
Comparing Complexity of API Designs: An Exploratory
Experiment on DSL-based Framework Integration

Stefan Sobernig
Institute for IS and New Media
WU Vienna, Vienna, Austria
stefan.sobernig@wu.ac.at

Patrick Gaubatz
Software Architecture Group

University of Vienna, Vienna, Austria
patrick.gaubatz@univie.ac.at

Mark Strembeck
Institute for IS and New Media
WU Vienna, Vienna, Austria
mark.strembeck@wu.ac.at

Uwe Zdun
Software Architecture Group

University of Vienna, Vienna, Austria
uwe.zdun@univie.ac.at

Abstract
Embedded, textual DSLs are often provided as an API wrapped
around object-oriented application frameworks to ease framework
integration. While literature presents claims that DSL-based appli-
cation development is beneficial, empirical evidence for this is rare.
We present the results of an experiment comparing the complex-
ity of three different object-oriented framework APIs and an em-
bedded, textual DSL. For this comparative experiment, we imple-
mented the same, non-trivial application scenario using these four
different APIs. Then, we performed an Object-Points (OP) analy-
sis, yielding indicators for the API complexity specific to each API
variant. The main observation for our experiment is that the em-
bedded, textual DSL incurs the smallest API complexity. Although
the results are exploratory, as well as limited to the given applica-
tion scenario and a single embedded DSL, our findings can direct
future empirical work. The experiment design is applicable for sim-
ilar API design evaluations.

Categories and Subject Descriptors D.2.8 [Metrics]: Complexity
measures; D.3.2 [Language Classifications]: Specialized applica-
tion languages; D.1.5 [Object-oriented Programming]

General Terms Design, Experimentation, Measurement

Keywords Domain-Specific Language, Application Program-
ming Interface, Complexity, Object Points

1. Introduction
Designing and implementing application programming interfaces
(APIs) for reusable software components, such as class libraries,
object-oriented (OO) application frameworks, or container frame-
works, is a process of making critical decisions at the design
level and at the implementation level. Decisions include, among

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GPCE’11, October 22–23, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-0689-8/11/10. . . $10.00

others [19], the adoption of certain architectural patterns (e.g.,
inversion-of-control layer), the choice between composition- or
inheritance-based integration, and parametrization techniques
(e.g., argument passing strategies). These decisions affect the
quality attributes of applications constructed from the resulting
APIs. This is because application engineers, who use APIs to help
develop their applications, are influenced by the API’s complexity
(e.g., the levels of expressiveness in terms of program sorts
supported) and the API’s perceived usability (e.g., kinds of error
prevention).

In this paper, we consider constructing APIs by providing an
embedded textual domain-specific language (DSL, [13, 18]) on top
of OO frameworks. DSLs are special-purpose programming lan-
guages engineered for a particular problem or application domain.
An embedded (or internal) DSL extends and widely integrates with
its host language (e.g., Java, Ruby, XOTcl) by reusing the host lan-
guage’s syntactic and behavioural models. Embedded DSLs as lan-
guage extensions typically inherit those characteristics from their
host languages [18]. Textual DSLs offer a textual concrete syntax
to its users.

DSLs are claimed to enable domain experts to understand, test,
co-develop, and maintain DSL programs. In its role as an API, a
DSL targets domain experts as the API users. For them, a DSL-
based API wraps framework functionality using domain abstrac-
tions. Depending on the DSL’s language model, framework func-
tionality is sometimes made composable through declarative spec-
ifications. A DSL might also provide alternative execution and
parametrization modes, adding to or substituting those offered by
the host language.

The use of DSLs as APIs is motivated by the belief that DSLs
have, for the most part, a positive impact on the quality attributes
of the resulting DSL programs. In particular, their comprehensibil-
ity, maintainability, communicability, and reusability are said to be
positively affected (see, e.g., [7–9, 20]). To give an example, DSLs
are commonly judged as more expressive than a general-purpose
programming language. This augmented expressiveness [20] is ex-
plained by DSLs exposing a comparatively small number of high-
level domain abstractions as first-class language elements. Expres-
siveness is also said to be positively influenced by providing a pre-
dominantly declarative concrete syntax, which is ideally extracted
from the respective application domain (e.g., some DSLs use a tab-
ular notation inspired by spreadsheets). This increased expressive-

ness is expected to facilitate developing and maintaining programs
written in DSLs.

Despite such fundamental claims on the benefits of DSLs, em-
pirical evidence is limited. To date, very few studies on DSLs have
been conducted [8, 9]. As for qualitative approaches, most data
sources are opinion statements and experience reports, collected
from domain experts in terms of “industry case studies” (see, e.g.,
[14]) and from DSL prototype implementations [22]. Details about
collecting and processing the evidence are often missing.

A first rigorous, survey-based effort [9] attempts to confirm con-
jectures about general success factors as perceived by a small de-
veloper population using a single DSL. However, these qualitative
findings do not touch the issue of DSL-based API complexity. Be-
sides, qualitative findings cannot be traced back to the structural
properties of an API at the code level. The few quantitative stud-
ies exhibit several limitations: In particular, the research questions
cover DSL aspects other than API complexity from the perspective
of API users. Important examples are exploratory evaluations of the
maintainability property of the DSL implementations themselves
[10] and comparing different DSL implementation techniques [11].
Other studies look at domain-specific modeling [4, 12], rather then
domain-specific programming languages. As for the measurement
methods applied, some study designs fall short by primarily mea-
suring source lines of code (LOC; see, e.g., [4, 12, 24]).

This situation motivated us to conduct an exploratory experi-
ment to capture descriptive statistics as indicators of API complex-
ity comparing four different approaches to API design, including an
embedded DSL. Guided by the quantitative observations, a quali-
tative analysis explores the research question whether API users
receive the advantage of a reduced API complexity when using a
DSL-based API on top of an OO framework, as compared to using
alternative APIs (i.e., a class library, an abstract-class, or a con-
tainer framework). For this experiment, we created four programs
realizing the same, predefined, and non-trivial application scenario.
This application scenario describes a service provider component
for a distributed single-sign-on infrastructure based on the Security
Assertion Markup Language (SAML; [16]). Each program, how-
ever, is integrated with a different OO framework, with each frame-
work API representing another API design approach. To obtain
complexity indicators, we conducted an Object-Points (OP) anal-
ysis [17] for the four programs. The qualitative evaluation, based
on the initial quantitative observations of this experiment, provides
an indication for the potential of DSLs to reduce structural API
complexity.

We report on our experiment as follows: In Section 2, we give
an introduction to the experiment design. After having introduced
important experimental units, the notion of object points as an indi-
cator for API complexity is provided. Section 3 adds details about
the experiment procedure, including an introduction to the techni-
cal domain of the experiment, federated identity management using
SAML, and the selected application scenario. First quantitative ob-
servations of the experiment are reported in Section 4, before Sec-
tion 5 critically revisits our findings. After a discussion of related
work in Section 6, Section 7 concludes the paper.

2. Experiment Design
In this section, we introduce the necessary terminology (see Figure
1) and give some background on the Object-Points (OP) measure-
ment method. The OP method is exemplified by applying it to a
selected detail of our experimental code base.

2.1 Experiment Units

Application programming interface (API) – The interface of a soft-
ware component to be used by the developers to access the func-
tionality provided by the component. The corresponding function-

ality is commonly implemented by a set of sub-components. Thus,
an API may bundle several component (or object) interfaces. The
API provides an abstract view on the possible collaborations of
these sub-components. While providing access to public function-
ality, the API discloses a protocol for integrating the API in client
applications. This protocol gives the necessary details about the in-
tegration techniques adopted by the API design, e.g., template and
hook classes, callback variants, dependency injection, as well as
deployment and configuration descriptors. As a result, an API does
not only consist of code units (e.g., classes, interfaces, methods),
but also of behavioral protocols and of auxiliary data items (e.g.,
configuration files).

Program – The object-oriented software component which in-
tegrates and completes the OO framework (by means of the frame-
work API) to realize the application scenario. In our experiment,
we considered the program both in its source-code and language-
dependent representation, as well as in a language-independent
UML representation for comparing programs written in different
programming languages (Java, XOTcl). The UML representation
includes class and interaction models. For the actual measurement
step, data was gathered on the syntactical structure of the programs
in their UML representation. The program implementation sets a
concise working framework [6], i.e., the feature chunk of the API
needed to implement a specific application scenario. By capturing
such a single working framework in terms of the program, the mea-
surement results are eligible for an analysis comparing different
APIs. For instance, the number and the types of working tasks are
stable for a given application scenario.

Structural complexity – The notion of API complexity spans
a considerable space of observable API design properties and the
API’s perceived usability [19] beyond the scope of a single, ex-
ploratory experiment. For example, an API’s usability is affected
by various cognitive components of various API stakeholders (de-
velopers, product users), including the abstraction level, learning
style, and domain correspondence of API abstractions [6]. To al-
low observations on API complexity which can be directly linked
to properties in the program structure, we limit ourselves to a work-
ing definition of structural, syntactic complexity observable from
three properties of an object-oriented program [1]. First, the size of
a program denotes the number of distinct entities (i.e., classes and
objects) constituting the program. The interface size indicates the
potential complexity resulting from all the possible object composi-
tions used to implement the program. Second, the interaction level
describes the permissive interactions between the entities (e.g., op-
eration calls between objects). Third, the parametric complexity
captures the complexity resulting from the number and the types
of the members owned by each program entity (i.e., each class
with the number of attributes and operation parameters having an
object-type). To quantify these structural properties in an integrated
measure construct, we apply an Object-Points analysis [17]. This
working definition of structural API complexity implies a surrogate
measurement: The API complexity is approximated by observing
the above mentioned structural properties of a given program, con-
structed from a working framework of this API.

Object points

Class points

Message points

indicators
 for

derived from

API

Code units

Protocol

Configuration

integrates a
working

framework

Structural complexity

Size

Interaction level

Parametric complexity

Program

Source-code
representation

UML
representation

properties
of

Figure 1: Overview of the Experiment Units

CP =


WC · |C| +

∑
c∈C

|Ac| + WRc ·
∑
c∈C

|Rc| + WOc ·
∑
c∈C

|Oc|

 · NC C, |C| . . . Set of classes, Class count

|Ac|. . . Attribute count per class c, c ∈ C
|Oc|. . . Operation count —”—
|Rc|. . . Relation count —”—

Nc =
∏

s∈Superc

|Ac|+ |Rc| + |Oc|
|Ac| + |Rc| + |Oc| + |As| + |Rs|+ |Os|

Superc . . . Set of directly generalizing classes of class c;
for all s ∈ Superc , s ∈ C , s �= c

Nc. . . Novelty weight of class c, c ∈ C

NC Avg. class novelty,

∑
c∈C Nc

|C|

MP =


WOM

· |OM | +
∑

o∈OM

|Po|+ WSo ·
∑

o∈OM

|So| + WTo ·
∑

o∈OM

|To|

 ·NOM

OM ⊂
⋃
c∈C

Oc . . . Set of called operations

|OM | . . . Called operation counts
|Po| . . . Parameter count of operation o, o ∈ OM

|So| . . . Source count —”—
|To| . . . Target count —”—
No . . . Novelty weight —”— ∈ {1, 0.5}
NOM

. . .

∑
o∈OM

No

|OM |

Table 1: Class- and Message-Points Measures

2.2 Object-Points Analysis

For our measurement and data analysis, the structural data gathered
from the programs is processed using an Object-Points (OP) anal-
ysis. In particular, we apply the OP analysis by Sneed [17], not be
confused with object-oriented variants of Function Points (see e.g.
[2]). The OP analysis is applied for predicting the development ef-
fort (i.e., the program size) based on UML implementation models
of a given program.

Note that, in our experiment, the Sneed OP analysis does not
serve for estimating development effort. We adopted the Sneed
OP method to compute indicator measures for reflecting selected
structural properties of an object-oriented (OO) program. The ob-
jects (and object members) enter the analysis as counts (e.g., object
counts, or counts of messages exchanged between two objects in
a given interaction). Predefined weights are then assigned to these
selected counts. For our experiment, the weight values are adopted
as proposed by Sneed [17]. The weighted counts represent the ac-
tual OP value for a given program. See Table 2 for a list of used
weights, their value loadings in our experiment, and their explana-
tion. The OP value for a program results from the summation of
two intermediate measure values, i.e., the class and the message
points.

The class points (CP) of a program result from the counts and
the weights representing the number of classes in the respective
program, as well as the structure of these classes (i.e., their at-
tributes, their operations, and their structural relations with other
objects). Therefore, the CP measure reflects the program size and
the parametric complexity of the analyzed program. In turn, the
message points (MP) count the number, the structure, and the uses
of operations provided by the objects (i.e., in terms of their sig-
nature interface) reflecting the interaction level property of a pro-
gram. As the programs and the properties (size, interaction level,
parametric complexity [1]) act as surrogates of API complexity for
the scope of a specific working framework of the entire API, the OP
indicators only represent indirect measure constructs of structural
API complexity.

When compared to alternative approaches of OO complexity
measurement [1], the Sneed OP analysis allows for comparing pro-
gram structures in different languages. This is because intermediate
UML models serve as the data source and weightings can com-
pensate for language-specific statement sizes of code units (e.g.,
method bodies) while avoiding the methodical issues of LOC mea-
surement. In addition, the Sneed measure constructs capture certain

structural dependencies directly as a source of complexity. For ex-
ample, the message points based on a UML interaction capture the
static interaction level of a given application scenario. The Sneed
measure constructs also present certain practical advantages. Most
importantly, the constructs allow for direct traceability between
program structures (e.g., a UML class’s record of owned opera-
tions) and the indicator values (e.g., the CP value as size indicator)
for qualitative evaluations.

Weight Loading Description
WC 4 The value of 4 has been adopted from the standard weight

of entities in the Data Points analysis; see [17].
WRc 2 Also adopted from the standard Data Points method; a

weight of 2 reflects the fact that a single relation affects ex-
actly two entities; see [17].

WOc 3 This weight reflects the average size of methods found for a
representative code base in the programming language under
investigation. The value 3 is the standard value proposed in
[17], expressing a ratio of 15:5 between the avg. method
statement size of more high-level (e.g. Smalltalk) and more
low-level programming languages (e.g. C++).

WOM
2 Similarly to WRc , the weight 2 reflects that a single mes-

sage occurence involves two entities – the sender and the
receiver; taken from [17].

WSo 2 The standard value adopted from [17].
WTo 2 The standard value adopted from [17].

Table 2: Weights in the Sneed Object-Points analysis

Class points, CP – The CP measure is calculated from the UML
class model. The measure is constructed as an adjusted summation
of four summands, each being accompanied by a fixed weighting
factor adopted from [17]. The summands are the class count |C|,
the sum of attribute counts |Ac|, the sum of operation counts |Oc|,
and the sum of relation counts |Rc|. The class count |C| is the
cardinality of the set of classes in the model and reflects the pro-
gram size. The class count is corrected for the weight WC . For each
class c ∈ C, counts for owned attributes are established. Note that
associations with neighbor classes are also counted as attributes
(rather than relations). Depending on the navigability (unidirec-
tional, bidirectional) of an association, it is recorded either for the
non-navigable association end or both ends. The count of owned
operations is then calculated, with the sum of operation counts for
all classes being weighted by WOc . The weight corrects the count
for its statement value, i.e., the average size of an operation imple-
mentation in terms of statements. The weighted operation count is
therefore an indicator of class size.

The final summand is the sum of relation counts over all classes.
In our experiment, relations mean generalization relations to one

(or multiple) classes. Generalizations are counted for both the gen-
eralizing and the specializing ends, to reflect the two-way depen-
dency introduced by this relationship (e.g., comprehending the fea-
ture set of by a specializing class requires the partial study of the
generalizing class). The applied weighting factor WRc with a value
of 2 accounts for the fact that a single relation affects exactly two
entities.

The summation is then adjusted for the average class novelty
NC . This factor computes from the product of novelty weights
Nc per class (see Table 1). Provided that a class c is related to at
least one generalizing class (which is reflected by a relation count
|Rc| > 0), the novelty is calculated as the normalized ratio be-
tween the counts of attributes, operations, and relations owned by
the specializing class and the total counts of both the specializing
as well as the generalizing class. This novelty factor balances be-
tween the increased complexity caused by generalization relations
(which is captured by a |Rc| > 0) and the locality of refinements
in the specializing class, with the latter facilitating API elaboration.
At the extremes, an Nc value of 0 represents a class without gener-
alization relationships, without ownership of attributes and without
operations. Nc = 1 means that a class c defines its entire record of
attributes, operations, and relations in a freestanding manner; i.e.,
without inheriting any of these from a generalizing class.

Message points, MP – The MP measure is expressed over data
drawn from both the UML class and the UML interaction model
of the analyzed program. Most importantly, it is defined over a
subset of all operations defined in the class model, i.e. the set of
operations OM actually used in the interaction. This corresponds to
all operations referenced by the call events registered with message
occurrences in the interaction.

As can be learned from Table 1, and similar to the CP measure,
there are four summands based on weighted counts and a general
novelty weight. The first summand is the number of operations
referenced by message occurrences in the model, multiplied by
WOM . The weight indicates that every message occurance involves
two entities – the sender and the receiver. This called operations
count |OM | indicates the general level of interaction between the
collaborating objects.

The remainding summands are specific to each called opera-
tion o. First, the sum of parameter counts |Po| (including input
and output parameters of an operation) is established. This reflects
the parametric complexity at all operation call sites. Second, the
sources and targets of each called operation in terms of the sending
and receiving lifelines of the corresponding messages are collected.
This yields the source counts |So| and the target counts |To|, with
each receiving a fixed weight (WSo and WTo). While the general
operation count |OM | indicates the degree of interaction, the source
and target counts stand for the intensity of the given object interac-
tions. Complexity in the static program behavior is thus captured in
terms of message occurrences.

For each of the called operations o ∈ OM , a per-operation nov-
elty weight No is applied. Called operations which combine with
an operation provided by a generalizing class (also contained in the
class model) are adjusted by a weight of 0.5. Replacing (overwrit-
ing) operations or newly defined ones enter the MP calculation with
their full count values. The per-operation novelty compensates for
the repeated inclusion of message points components when com-
puted for two (or more) combinable operations along a generaliza-
tion hierarchy. At the same time, any No > 0 reflects that each
called operation, whether it refines another operation or not, adds
another layer of complexity (e.g., parametric complexity with vary-
ing parameter sets). The actual weighting component of the MP
measure is the average novelty weight over all called operations
NOM .

Object points, OP – The aggregate OP value results from sum-
ming the two partial results, i.e. the MP and the CP values. While
the original definition of the OP measure [17] involves a third sum-
mand for expressing the Use Case (UC) complexity (e.g., based on
a UML use case model of the underlying application scenario), we
can omit this summand in our experiment. This is because in our
comparative experiment based on a single application scenario, we
take the UC complexity as a constant.

In our experiment, the OP score is used as an absolute value
characteristic for each program structure. When contrasting the
OP scores of different programs, the range of OP scores offers
explicable thresholds for ordering the programs to each other. For
instance, in such a range of data points, a relatively higher OP score
points to an increased structural API complexity of a given program
relative to the others.

(a) Classes (b) Messages
Figure 2: An Exemplary UML Model

2.3 Applying the Sneed OP Analysis

In the following, we give an overview of the Sneed Object-Points
(OP) method by looking at an introductory example (see Figure
2). Consider a measurement applied to the simple UML model
example given in Figures 2a and 2b. The input data for the actual
OP measurement is given in Tables 3a and 3b.

The interaction model identifies three classes as the participants
in the abstracted application scenario: Httpd, Httpd::Wrk, and
AuthnRequest. As for the class-points (CP) calculation, these
constitute the set C. In table 3a, the per-class counts of owned
attributes, operations, and relations are depicted, collected from the
class model. While data collection on attributes and operations is
straightforward for this introductory example, we will now discuss
the relationships between classes and the class novelty weightings.

First, table 3a records the generalization relations between
AuthnRequest and Request, as well as Worker and
Httpd::Wrk. The generalizations are marked for both the
generalizing and the specializing ends. Second, the uni-directed
association worker is counted as a second attribute on behalf of
the non-navigable association end Httpd. Similarly, request is
counted on behalf of Worker. Third, the generalization relations
are also reflected in the class novelty ratios NAuthnRequest (0.5)
and NWorker (0.6). These weightings are computed as the ratio of
non-inherited members of AuthnRequest to the total number
of members owned by AuthnRequest and Request: 2

4
. This

ratio indicates the extent to which AuthnRequest’s parametric
complexity is explained by its member structure alone. Using the
CP formula from Table 1, we compute the total CP score of our
example model: (4 · 5 + 3 + 2 · 3 + 3 · 4) · 4.1

5
= 33.62.

Returning to Figure 2b, the data for deriving the message points
(MP) value in Table 3b can be collected from the interaction model.
The first observation is that the three message occurrences refer
to a set OM of three distinct operations being called. This sim-
plifies the subsequent counting because all the source and target
counts amount to 1. The generalization relationship between the
classes Worker and Httpd::Wrk results in a novelty adjust-
ment for Worker.respond, with the operation overloading the

Httpd::Wrk.respond operation (see Figure 2b). The total MP
score results from the term (2 · 3 + 3 + 2 · 3 + 2 · 3) · 2.5

3
= 17.5.

This yields a final OP score of our example model as the sum of the
CP and MP values: 33.62 + 17.5 = 51.12.

c ∈ C |Ac||Rc||Oc|Nc

Httpd 2 0 0 1
Httpd::Wrk 0 1 1 1
Worker 1 0 1 0.6
Request 0 1 1 1
AuthnRequest 0 1 1 0.5
20 3 6 12 0.82
CP 33.62

(a) Class points (CP)

o ∈ OM |Po||So||To|No

Worker.respond 0 1 1 0.5
AuthnRequest.ID 2 1 1 1
Request.send 1 1 1 1
6 3 6 6 0.833
MP 17.5

(b) Message points (MP)
Table 3: The CP and MP Scores of the Exemplary Model

3. Experiment Procedure
For the experiment, we selected an application domain and picked a
single use case from this domain to be realized by the programs dur-
ing the experiment (see Section 3.1). In a second step, we investi-
gated existing software components in this application domain. We
put special emphasis on adopting software components that pro-
vide different API designs (see Section 3.2). Having identified four
characteristic software components, the actual experiment involved
implementing four programs based on these reusable components
(see Section 3.3). In a final step, the resulting programs were docu-
mented in terms of UML models (see Section 3.4). Based on these
UML representations, the object points for each program were cal-
culated.

3.1 Domain

In the context of computer network security, digital identities are
created and assigned to subjects (e.g., human users). Thus, digital
identities allow for identifying different subjects unambiguously.
To prove the ownership of a digital identity, a subject has to au-
thenticate. This authentication step involves presenting credentials,
such as user name and password pairs. With each subject owning
several digital identities (e.g., for different web sites), remember-
ing and managing multiple credentials can becomes tedious task. A
Federated Identity Management system provides the infrastructure
for a so-called single sign-on (SSO) service. In an SSO-scenario, an
Identity Provider issues a digital identity token for a particular sub-
ject. This token is then accepted by a number of service providers
(also called relying parties). Thereby, the digital identity token pro-
vides the subject with a federated identity that can be used to access
different services.

The Security Assertion Markup Language (SAML) [16] pro-
vides a well-established XML-based framework that supports cre-
ating and operating federated identity management environments.
In SAML, different types of assertions can be expressed to provide
a subject with corresponding digital tokens. The SAML standard
defines a precise syntax for defining assertions and rules for ex-
changing them. SAML is defined as a flexible framework that can
be extended and adapted for a range of use cases, including SSO.
The SSO use case is directly supported by SAML’s Web Browser
SSO Profile. The programs realized during the experiment imple-
mented SSO service providers using SAML’s HTTP POST binding.

3.2 API Designs

For conducting the experiment, we selected three existing software
artifacts for the technical domain of SAML: OpenSAML1, simple-
SAMLphp2, and JAXB3. As we could not identify any prior DSL-

1 OpenSAML: http://opensaml.org/
2 simpleSAMLphp http://simplesamlphp.org/
3 JAXB: http://jaxb.java.net/

based approach, we decided to develop a DSL on top of an un-
derlying infrastructure for XML data binding: xoSAML4. Each of
these software components realizes a predominant object-oriented
API design, that is, a class library, an abstract class framework, a
container framework, and an embedded textual DSL.

OpenSAML — This Java component provides a partial domain
model for SAML (e.g., SAML messages, assertions), an XML data
binding infrastructure tailored towards the needs of SAML (e.g.,
unmarshalling SAML documents into Java objects and vice versa),
and utility classes for realizing SAML protocols (e.g., context ob-
jects, message en- and decoders, signature validators). With this,
OpenSAML realizes a conventional reuse approach in terms of a
class library. The classes are packaged into a library namespace,
offering themselves for direct reuse (without instantiation proto-
col) in client programs. For an integration developer, navigating
and picking from various concrete class hierarchies is necessary.

simpleSAMLphp — This component written in PHP does not
aim at providing support for the entire protocol domain offered by
SAML (such as OpenSAML), nor does it create means to gener-
ically map between object and XML document representations of
SAML artifacts. Rather, simpleSAMLphp limits itself to helping
realize preselected scenarios in the SAML/SSO use case. Its reuse
strategy is that of a small-scale class library, without imposing any
particular integration protocol (e.g., subclassing).

JAXB — The Java-based component delivers a reference im-
plementation for the Java Architecture for XML Binding specifi-
cation and, thus, embodies a generic XML-object binding frame-
work. The XML/object mapping is based on a generator infrastruc-
ture, performing transformation from XML Schema descriptions
to Java code models. For our experiment, we generated Java repre-
sentations from the SAML schemas. JAXB also realizes a container
framework based on Java beans, managing object lifecycles (e.g.,
bean factories) and component dependencies explicitly (e.g., de-
pendency injection). In contrast to the other projects, JAXB does
not provide any SAML utilities (e.g., message context objects, val-
idators).

Figure 3: Core Language Model of xoSAML (simplified)

xoSAML — This component represents an embedded, textual
DSL for specifying SAML assertions and corresponding SAML
request and response messages. xoSAML is implemented in the
host language Extended Object Tcl (XOTcl), a Tcl-based object-

4 xoSAML: https://bitbucket.org/pgaubatz/xosaml

oriented scripting language [15]. xoSAML supports creating, ma-
nipulating, and exchanging SAML assertions and messages in a
minimized, declarative textual notation. xoSAML integrates with
a generator framework for mapping XML schemas to class struc-
tures; SAML entities are so provided as an XOTcl class library.
Figure 3 depicts some examples that show the different abstraction
layers of our DSL. In particular, it shows a (simplified) class dia-
gram of the DSL’s language elements and an excerpt of the object
diagram for the SSO scenario. Corresponding DSL statements ex-
emplify xoSAML’s concrete syntax.

3.3 Application Scenario

Having identified the four reusable software components (Open-
SAML, simpleSAMLphp, JAXB, and xoSAML), we continued by
implementing the application scenario. We obtained four different
implementations of a single-sign-on (SSO) service provider (SP).
The actual application scenario is illustrated by Figure 5 in terms of
a simplified UML sequence diagram. The sequence diagram shows
the messages exchanged for a single SAML authentication request.
Initiated by the browser side, a request for accessing a web re-
source is received by the SP. The SP returns an authentication re-
quest which is redirected to the authoritative identity provider. The
identity provider verifies the credentials and returns an authenti-
cation response. The response contains assertions to be evaluated
by the SP to decide about the authorization state and about grant-
ing access to resources. The SP implementations, therefore, covers
handling the authorization request and evaluating the assertions.

Figure 5: SSO in a Web Context

3.4 UML Implementation Models

The code bases of the resulting programs reflect various API
designs and disparate programming languages (i.e., Java, PHP,
XOTcl) as well as abstraction levels (e.g., general-purpose vs.
domain-specific languages). To obtain language-independent rep-
resentations of the four programs, each program was documented
via UML sequence and UML class diagrams. The UML models
were created in a manual design review after having completed the
implementation task.

To collect structural data from the relevant working framework
[6] of the API examined, we applied selection criteria for estab-
lishing the UML models. As for the class model, we selected
classes defined by the reused software components (e.g., Open-
SAML, xoSAML) which were refined or instantiated by the pro-
gram. In addition, those declared in the scope of client programs
were incorporated. Based on this initial set of classes, we further
included classes by traversing the generalization relationships. The
traversal was terminated when having collected all the classes that
provide a feature accessed by the program (e.g., an attribute or a
called operation). By documenting all relevant operation calls, the

UML sequences served for identifying the list of classes to con-
sider.

4. Quantitative Analysis
In our experiment, two data sets were created. The first describes
the underlying code bases and the intermediate UML representa-
tions (see Table 4). The second represents the OP measure compu-
tations (see Table 5).5

To begin with, the programs realized during the experiment are
limited in code size: None of them exceeds 150 lines of source code
(LOC). The four programs differ in terms of their LOC, as stated
by SLOCCount [21]. While the OpenSAML-based implementation
amounts to more than 151 lines of Java code, the programs interfac-
ing with xoSAML and JAXB come at a LOC size of 144 and 120
lines, respectively. The smallest code base could be realized using
simpleSAMLphp (see Table 4).

Inspecting the UML packages using SDMetrics [23], we learn
that the code base complexity is not directly reflected by the pro-
gram structure. From this structural viewpoint, OpenSAML ex-
hibits the most extensive structural composition. The OpenSAML-
based program is built using more than 30 classes with more than 8
operations each, in average. As a package JAXB is slightly smaller,
yet structurally comparable with 20 classes and, in average, 11 op-
erations each. xoSAML and simpleSAMLphp fall into a category
in terms of class sizes. However, the two programs differ by the
amount of operations per class. simpleSAMLphp reports relatively
large operation records per class, with each counting an average of
28 operations.

As for inter-class relations |R|, the programs built from Open-
SAML and from JAXB are characterized by a relatively high num-
ber of realized relations (e.g., attributes types, parameter types of
owned operations, associations, dependencies). However, in aver-
age, each class in JAXB is connected to more neighbor classes
(1.45) than an average class in OpenSAML (1). Similarly, the
xoSAML and the simpleSAMLphp programs exhibit nearly the
same relation counts, however, an average simpleSAMLphp class
is linked to one class more than the average xoSAML class (see
Table 4).

Program using. . . OpenSAML JAXB simpleSAMLphp xoSAML
LOC 151 120 48 144
classes |C| 31 20 8 15
operations |O| 254 222 110 37
relations |R| 30 28 15 14

Cohesion H =
|R| + 1

|C| 1 1.45 2 1

Table 4: Descriptive Statistics on the Code and Model Repre-
sentations [21, 23]

Table 5 shows the class- (CP), the message- (MP) and the
object-points (OP) scores calculated for the four programs exam-
ined according to the OP procedure introduced in Section 2.2. The
data rows representing each program are sorted by their ascending
OP value. Within brackets, the normalized OP scores, adjusted to
the lowest OP value, are given. We can make the following obser-
vations:

• The program constructed from the xoSAML DSL features the
lowest OP score.

• The program sizes expressed in LOC (see Table 4), and the
LOC-based ranking of the programs, do not relate to the order
by OP value.

5 The XMI representations of the UML models and the preprocessed data
collection for the Object-Points analysis are available from http://swa.
univie.ac.at/~patrick/op.zip. The programs’ source code is
maintained at https://bitbucket.org/pgaubatz/xosaml (see
directory examples/ServiceProvider/).

(a) xoSAML (b) simpleSAMLphp (c) JAXB (d) OpenSAML
Figure 4: An Overview of Required Components

• The program sizes in terms of the total number of classes |C|
and operations |O| follow the pattern of the OP values.

• Despite its OP-based top rank, the xoSAML program does not
have the smallest code base.

• The simpleSAMLphp program accounts for an MP value
smaller than xoSAML’s, while still having a higher OP score.

• The simpleSAMLphp program has a higher OP score than its
xoSAML equivalent, while having a code base which is three
times smaller than xoSAML’s.

• JAXB and OpenSAML have comparably high OP values, with
a consistent structure of the CP and MP summands.

• The OP scores of the high-OP programs JAXB/OpenSAML is
3.5 to 4 times the OP value of xoSAML.

CP (NC) MP (NOM
) OP

1. xoSAML 179.76 (≈ 0.79) 87 (1) 266.76
2. simpleSAMLphp 270.53 (≈ 0.64) 85.81 (0.89) 356.34
(� xoSAML) (1.51) (0.99) (1.34)
3. JAXB 755.46 (≈ 0.98) 188 (1) 943.46
(� xoSAML) (4.2) (2.1) (3.54)
4. OpenSAML 860.75 (≈ 0.84) 224 (1) 1084.75
(� xoSAML) (4.79) (2.57) (4.07)

Table 5: The OP Analysis Scores

5. Qualitative Analysis
In this section, we revisit our research question about whether API
users benefit from a lowered complexity when using an API based
on an embedded, textual DSL on top of an OO framework. For this,
we review the quantitative observations documented in Section 4.
We also point out relations to related work and its limitations. As
already stated, the quantitative and qualitative observations below
are first and tentative results; no firm recommendations can be
derived therefrom.

5.1 Observations

API Complexity and the xoSAML DSL – The embedded, textual
DSL (xoSAML) examined for the selected application scenario
(SAML service provider) results in the most favorable OP score
(266.76) among the API designs compared. This comparatively
low OP score reflects that an API user is only exposed to an
API feature chunk of low structural complexity for the DSL-based
integration: The chunk’s size is limited in terms of participating
classes (|C| = 15) and the smallest number of operations per
class (35/15 ≈ 2.5). The xoSAML API chunk shows a relatively
weak connectedness of classes (H = 1), resulting from the small
number of associations and generalizations between the classes.
While this reduced connectedness decreases the level of novelty,
xoSAML’s average novelty factor NC = 0.79 indicates that the
API chunk implements a considerable share of the functionality

(i.e., operation implementations) used in the application scenario.
Taking into account all these components, and given the humble
API chunk size in terms of classes, we obtain the smallest class-
points (CP) score in the experiment.

This CP score even compensates for a relatively higher object
interaction level compared to simpleSAMLphp’s one, as hinted at
by a message points (MP) score of 87 > 85.51. The comparable
MP scores reflect the structural similarity of the two APIs interac-
tion design in terms of called operation counts |OM | and the opera-
tion’s parameter counts (|PO |, max. 2). Besides, xoSAML and sim-
pleSAMLphp, offer a programming model requiring step-by-step
calls to clearly separated query-or-command operations (referred
to as command-query APIs in [7]). This is reflected by source |SO |
and target counts |TO | of 1 (i.e., there is mostly one message oc-
currence of a given operation in the call sequence). The slight dif-
ference in the OP scores is explained by deviating novelty factors
NOM of 1 and 0.89, respectively.

xoSAML DSL vs. PHP Class Library – We would have ex-
pected a more substantial OP score difference between the DSL-
based program (xoSAML) and the one based on the PHP class
library (simpleSAMLphp). However, tracing back the OP scores
to the simpleSAMLphp program’s structure reveals that simple-
SAMLphp, in contrast to the other frameworks, does not require
any HTTP-related processing as part of the API feature chunk used.
Instead, transport handling is purely delegated to the Apache HTTP
request processor. This translates into a comparatively lower OP
score for simpleSAMLphp. In addition, the simpleSAMLphp’s av-
erage class novelty factor balances the high per-class operation
counts, with NC = 0.64 the lowest in the experiment indicating
a larger share of operations than in xoSAML being implemented
outside the API chunk.

xoSAML DSL vs. Java OO Frameworks – While the OP analy-
sis indicates that the DSL-based program incurs the least API com-
plexity as approximated by the Sneed OP values, we did not expect
the considerable difference of 250% and 300%, respectively, be-
tween the DSL-based implementation and the two Java-based pro-
grams. The structural complexity of the OpenSAML- and JAXB-
based programs results from the multitude of classes (i.e., class
counts |C| of 20 and 31, respectively) in the API feature chunk. The
class counts reflect that the SAML/XML artifacts are provided as
Java classes in a direct mapping. The average size of per-class oper-
ation records (with approx. 8 operations each) and the two highest
average class novelty factors (NC of 0.84 and 0.98, respectively)
also contribute to the considerably higher CP scores (860.75 and
755.46). In addition, there is a parametrization overhead resulting
from container and beans management (factories), especially for
JAXB.

Expressiveness and API Complexity – Expressiveness is a key
dimension of API design [19]. DSL literature considers DSLs ben-
eficial in terms of tailoring the expressiveness for the domain ex-
perts as API users. By tailoring, literature often refers to a DSL
exposing only a reduced set of domain abstractions [20] at a higher
abstraction level as compared to the underlying host language ab-
stractions [10]. While our experiment design does not cover the
issue of abstraction level, which entails aspects such as domain
correspondence [6], some observations hint at a refined notion of
expressiveness. While a naive reading might relate expressiveness
to the mere number of distinct domain abstractions (e.g., the class
count |C|), our experiment shows that this is not sufficient. For ex-
ample, the simpleSAMLphp API chunk with only 8 classes is yet
parametrically complex due to the relatively high number of opera-
tion counts per class (e.g., an API user must acquaint herself with a
complex signature interface). This and similar effects are reflected
by the CP measure construct, reporting a higher CP score for sim-
pleSAMLphp (270.53) than for xoSAML (179.76) with 14 classes
as domain abstractions.

A related observation is that the JAXB program shows a lower
CP score (755.46) than the OpenSAML-based program (860.75).
JAXB is a container framework directly operating on SAML/XML
artifacts through a generic XML-object mapping infrastructure,
while OpenSAML introduces intermediate and aggregating ab-
stractions in terms of a SAML domain model. Hence, we would
have expected JAXB to exhibit a CP score higher than the Open-
SAML’s one. This, however, is not the case (see Table 5). Instead,
we found that for the OpenSAML implementation 31 classes were
needed (compared to 20 for JAXB). This gives rise to the conjec-
ture that designing a domain model (plus utility classes), rather than
providing direct access to the SAML/XML protocol and assertion
entities, can be detrimental to the framework integration effort.

LOC Measurement – Related quantitative approaches for com-
paring DSL and non-DSL programs are based on LOC measure-
ment [4, 12, 24]. The known limitations include a lack of stan-
dardized rules for data collection (especially in a multi-language
setting), an inverse relationship to notions of labor productivity [5],
and major threats to construct validity. For instance, structural com-
plexity (e.g., interaction level) and change locality cannot be cap-
tured by LOC-based measures alone.

When contrasting the LOC-based program sizes (see Table 4)
and the OP scores of the programs in our experiment (see Table 5),
there is no correspondence between the two resulting complexity
rankings. In fact, the OP measurement reports the lowest OP score
for xoSAML (266.76), while, at the same time, the corresponding
LOC size (144) compares to the those of the high-OP programs
JAXB (120) and OpenSAML (155). This indication, albeit our
experiment design being limited, supports a critique of LOC-based
measurement.

5.2 Threats to Validity

This exploratory experiment and its design pose several threats
to construct validity, to internal validity, and to external validity.
The threats have the potential of making wrong quantitative and
qualitative observations.

Construct validity – The Object-Points (OP) measure constructs
impose threats to our experiment’s validity. This is because a) the
Sneed OP approach per se is not used in its originating analysis
context, b) the measure constructs (class and message points) have
not been confirmed as appropriate means for approximating API
complexity by prior empirical work, and c) the choice of weight
loadings opens a range of methodical issues.

The Sneed OP analysis was originally calibrated for estimat-
ing development effort of large-scale software projects by predict-
ing program sizes from UML models and statement size estima-

tors, established by prior empirical mining in existing code bases
(e.g., average method sizes in terms of language statements). Con-
sequently, the comparatively small sizes of our programs might in-
troduce a bias towards an over- or underestimation of structural
properties (e.g., the weighted interface size). However, as we com-
pare projects of comparable size in our experiment, the OP mea-
surement for each project would be similarly affected; effectively
voiding the negative effects for the comparative analysis. That be-
ing said, we cannot rule out that the OP analysis produces distorted
results when applied to our small-scale projects of not more than
150 LOC and 30 UML classes.

Closely related to the above threat are the characteristic Object-
Points (OP) component weights and the issue of deciding on their
value loading for an experiment (e.g., the class WC , source WSO ,
and target weights WTO ; see Section 2.2). In the original applica-
tion context of the Sneed OP analysis, the weight values are either
adopted from closely related measurement instruments (e.g., the
Data Points analysis) and/or are mined for a target programming
language to establish an empirical predictor, e.g., for the average
method size specific to a given language. For our experiment, we
adopted the standard values documented for the Sneed OP analysis
[17]. While this has practical advantages (e.g., reusing default val-
ues established over multiple multi-language projects), it bears the
risk of underestimating observations, if the weights are too small,
or of overestimating them in the inverse case. As for the standard
WOC value, reflecting the average method size in terms of state-
ments, this caused us a particular tension: Sneed [17] states that this
weight should be based on the average size of methods (in terms of
language statements) for a particular programming language. For
an experiment design, this requires to perform a calibration (i.e. the
estimation of the average size of methods). This, however, assumes
the availability of a critical number of code bases in the targeted
language; a condition not satisfiable for the xoSAML DSL. Hence,
we reverted to the default value of 3. To mitigate this general threat,
we consulted the available literature on OP to investigate the origin
of the standard values. In addition, we exchanged emails with Harry
M. Sneed to clarify their justifications. Alas, for WSo and WTo , we
were not able to recover details about the choice of 2. This under-
mines attempts of qualitatively evaluating observations based on
message points (MP) scores.

Internal validity – The experiment design might have caused
our observations not to follow directly from the data collected, i.e.,
the program structures implemented and processed. The base arti-
facts of the experiment were four different APIs and four resulting
programs, implementing the single sign-on use case. While these
four implementations realize the same application scenario (SSO
service provider), the power and the completeness of their function-
ality differ with respect to framework and language specifics. We so
risk having compared different functionality, resulting in a mislead-
ing measurement. To mitigate this risk, we took care to define a pre-
cise application scenario, based upon which the API feature chunk
was extracted. In addition, the program implementations, while de-
veloped by one author alone, were reviewed by a second repeatedly.
Given the small program sizes (i.e., 48-151 LOC), we considered
this sufficient, at least for avoiding obvious design and implemen-
tation mistakes. Also, when relying on a single developer, there is
the risk of introducing a bias due to a continued learning effect be-
tween one implementation and another. We strove for containing
this threat by developing the four programs in parallel.

A key decision when designing the experiment was that of a sur-
rogate measurement: For the analysis, data is gathered on the syn-
tactical structure of the programs constructed from a specific API.
The analyzed program sets a concise working framework [6], i.e.,
the feature chunk of the API needed to implement a specific ap-
plication scenario. Considering programs integrating a given API

chunk as measurement proxy bears a considerable risk, e.g., by the
requirement to limit the program to the API chunk and the appli-
cation scenario. Analyzing the entire API, however could equally
introduce a bias because each API varies in terms of the provided
features (turning, e.g., into a comparatively increased interface size
and a greater interaction level). By observing the interface as used
to construct a given program, the resulting measurement is more
eligible for a comparative analysis. Most importantly, some factors
influencing the perceived complexity [6] can be considered con-
stant. For instance, the number and the type of working tasks to
complete is specific to a given scenario.

An important risk follows from the choice of surrogate-based
measurement of API complexity over a program structure imple-
menting a concise API feature chunk (i.e., a working framework
[6]). This requires the program code to be strictly limited to as-
sembling and configuring services offered by the framework APIs,
without introducing code and structural noise due to implementa-
tion deficiencies etc. To minimize this threat, we took the following
actions. First, API protocol steps (authorization request, assertion
handling) were implemented in terms of single operation declara-
tions; or, alternatively, a single method with a switch-threaded con-
trol flow. Second, declaring new classes and new operations for
the scope of the program was to be limited to a minimum. Ide-
ally, the programs as pure assembly and configuration components
should be implemented by a single operation. Exceptions were the
requirement to derive final from abstract classes, when expected
by the framework API protocol, or implementing operations from
required interfaces. While the simpleSAMLphp program did not
require a single class declaration, the API design of OpenSAML
and JAXB made it necessary to define new classes.

The need for UML representation of the analyzed programs is a
further source of possible distortion: On the one hand, the selective
inclusion of UML model elements into the OP analysis (see Sec-
tion 3.4), required to capture the chosen API feature chunk, might
result in a inappropriate mapping of source code to model struc-
tures. On the other hand, bridging between language and UML ab-
stractions involved critical decisions. For example, in xoSAML’s
host language XOTcl the equivalent for attributes can be consid-
ered both UML operations and UML attributes. The transforma-
tion rules, while applied uniformly to all projects, might have in-
troduced an unwanted bias.

Another concern is that one of the four framework APIs, the
xoSAML DSL, was designed and implemented by one of the au-
thors because no DSL-based API implementation for the SAML
domain had existed to our knowledge. Although we put a lot of
effort in implementing a generic facility, the risk remains that we
were biased towards a research prototype known to be explored in
our experiment.

For the same reason, we might have been biased when eval-
uating and selecting the Object-Point method for our experiment
design, adopting a measurement approach leaning itself towards
our DSL implementation. For this initial experiment, we avoided
this threat by selecting a standard variant of the OP analysis docu-
mented in literature [17]. The Sneed OP variant was picked by se-
nior researchers unaware of the DSL implementation details. The
selection criteria were the suitability for measuring diverse API de-
signs, written in different OO languages (XOTcl, Java), and the fit
for approximating our working notion of API complexity.

External validity – The generalizability of the experiment re-
sults is constrained. Our experiment is limited in its scope and ex-
ploratory in nature. As for the scope, the initial findings were drawn
from experiences with a single application scenario and with a sin-
gle embedded, textual DSL. xoSAML is not representative for the
considerable variety of embedded DSLs available. While xoSAML
shares some common characteristics of embedded DSLs (e.g., a

command-query style, use of a method chaining operator) and ex-
poses many general-purpose features of the hosting OO scripting
language XOTcl [15], these similarities are not sufficient for the
criterion of representativeness. In addition, and as already stated,
our working notion of complexity does not cover many relevant
dimensions of API complexity. Nevertheless, the experiment is re-
peatable for DSL-based APIs in other domains.

6. Related Work
In this section, we discuss related work on predominantly quantita-
tive evaluation approaches for DSL-based software projects.

Bettin [4] documents a quantitative study on measuring the po-
tential of domain-specific modeling (DSML) techniques. Using a
small-scale example application, Bettin compares different soft-
ware development approaches: the traditional (without any abstract
modeling), the UML-based and the DSML-based approach. Bettin
implemented the same example application using every single de-
velopment approach and compared the development efforts needed.
The efforts are measured by counting Lines of Code (LOC) and
necessary input cues called Atomic Model Elements (AME; e.g.,
mouse operations or keyboard strokes). The findings are that the
DSML-based approach required the least effort, with the UML-
based approach ranking second and so preceding manual modeling.

Zeng et al. [24] introduce the AG DSL for generating dataflow
analyzers. Their evaluation approach examines manual and gener-
ated creation of AG and corresponding C++ programs, by com-
paring the program sizes in terms of LOC and by contrasting the
execution times. The evaluation results suggest for a single appli-
cation scenario that the manually-written DSL code is more than
ten times smaller than its C++ equivalent.

Merilinna et al. [12] describe an assessment framework for
comparing different software development approaches (e.g.,
DSL-based vs. manual coding). The framework is also applied
to DSMLs. The primary unit of measurement in this framework
is time; for example, the amount of time needed to learn the
DSML, or, the time to implement a specific use case. The approach
therefore does not directly cover program structure as source of
API complexity.

A DSL-based refactoring of an existing simulator software in
the domain of army fire support is presented by Batory et al. [3].
Similarly to our approach, they conducted a quantitative evaluation
using class complexity measurement. Therein, the class complexity
is quantified by the number of methods, the number of LOC, and
the number of tokens/symbols per class. By comparing the class
complexities of both the original and the new DSL-based imple-
mentation, they state their DSL’s positive impact on the program
complexity, by reducing it approximately by a factor of two.

Kosar et al. [11] compare ten DSL implementation approaches
by looking at indicators of implementation and end-user effort.
In contrast to our work, Kosar et al. focus on technical options
for DSL implementation, such as source-to-source transformations,
macro processing, interpreting vs. compiling generators etc. Kosar
et al. address a different aspect than our experiment, namely the
DSL implementation itself.

In the direction of evaluating DSL implementation techniques,
Klint et al. [10] investigate whether development toolkits for ex-
ternal DSLs (e.g., ANTLR or OMeta) have an observable impact
on the maintainability of the resulting DSL implementations. Their
study reports on assessing the maintainability of six alternative im-
plementations of the same DSL using different host languages and
DSL toolkits. Based on this DSL portfolio, a quantitative measure-
ment is performed to compute an array of structural complexity in-
dicators: volume (number of modules, module members, and mod-
ule sizes in LOC), cyclomatic complexity, and code duplication ra-
tios. Klint et al. conclude by stating that using DSL toolkits does

not necessarily reduce structural complexity (that is, increases a
DSL’s maintainability), yet DSL generators decrease the need for
boilerplate code.

7. Conclusion
Based on a literature review on domain-specific languages (DSLs),
as well as our own experiences in building DSLs, we identified the
need for exploring quantitative measurement approaches, capable
of relating code-level properties of APIs to alleged effects of DSLs
on selected quality attributes. Available empirical evidence appears
too limited, particularly when expanded into statements on process
and business performance: For example, experience reports hint at
considerably reduced development times for DSL-based software
products, an improved time-to-market, and substantial reductions
in development and delivery costs (e.g., for developer or customer
trainings; see e.g. [3, 4, 24]).

In this paper, we report first quantitative observations on the
structural complexity of programs constructed from different types
of APIs, obtained from an exploratory experiment in the domain
of federated identity management. We adopted the Sneed Object-
Points (OP) analysis [17] for quantifying API complexity specific
to different programming interface designs. The OP scores derived
from our experiment point towards a reduced API complexity when
providing an embedded, textual DSLs as an API. If one accepts
the working definition of structural API complexity in this paper
and the Sneed OP measure constructs as adequate indicators, this
observation is a clear direction for follow-up, confirmatory studies.
By thoroughly reporting our experiment design, as well as by
providing our raw data5, this paper enables the reader to reproduce
our results and to adopt the experiment procedure for such follow-
up experiments.

As future work, we will address the identified threats to validity.
That is, we will further explore the usefulness of the OP analysis
to evaluate different API design approaches by refining its mea-
sure constructs. For this, we will also review alternative measure
constructs (as offered by OO complexity measurement [1]) to com-
plement an OP analysis.

Acknowledgments
We gratefully thank Jurgen Vinju for helping improve the paper as
a report of empirical research; and Harry M. Sneed for clarifying
details about the Object-Points analysis in private communication.
Thanks are also due to the anonymous reviewers for their helpful
and detailed comments.

References
[1] R. K. Bandi, V. K. Vaishnavi, and D. E. Turk. Predicting Mainte-

nance Performance Using Object-Oriented Design Complexity Met-
rics. IEEE Transactions on Software Engineering, 29:77–87, 2003.

[2] R. D. Banker, R. J. Kauffman, and R. Kumar. An Empirical Test
of Object-Based Output Measurement Metrics in a Computer Aided
Software Engineering (CASE) Environment. Journal of Management
Information Systems, 8(3):127–150, 1992.

[3] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder. Achieving
Extensibility through Product-Lines and Domain-Specific Languages:
A Case Study. ACM Trans. Softw. Eng. Methodol., 11(2):191–214,
2002.

[4] J. Bettin. Measuring the Potential of Domain-Specific Modelling
Techniques. In Proceedings of the 2nd Domain-Specific Modelling
Languages Workshop (OOPSLA), Seattle, Washington, USA, pages
39–44, 2002.

[5] J. Capers. Applied Software Measurement: Global Analysis of Pro-
ductivity and Quality. McGraw-Hill, 3rd edition, 2008.

[6] S. Clarke and C. Becker. Using the Cognitive Dimensions Framework
to evaluate the usability of a class library. In Proceedings of the 15h
Workshop of the Psychology of Programming Interest Group (PPIG
2003), Keele, UK, pages 359–336, 2003.

[7] M. Fowler. Domain Specific Languages. The Addison-Wesley Signa-
ture Series. Addison-Wesley Professional, 1st edition, 2010.

[8] P. Gabriel, M. Goulão, and V. Amaral. Do Software Languages
Engineers Evaluate their Languages? In Proceedings of the XIII
Congreso Iberoamericano en "Software Engineering", 2010.

[9] F. Hermans, M. Pinzger, and A. van Deursen. Domain-Specific Lan-
guages in Practice: A User Study on the Success Factors. In Proceed-
ings of the 12th International Conference Model Driven Engineering
Languages and Systems (MODELS 2009) Denver, CO, USA, October
4-9, 2009, volume 5795 of Lecture Notes in Computer Science, pages
423–437. Springer, 2009.

[10] P. Klint, T. van der Storm, and J. Vinju. On the Impact of DSL Tools
on the Maintainability of Language Implementations. In C. Brabrand
and P.-E. Moreau, editors, Proceedings of Workshop on Language
Descriptions, Tools and Applications 2010 (LDTA’10), pages 10:1–
10:9. ACM, 2010.

[11] T. Kosar, P. M. López, P. Barrientos, and M. Mernik. A preliminary
study on various implementation approaches of domain-specific lan-
guages. Information and Software Technology, 50(5):390–405, 2008.

[12] J. Merilinna and J. Pärssinen. Comparison Between Different Abstrac-
tion Level Programming: Experiment Definition and Initial Results. In
Proceedings of the 7th OOPSLA Workshop on Domain-Specific Mod-
eling (DSM’07), Montréal, Candada, number TR-38 in Technical Re-
port, Finland, 2007. University of Jyväskylä.

[13] M. Mernik, J. Heering, and A. Sloane. When and How to Develop
Domain-Specific Languages. ACM Computing Surveys, 37(4):316–
344, 2005.

[14] MetaCase. Nokia Case Study. Industry experience report, MetaCase,
2007.

[15] G. Neumann and U. Zdun. XOTcl, an Object-Oriented Scripting Lan-
guage. In Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference,
Austin, Texas, USA, 2000.

[16] OASIS. Security Assertion Markup Language (SAML) V2.0 Tech-
nical Overview. http://docs.oasis-open.org/security/saml/Post2.0/sstc-
saml-tech-overview-2.0-cd-02.pdf, 2008.

[17] H. M. Sneed. Estimating the costs of software maintenance tasks. In
Proceedings of the International Conference on Software Maintenance
(ICSM’95), Opio (Nice), France, October 17-20, 1995, pages 168–
181. IEEE Computer Society, 1995.

[18] M. Strembeck and U. Zdun. An Approach for the Systematic De-
velopment of Domain-Specific Languages. Software: Practice and
Experience, 39(15):1253–1292, 2009.

[19] J. Stylos and B. A. Myers. Mapping the Space of API Design Deci-
sions. In 2007 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 2007), 23-27 September 2007, Coeur
d’Alene, Idaho, USA, pages 50–60. IEEE Computer Society, 2007.

[20] A. van Deursen and P. Klint. Little languages: Little Maintenance?
Journal of Software Maintenance, 10(2):75–92, 1998.

[21] D. A. Wheeler. SLOCCount. http://www.dwheeler.com/
sloccount/, last accessed: October 14, 2008.

[22] D. Wile. Lessons learned from real DSL experiments. Science of
Computer Programming, 51(3):265–290, 2004.

[23] J. Wüst. SDMetrics. http://sdmetrics.com/, last accessed:
May 27, 2011, 2011.

[24] J. Zeng, C. Mitchell, and S. A. Edwards. A Domain-Specific Language
for Generating Dataflow Analyzers. Electronic Notes in Theoretical
Computer Science, 164(2):103–119, 2006.

