
∑

j Pij < 3Bi/4, the following argument shows that the budget of player i did not affect
his decision to take or leave any of the items since r̃ij ≤ r∗ij + 1 ≤ Bi/4 for all j.

(i)(Individual matroids) Fix a player i and an item j. We will show that with constant
probability item j is still available and the total number of items k that can be allocated has not
been exceeded yet, so the player picks the item if vij ≥ r̃ij . Let E1 denote the event {

∑
s 6=iXsj ≥ 1}

and E2 the event {
∑

l 6=j Xil ≥ k}.
By Lemma 6 and the first and third constraint of LP3 it follows that

E[
∑
j 6=j

Xil] =
∑
l

qil =
∑
l

∑
r

(xil(r)/3)fil(r) ≤ k/3 and E[
∑
s 6=i

Xsj ] ≤ 1/3.

By applying the Markov inequality we get P (E1) ≤ 1/3 and P (E2) ≤ 1/3. Thus, we have P (E1 ∪
E2) ≤ P (E1) + P (E2) = 2/3 and consequently with probability at least 1/3 none of these two
events occurs. Consequently for each pair (i, j) we obtain a 1/3 approximation of the revenue, thus
for each player i we obtain a 1/3 approximation of the OPTi.



Putting cases (a) and (b) together we get at least a 1/3 ·min{1/3, 3/4} = 1/9 approximation
of the objective of LP3.

(ii)(Global matroid) Fix a player i and an item j. We will show that with constant probability
item j is still available and the total number of items s that can be allocated has not been exceeded
yet, so the player picks the item if vij ≥ r̃ij . Let E1 denote the event {

∑
l 6=j Xil ≥ 1} and E2 the

event {
∑

s 6=i
∑

l 6=j Xsl ≥ k}.
By Lemma 6 and the first and third constraint of LP3 it follows that∑

i,j

qij =
∑
i,j

∑
r

(xij(r)/3)fij(r) ≤ k/3 and E[
∑
s 6=i

Xsj ] ≤ 1/3.

By applying the Markov inequality we get P (E1) ≤ 1/3 and P (E2) ≤ 1/3. Thus we have P (E1 ∪
E2) ≤ P (E1) + P (E2) = 2/3 and consequently with probability at least 1/3 none of these two
events occurs. Consequently for each pair (i, j) we obtain a 1/3 approximation of the revenue, thus
for each player i we obtain a 1/3 approximation of the OPTi.

Putting cases (a) and (b) together we get at least a 1/3 ·min{1/3, 3/4} = 1/9 approximation
of the objective of LP3.

4.3 Graphical matroids

In the case of graphical matroids we use a graph decomposition technique employed by [4] for
matroids with budget constraints and prophet inequalities for matroids without budget constraints
to achieve the following results.

Theorem 7. If for all i and j, vij ∈ [1, L] follow independent distributions fij and satisfy the mono-
tone hazard rate condition, then there is a constant approximation of the revenue of LP3, through
a sequential posted price mechanism under global or individual graphical matroid constraints.

Remark 2. Our new technique for dealing with budgets applies to all cases where we can argue
that we achieve a constant fraction of the optimal revenue Rij for each bidder item pair (i, j) (like
for example in the case of Uniform matroids) or of the optimal revenue OPTi =

∑
j Rij for each

player separately (like in the case of any global matroid constraint). In those cases we loose at most
a factor of 3/4 because of the budget constraint. If however we can only argue about the total
revenue for all items (like in graphical matroids) then budget constrained bidders together with
global matroids result in much worse approximation ratios than for the case of individual matroids
together with budget constraints.

Proof (of Theorem 7 for individual matroids). We first solve LP3 to get the xij values and
then decompose xij/4 according to Lemma 6 to get pij , r

∗
ij and qij . By Lemma 6 and the first

constraint of LP1 it follows that
∑

j qij =
∑

j∈S
∑

r(xij(r)/4)fij(r) ≤ rank(S)/4 for each i and
each subset S of J .

Let Gi = (Vi, J) be the graph defining the feasibility constraint for bidder i. The idea is to
partition the matroid into sets Ti,v so that bidder i gets only a single item from each Ti,v and still
obtain a good approximation to the expected optimal revenue. We can achieve this if we can find
a partition of the items (which are the edges of Gi), into sets Ti,v such that for each i it holds that
∪v∈ViTi,v = J and

∑
j∈Ti,v qij ≤ 1/2.

We can find such a partition as follows: For each v ∈ Vi let δi(v) be the set of edges incident to
v and define qiv :=

∑
j∈δi(v) qij . Now

∑
v q

i
v = 2

∑
j qij ≤ 2 · rank(Vi)/4 ≤ (|Vi| − 1)/2. Thus there

exists a v for which qiv ≤ 1/2. For each bidder i we run the following algorithm independently.



1. U = Vi, A = J . While there exists a v ∈ U
(a) For every node v set qiv =

∑
j∈δi(v)∩A qij

(b) Pick a node v ∈ U with qiv ≤ 1/2,
(c) Set Ti,v := δi(v) ∩A,
(d) Set U = U \ {v} and A = A \ Ti,v.

Fix a bidder i. The sets Ti,v are chosen in such a way that if a set Si contains no more than one
element from Ti,v for each v, then Si is an independent set in Mi, i.e., the matroid constraints
are fulfilled. Now that we have the desired partition we can present our algorithm. Let r̃ij be the
random variable that is equal to r∗ij with probability pij and equal to r∗ij+1 with probability 1−pij .

1. A = J .
2. Order the bidders arbitrarily.
3. For i = 1, 2, . . . , n

(a) For every item j ∈ A post for it a price of r̃ij .
(b) Ask bidder i to pick the items he prefers (without violating his budget constraints) with

the restriction that he can only take a single item from each set Ti,v ∩A. Denote by Si the
set of elements picked by bidder i and set A = A \ Si.

Let OPTi =
∑

j Rij . We will show that the revenue achieved by our mechanism for every bidder
i is a constant factor of OPTi. Note that OPTi ≤ Bi. Thus if the mechanism achieves a revenue of
3Bi/4 for bidder i it has achieved a constant factor of OPTi. Thus in the following we only consider
bidders i where our mechanism achieves a revenue of less than 3Bi/4. In this case bidder i is not
constrained by its budget since for every item j it holds that r̃ij ≤ Bi/4. Thus if A∩ Ti,v 6= ∅ when
bidder i is considered, then bidder i will pick an element j of A ∩ Ti,v, provided vij ≥ r̃ij . Thus we
will show that our mechanism obtains in each one of these sets Ti,v a constant approximation of the
expected revenue this Ti,v contributes to the optimal solution. Fix a set Ti,v and an item j ∈ Ti,v. If
j ∈ Ti,v∩A and Ti,v∩A doesn’t contain any other item that he prefers to item j, then we are sure that
the expected revenue extracted is Rij . Let C1 denote the event {j ∈ A when bidder i is considered}
and C2 denote the event {bidder i selects no item that is not j from Ti,v ∩A}. Then the expected
revenue our algorithm extracts from each Ti,v is at least

∑
j∈Ti,v P (C1 ∩C2) ·Rij =

∑
j∈Ti,v P (C1) ·

P (C2 | C1) ·Rij and the total expected revenue of the algorithm is at least
∑

i

∑
v

∑
j∈Ti,v P (C1) ·

P (C2 | C1) ·Rij =
∑

i

∑
j P (C1) · P (C2 | C1) ·Rij .

It remains to show that P (C1) ≥ 1/2 and P (C2 | C1) ≥ 1/2. The probability P ({j ∈
A when bidder i is considered}), i.e., the probability that j has not been allocated to any of the
previous bidders, is at least 3/4, because from Lemma 6 and the constraints of LP3 we have that for
each j, E[

∑
i′<i qi′j ] ≤ E[

∑
i

∑
r fij(r)xij(r)/4] ≤ 1/4 and consequently by the Markov inequality

P [
∑

i′<i qi′j ≥ 1] ≤ 1/4, i.e., P [
∑

i′<i qi′j < 1] ≥ 3/4.

It holds that

P (C2 | C1) = P ({i picks no other item from Ti,v ∩A | C1})
≥ P ({i has a value below the price for all items of (Ti,v ∩A) \ {j}} | C1)

≥ P ({i has a value below the price for all items of Ti,v \ {j}} | C1).

Now the crucial observation is that the two events C1 and “bidder i has a value below the price for
all items in Ti,v \ {j}” are independent of each other: Whether j ∈ A when bidder i is considered
depends on the valuations of the earlier bidders and not on bidder i’s valuations. Whether bidder
i has a value above the price for no item in Ti,v \ {j} only depends on valuations of bidder i and



not on the valuations of the other bidders. Thus,

P ({i has a value below the price for all items of Ti,v \ {j} | C1}
= P ({i has a value below the price for all items of Ti,v \ {j}} ≥∏

j′∈Ti,v\{j}(1− qi,j′) ≥ 1−
∑

j∈Ti,v\{j} qi,j′ ≥
1
2

The last inequality holds because
∑

j′∈Ti,v\{j′} qi,j′ ≤
∑

j′∈Ti,v qi,j′ ≤ 1/2.

Consequently the total expected revenue of the algorithm is at least
∑

i

∑
j P (C1) ·P (C2) ·Rij ≥∑

i

∑
j 3/4 · 1/2 ·Rij = 3/8 ·

∑
i,j Rij . The objective of LP3 is at most 4

∑
i,j Rij In other words the

algorithm gives a 3/2-approximation to the objective of LP3.

Proof (of Theorem 7 for a global matroid). The difference in the proof between individual
and global matroid constraints is that in the latter setting (a) the partition of the graph is done
globally for all vertices and not individually for each vertex and (b) the budget constraint cannot
be reasoned about for each bidder individually and, thus, we need to use a Markov bound argument
that leads to a worse, but still constant competitive ratio. For completeness we give the full proof
below.

We first solve LP3 to get the xij values and then decompose xij/4 according to Lemma 6
to get pij , r

∗
ij and qij . By Lemma 6 and the first constraint of LP1 it follows that

∑
j qij =∑

j∈S
∑

r(xij(r)/4)fij(r) ≤ rank(S)/4 for each i and each subset S of J .
Let G = (V, J) be the graph defining the feasibility constraint. The idea is to partition the

matroid into sets Tv so that only a single item from each Tv is allocated and still obtain a good
approximation to the expected optimal revenue. We can achieve this if we can find a partition of
the items (which are the edges of G), into sets Tv such that ∪v∈V Tv = J and

∑
j∈Tv qij ≤ 1/2.

We can find such a partition as follows: For each v ∈ V let δ(v) be the set of edges incident to
v and define qv :=

∑
j∈δ(v) qij . Now

∑
v qv = 2

∑
j qij ≤ 2 · rank(V )/4 ≤ (|V | − 1)/2. Thus there

exists a v for which qv ≤ 1/2. We run the following algorithm in order to partition the graphical
matroid.
1. U = V , A = J . While there exists a v ∈ U

(a) For every node v set qv =
∑

j∈δ(v)∩A qij
(b) Pick a node v ∈ U with qv ≤ 1/2,
(c) Set Tv := δ(v) ∩A,
(d) Set U = U \ {v} and A = A \ Tv.

The sets Tv are chosen in such a way that any set that contains at most one element from Tv for
each v, is guaranteed to be an independent set inM, i.e., the matroid constraints are fulfilled. Now
that we have the desired partition we can present our algorithm. Let r̃ij be the random variable
that is equal to r∗ij with probability pij and equal to r∗ij + 1 with probability 1− pij .
1. A = J .
2. Order the bidders arbitrarily.
3. For i = 1, 2, . . . , n

(a) For every item j ∈ A post for it a price of r̃ij .
(b) Ask bidder i to pick the items he prefers (without violating his budget constraints) with

the restriction that he can only take a single item from each set Tv ∩ A. Denote by Si the
set of elements picked by bidder i and set A = A \ ∪v∈SiTv.

Let OPT =
∑

i,j Rij . We will show that the revenue achieved by our mechanism is a constant
factor of OPT . More specifically for each vertex v we will show that our mechanism expects to
obtain a constant fraction of the revenue that the optimal solution extracts from Tv. We first define
the following events.



1. Let C1 denote the event {j ∈ A when bidder i is considered},
2. let C2 denote the event {bidder i picks no item different from j from Tv ∩A},
3. let C3 denote the event {

∑
j Pij < 3Bi/4}, which guarantees that player i has enough budget

to take one more item, and
4. let C4 denote the event {i has a value below the price for all items of Tv \ {j}}.

If A∩Tv 6= ∅ when bidder i is considered, then bidder i will pick an element j of A∩Tv, provided
vij ≥ r̃ij . Now Fix a set Tv and an item j ∈ Tv. If j ∈ Tv ∩A and Tv ∩A does not contain any other
item that he prefers to item j, then we are sure that the expected revenue extracted is Rij . Thus
the expected revenue our algorithm extracts from each Tv is at least

∑
j∈Tv P (C1 ∩C2 ∩C3) ·Rij =∑

j∈Tv P (C1) · P (C2 ∩ C3 | C1) · Rij and the total expected revenue of the algorithm is at least∑
i

∑
v

∑
j∈Tv P (C1) · P (C2 ∩ C3 | C1) ·Rij =

∑
i

∑
j P (C1) · P (C2 ∩ C3 | C1) ·Rij .

We show below that P (C1) ≥ 3/4 and P (C2 ∩C3 | C1) ≥ 1/6. By Lemma 6 and the constraints
of LP3 we have that for each j, E[

∑
i′<i qi′j ] ≤ E[

∑
i

∑
r fij(r)xij(r)/4] ≤ 1/4 and consequently by

the Markov inequality P [
∑

i qij < 1] ≥ 3/4.
It holds that

P (C2 ∩ C3 | C1) ≥
P ({i has a value below the price for all items of (Tv ∩A) \ {j}} ∩ C3 | C1) ≥

P ({i has a value below the price for all items of Tv \ {j}} ∩ C3 | C1) = P (C4 ∩ C3 | C1).

Now the crucial observation is that the two events C1 and C4∩C3 are independent of each other:
Event C1 depends on the valuations of the earlier bidders and not on bidder i’s valuations. Events C4

and C3 only depend on valuations of bidder i and not on the valuations of the other bidders. Thus,
P (C4 ∩ C3 | C1) = P (C4 ∩ C3). As before P (C4) ≥ 1/2 since

∑
j′∈Tv\{j} qi,j′ ≤

∑
j∈Tv qi,j ≤ 1/2.

By the second constraint of LP3 and Lemma 6 we get that for all i, Bi/4 ≥
∑

j Rij/4. From
the Markov inequality we get P (C3) = P (

∑
j Rij/4 ≥ 3Bi/4) ≤ 1/3. Thus, by union bounds

P (C4 ∩ C3) = 1− P (C4 ∪ C3) ≥ 1− P (C4)− P (C3) ≥ 1− 1/2− 1/3 = 1/6
Consequently the total expected revenue of the algorithm is at least

∑
i

∑
j P (C4∩C3) ·P (C1) ·

Rij ≥
∑

i

∑
j 1/6 · 3/4 · Rij = 1/8 ·

∑
i,j Rij . The objective of LP3 is at most 4

∑
i,j Rij In other

words the algorithm gives a 32-approximation to the objective of LP3.

If there are no budget constraints and a global matroid constraint then with use of prophet
inequalities we can obtain a better approximation ratio with use of prophet inequalities, a very
interesting technique introduced in [4, 12].

Theorem 8. If for all i and j, vij ∈ [1, L] follow independent distributions fij and satisfy the
monotone hazard rate condition and there are no budget constraints, then a sequential posted price
mechanism achieves a 3-approximation to LP3, and a 24e2-approximation of the revenue of the
optimum BIC mechanism under a global matroid constraint.

Proof. We first solve LP3 to get the xij values and then decompose xij according to Lemma 6 to
get pij , r

∗
ij and qij values. For each bidder i and each subset S of j it follows that

∑
i

∑
j qij =∑

i

∑
j∈S

∑
r xij(r)fij(r) ≤ rank(S) where the equality is by Lemma 6 and the inequality from the

LP constraints.
round xij .)
Partition the graph in the same way as in the previous proof into sets Tv. Recall that the sets

Tv are chosen in such a way that if a set S contains no more than one element from each Tv then
S is an independent set, i.e., the matroid constraints are fulfilled and that

∑
i

∑
j∈Tv qij ≤ 2. For



every bidder i and item j set r̃ij = r∗ij with probability pij and set r̃ij = r∗ij + 1 with probability
1− pij .

Let tv :=
∑

i

∑
j∈Tv

(
pijP (Vij ≥ r∗ij)(r∗ij − tv)+ + (1− pij)P (Vij ≥ r∗ij + 1)(r∗ij + 1− tv)+

)
where

(a)+ := a if a > 0 and 0 else. Use the following mechanism that discard the rest of the items in Tv
as soon as one element from Tv is allocated.

1. A = J .
2. Order the bidders arbitrarily.
3. For i = 1, 2, . . . , n

(a) For every item j ∈ A offer it to player i at a price r̃ij but only if r̃ij ≥ tv.
(b) Ask bidder i to pick the items he prefers, but with the restriction that he can only take a

single item from each set Tv ∩ A. Denote by Si the set of elements picked by bidder i and
and remove from A the whole set Tv, for all v such that the player picked an element from
Tv, i.e. if Tv ∩ Si 6= ∅.

We will first give an upper bound of 3
∑

v tv on the optimal expected revenue in terms of the
threshold tv we defined. Note that a+ (b− a)+ = max{a, b}.

OPT ≤
∑
i,j

pijP (Vij ≥ r∗ij)r∗ij +
∑
i,j

(1− pij)P (Vij ≥ r∗ij + 1)(r∗ij + 1)

≤
∑
v

∑
i

∑
j∈Tv

pijP (Vij ≥ r∗ij) max{tv, r∗ij}+
∑
v

∑
i

∑
j∈Tv

(1− pij)P (Vij ≥ r∗ij + 1) max{tv, r∗ij + 1}

=
∑
v

∑
i

∑
j∈Tv

pijP (Vij ≥ r∗ij)(tv+(r∗ij−tv)+)+
∑
v

∑
i

∑
j∈Tv

(1−pij)P (Vij ≥ r∗ij+1)(tv+((r∗ij+1)−tv)+)

=
∑
v

∑
i

∑
j∈Tv

[
pijP (Vij ≥ r∗ij) + (1− pij)P (Vij ≥ r∗ij + 1)

]
tv +

∑
v

tv

=
∑
v

tv
∑
i

∑
j∈Tv

qij +
∑
v

tv ≤ 3
∑
v

tv (as
∑
i

∑
j∈Tv

qij ≤ 2)

We now show that the average revenue of our algorithm is at least
∑

v tv. We concentrate on
a single Tv and show that our algorithm expects to receive a revenue of tv. The first bidder whose
valuation vij satisfies vij ≥ r̃ij ≥ tv for some item j is offered the item. The revenue that our
algorithm gets is then r̃ij .

Let Hij denote the event that “no item of Tv has been picked by a bidder i′ < i and i has not
picked an item different from j of Tv” and let H∞ denote the event that “no item of Tv has been
picked by any bidder”. Let also Rvij denote the revenue of our algorithm in Tv if bidder i picks item
j.



E[revenue of our mechanism in Tv] = (1− P [H∞]) · tv +
∑
i,j∈Tv

E[(Rvij − tv)+ | Hij ] · P [Hij ]

≥ (1− P [H∞]) · tv + P [H∞] ·
∑
i,j∈Tv

E[(Rvij − tv)+ | Hij ]

≥ (1− P [H∞]) · tv + P [H∞] · E[
∑
i,j∈Tv

((Rvij − tv)+]

= (1− P [H∞]) · tv

+ P [H∞] ·
∑
i

∑
j∈Tv

(
pijP (Vij ≥ r∗ij)(r∗ij − tv)+ + (1− pij)P (Vij ≥ r∗ij + 1)(r∗ij + 1− tv)+

)
= (1− P [H∞]) · tv + P [H∞] · tv = tv

For the first inequality note that at any step of the algorithm we have P [Hi,j ] ≥ P [H∞]. The
second inequality is because the valuations of different bidders and different items are independent.
Consequently the algorithm gives a 3-approximation to the objective of LP3.
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