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Abstract

We study the wverification problem in distributed networks, stated as follows. Let H be a
subgraph of a network G where each vertex of G knows which edges incident on it are in H. We
would like to verify whether H has some properties, e.g., if it is a tree or if it is connected (every
node knows in the end of the process whether H has the specified property or not). We would
like to perform this verification in a decentralized fashion via a distributed algorithm. The time
complexity of verification is measured as the number of rounds of distributed communication.

In this paper we initiate a systematic study of distributed verification, and give almost tight
lower bounds on the running time of distributed verification algorithms for many fundamental
problems such as connectivity, spanning connected subgraph, and s — ¢ cut verification. We then
show applications of these results in deriving strong unconditional time lower bounds on the hard-
ness of distributed approzimation for many classical optimization problems including minimum
spanning tree, shortest paths, and minimum cut. Many of these results are the first non-trivial
lower bounds for both exact and approximate distributed computation and they resolve previous
open questions. Moreover, our unconditional lower bound of approximating minimum spanning
tree (MST) subsumes and improves upon the previous hardness of approximation bound of Elkin
[STOC 2004] as well as the lower bound for (exact) MST computation of Peleg and Rubinovich
[FOCS 1999]. Our result implies that there can be no distributed approximation algorithm for
MST that is significantly faster than the current exact algorithm, for any approximation factor.

Our lower bound proofs show an interesting connection between communication complexity
and distributed computing which turns out to be useful in establishing the time complexity of
exact and approximate distributed computation of many problems.
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1 Introduction

Large and complex networks, such as the human society, the Internet, or the brain, are being studied
intensely by different branches of science. Each individual node in such a network can directly
communicate only with its neighboring nodes. Despite being restricted to such local communication,
the network itself should work towards a global goal, i.e., it should organize itself, or deliver a service.

In this work we investigate the possibilities and limitations of distributed/decentralized com-
putation, i.e., to what degree local information is sufficient to solve global tasks. Many tasks can
be solved entirely via local communication, for instance, how many friends of friends one has. Re-
search in the last 30 years has shown that some classic combinatorial optimization problems such
as matching, coloring, dominating set, or approximations thereof can be solved using small (i.e.,
polylogarithmic) local communication. For example, a maximal independent set can be computed
in time O(logn) [I8], but not in time Q(y/logn/loglogn) [13] (n is the network size). This lower
bound even holds if message sizes are unbounded.

However “many” important optimization problems are “global” problems from the distributed
computation point of view. To count the total number of nodes, to determining the diameter of the
system, or to compute a spanning tree, information necessarily must travel to the farthest nodes
in a system. If exchanging a message over a single edge costs one time unit, one needs Q(D) time
units to compute the result, where D is the network diameter. If message size was unbounded,
one can simply collect all the information in O(D) time, and then compute the result. Hence, in
order to arrive at a realistic problem, we need to introduce communication limits, i.e., each node can
exchange messages with each of its neighbors in each step of a synchronous system, but each message
can have at most B bits (typically B is small, say O(logn)). However, to compute a spanning tree,
even single-bit messages are enough, as one can simply breadth-first-search the graph in time O(D)
and this is optimal [20].

But, can we verify whether an existing spanning tree indeed is a correct spanning tree?! In this
paper we show that this is not generally possible in O(D) time — instead one needs (y/n+ D) time.
(Thus, in contrast to traditional non-distributed complexity, verification is harder than computation
in the distributed world!). Our paper is more general, as we show interesting lower and upper bounds
(these are almost tight) for a whole selection of verification problems. Furthermore, we show a key
application of studying such verification problems to proving strong unconditional time lower bounds
on exact and approximate distributed computation for many classical problems.

1.1 Technical Background and Previous Work

Distributed Computing. Consider a synchronous network of processors with unbounded com-
putational power. The network is modeled by an undirected n-vertex graph, where vertices model
the processors and edges model the links between the processors. The processors (henceforth, ver-
tices) communicate by exchanging messages via the links (henceforth, edges). The vertices have
limited global knowledge, in particular, each of them has its own local perspective of the network
(a.k.a graph), which is confined to its immediate neighborhood. The vertices may have to compute
(cooperatively) some global function of the graph, such as a spanning tree (ST) or a minimum span-
ning tree (MST), via communicating with each other and running a distributed algorithm designed
for the task at hand. There are several measures to analyze the performance of such algorithms, a
fundamental one being the running time, defined as the worst-case number of rounds of distributed
communication. This measure naturally gives rise to a complexity measure of problems, called the
time complezity. On each round at most B bits can be sent through each edge in each direction,
where B is the bandwidth parameter of the network. The design of efficient algorithms for this
model (henceforth, the B model), as well as establishing lower bounds on the time complexity



of various fundamental graph problems, has been the subject of an active area of research called
(locality-sensitive) distributed computing (see [20] and references therein.)

Distributed Algorithms, Approximation, and Hardness. Much of the initial research focus
in the area of distributed computing was on designing algorithms for solving problems exactly, e.g.,
distributed algorithms for ST, MST, and shortest paths are well-known [20], [19]. Over the last few
years, there has been interest in designing distributed algorithms that provide approximate solutions
to problems. This area is known as distributed approximation. One motivation for designing such
algorithms is that they can run faster or have better communication complexity albeit at the cost
of providing suboptimal solution. This can be especially appealing for resource-constrained and
dynamic networks (such as sensor or peer-to-peer networks). For example, there is not much point
in having an optimal algorithm in a dynamic network if it takes too much time, since the topology
could have changed by that time. For this reason, in the distributed context, such algorithms
are well-motivated even for network optimization problems that are not NP-hard, e.g., minimum
spanning tree, shortest paths etc. There is a large body of work on distributed approximation
algorithms for various classical graph optimization problems (e.g., see the surveys by Elkin [4] and
Dubhashi et al. [3], and the work of [10] and the references therein).

While a lot of progress has been made in the design of distributed approximation algorithms, the
same has not been the case with the theory of lower bounds on the approximability of distributed
problems, i.e., hardness of distributed approximation. There are some inapproximability results that
are based on lower bounds on the time complexity of the exact solution of certain problems and
on integrality of the objective functions of these problems. For example, a fundamental result due
to Linial [16] says that 3-coloring an n-vertex ring requires Q(log* n) time. In particular, it implies
that any 3/2-approximation protocol for the vertex-coloring problem requires Q(log*n) time. On
the other hand, one can state inapproximability results assuming that vertices are computationally
limited; under this assumption, any NP-hardness inapproximability result immediately implies an
analogous result in the distributed model. However, the above results are not interesting in the
distributed setting, as they provide no new insights on the roles of locality and communication [7].

There are but a few significant results currently known on the hardness of distributed approxima-
tion. Perhaps the first important result was presented for the MST problem by Elkin in [7]. Specif-
ically, he showed strong unconditional lower bounds (i.e., ones that do not depend on complexity-
theoretic assumptions) for distributed approximate MST (more on this result below). Later, Kuhn,
Moscibroda, and Wattenhofer [13] showed lower bounds on time approximation trade-offs for several
problems.

1.2 Distributed Verification

The above discussion summarized two major research aspects in distributed computing, namely
studying distributed algorithms and lower bounds for (1) exact and (2) approximate solutions to
various problems. The third aspect — that turns out to have remarkable applications to the first two
— called distributed verification, is the main subject of the current paper. In distributed verification,
we want to efficiently check whether a given subgraph of a network has a specified property via a
distributed algorith. Formally, given a graph G = (V| F), a subgraph H = (V, E') with ' C E,
and a predicate II, it is required to decide whether H satisfies IT (i.e., when the algorithm terminates,
every node knows whether H satisfies II). The predicate IT may specify statements such as “H is
connected” or “H is a spanning tree” or “H contains a cycle”. (Each vertex in G knows which of
its incident edges (if any) belong to H.) The goal is to study bounds on the time complexity of

!Such problems have been studied in the sequential setting, e.g., Tarjan[22] studied verification of MST.



distributed verification. The time complexity of the verification algorithm is measured with respect
to parameters of G (in particular, its size n and diameter D), independently from H.

We note that verification is different from construction problems, which have been the traditional
focus in distributed computing. Indeed, distributed algorithms for constructing spanning trees,
shortest paths, and other problems have been well studied ([20} 19]). However, the corresponding
verification problems have received much less attention. To the best of our knowledge, the only
distributed verification problem that has received some attention is the MST (i.e., verifying if H
is a MST); the recent work of Kor et al. [11] gives a Q(y/n/B + D) deterministic lower bound on
distributed verification of MST, where D is the diameter of the network G. That paper also gives a
matching upper bound (see also [12]). Note that distributed construction of MST has rather similar
lower and upper bounds |21}, [§]. Thus in the case of the MST problem, verification and construction
have the same time complexity. We later show that the above result of Kor et al. is subsumed by
the results of this paper, as we show that verifying any spanning tree takes so much time.

Motivations. The study of distributed verification has two main motivations. The first is un-
derstanding the complexity of verification versus construction. This is obviously a central question
in the traditional RAM model, but here we want to focus on the same question in the distributed
model. Unlike in the centralized setting, it turns out that verification is not in general easier than
construction in the distributed setting! In fact, as was indicated earlier, distributively verifying a
spanning tree turns out to be harder than constructing it in the worst case. Thus understanding
the complexity of verification in the distributed model is also important. Second, from an algorith-
mic point of view, for some problems, understanding the verification problem can help in solving
the construction problem or showing the inherent limitations in obtaining an efficient algorithm.
In addition to these, there is yet another motivation that emerges from this work: We show that
distributed verification leads to showing strong unconditional lower bounds on distributed computa-
tion (both exact and approrimate) for a variety of problems, many hitherto unknown. For example,
we show that establishing a lower bound on the spanning connected subgraph verification problem
leads to establishing lower bounds for the minimum spanning tree, shortest path tree, minimum cut
etc. Hence, studying verification problems may lead to proving hardness of approximation as well
as lower bounds for exact computation for new problems.

1.3 Owur Contributions

In this paper, our main contributions are two fold. First, we initiate a systematic study of dis-
tributed verification, and give almost tight uniform lower bounds on the running time of distributed
verification algorithms for many fundamental problems. Second, we make progress in establishing
strong hardness results on the distributed approximation of many classical optimization problems.
Our lower bounds also apply seamlessly to exact algorithms. We next state our main results (the
precise theorem statements are in the respective sections as mentioned below).

1. Distributed Verification. We show a lower bound of Q(y/n/(Blogn) + D) for many ver-
ification problems in the B model, including spanning connected subgraph, s-t connectivity, cycle-
containment, bipartiteness, cut, least-element list, and s —t cut (cf. Section []). These bounds apply
to randomized algorithms as well, and clearly hold also for asynchronous networks. Moreover, it is
important to note that our lower bounds apply even to graphs of small diameter (D = O(logn)).
(Indeed, the problems studied in this paper are “global” problems, i.e., the network diameter of G
imposes an inherent lower bound on the time complexity.)

Additionally, we show that another fundamental problem, namely, the spanning tree verification
problem (i.e., verifying whether H is a spanning tree) has the same lower bound of Q(y/n/(Blogn)+
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Figure 1: Lower bounds of randomized a-approximation algorithms on graphs of various diameters.
Bounds in the first column are for the MST and shortest path tree problems [7] while those in the
second column are for these problems and many problems listed in Fig.[2l We note that these bounds
almost match the O(y/nlog*n+ D) upper bound for the MST problem [8 [I5] and are independent
of the approximation-factor .

D) (cf. Section [6). However, this bound applies to only deterministic algorithms. This result
strengthens the lower bound result of MST verification by Kor et al. [11]. Moreover, we note the
interesting fact that although finding a spanning tree (e.g., a breadth-first tree) can be done in O(D)
rounds [20], verifying if a given subgraph is a spanning tree requires €(y/n + D) rounds! Thus the
verification problem for spanning trees is harder than its construction in the distributed setting.
This is in contrast to this well-studied problem in the centralized setting. Apart from the spanning
tree problem, we also show deterministic lower bounds for other verification problems, including
Hamiltonian cycle and simple path.

Our lower bounds are almost tight as we show that there exist algorithms that run in O(y/n log* n+
D) rounds (assuming B = O(logn)) for all the verification problems addressed here (cf. Appendix

().

2. Bounds on Hardness of Distributed Approximation. An important consequence of our
verification lower bound is that it leads to lower bounds for exact and approximate distributed
computation. We show the unconditional time lower bound of Q(y/n/(Blogn) + D) for approxi-
mating many optimization problems, including MST, shortest s — t path, shortest path tree, and
minimum cut (Section [B). The important point to note is that the above lower bound applies for
any approximation ratio o« > 1. Thus the same bound holds for exact algorithms also (o = 1). All
these hardness bounds hold for randomized algorithms. As in our verification lower bounds, these
bounds apply even to graphs of small (O(logn)) diameter. Figure [Il summarizes our lower bounds
for various diameters.

Our results improve over previous ones (e.g., Elkin’s lower bound for approximate MST and
shortest path tree [7]) and subsumes some well-established exact bounds (e.g., Peleg and Rubinovich
lower bound for MST [21]) as well as shows new strong bounds (both for exact and approximate
computation) for many other problems (e.g., minimum cut), thus answering some questions that
were open earlier (see the survey by Elkin [4]).

The new lower bound for approximating MST simplifies and improves upon the previous Q(y/n/(aBlogn)+
D) lower bound by Elkin [7], where « is the approximation factor. [7] showed a tradeoff between
the running time and the approximation ratio of MST. Our result shows that approximating MST
requires 2(y/n/(Blogn) + D) rounds, regardless of a. Thus our result shows that there is actually
no trade-off, since there can be no distributed approximation algorithm for MST that is significantly
faster than the current exact algorithm [I5 [6], for any approximation factor av > 1.



2 Overview of Technical Approach

We prove our lower bounds by establishing an interesting connection between communication com-
plexity and distributed computing. Our lower bound proofs consider the family of graphs evolved
through a series of papers in the literature [7, 17, 21]. However, while previous results [7, 21] rely on
counting the number of states to analyze the mailing problem (along with some sophisticated tech-
niques for the variant, called corrupted mail problem, in the case of approximation algorithm lower
bounds) and use Yao’s method [26] (with appropriate input distributions) to get lower bounds for
randomized algorithms, our results are achieved using the following three steps of simple reductions,
as follows.

(Section [3)) First, we reduce the lower bounds of problems in the standard communication com-
plexity model [I4] to the lower bounds of the equivalent problems in the “distributed version” of
communication complexity. Specifically, we relate the communication lower bound from the stan-
dard communication complexity model [14] to compute some appropriately chosen function f, to
the distributed time complexity lower bound for computing the same function in a specially chosen
graph G. In the standard model, Alice and Bob can communicate directly (via a bidirectional edge
of bandwidth one). In the distributed model, we assume that Alice and Bob are some vertices of G
and they together wish to compute the function f using the communication graph G. The choice
of graph G is critical. We use a graph called G(I',d, p) (parameterized by I', d and p) that was first
used in [7]. We show a reduction from the standard model to the distributed model, the proof of
which relies on certain observations similar to those used in previous results (e.g., [21]).

(Section M) The connection established in the first step allows us to bypass the state counting
argument and Yao’s method, and reduces our task in proving lower bounds of verification problems
to merely picking the right function f to reduce from. The function f that is useful in showing
our randomized lower bounds is the set disjointness function, which is the quintessential problem in
the world of communication complexity with applications to diverse areas and has been studied for
decades (see a recent survey in [I]). Following the result well known in communication complexity
[14], we show that the distributed version of this problem has an Q(y/n/(Blogn)) lower bound on
graphs of small diameter. We then reduce this problem to the verification problems using simple
reductions similar to those used in data streams [9]. The set disjointness function yields randomized
lower bounds and works for many problems (see Fig. [2)), but it does not reduce to certain other
problems such as spanning tree. To show lower bounds for these and a few other problems, we use a
different function f called equality. However, this reduction yields only deterministic lower bounds
for the corresponding verification problems.

(Section [{) Finally, we reduce the verification problem to hardness of distributed approximation
for a variety of problems to show that the same lower bounds hold for approximation algorithms as
well. For this, we use a reduction whose idea is similar to one used to prove hardness of approximating
TSP (Traveling Salesman Problem) on general graphs (see, e.g., [24]): We convert a verification
problem to an optimization problem by introducing edge weight in such a way that there is a
large gap between the optimal values for the cases where H satisfies, or does not satisfy a certain
property. This technique is surprisingly simple, yet yields strong unconditional hardness bounds —
many hitherto unknown, left open (e.g., minimum cut) [4] and some that improve over known ones
(e.g., MST and shortest path tree) [7]. As mentioned earlier, our approach shows that approximating
MST by any factor needs Q(,/n) time, while the previous result due to Elkin gave a bound that
depends on « (the approximation factor), i.e. Q(y/n/a), using more sophisticated techniques.

Fig. B summarizes these reductions that will be proved in this paper. For brevity, we focus on
the proofs towards the lower bound of approximating minimum spanning tree in the main paper.
Other results can be found in the Appendix.
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Figure 2: Problems and reductions between them to obtain randomized and deterministic lower
bounds. For all problems, we obtain lower bounds as in Fig. [l

3 From Communication Complexity to Distributed Computing

Consider the following problem. There are two parties that have unbounded computational power.
Each party receives a b-bit string, for some integer b > 1, denoted by # and 7 in {0,1}*. They
both want to together compute f(Z,%) for some boolean function f : {0,1}* x {0,1}* — {0,1}. We
consider two models of communication.

e Direct communication: This is the standard model in communication complexity. Two parties
can communicate via a bidirectional edge of bandwidth one. We call the party receiving z
Alice, and the other party Bob. At the end of the process, Bob will output f(z,7).

e Communication through network G(I',d,p): Two parties are distinct vertices in a B model
distributed network, called G(T', d, p), for some parameters I', d, and p; the network has ©(T'd?)
vertices and a diameter of ©(2p + 2). (This network was first defined in [7] and described
below.) We denote the vertex receiving by s and the vertex receiving y by r. At the end of
the process, r will output f(z, 7).

We consider time lower bounds for public coin randomized algorithms under both models. In
particular, we assume that all parties (Alice and Bob in the first model and all vertices in G(T', d, p)
in the second model) share a random bit string of infinite length. For any e > 0, we say that a
randomized algorithm A is e-error if for any input, it outputs the correct answer with probability
at least 1 — ¢, where the probability is over all possible random bit strings. The running time of
A, denoted by T4, is the number of rounds in the worst case (over all inputs and random strings).
Let REPU(#) and RETP1*"(f) denote the best time complexity of e-error algorithms in the
models of direct communication and communication through graph G(T',d, p), respectively. We are
particularly interested in the case where we pick b to be I' (for any choice of T'). The rest of this
section is devoted to showing that if there is a fast e-error algorithm for computing f on G(I',d, p),
then there is a fast e-error algorithm for Alice and Bob to compute f.

Theorem 3.1. For any T, d, p, B, € >0, and function f : {0,1}" x {0,1} — {0,1}, if

-1

G(T,d,p),s,r

then
REPU(f) < 2dpBRETAP)(f)
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Figure 3: (a) The Graph G(I',d,p) (here, d = 2). (b) Example of H for the spanning connected
subgraph problem (marked with thick red edges) when z = 0...10 and g = 1...00.

We first describe the graph G(T', d, p) with parameters I', d and p and distinct vertices s and r.

The graph G(T',d,p) [7]: The two basic units in the construction are paths and a tree. There are
I" paths, denoted by P, P2, ..., P', each having dP vertices, i.e., for { =1,2,...T,

V(PY) = {vf,...,v5% |} and

E(P') = {(v},vf,) |0 <i<dP —1}.

There is a tree, denoted by 7 having depth p where each non-leaf vertex has d children (thus, there

are dP leaf vertices). We denote the vertices of T at level ¢ from left to right by uf;, e =uflf—1 (so,

uf is the root of 7 and ub,...,ul, | are the leaves of 7). For any ¢ and j, the leaf vertex u is

connected to the corresponding path vertex vf by a spoke edge (uf ,vf). Finally, we set the two
special vertices (which will receive input strings z and §) as s = u§ and r = ugp_l. Fig. depicts

this graph. The number of vertices in G(I',d, p) its diameter are analyzed in [7], as follows.
Lemma 3.2. [7] The number of vertices in G(I',d,p) is n = ©(I'm) and its diameter is 2p + 2.
Terminologies: For 1 <i < [(dP —1)/2], define the i-left and the i-right of the path P’ as

Li(P) ={vf|j<d’—1—i} and Ry(P")={v}|j>i},

respectively. Define the i-left of the tree 7, denoted by L;(7), as the union of set S = {u‘;’ |7 <
dP — 1 — i} and all ancestors of all vertices in S in 7. Similarly, the i-right R;(7) of the tree T is
the union of set S = {u? | 7 > i} and all ancestors of all vertices in S. Now, the i-left and i-right
sets of G(T',d, p) are the union of those left and right sets,

Li=JL(P)UL(T) and Ri=|JRi(P)URL(T).
)4 ¢
For ¢ = 0, the definition is slightly different; we set Lo = V' \ {r} and Ry = V' \ {s}. See Fig.
Let A be any deterministic distributed algorithm run on graph G(I',d, p) for computing a func-
tion f. Fix any input strings & and g given to s and r respectively. Let p_4(Z, 7) denote the execution



of A on z and y. Denote the state of the vertex v at the end of round ¢ during the execution ¢ 4(Z, y)
by o4(v,t, %, 7). In two different executions ¢ 4(Z,7) and p4(T',7’), a vertex reaches the same state
at time ¢ (i.e., o4(v,t,Z,7) = o4(v,t, 7', 7)) if and only if it receives the same sequence of messages
on each of its incoming links.

For a given set of vertices U = {vy,...,v} C V, a configuration

CA(U7 t? "1?7 g) = <O-.A(U17 t? "17;7 g)? et O-.A('UZ7 t? "17;7 g)>

is a vector of the states of the vertices of U at the end of round ¢ of the execution p4(Z, 7). We
note the following crucial observation used in [2I] and many later results.

Observation 3.3. For any set U C U CV, C4(U,t, %, ) can be uniquely determined by C4(U’,t—
1,%,79) and all messages sent to U from V \ U’ at time t.

Proof. Recall that the state of each vertex v in U can be uniquely determined by its state o 4(v,t —
1,Z,y) at time ¢t — 1 and the messages sent to it at time ¢. Moreover, the messages sent to v from
vertices inside U’ can be determined by C4(U’,t,Z,y). Thus if the messages sent from vertices in
V \ U’ are given then we can determine all messages sent to U at time ¢ and thus we can determine
Ca(U,t,z,7). O

From now on, to simplify notation, when A,  and g are clear from the context, we use Cp,
and Cp, to denote C4(Ly,t,Z,y) and C4(Ry, t, Z,7), respectively. The lemma below states that C7,
(CR,, respectively) can be determined by Cr, , (Cg, ,, respectively) and dp messages generated
by some vertices in R;—1 (L;—1 respectively) at time ¢. It essentially follows from Observation B.3]
and an observation that there are at most dP edges linking between vertices in V'\ Ry—1 (V' \ Ly
respectively) and vertices in R; (L; respectively).

Lemma 3.4. Fixz any deterministic algorithm A and input strings T and §. For any 0 < t <

dP —1)/2, there exist functions gr, and gr, B-bit messages M=, ..., MX"=" sent by some vertices
1 dp
in Li_1 at time t, and B-bit messages MlRt*1, e ,MCZ“I sent by some vertices in R;_1 at time t
such that
Ri_1 Ri—1
CLt :gL(CLtflaMl 7""Mdp ) (1)
L L
Cr, = gr(CR,_,, M 1,...,Mdpt Y. (2)

Proof. We prove Eq. (2)) only. (Eq. () is proved in exactly the same way.) Observe that all neighbors
of all path vertices in R; are in R;_1. Similarly, all neighbors of all leaf vertices in V(7)) N R; are in
R;_1. Moreover, for any non-leaf tree vertex uf (for some ¢ and 1), if uf is in R; then its parent and
vertices ufH, uf+2, . ,ugl_l are in R;_;. For any ¢ < p and t, let u’(R;) denote the leftmost vertex
that is at level £ of 7 and in Ry, i.e., u’(R;) = uf where i is such that u! € R; and uf_; ¢ R;. (For
example, in Fig. uP~H(Ry) = ug_l and uP~1(Ry) = u’l’_l.) Finally, observe that for any ¢ and
£, if uf_l is in R; then all children of uf are in R; (otherwise, all children of uf_l are not in R; and
o is uf_l, a contradiction). Thus, all edges linking between vertices in Ry and V' \ Ry are in the
following form: (u‘(R;),u’) for some £ and child ' of u(R;).

Setting U’ = R;_1 and U = R; in Observation 3.3 we have that Cg, can be uniquely determined
by Cr,_, and messages sent to u’(R;) from its children in V'\ R;_1. Note that each of these messages
contains at most B bits since they correspond to a message sent on an edge in one round.

Observe further that, for any ¢ < (d? — 1)/2, V' \ Ry—1 C L;—; since L;—; and R;_; share some
path vertices. Moreover, each u‘(R;) has d children. Therefore, if we let MlL LM det ~! be the
messages sent from children of u®(R;), u(Ry), ..., uP"1(R;) in V' \ R;_1 to their parents (note that
if there are less than dp such messages then we add some empty messages) then we can uniquely

determine Cg, by Crg, , and MlLt’l, . ,Mdet’l. Eq. (@) thus follows. O
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Using the above lemma, we can now prove Theorem [3.11

Proof of Theorem[31l. Let f be the function in the theorem statement. Let A. be any e-error
distributed algorithm for computing f on graph G(I',d,p). Fix a random string 7 used by A,
(shared by all vertices in G(T',d,p)) and consider the deterministic algorithm A run on the input
of A, and the fixed random string 7. Let T4 be the worst case running time of algorithm A
(over all inputs). We only consider Ty < (dP — 1)/2, as assumed in the theorem statement. We
show that Alice and Bob, when given 7 as the public random string, can simulate A using 2dpT 4
communication bits, as follows.

Alice and Bob make T4 iterations of communications. Initially, Alice computes Cr, which
depends only on z. Bob also computes Cr, which depends only on 3. In each iteration ¢ > 0,
we assume that Alice and Bob know Cr, , and Cpg, ,, respectively, before the iteration starts.
Then, Alice and Bob will exchange at most 2dpB bits so that Alice and Bob know Cf, and Cg,,
respectively, at the end of the iteration.

To do this, Alice sends to Bob the messages MIL L Mdet’1 as in Lemma [3.4l Alice can
generate these messages since she knows Cr, , (by assumption). Then, Bob can compute Cg, using
Eq. () in Lemma[34l Similarly, Bob sends dp messages to Alice and Alice can compute Cf,. They
exchange at most 2dpB bits in total in each iteration since there are 2dp messages, each of B bits,
exchanged.

After T4 iterations, Bob knows C'(Rr,,T4,Z,¥). In particular, he knows the output of A (output
by r) since he knows the state of r after A terminates. He thus outputs the output of .

Since A, is e-error, the probability (over all possible shared random strings) that .4 outputs the
correct value of f(Z,y) is at least 1 — e. Therefore, the communication protocol run by Alice and
Bob is e-error as well. Moreover, Alice and Bob communicates at most 2dpBT 4 bits. The theorem
follows. O

4 Randomized Lower Bounds for Distributed Verification

In this section, we present randomized lower bounds for many verification problems for graph of
various diameters, as shown in Fig. [l

The general theorem is below. For brevity, in the main section of the paper, we prove the
theorem only for the spanning connected subgraph verification problem. This will be useful later in
proving many hardness of approximation results. In this problem, we want to verify whether H is
connected and spans all nodes of G, i.e., every node in G is incident to some edge in H. Definitions
of other problems and proofs of their lower bounds are in Appendix [Al

Theorem 4.1. For any p > 1, B > 1, and n € {2?2?*1pB, 32»H1pB, ...}, there exists a con-
stant € > 0 such that any e-error distributed algorithm for any of the following problems requires
Q((n/(pB))%_m) time on some ©(n)-vertex graph of diameter 2p+ 2 in the B model: Spanning
connected subgraph, connectivity, s-t connectivity, k-components, bipartiteness, cycle containment,
e-cycle containment, cut, s-t cut, least-element list [2, [10], and edge on all paths.

In particular, for graphs with diameter D = 4, we get Q((n/B)Y?) lower bound and for graphs
with diameter D = logn we get Q(1/n/(Blogn)). Similar analysis also leads to a Q(1/n/B) lower
bound for graphs of diameter n’ for any ¢ > 0, and Q((n/B)"*) lower bound for graphs of diameter
3 using the same analysis as in [7]. We note that the lower bound holds even in the public coin
model where every vertex shares a random string. To prove the theorem, we need the lower bound
for computing set disjointness function.



Definition 4.2 (Set Disjointness function). Given two b-bit strings Z and gy, the set disjointness
function, denoted by disj(Z,y), is defined to be 1 if the inner product (z,y) is 0 (i.e., ; = 0 or
y; = 0 for every 1 < i < b) and 0 otherwise. We refer to the problem of computing disj function
on G(I',d, p) on I'-bit input strings given to s and r by DISJ(G (T, d,p), s,r,T).

The following lemma is a consequence of Theorem B.1l and the communication complexity lower
bound of computing disj.

Lemma 4.3. For any I',d,p, there exists a constant € > 0 such that any e-error algorithm solving
DISJ(G(T,d,p), s, r, I') requires Q(min(dP, dpLB)) time.

Proof. If Rf(r’d’p)’s’r(disj) > (dP — 1)/2 then RETdp)sr (disj) = Q(dP) and we are done. Other-
wise, Theorem [3.1]implies that Rﬁc_p“b(disj) < 2dpB - Rf(r’d’p)’s’r(disj). Now we use the fact that
cePub(qigi) = Q(T) for the function disj on I'-bit inputs, for some e > 0 [?, ?, 7, 7] (also see

[14, Example 3.22] and references therein). It follows that Rf(r’d’p)’s’r(disj) =Q(I'/(dpB)). O

The lower bound of spanning connected subgraph verification essentially follows from the fol-
lowing lemma.

Lemma 4.4. For any ', d > 2 and p, there exists a constant € > 0 such that any e-error distributed
algorithm for spanning connected subgraph verification on graph G(I',d,p) can be used to solve the
DISJ(G(T,d,p), s, t, I') problem on G(T',d,p) with the same time complezity.

Proof. Consider an e-error algorithm A for the spanning connected subgraph verification problem,
and suppose that we are given an instance of the DISJ(G(T, d, p), s, t,I") problem with input strings
Z and y. We use A to solve this instance of set disjointness problem as follows.

First, we mark all path edges and tree edges as participating in H. All spoke edges are marked
as not participating in subgraph H, except those incident to s and r for which we do the following:
For each bit x;, 1 <14 < T, vertex s indicates that the spoke edge (s, v))) participates in H if and
only if z; = 0. Similarly, for each bit y;, 1 < i < T, vertex r indicates that the spoke edge (r,v%, )
participates in H if and only if y; = 0. (See Fig. )

Note that the participation of all edges, except those incident to s and r, is decided independently
of the input. Moreover, one round is sufficient for s and r to inform their neighbors the participation
of edges incident to them. Hence, one round is enough to construct H. Then, algorithm A is started.

Once algorithm 4 terminates, vertex r determines its output for the set disjointness problem by
stating that both input strings are disjoint if and only if spanning connected subgraph verification
algorithm verified that the given subgraph H is indeed a spanning connected subgraph.

Observe that H is a spanning connected subgraph if and only if for all 1 < i < I' at least
one of the edges (s,vé) and (r, fuzlp_l) is in H; thus, by the construction of H, H is a spanning
connected subgraph if and only if the input strings Z, 3 are disjoint, i.e., for every 7 either z; = 0 or
y; = 0. Hence the resulting algorithm has correctly solved the given instance of the set disjointness
problem. O

Using Lemma [4.3] we obtain the following result.

Corollary 4.5. For any I',d,p, there exists a constant € > 0 such that any e-error algorithm for
spanning connected subgraph verification problem requires (min(dP, dpLB)) time on some O(I'dP)-
vertex graph of diameter 2p + 2.

In particular, if we consider I'=dP*'pB then

Q(min(d”, T/(dpB))) = Q(dP).
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Moreover, by Lemma B2, G(dP*1pB,d,p) has n=0(d**T'pB) vertices and thus the lower bound
Q(dP) becomes

Q((n/(pB))? 7).

Theorem [£.1] (for the case of spanning connected subgraph) follows.

5 Hardness of Distributed Approximation

In this section we show a time lower bound of Q(y/n/(Blogn)) for approximation algorithms of
many problems. For distributed approximation problems such as MST, we assume that a weight
function w : £ — RT associated with the graph assigns a nonnegative real weight w(e) to each edge
e = (u,v) € E. Initially, the weight w(e) is known only to the adjacent vertices, u and v. We assume
that the edge weights are bounded by a polynomial in n (the number of vertices). It is assumed
that B is large enough to allow the transmission of any edge weight in a single message.

We show the hardness of distributed approximation for many problems, as in the theorem below.
For brevity, we only prove the theorem for the minimum spanning tree problem here. Definitions
and proofs of other problems can be found in Appendix

Theorem 5.1. For any polynomial function a(n), numbersp, B > 1, andn € {22?+1pB,32’*1pB, ..},
there exists a constant € > 0 such that any a(n)-approzimation e-error distributed algorithm for any
1 1

of the following problems requires Q((I%)E_Q(TH)) time on some ©(n)-vertex graph of diameter
2p + 2 in the B model: minimum spanning tree [7, [21], shortest s-t path, s-source distance [5],
s-source shortest path tree [7], minimum cut [{|], minimum s-t cut, mazimum cut, minimum routing
cost spanning tree [25)], shallow-light tree [20], and generalized Steiner forest [10)].

Recall that in the minimum spanning tree problem, we are given a connected graph G and we
want to compute the minimum spanning tree (i.e., the spanning tree of minimum weight). At the
end of the process each vertex knows which edges incident to it are in the output tree.

Recall the following standard notions of an approximation algorithm. We say that a randomized
algorithm A is a-approzimation e-error if, for any input instance Z, algorithm A outputs a solution
that is at most « times the optimal solution of Z with probability at least 1 — €. Therefore, in the
minimum spanning tree, an a-approximation e-error algorithm should output a number that is at
most « times the total weight of the minimum spanning tree, with probability at least 1 — e.

Proof of Theorem [51]. (This proof is only for the case of minimum spanning tree.) Let A, be an
a(n)-approximation e-error algorithm for the minimum spanning tree problem. We show that A,
can be used to solve the spanning connected subgraph verification problem using the same running
time.

To do this, construct a weight function on edges in G, denoted by w, by assigning weight 1
to all edges in H and na(n) to all other edges. Note that constructing w does not need any
communication since each vertex knows which edges incident to it are in H. Now we find the weight
W of the minimum spanning tree using A, and announce that H is a spanning connected subgraph
if and only if W is less than na(n).

Now we show that the weighted graph (G,w) has a spanning tree of weight less than na(n) if and
only if H is a spanning connected subgraph of G and thus the algorithm above is correct: Suppose
that H is a spanning connected subgraph. Then, there is a spanning tree that is a subgraph of
H and has weight n — 1 < na(n). Thus the minimum spanning tree has weight less than na(n).
Conversely, suppose that H is not a spanning connected subgraph. Then, any spanning tree must
contain an edge not in H. Therefore, any spanning tree has weight at least na(n) as claimed. [
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Our MST lower bound here matches the lower bound of exact MST algorithms and improves
the lower bound of Q(,/-25) by Elkin [7]. Our lower bound for s-source distance complements the
results in [5].

6 Deterministic Lower Bounds

We show the following lower bound of deterministic algorithms for problems listed in the theorem
below. We note that our lower bound of spanning tree verification simplifies and generalizes the
lower bound of minimum spanning tree verification shown in [I1]. For brevity, problem definitions
and proofs are placed in Appendix Bl

Theorem 6.1. For any p, B > 1, and n € {2%TpB, 3P 1pB ..}, any deterministic distributed
1 1

algorithm for any of the following problems requires Q((I%)§_2<2P+1)) time on some ©(n)-vertex
graph of diameter O(2p + 2) in the B model: Hamiltonian cycle, spanning tree, and simple path
verification.

7 Conclusion

We initiate the systematic study of verification problems in the context of distributed network
algorithms and present a uniform lower bound for several problems. We also show how these
verification bounds can be used to obtain lower bounds on exact and approximation algorithms for
many problems.

Several problems remain open. A general direction for extending all of this work is to study
similar verification problems in special classes of graphs, e.g., a complete graph. A few specific open
questions include proving better lower or upper bounds for the problems of shortest s-t path, single-
source distance computation, shortest path tree, s-t cut, minimum cut. (Some of these problems
were also asked in [4].) Also, showing randomized bounds for Hamiltonian path, spanning tree, and
simple path verification remains open.
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Appendix

A

Randomized lower bounds

In this section, we show the randomized lower bounds as claimed in Theorem [T for the following
problems (listed in Fig. 2).

Definition A.1 (Problems with randomized lower bounds). We define:

s-t connectivity verification problem: In addition to G and H, we are given two vertices
s and t (s and t are known by every vertex). We would like to verify whether s and ¢ are in
the same connected component of H. (Section [A.T])

cycle containment verification problem: We want to verify if H contains a cycle. (Sec-

tion [A.2])

e-cycle containment verification problem: Given an edge e in H (known to vertices
adjacent to it), we want to verify if H contains a cycle containing e. (Section [A.2])

bipartiteness verification problem: We want to verify whether H is bipartite. (Sec-

tion [A.2])

connectivity verification problem: We want to verify whether H is connected. We also
consider the k-component verification problem where we want to verify whether H has
at most k£ connected components. (Note that k is not part of the input so 2-component and
3-component problems are different problems.) The connectivity verification problem is the
special case where k = 1. (Section [A.3))

cut verification problem: We want to verify whether H is a cut of G, i.e., G is not connected
when we remove edges in H. (Section [A.3])

s-t cut verification problem: We want to verify whether H is an s-t cut, i.e., when we
remove all edges Eyr of H from G, we want to know whether s and ¢ are in the same connected
component or not. (Section [A.3))

least-element list verification problem [2, 10]: Given a distinct rank (integer) r(v) to
each node v in the weighted graph G, for any nodes u and v, we say that v is the least element
of w if v has the lowest rank among vertices of distance at most d(u,v) from u. Here, d(u,v)
denotes the weighted distance between u and v. The Least-Element List (LE-list) of a node u
is the set {< v,d(u,v) > | v is the least element of u }. (Section [A.3])

In the least-element list verification problem, each vertex knows its rank as an input, and some

vertex u is given a set S = {< vy,d(u,v1) >, < vy,d(u,v2) >,...} as an input. We want to
verify whether S is the least-element list of u. (Section [A.3))

edge on all paths verification problem: Given nodes u, v and edge e. We want to verify
whether e lies on all paths between u,v in H. (Section [A.3))

Lower bounds of the above problems are stated in Theorem [£.1] and the reductions are summa-
rized in Fig. 2
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Figure 4: Example of H for s-t connectivity problem (marked with thick red edges) when Z = 0...10 and % = 1...00.

A.1 Randomized lower bound of s-t connectivity verification

Similar to the lower bound of the spanning connected subgraph verification problem, the lower
bounds of s-t connectivity follow from the following lemma.

Lemma A.2. For any I', d > 2 and p, there exists a constant € > 0 such that any e-error dis-
tributed algorithm for s-t connectivity verification problem on graph G(T',d,p) can be used to solve
the DISJ(G(T', d,p),s,r,T') problem on G(T',d,p) with the same time complexity.

Proof. We use the same argument as in the proof of Lemma 4] except that we construct the
subgraph H as follows.

s-t wverification: First, all path edges are marked as participating in subgraph H. All tree edges
are marked as not participating in H. All spoke edges, except those incident to s and r, are also
marked as not participating. For each bit x;, 1 < ¢ < I', vertex s indicates that the spoke edge
(s,v}) participates in H if and only if z; = 1. Similarly, for each bit y;, 1 < i < T, vertex r indicates
that the spoke edge (r,v’, ,) participates in H if and only if y; = 1. (See Fig. @)

Once algorithm A, terminates, vertex r determines its output for the set disjointness problem
by stating that both input strings are disjoint if and only if s-r connectivity verification algorithm
verified that s and r are not connected in the given subgraph.

For the correctness of this algorithm, observe that s and r are connected in H if and only if
there exists 1 < ¢ < I such that both edges (vé, s), (vép_l, r) are in H; thus, by the construction of
the s-r connected subgraph candidate H, H is s-r connected if and only if the input strings  and
y are not disjoint, i.e., there exists ¢ such that x; = 1 and y; = 1. Hence the resulting algorithm has
correctly solved the given instance of the set disjointness problem. O

A.2 A randomized lower bound for cycle containment, e-cycle containment, and
bipartiteness verification problem

Lemma A.3. There exists a constant € > 0 such that any e-error distributed algorithm for cycle
containment, e-cycle containment, or bipartiteness verification problem on graph G(I',d,p) can be
used to solve the DISI(G(T',d,p),s,r,I') problem on G(I',d,p) with the same time complezity.
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Figure 5: Example of H for the cycle and e-cycle containment and bipartiteness verification problem when z = 0...10
and g = 1...00.

Proof. cycle verification problem: We construct H in the same way as in the proof of Lemma [A.2]
except that the tree edges are participating in H (see Fig. []).

In the case that the input strings are disjoint, H will consist of the tree connecting s and r as
well as 1) paths connected to s but not to r and 2) paths connected to r but not to s and 3) paths
connected neither to r nor s. Thus there is no cycle in H. In the case that the input strings are not
disjoint, we let ¢ be an index that makes them not disjoint, that is Z; = ; = 1. This causes a cycle
in H consisting of some tree edges and path P’ that are connected by edges (s,v) and (v%, ,7)
at their endpoints. Thus we have the following claim.

Claim A.4. H contains a cycle if and only if the input strings are not disjoint.

e-cycle containment verification problem: We use the previous construction for H and let e be
the tree edge adjacent to s (i.e., e connects s to its parent). Observe that, in this construction, H
contains a cycle if and only if H contains a cycle containing e. Therefore, we have the following
claim.

Claim A.5. e is contained in a cycle in H if and only if the input strings are not disjoint.

bipartiteness verification problem: Finally, we can verify if such an edge e is contained in a cycle
by verifying the bipartiteness. First, we replace e = (s, ug_l) by a path (s, v/, ug_l), where v’ is an
additional /virtual vertex. This can be done without changing the input graph G by having vertex s
simulated algorithms on both s and v’. The communication between s and v’ can be done internally.
The communication between v’ and ug_l can be done by s. We construct H' the same way as H
with both (s,v’) and (v, ub _1) marked as participating. The lower bound of bipartite follows from
this claim.

Like in the previous proofs, we observe that if the input strings are not disjoint, then either H
or H' are not bipartite. We consider two cases: when dP is even and odd. When dP is even and the
input strings are not disjoint, there exists 7 such that there is a cycle in H consisting of some tree
edges (including €) and path P; that are connected by edges (s, v}) and (v4, _;,7) at their endpoints.
This cycle is of length 2p 4+ (dP — 1) + 2 — an odd number causing H to be not bipartite. If dP is
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odd, then by the same argument there is an odd cycle of length (2p + 1) 4+ (d? — 1) + 2 in H’ (this
cycle includes the edges (s,v') and (v, ug_l) that replaces e); thus H’ is not bipartite.

Now we consider the converse: If the input strings are disjoint, then H does not contain a cycle
by the argument of the proof of the cycle containment problem (which uses the same graph). In

follows that H’ does not contain a cycle as well. Therefore, we have the following claim.
Claim A.6. H and H' are both bipartite if and only if the input strings are disjoint.
O

A.3 Randomized lower bounds of connectivity, k-component, cut, s-t cut, least-
element list, and edge on all paths verification

connectivity verification problem: We reduce from the spanning connected subgraph verification
problem. Let A(G,H) be an algorithm that verifies if H is connected in O(7(n)) time on any
n-vertex graph G and subgraph H, we show that there is an algorithm A’(G’, H') that verifies
whether H' is a spanning connected subgraph in O(7(n’) + D’) time, where n’ and D’ is the number
of vertices in G’ and its diameter, respectively. Thus, the lower bounds (which are larger than D)
of the spanning connected subgraph problem apply to the connectivity verification problem as well.

To do this, recall that, by definition, H’ is a spanning connected subgraph if and only if every
node is incident to at least one edge in H' and H' is connected. Verifying that every node is incident
to at least one edge in H' can be done in O(D) rounds and checking if H' is connected can be done
in O(7(n’)) rounds by calling A(G, H) with H = H" and G = G’. The total running time of A’ is
thus O(7(n’) + D).

k-component verification problem: The above argument can be extended to show the lower bound of
k-component problem, as follows. Suppose again that we want to check if H is a spanning connected
subgraph. Now we add k — 1 virtual nodes adjacent to some node s in G. These nodes are added
to H (denote the resulting subgraph by H’) but will not be incident to any edges in H' and are
simulated by s. Observe that the new graph, say G’, has diameter D’ = D + 1 and the number of
nodes is n’ = n + k < 2n. Moreover, H is a spanning tree of G if and only if H' has k connected
component in G’ (the spanning subgraph H of G plus k — 1 single nodes). Therefore, if we can check
if H has at most k (k constant) connected component in G’ in O(7(n’)) time then we can also check
if H is a spanning connected subgraph in G.

cut verification problem: We again reduce from the spanning connected subgraph problem. Re-
call the definition of the cut that H is a cut if and only if G is not connected when we remove edges
in H. In other words, H is a cut if and only if H is not a spanning connected subgraph of G' where
H is the graph resulting from removing edges in H.

Thus, given a subgraph H', we verify if H’ is a spanning connected subgraph as follows. Let H”
be the graph obtained by removing edges E(H') of H' from G. Recall again that H' is a spanning
connected subgraph if and only if H” is not a cut. Thus, we verify if H” is a cut. We announce
that H’' is a spanning connected subgraph if and only if H” is verified not to be a cut.

s-t cut verification problem: The lower bound of s-t cut is proved similarly: H’ is s-t connected if
and only if H” obtained by removing edges in H' from G is not an s-t cut.

Least-element list verification problem: We reduce from s-t connectivity. We set the rank of s

to 0 and the rank of other nodes to any distinct positive integers. Assign weight 0 to all edges in H
and 1 to other edges. Give a set S = {< 5,0 >} to vertex ¢t. Then we verify if S is the least-element
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list of t. Observe that if s and ¢ are connected by H then the distance between them must be 0
and thus S is the least-element list of ¢. On the other hand, if s and ¢ are not connected then the
distance between them will be at least 1 and S will not be the least-element list of ¢.

Edge on all paths verification problem: We reduce from the e-cycle containment problem using
the following observation: H does not contain a cycle containing e if and only if e lies on all paths
between v and v in H where e = uv.

B Deterministic Lower Bounds

In this section, we show the randomized lower bounds as claimed in Theorem for the following
problems (also listed in Fig. [2).

Definition B.1 (Problems with deterministic lower bounds). We define:

e Hamiltonian cycle: Given a graph G and subgraph H of G, we would like to verify whether
H is a Hamiltonian cycle of G, i.e., H is a simple cycle of length n.

e Spanning tree (ST) verification: We would like to verify whether H is a spanning tree of

G.
e Simple path verification Given a graph G, subgraph H of G verify that H is a simple path.

We first prove the lower bound of the first problem and later extend to other problems. To do
this, we need a deterministic lower bound of computing the equality function, as follows.

B.1 A deterministic lower bound of computing equality function

Definition B.2 (Equality function). Given two b-bit strings  and g, the equality function, denoted
by eq(Z, ), is defined to be one if & = g and zero otherwise. We refer to the problem of computing
eq function on G(I',d, p) on I'-bit input strings given to s and r as EQ(G(T, d, p), s,r,T).

The following lemma follows from Theorem [3.1] and the communication complexity lower bound
of computing eq.

Lemma B.3. For any I',d,p, any deterministic algorithm solving EQ(G(I,d, p),s,r,I") requires
Q(min(dP,I'/dpB)) time.

Proof. We use the fact that Ry “b(eq) = Q(T") for the function eq on I'-bit inputs (see, e.g., [14]

Example 1.21] and references therein). Thus by Theorem [3.1] Rg(r’d’p)’s’r(f) = Q(mind?,T'/dpB)
implying the lemma. O

Corollary B.4. ForanyT',d,p andb = ©(I"), any deterministic algorithm solving EQ(G(T',d,p), s,r,b)
requires Q(min(dP,I'/dpB)) time.
B.2 A deterministic lower bound for Hamiltonian cycle verification

Lemma B.5. Any distributed algorithm for Hamiltonian cycle verification on a graph G(T',2,p)
(as defined in the proof) can be used to solve the EQ(G(T,2,p),r,s,b), problem on G(T',2,p), where
I' =2+ 12b, with the same time complexity.
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Proof. We construct G(T',2,p) from G(T',2,p) by adding edges and vertices to G(T',2,p). Since
d = 2 thus 7 will be a binary tree. Let m = dP — 1. First we edges in such a way that the
subgraph induced by the vertices {Ué, ... ,vg } is a clique and the subgraph induced by the vertices
{vk,..., vl } is a clique as well. So far we only modified left/right parts of the graphs that are far
away from the middle — this modification does not change the argument in the proof causing the
lower bound for the equality problem. Now we add edges (u!,u? ) forall 0 < i < m — 1. Thus
we shorten the distance between each pair of nodes ul’ and u? 1 from < 3 to 1 (red edges in Figure
B). This will affect the lower bound by at most a constant factor. Now for each node u! we add a
path of length p — [ + 1 containing p — I new nodes connecting ui to uf ap—ig1 (green paths/nodes in
Figure[@]). This will affect the lower bound by at most a constant factor as well since it will increase
the amount of messages that can be sent through the graph within a certain time by at most 3
times. Furthermore we add the edges (v), %, u8), (vl,3, ub) and (vl,,ud). This will affect the lower
bound only by a constant as well. Thus the lower bound for the equality problem remains valid on
G(T,2,p).

u

4 4
Ug ufy

Figure 6: Example of the modification of the tree-part of G in the case p = 4. In red: the new edges
(u?,ul, ), in green, the new paths/nodes connecting u} to uf'dp,lﬂ.

To simplify and shorten the proof, we do some preparation. First, we consider strings = and ¥
of length b and define I' to be 2 + 12b — this changes the bound only by a constant factor. Now,
from Z and g, we construct strings of length m (we assume m to be even)

= 12101210129012201 ... 01z;012,012,012,01 . .. 017;012;,010,

' 1= 1y,01y; 0120101 . . . 01y,01y,0177017701 . . . 01750175010

where T; and 7; denote negations of x; and ;.

Now we construct H in five stages: in the first stage we create some short paths that we call
lines. In the next two stages we construct from these lines two paths S; and Se by connecting the
lines in special ways with each other (the connections depend on the input strings). In the fourth
stage we construct a path S3 that will connect the left over lines with each other. These three paths
will cover all nodes. The final stage is to connect all three paths with each other. If the input
strings are equal the resulting graph H is an Hamiltonian cycle. If the input strings are not equal,
things are getting messed up and we can show that the result is not a Hamiltonian cycle. Observe
that in the case the strings are equal all three paths will look like disjoint snakes when using the
graph layout of Figure The formal description of the five stages will be accompanied by a
small example in Figures[[and [0l z = 01 = g.

First stage: we create the lines by marking most path edges (to be more precise, all edges (v;-, v;- 1)

forall : € [1,T] and j € {2,...,m — 2} for j € {1,...,m — 1} as participating in subgraph H. In
addition we add the edges (v},_;,v},) and (v},v]) to H. These basic elements are called lines now

20



(see Figure [7).

Second stage: define path S; — all spoke edges incident to H' are marked as not participat-
ing in H, except those incident to s and r: for each bit z}, 1 < i < T, vertex s indicates that the
edge (vg, vé“) participates in H if and only if 2 = 1. Similarly, for each bit y/, 1 <i < mX, vertex
7 indicates that the spoke edge (vi,,v5F!) participates in H if and only if y, = 0. Furthermore for
2 < i < m each edge (v,v!) participates in H if and only if o}_; # a}. Similarly for 2 < i < mf
each edge (v _,,vl)) participates in H if and only if y/_; # y/. In addition we let edges (v}, vi) and
(v}n_l, v} ) participate in H. We denote the path that results from connecting the lines according

to the rules above by S7. An example is given in Figure [7l

Stage 1 Stage 2
1350 O———0 Oul; 2y =10-0 1=y
2O O———0O Ovl; xy = 2h =00-0 O-Qo0=y,=y
O O———————0 Ou}; 25=00 Q0 =y
140 O————0 Ou; 2, =10 O1=y
B0 O—————0 Oul, w =1l =00 Q0=yf=y
W80 O—————0 Ol 25 =00 Q0=y;
5O O—————0 Ol 2 =10 Ol=y,
150 O————0 O1f, 2y =1 =10 Ol=y,=1p
WO O—————0 O, =00 00=1y
16’0 O————0 Ouff iy =10 L=y
%'0 O O Ovj} z2 =14 =10 Ol=y =1
03?0 O——0 Ovj? Ty =00 O0=yl,
13?0 O————0 Ovj} 2, =10 Ol=y;
'O O—————————0 Oui3 Fi=a1, =10 Ol=yu=7
15°Q0 O———0 Ovi} 215 =00 O 0=yl
15’0 O————0 Ouff i =10 1=yl
25O O————0 Ovj] =i, =10 Ol=yir ="
18O O————0 Ouif 25 =00 Q0 =yl
W0 O—————0 Ovl! 2o =10 O1=y,
13’0 O O Ouf} Ty = a4, =00 O0=ys =7
v5'O O————————0 Oujj @ =00 00 =y,
1320 O———0 Ov}? Thy =10 Ol=y
15’0 O——————0 Oui} Ty = ahy =00 0="1hs =T
1! O O———0 Ou} 75, =00 Q0 =y,
0 O—————0 Ou2 o~ 10 O0-O1 =y
wO-0——————————0-Ouft 24— 00 O-0 0 = yhs

i Uiy

Figure 7: Example of the reduction using input strings z = 01 = g, thus I' is 12-2+ 2 = 26 and we
use d = 2 and p = 4. In stage one, we add lines to H, that are displayed in blue. In stage two we
create S, the red-colored path that looks like a snake.

Third stage: define S; — we connect the other lines (but not the highways) and those nodes
that are not covered by any path/line yet. On the s-side of the graph, for 0 < i < 2b, whenever

e 2. = 0 (and thus 2}, 5; = 0 due to the definition of '), then edges (v3 %, v ), (v, v5T0")

and (v5 1% v91%) are indicated to participate in H.

o 25, = 1 (and thus a%, 5 = 1 due to the definition of '), edges (v, v31%), (viT0 107
6+6i , 6-+6i
m—1>"m

and (v ) will participate in H.

On the r-side of the graph, for 0 < i < 2b we indicate the following edges to participate in H:

;, 246(i+1
o (V361 o2 ( ))

if Y560 = 0 and 5 49y = 0.

; 346(i+1) .
° (Ugj&a”m—fz )) if Y516 =0 and y§+6(¢+1) =1

6+6i  2-+6(i+1
o (055 Yy it Ysrer = Land gy 40y = 0.
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6+6i  3+6(i+1)y -
* (Umtfwm_fz )) if Y5 6 =1 and y§+6(z’+1) =1
We denote the path that results from connecting lines according to the rules above by S3. An
example is given in Figure [

Fourth stage: We include edges of the modified tree in a canonical way to H such that the
path S3 looks like a snake — for all odd 7 in 0 < i < m — 1 we include the edge (uf,u} ;) in H.
Forall0 <l <p—1landall 0<i< d' we include the edges (ui,uitlil) in H —if 7 is odd, we also
include the path connecting u} to u; g 41 in H. An example is given in Figure 8l

0
Ug

Stage 4

Figure 8: The modified tree for p = 4 and d = 2. In red/bold: path Ss.

Fith stage: connect the endpoints!
Lets investigate the six endpoints of the three paths:

e one endpoint of the snake S3 is u8, another endpoint is u}).

e snake S5 has both endpoints on the r-side. Lets denote these endpoints by e; and es. De-
pending on the input strings, endpoint e; is either fu,?;@_l or v2,, the other endpoint e is either

r-2 r-3
V7 O U, 7.

e the endpoints of S; are both on the r-side: v}, and v}, .
Now we connect those endpoints in the following way:

e connect S; and So, each at one endpoint on the r-side, by letting edge (e1, v} ) participate in
H.

e we connect S3 by its endpoint u8 to the endpoint v} of Sj.

e connect the endpoint e to v and v to the endpoint uf of S3 by including the corresponding
edges of G(T',2,p)" in H.

An example is give in Figure

If the strings are equal the result is a Hamiltonian cycle since in this case the snakes where chosen
to be three disjoint paths that cover all nodes.

Now we need to prove that if the strings are not equal, H will not be a Hamiltonian cycle: let i
be a position in which X* and X" differ. Lets consider the case that z; = 0 and y; = 1. Then the
sequence T g - - -, Tgyq; Will be 100100 while the sequence 3} 4;, - - -, Ygpq; Will be 110110. When
we look at the part of the graph H corresponding to this sequence (see Figure [I0), we see that H
can not be a cycle and thus not a Hamiltonian cycle: due to y5, 4,0 and = x5, = 1 there are no
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Stage 3 Stage 5

[

O O-0-0 O-0-0 OO

Figure 9: Continuation of the example started in [l In stage three, we add Sy in green. S3 is
displayed in brown and added in stage four. Finally we connect Sp, S and S3 to a Hamiltonian
cycle in stage five.

edges on the s nor r-side of level 2 + 6i connecting the part of S7 below level 2 4 6¢ to the part of
S1 above level 24 6i. There will also be no edges of Sy that accidentally connect those two parts to
each other.

e =1 QO O———O0 O' 1=yie
T =ah 5 =0 g_o_ L= Y6 = Vi

Py =0 0= Y6
Ty =1 1=yie
2= g =0 1= Yspei = Ui
Thy =0 ———0-Q| 0= visa:

Figure 10: Example of the case that x; = 0 and y; = 1.

The case that z; = 1 and y; = 0 is treated the same way, due to the construction of #’' and ¥’
the sequence Ty, 1 ¢ -+ Toypgrei 15 100100 and Yy 1o gis- - - Ysprpre Will be 110110 and we can
use exactly the same argument as before.

Now consider an algorithm Ajg,, for the Hamiltonian cycle verification problem. When Apqm
terminates, vertex s determines its output for the equality problem by stating that both input
strings are equal if and only if Ay, verified that H is a Hamiltonian cycle.

Hence an fast algorithm for the Hamiltonian cycle problem on G(T', 2, p)’ can be used to correctly
solve the given instance of the equality problem on G(T',2,p) and thus on G(T',2,p) faster. A
contradiction to the lower bound for the equality problem, which holds for all d (we used d = 2). O

Combined with Corollary [B:4] we now have
Theorem B.6. For every I and corresponding p, any distributed algorithm for solving Hamiltonian

cycle problem on the graph (T',2,p)" in the B model for B > 3 requires Q(min(dP,T'/dpB)) time.
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Using the same analysis as in Section @] we obtain:

Corollary B.7. For anyp > 1, B >3, and n € {2??T'pB,3?’T1pB, ...}, any distributed algorithm

11
for the Hamiltonian cycle problem in the B model for B > 3 requires Q(I%§ 22 +1)) time on some
n-vertex graph of diameter 2p + 2.

B.3 A deterministic lower bound for spanning tree and path verification prob-
lems

Lemma B.8. Foranyp > 1, B >3, andn € {2%T1pB,3?’*1pB ..}, any B > 3, any deterministic
11

algorithm for spanning tree verification requires Q(I%§ 22 +1)) time in some family of n-vertex graph

of diameter 2p + 2.

Proof. We reduce Hamiltonian cycle verification to spanning tree verification using O(D) rounds
using the following observation: H is a Hamiltonian cycle if and only if every vertex has degree
exactly two and H \ e, for any edge e in H, is a spanning tree.

Therefore, to verify that H is a Hamiltonian cycle, we first check whether every vertex has degree
exactly two in H. If this is not true then H is not a Hamiltonian cycle. This part needs O(D)
rounds. Next, we check if H \ {e}, for any edge e in H, is a spanning tree. We announce that H is
a Hamiltonian cycle if and only if H \ {e} is a spanning tree. O

Lemma B.9. Foranyp>1,B >3, andn € {22p+11pB, 32PHpB, ..}, any B > 3, any deterministic

algorithm for path verification requires Q((%fmp“))) time in some family of n-vertex graph of
diameter 2p + 2.

Proof. Similar to the above proof, we reduce Hamiltonian cycle verification to path verification using
O(D) rounds using the following observation: H is a Hamiltonian cycle if and only if every vertex
has degree exactly two and H \ e is a path (without cycles). O

C Tightness of lower bounds

We note that all lower bounds of verification problems stated so far are almost tight. To show this we
will present deterministic O(y/nlog* n + D)-time algorithms for the s-t connectivity, k-component,
connectivity, cut, s-t-cut, bipartiteness, edge on all path, and simple path verification problems.
Algorithms for all other problems stated in this paper can be found using the reductions given in
Figure 2

In particular, one can use the MST algorithm by Kutten and Peleg [15] and the connected
component algorithm by Thurimella [23][Algorithm 5] to verify these properties.

Deterministic algorithms almost matching the deterministic lower bounds: We need to
give upper bounds for the k-spanning tree and path verification problems.

Path verification problem: compute a breath first search-tree 7' on G'\ H in time O(D) connect
the tree T' to H by a single edge of G. The resulting subgraph of G is a spanning tree of G if and
only if H is a path.

k-spanning tree verification problem: We construct a weighted graph G’ by assigning weight
zero to all edges in H* := H and one to other edges. We then find a minimum spanning T* tree
of H using the O(y/nlog* n 4 D)-time algorithm in [I5]. Now we create H¥~! := HF\ TF HF-!
is a k — 1-spanning tree if and only if H* is a k-spanning tree. If all 77 were spanning trees, after
k iterations we are left with H® which contains no nodes and no edges if and only if H* was a
k-spanning tree.
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Deterministic algorithms almost matching the randomized lower bounds: We need to
give upper bounds for the s-t connectivity, cycle, connectivity, k-components, cut, s-t cut, bipar-
titeness and edge on path-verification problems.

s-t connectivity verification problem: To do this, we run the connected component algorithm
by Thurimella [23][Algorithm 5] where, given a subgraph H of G, the algorithm outputs a label
¢(v) for each node v such that for any two nodes u and v, ¢(u) = £(v) if and only if u and v are
in the same connected component. [23][Theorem 6] states that the distributed time complexity
of [23][Algorithm 5] is O(D + f(n) + g(n) + /n) where f(n) and g(n) are the distributed time
complexities of finding an MST and a y/n -dominating set, respectively. Due to [15] we have that
f(n) = g(n) = O(F + y/nlog*n). We can now verify whether s and ¢ are in the same connected
component by verifying whether ¢(s) = ¢(t).

cycle verification problem: Assign weight 0 to all edges of H and weight 1 to all edges of G\ H.
Compute a minimum spanning tree of G using [I5]. H contains no cycle if and only if all edges Ep
of H are in the minimum spanning tree, i.e., W = n — 1 — |E(H)| where |E(H)| is the number of
edges in H.

edge on all path verification problem: If and only if u and v are disconnected in H \ {e}, then e
is on all paths between v and v. We can use the s-t connectivity verification algorithm from above
to check that.

cut verification problem: To verify if H is a cut, we simply verify if G after removing the edges
Ey of H is connected.

s-t cut verification problem: To verify if H is an s-t cut, we simply verify s-t connectivity of G
after removing the edges Fp of H.

e-cycle verification problem: To verify if e is in some cycle of H, we simply verify s-t connectivity
of H = H \ {e} where s and ¢ are the end nodes of e. It is thus left to verify s-t connectivity.

k-components verification problem: We simply put weight 1 on edges in H and 2 on other edges
and find the MST using an algorithm in [15]. Observe that H has at most k connected component
if and only if there are at most k — 1 edges of weight 2 in the MST, i.e., the MST has weight at
most n — 1+ (k —1).

connectivity verification problem: Same as above for k = 1.

spanning connected subgraph verification problem: One can use the above described algorithm
to verify that H is connected. Verifying that the vertices Viz of G are the same as the vertices Vi
of H completes the algorithm.

bipartiteness werification problem: Compute a minimum spanning tree Ty of H in time
O(y/nlog*n + D) using [I5]. Now 2-color this tree. Now all nodes check if their neighbors have a
different color then themselves. They will have a different color if and only if H is bipartite.

D Details of hardness of approximation

In this section, we show the randomized lower bounds as claimed in Theorem [5.1] for the following
problems (listed in Fig. 2).

Problems: Given a connected graph G with a weight function w on edges (where, for each edge
e, w(e) is known to nodes incident to e), we consider the following problems.

e In the minimum spanning tree problem [7, 21I], we want to compute the weight of the
minimum spanning tree (i.e., the spanning tree of minimum weight). In the end of the process
a node outputs this weight.
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e Given two nodes s and t, the shortest s-t path problem is to find the shortest path between
s and t. In the end of the process a node outputs the length of the shortest path.

e Given a node s, the s-source distance problem [5] is to find the distance from s to every
node. In the end of the process, every node knows its distance from s. The s-source shortest
path tree problem [7] is to find the shortest path spanning tree rooted at s, i.e., the shortest
path from s to any node t has the same weight as the unique path from s to ¢ in such a tree.

e A set of edges E’ is a cut if G is not connected when we delete E/. The minimum cut
problem [4] is to find a cut of minimum weight. A set of edges E’ is a s-t cut if s and t are
not connected when we delete E’. The minimum s-t cut problem is to find an s-t cut of
minimum weight. In the end of the process, a node outputs the weight of the minimum cut
and minimum s-t cut. The maximum cut problem is to find a cut of maximum weight.

e The minimum routing cost spanning tree problem [25] is defined as follows. We think of
the weight on an edge as the cost of routing messages through this edge. The routing cost for
a pair of vertices in a given spanning tree is the sum of the weights of the edges in the unique
tree path between them. The routing cost of the tree itself is the sum over all pairs of vertices
of the routing cost for the pair in the tree. Our goal is to find a spanning tree with minimum
routing cost.

e The generalized Steiner forest problem [I0] is defined as follows. We are given k disjoint
subsets of vertices Vi,...,Vi. The goal is to find a minimum weight subgraph in which each
pair of vertices belonging to the same subsets are connected.

e Given a network with two cost functions associated to edges: weight and length. Given a root
node 7 and the desired radius ¢, a shallow-light tree [20] is the spanning tree whose radius
(defined by length) is at most ¢ and the total weight is minimized (among trees of the desired
radius).

We recall the following standard notion of an approximation algorithm which we defined earlier
in Section Bl For any minimization problem X, we say that an algorithm A is an a-approximation
if, for any input instance Z, algorithm 4 outputs a solution that is at most « times the optimal
solution of Z.

Therefore, in the minimum spanning tree, minimum cut, minimum s-t cut, and shortest s-t
path problems stated above, an a-approximation algorithm should find a solution that has total
weight at most « times the weight of the optimal solution. For the s-source distance problem, an
a-approximation algorithm should find an approximate distance d(v) of every vertex v such that
distance(s,v) < d(v) < « - distance(s,v) where distance(s,v) is the distance of s from v. Similarly,
an a-approximation algorithm for s-source shortest path tree should find a spanning tree T' such
that, for any node v, the length ¢ of a unique path from s to v in T satisfies ¢ < « - distance(s,v).

Additionally, we say that a randomized algorithm A is c-approximation e-error if, for any input
instance Z, algorithm A outputs a solution that is at most « times the optimal solution of Z with
probability at least 1 — e.

Proof of Theorem [5.1]. The proof idea for these problems is similar to the proof that the general case
Traveling Salesman Problem cannot be approximated within a(n) for any polynomial computable
function a(n) (see, e.g., [24]): We will define a weighted graph G’ in such a way that if the subgraph
H satisfies the desired property then the approximation algorithm must return some value that is at
most f(n), for some function f. Conversely, if H does not satisfy the property, the approximation
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algorithm will outputs some value that is strictly more than f(n). Thus, we can distinguish between
the two cases. We have already used this technique to proof the lower bound of the MST problem
in Section Bl We now show lower bounds of other problems using the same technique.

The lower bound for shallow-light tree follows immediately when we set the length of every
edge to be one and radius requirement to be n. In this case, the spanning tree satisfies the radius
requirement and so the minimum-weight shallow-light tree becomes the minimum spanning tree.

The lower bound of s-source distance and shortest path spanning tree follow in a similar way:
H is a spanning connected subgraph if and only if the distance from s to every node is at most n — 1
(i.e., A have approximate distance at most (n — 1)a(n)) if and only if the shortest path spanning
tree contain only edges of weight one (i.e., the total weight of the shortest path spanning tree is at
most (n — 1)a(n)).

For the lower bound of the shortest s-t path, observe that s and t are connected in H if and
only if the distance from s to ¢ in G’ is at most n — 1, i.e., A outputs a value of at most (n — 1)a(n).
The lower bound follows from the lower bound of s-t connectivity verification problem.

For the lower bound of the minimum cut, first observe that H is a spanning connected component
if and only if H, obtained by deleting all edges E(H) of H from G, is not a cut. (Recall that G is
assumed to be connected in the problem definition.) Therefore, verifying if H is a cut also has the
same lower bound. Now, we define G’ by assigning weight one to all edges in H and na(n) to all
other edges and use the fact that H is a cut if and only if G’ has minimum cut of weight at most
n—1, i.e., A outputs value at most (n — 1)a(n). The same argument applies to s-t cut: s and t are
not connected in H if and only if H is an s-t cut if and only if G’ has minimum s — ¢ cut of weight
n— 1.

For the minimum routing cost spanning tree problem, we assign weight 1 to edges in H and
n3a(n) to other edges. Observe that if H is a spanning connected subgraph, the routing cost
between any pair will be at most n — 1 and thus the cost of the a(n)-approximation minimum
routing cost spanning tree will be at most (n — 1)(5)a(n) < n®a(n). Conversely, if H is not a
spanning connected subgraph, some pair of nodes will have routing cost at least na(n) and thus
the minimum routing cost spanning tree will cost at least n3a/(n).

For the generalized Steiner forest problem, we will reduce from the lower bound of s-r connec-
tivity. We will have only one set V4 = {s,r}. We assign weight 1 to edges in H and na(n) to other
edges. Observe that the minimum generalized Steiner forest will have weight at most n — 1 if H
is s-t connected and at least na(n) otherwise. (Recall that G is assumed to be connected in the
problem definition.) O
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