
A Structured Marketplace for Arbitrary Services

Ralph Vigne∗, Juergen Mangler∗∗, Erich Schikuta, Stefanie Rinderle-Ma

Workflow Systems and Technology Group
Faculty of Computer Science

University of Vienna
Rathausstraße 19/9

1010 Vienna, AUSTRIA

Abstract

Creating simple marketplaces with common rules, that enable the dynamic selection and con-
sumption of functionality, is the missing link to allow small businesses to enter the cloud, not
only as consumers, but also as vendors. In this paper we present the concepts behind a hybrid
service and process repository that can act as the foundation for such a marketplace, as well as a
prototype that allowed us to test various real-world scenarios. The advantage of a hybrid service
and process repository is, that it not only holds a flat list of services, but exposes a generic set of
use cases, information how specific services can be used to implement the use cases as well as
information to select services at run-time according to customers goal functions.

Keywords: Service Repository, Marketplace, UDDI, Multilevel Mircoflows

1. Introduction

The prospect of utility computing is simple: “pay and use” computing resources. The cur-
rently dominating manifestation is cloud computing. When it comes to the nature of this com-
puting resources we roughly differentiate between IaaS - Infrastructure as a Service (virtual ma-
chines, storage), PaaS - Platform as a Service (middleware), and SaaS - Software as a Service
(applications or services to be consumed by users).

Software as a Service (SaaS) allows a vendor to deliver complex functionality to a customer
over the network, avoiding installation and maintenance on client computers. We differentiate
between services targeted at users (exposed through an UI) and functionality consumable and
reusable by other software (many SaaS applications combine both).

Of course the potential advantages for companies are manifold [1], including the abilities
to (1) gain more flexibility when reacting to external influences, (2) reduce the amount of cap-
ital needed to explore new business areas, and (3) using resources more efficiently (thus saving

∗Phone: +43-1-4277-395 99, Fax: +43-1-4277-9 395
∗∗Phone: +43-1-4277-395 12, Fax: +43-1-4277-9 395

Email addresses: ralph.vigne@univie.ac.at (Ralph Vigne), juergen.mangler@univie.ac.at (Juergen
Mangler), erich.schikuta@univie.ac.at (Erich Schikuta), stefanie.rinderle-ma@univie.ac.at (Stefanie
Rinderle-Ma)

Preprint submitted to Future Generation Computer Sytems November 24, 2014

rinderas8
Schreibmaschinentext
“NOTICE: this is the author’s version of a work that was accepted for publication in Future Generation Computer Systems. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Future Generation Computer Systems [28, 1, 2012] doi:10.1016/j.future.2011.05.024¨

rinderas8
Schreibmaschinentext

energy, money and reducing the carbon footprint). In this respect cloud computing is the imple-
mentation of outsourcing for computing resources [2, p. 4ff].

With increasing availability of different services, heterogeneity aspects become apparent.
Making heterogeneous services (that possibly cover overlapping functionality) discoverable, and
interchangeable is hard. Partial solutions range from semantic annotations (e.g. OWL-S) and
service repositories to mashup and service composition techniques (e.g BPEL). However, cloud
solutions with their focus on utility and simplicity show, that the complexity necessary to inte-
grate services through these techniques should be hidden.

Computing resource vendors keep their own (although simple) interfaces. Every customer
trying to integrate several cloud services, or trying to dynamically select from a set of similar ser-
vices has to implement all the available interfaces and / or rely on semantic annotations provided
by the vendors.

The result is a heterogeneous environment with the following generic questions to be solved,
which define a working marketplace:

1. Can differences be explored? Can resources be selected dynamically when several ven-
dors provide similar resources?

2. Can independence be maintained? Can resources be swapped dynamically without
breaking applications, when several vendors provide similar resources?

3. Can vendors be hold accountable? Can the quality of services (or compound services) be
tracked? Is it possible to provide reliable accounting for service deficiencies (cf. Service
Level Agreements [3])?

This paper focuses on the first two topics, which are related to dynamic service description
and selection. We envision a marketplace, a set of resources or services, where consumers can
select from a variety of available services to build complex applications.

The contribution of this paper is the introduction of a hybrid process and service repository,
that does not only list services, but describes how to interact with them, to provide for such a
marketplace. The characteristics and advantages, that mark a substantial improvement in relation
to current approaches, are:

Use Case Based: The Marketplace exposes a set of common use cases for a certain domain.
The interaction between customers is solely based on these use cases (no specific technical
details have to be considered).

Unified Invocation: No need to differentiate between SOAP, REST, ... when using services
from the repository.

Unified Semantics: No need to differentiate between services from different vendors.

Passive and Scalable: Marketplaces provide no functionality besides registering vendors and
reading use case related data. No single point of access is necessary, the information can
be distributed to several nodes.

So instead of providing semantic information about services, that is hard to parse and hard
to match, the marketplace has to provide microflows. Lambros et al. [4] define microflows as a
sequence of actions taken to perform a business function provided by an operation. We extend
this definition by allowing not only sequences but complex process logic (e.g. parallel splits,

2

se
ar

ch
 &

b
o
o
k search for

movie
select
show

book
ticket

Figure 1: Cinema Use-Case

loops, . . .), to allow for a greater flexibility in orchestrating the actions. In OWL-S terms our
microflows would represent the service model (see Martin et al. [5]).

In order for a client to include services, it can collect microflows from the marketplace and
(1) execute them locally or (2) leverage additional cloud infrastructure (a cloud process execution
engine) to delegate execution and collect the result.

To prove the feasibility of our system we selected a suitable real world scenario: a trip to
the movie theater. The rationale behind selecting this scenario was: (1) lots of competing movie
theaters exists, (2) they all provide online information about movies, (3) they all provide slightly
different ways to book movies, (4) the service interfaces to book movies are available without
costs. We added over 40 real cinemas to our repository (SOAP, REST, plain websites), designed
the generic use case ”search and book a movie” (see Fig. 1) to be covered by the marketplace
and provided the necessary information for all cinemas to comply with the use case.

Fig. 1, although simple, includes all interesting aspects, like (1) compiling a list of movies,
cinemas, locations and times from a broad set of services according to user input (search for
movies), (2) the selection of a particular service / show by a user (or user defined goal function)
(select show), and (3) the actual booking of a ticket for a selected show, by calling a particular
service (book ticket).

We think that marketplaces providing a high-level interface to unify heterogeneous cloud
resources (including e.g. Service Level Agreement provision and negotiation [3], secure payment
utility provision [6]) are the missing link in a heterogeneous cloud future.

The paper is structured as follows: in Section 2 structural and service filtering requirements,
as well as heterogeneity aspects are highlighted. Section 2 concludes with requirements for client
application development. In Section 3 the nature of a cloud marketplace is discussed, which leads
to a detailed description of the cinema example that is used throughout the paper. In Section 4 a
presentation of the concepts and algorithms involved in implementing the marketplace is given.
Section 5 continues with a focus on concepts related to abstracting and adding vendor services
to the marketplace. Section 6 presents related work. In Section 7 we present a run-time analysis,
comparing the performance of the marketplace to OWL-S based systems. Finally, Section 8
outlines how and why secure anonymous payment and SLA negotiation play an important part
in a marketplace. We conclude our work in Section 9, including a short outlook on future work.

2. Requirements and Design Goals

As stated above, for Software as a Service (SaaS) we differentiate between two kinds of
applications:

• End user cloud applications are intended to replace the current “buy, install, use” cycle
with a much simpler, network based “pay and use” model. For the end-users the world
stays the same, it’s just simpler for them to maintain software and switch between devices.

3

• Abstract cloud services represent a differentiation in the way how business is done in
the cloud. Instead of targeting end-users directly, these services try to deliver benefit or
information that is to be leveraged by end-user cloud applications. They represent the
migration path from a cloud world with flat consumer - vendor relations to a differentiated
market based cloud with complex customer - vendor - vendor relations.

As stated by Schubert et al. [1, p. 8pp] cloud systems can be categorized by different aspects
e.g. stakeholders or types. According to the proposed categories we imagine a marketplace to
be operated as a public community SaaS cloud. Similar to Apple’s App Store, users benefit
the most when many (interchangeable) services exist inside a service domain. Potentially this
leads to very high-quality results for the user-requirements. Consumers and vendors benefit
because leveraging these replaceable services reduces their dependence on external influences.
For vendors the reduced amount of money needed to provide a service (by relying on other basic
services), can accelerate the creation and adoption of service based clouds. Community clouds
overlap with grid technologies, specially eBusiness grids, which aim for similar goals.

Marketplaces have to allow vendors to provide services as well as to consume or refer to other
vendors services, under the additional constraints: (1) services providing similar functionality
can act as drop in replacements and (2) user requirements can transparently affect service use at
run-time.

A marketplace for services has to deal with two different kinds of services: (1) high level ser-
vices, offering powerful functionality by aggregating the interfaces and combining the execution
of (2) low level, vendor specific services. The low level services have to be selected according to
properties relevant to a client.

A very important goal is: the marketplace has to be passive. We do not think that the market-
place should provide own functionality, instead it has to be a repository for descriptions, which
acts as a container for common rules like payment commodities (i.e. a common payment ser-
vice), Service Level Agreements (SLAs) or a SLA negotiation schema.

In this section we provide a detailed discussion of these requirements and goals.

2.1. Heterogeneity Aspects: Parameters and Microflows

Services covering similar use cases, may have different APIs and use different service tech-
nologies (SOAP, REST, ...) to expose their functionality. Therefore a unified way to describe
how to interact with services has to be provided. Services consist of two parts: (1) interfaces
containing in- and output parameters (syntax) and (2) microflows describing ways to interact
with them (semantics).

Vendors of a similar low level services need similar input data. The parameters of their
interfaces may have different names, types and formats but in general they are very similar.
High level interfaces aggregating interfaces of low level services provide always subsets of the
functionality of actual low level services. The marketplace can thus enforce design time checks
if a market participant (vendor) sticks to the marketplace rules.

Even if some parameters of a low level service interface are semantically equal they may
have different formats. It is also possible that a vendor provides the defined functionality using
more then one service calls and therefore must assign parameter subsets to different service calls.
An additional case is, that a vendor service needs (1) additional or (2) less data than provided by
the high level service. Case (2) highlights, that although the semantics provided by the high level
service is a subset of the semantics provided by the low level services, the parameters themselves

4

have to be a superset. Case (1) is only possible if it is possible to define sane, immutable defaults
for low level services.

Using the full power of a process description language (like BPEL) to describe how each low
level service must be invoked to provide a functionality described by a high level service allows
a repository not only to function like UDDI yellow pages [7], but also to provide a foundation
for interaction with services.

Heterogeneity is not a technical obstacle but a strength of a marketplace.

2.2. Two-Level Structure
The high level (class level) provides well defined functionality to a marketplace customer

(e.g. in terms of a farmers market: a common metric system, a set of terms to describe and thus
compare fruits and a common way to pay for fruits etc.). Therefore this level defines an abstract
service description (see also Fig. 3(b) for details). This description has to include

• class level operations. In Fig. 2 each of the three expanded pools represents one class
level operation. The calls to services may target (1) other class level operations (e.g. call
class search in Fig. 2), (2) operations provided by services of vendors (e.g. perform search
in Fig. 2) or (3) external resources (e.g. select show in Fig. 2). For describing the class
level operations (and their three targets) a process description language (e.g. BPEL) is
suitable.

• a schema for properties. It defines what data each service has to provide. This data could
be used for an appropriate selection of a particular service. This includes static information
like location, that is immutable and can function as a base for structuring the marketplace
(arranging services into groups and subgroups).

• a schema for service description. By defining one schema for all services within an
application domain we encourage service vendors to use this schema. In order to add
their service to the repository they have to provide a working translation to the service
description, as described below.

On the low level (instance level) the heterogeneous resources / services are annotated and
assigned to the generic high level functionalities in order to make them exchangeable. Our survey
showed that each low level service, even if it provides similar functionality, has its own way to
realize it. In order to express the invocation of a service in terms of the abstract description we
can again leverage a process description language.

Doing so allows a vendor to keep its own interface and supports the inherent heterogeneity
demands. In Fig. 4 we show three example instance level descriptions for the search operation
provided directly by each vendor. Each of these three processes represents one kind of service
we have elaborated in our survey.

2.3. Client Perspective
While UDDI / OWL-S [5] concentrates on allowing computers to discover and use hetero-

geneous services at run-time, the marketplace concentrates on providing use cases, which are
selected at design-time (by humans). In order for a client to use the cases defined in an abstract
service description it has to implement class level operations. As the class level operations are
represented by microflows, these microflows have to be executed by a suitable process execution
engine (depending on the type of process execution language exposed by the marketplace).

5

During the execution of a class level microflow, instance level microflows are included dy-
namically, i.e. by spawning sub-processes.

3. A Sample Marketplace

To exemplify our approach we selected a particular domain: online cinema services. This
field seemed particularly suited because a wide array of independent resources related to search-
ing and booking movies exists. We conducted an extensive survey for over 40 cinemas to find
out and classify:

• Which kind of functionality is provided?

• What are the technical properties of the provided functionality?

This survey is the basis for the example that is used throughout this paper. It also provides
the base data used in our implementation.

The cinema domain yields a number of subgroups for a closer specification of the offered ser-
vices, like Arthouse, Multiplex, Drive-in. The common (and simple) functionality for cinemas
is: search for a given movie and book tickets for a particular show. All cinemas use differ-
ent techniques and interfaces to represent their services. Some Cinemas provide services using
SOAP / WSDL, others offer REST interfaces. Some cinemas even provide static websites and
rely on emails for the booking process.

Finally we collected static information about cinemas: service vendor name and email, ad-
dress, geo-location, . . .

After analyzing this data we came up with the use case shown in Fig. 2, to leverage the
interchangeable services:

Search: Customer use this operation to search through the shows of a vendor for a particular
movie and date. It returns an XML list with detailed information about each matching
show.

Book: Customers use this operation to book tickets for a given show. It returns the reservation
ID needed to pick up the tickets at the counter.

Search & Book: This operation searches through the shows of all vendors within a given
resource for a particular show on a particular date. The return of each vendor is aggregated
into a list and sent to the resource provided by the customer. We assume that in our example
this resources allows the customer to select a show. At the end the system books the tickets
for the selected show.

4. Implementation

To allow easy access to our marketplace we decided to realize it as a simple RESTful appli-
cation (see Fielding [8]). The marketplace allows vendors to register and maintain their services
and domain experts (the marketplace operators) to create and maintain application domains.

Fig. 3(a) shows the structure of the RESTful marketplace. It is organized in a hierarchical
manner: the class level is represented at the top, with the properties spanning a resource tree in
the middle, and the actual instance level services in the branches. As the marketplace is only

6

search search & book book

call class
search

select
show

call class
book

perform
search

perform
book

Figure 2: Inter-Dependencies of Class Level Operations

7

R
o
o
t

http//market:uri

C
la

ss
 L

e
v
e
l

Cinemas ...

Arthouse Multiplex

In
st

a
n

ce
 L

e
v
e
l

abstract definition

abstract definitionabstract definition

Apollo...

abstract definition

DonauPlexx...

abstract definition

...

V
e
n

d
o
rs

C
in

e
m

a
 D

o
m

a
in

M
a
rke

t-
p

la
ce

(a) Yellow Information

schemasoperations

abstract definition

search booksearch & book

Parameter
Schema

Block

Parameter
Schema

Block
output-schema input-schema

Parameter Schema BlockParameter Schema Block

service properties

(b) Green Information

Figure 3: Structure of the Marketplace

8

passive (no functionality apart from reading stored information) it is easy to split up this tree of
static documents, distribute it to several nodes and make it accessible through http-proxy load-
balancing [9], thus providing scalability and the ability to merge independent marketplaces.

4.1. Schemas

From every node in the RESTful marketplace application it is possible to reach the abstract
service definition (see Fig. 3(b)) which represents the use cases / green information in UDDI
terms. The schemas included in the abstract definition have the following functions:

• Allow new service vendors to perform a static check of the information (and the format)
they provide to the marketplace. In reverse the marketplace can perform these checks on
registrations (or changes).

• Allow customers to check for changes in the use cases.

There are two separately accessible schemas available, both expressed in XML RNG [10]
schema:

4.1.1. Service Schema
The service schema allows the marketplace to perform structural checks on services provided

by service vendors. It has the purpose to ensure that all services provide the necessary operations
and properties. It can also act as a central point for providing:

• documentation for abstract service descriptions,

• payment rules common to all services in this domain of the market place, and

• other global SLAs common to all services in this particular domain of the marketplace.

From this class level schema, an instance level stub can be generated automatically. The
service schema consists of three parts:

• The properties schema as defined in the next sub-section. This schema is duplicated here
to allow for checking all information a vendor provides to the marketplace in one step.

• A list of instance level operations generated by parsing the abstract service description
(level 1) and extracting a list of instance level service calls.

• The controlflow schema depending on the used description language (e.g. BPEL schema).

4.1.2. Properties Schema
Properties (as described in Section 2) provide a way to query services within a class during

the execution of the process. This allows for service filtering.
The purpose of this schema is to allow for the definition of information used to structure the

repository and thus aiding the service filtering. All properties have to be provided by the service
vendors.

For the cinema domain an example properties schema looks as follows:

9

List. 1: Properties Schema
1 < rng : grammar xmlns : d a t a t y p e L i b r a r y = ” . . . ” xmlns : rng = ” . . . ” >
2 < rng : s t a r t >
3 < p r o p e r t i e s xmlns = ” . . . ” xmlns : d = ” . . . ” >
4 < rng : e l e m e n t name=” a d d r e s s ”>
5 <d : c a p t i o n xml : l a n g =”en”>Address < / d : c a p t i o n >
6 <d : c a p t i o n xml : l a n g =”de”>Adresse < / d : c a p t i o n >
7 < rng : e l e m e n t name=” s t r e e t ”>
8 <d : c a p t i o n xml : l a n g =”en”> S t r e e t < / d : c a p t i o n >
9 <d : c a p t i o n xml : l a n g =”de”> S t r a s s e < / d : c a p t i o n >

10 < rng : d a t a t y p e =” s t r i n g ” />
11 </ rng : e lement >
12 . . .
13 </ rng : e lement >
14 </ p r o p e r t i e s >
15 </ rng : s t a r t >
16 </ rng : grammar>

The example includes a property address with some nested fields like street. The captions
can be used by clients to generate input UIs.

4.2. Class Level Operations

A list of operations and the according class level microflows are provided on each level in the
tree to increase flexibility of the marketplace. When the marketplace is distributed over different
nodes, and the proxy system fails it is still possible to find the according class level information
for services stored in branches. Secondly, as the marketplace root is not necessarily correlating
with the server root (e.g. the marketplace may be located at http: // test. org/ something/
.. .), access to class level information is much simpler when it is possible to have it available at
every branch of the tree (as it is the same for every branch in a domain anyways).

To enable marketplace customers to use them, a list of defined operations is made available
in the following form:

List. 2: List of Operations
1 < o p e r a t i o n s xmlns =” h t t p : / / r e s c u e . o rg / ns / domain /0 .2” >
2 < o p e r a t i o n name=” s e a r c h ” s h o r t =” Se a r c h f o r shows ” />
3 < o p e r a t i o n name=” s e a r c h a n d b o o k ” s h o r t =” Se a r c h f o r shows , s e l e c t show and book t i c k e t s

” />
4 < o p e r a t i o n name=”book ” s h o r t =”Book t i c k e t s f o r show ” />
5 </ o p e r a t i o n s >

The list of operations is generated by parsing the class level information (extracting calls
from the process definition) and thus has not to be defined and maintained explicitly.

The name (ID) is used in (other) class level microflows to refer to an operation. The name
is also used when querying information about the operation through the RESTful marketplace
interface: http: // test. org/ something/ Cinemas/ operations/ search .

4.2.1. Description
A single class level operation is defined by a class level microflow describing how other

operations and resources are used (for an example see Fig. 2). Expressing the microflow in
a process description language (like BPEL), we also support the definition of data elements to
store local information or state while executing operations. Class level operations can also use
and combine other class level operations and thus provide new, more complex functionality. This
technique enables vendors to provide meta-operations thus generating additional business value
through providing new / simple high-level API (much in line with the core cloud principles).

10

http://test.org/something/...
http://test.org/something/...
http://test.org/something/Cinemas/operations/
search

To illustrate how the operations within an application domain are interrelated we give a short
explanation of the three different types of calls that are allowed to be made through class level
microflows:

Calling other class level operations allows to build more complex class level operations by
reusing already defined ones and combining them with other calls within a new operation.
Using this type of calls allows us to realize the method search & book in our example.

Calling instance level operations invokes functionality of a vendor at instance level. Each
instance level operation itself represents a microflow describing exactly how to interact
with a particular vendor service. In our example these are the operations search and book.

Calling external resources targets the invocation of any resource providing a RESTful or
SOAP interface. We use this type to include functionality not intended to be provided by
the marketplace, but being part of the common rules for the marketplace, like the selection
algorithm for services (like select show in our example). Of course this may include refer-
ring to human tasks (i.e. UIs waiting for user input). In fact select show (which refers to
selecting the actual cinema / time) is a human task.

4.2.2. Parameters Schema Block
Within class level operations, a call to an instance level operation depends on a set of input

and output parameters.
The schema is generated by finding all parameters and endpoints defined within a microflow.

It is necessary to ignore all intermediate parameters, that are used to transfer data between two
subsequent calls.

List. 3: Algorithm for Parameter Generation
1 # C o l l e c t i n p u t d a t a
2 ADD a l l i n p u t s t o i n p u t s a r r a y
3
4 # C o l l e c t o u t p u t d a t a
5 ADD a l l o u t p u t s t o o u t p u t s a r r a y
6
7 IF i n p u t schema i s r e q u e s t e d
8 FOR EACH i n p u t FROM i n p u t s a r r a y
9 DELETE i n p u t IF i n p u t i s a s s i g n e d by an o u t p u t

10 END
11
12 # C o l l e c t a d d i t i o n a l e n d p o i n t p l a c e h o l d e r s
13 COLLECT a l l p l a c e h o l d e r s and add t o i n p u t s a r r a y
14 RETURN i n p u t s
15 ELSE # o u t p u t schema i s r e q u e s t e d
16 FOR EACH o u t p u t FROM o u t p u t s a r r a y
17 DELETE o u t p u t IF o u t p u t i s a s s i g n e d by an i n p u t
18 END
19 RETURN o u t p u t s
20 END

A class level microflow can include endpoint placeholders. They allow customers to use
their own services during the execution, like e.g. the selection of specific resources according to
a users goal function. An example for this is select show. As endpoint placeholders have to be
provided by the customer, they are added to the list of necessary inputs.

Again we use XML RNG schema standard to describe these interfaces (including the defini-
tion of nested elements and complex data types):

List. 4: Extracted Input Information
1 < rng : grammar xmlns : d a t a t y p e L i b r a r y = ” . . . ” xmlns : rng = ” . . . ” >

11

2 < rng : s t a r t >
3 < rng : e l e m e n t name=” a d d i t i o n a l e n d p o i n t s ”>
4 < rng : e l e m e n t name=” s e l e c t o r s e r v i c e ”>
5 <d : c a p t i o n xmlns : d = ” . . . ” >Used a t c a l l (s) : p e r f o r m s e l e c t < / d : c a p t i o n >
6 </ rng : e lement >
7 </ rng : e lement >
8 < rng : e l e m e n t name=” i n p u t −message ”>
9 < rng : e l e m e n t xmlns : d = ” . . . ” name=” t i t l e ”>

10 <d : c a p t i o n xml : l a n g =”en”>M o v i e t i t l e < / d : c a p t i o n >
11 <d : c a p t i o n xml : l a n g =”de”> F i l m t i t e l < / d : c a p t i o n >
12 < rng : d a t a t y p e =” s t r i n g ” />
13 </ rng : e lement >
14 < rng : e l e m e n t xmlns : d = ” . . . ” name=” d a t e ”>
15 <d : c a p t i o n xml : l a n g =”en”>Date < / d : c a p t i o n >
16 <d : c a p t i o n xml : l a n g =”de”>Datum< / d : c a p t i o n >
17 < rng : d a t a t y p e =” d a t e ” />
18 </ rng : e lement >
19 </ rng : e lement >
20 </ rng : s t a r t >
21 </ rng : grammar>

As shown in List. 4, each parameter has a data type and one or more caption elements. The
multi-lingual captions can be used to generate UIs either for data input or for presenting results
to customers. The data schema can be used to validate data sent to and received from the class
level operations.

5. The Vendors Perspective

As explained above the instance level is about real services. This includes a set of properties
for a specific service as well as microflows that describe how to invoke a particular service to
implement instance level operations.

All instance level information is validated against the schema provided at class level (see
Section 4.1.1 for details).

At the instance level calls to “external resource” are not allowed in the microflow. The in-
stance level microflows represent atomic interactions between a particular customer and a partic-
ular vendor, after the vendor has been selected from the marketplace by matching the customers
needs to the set of properties defined at the class level.

At the instance level, microflows represent atomic interactions (in database terms: transac-
tions) with real services. As elaborated in previous work [11], we provide alternate microflows
to rollback / retry these transactions: (1) compensate, (2) undo, (3) redo, (4) suspend and (5)
abort.

Fig. 4 illustrates microflows of the instance level operation search describing normal exe-
cution transitions we used in our prototype implementation. Three kinds of vendors have been
identified: vendors ... (1) only providing a simple HTML page, (2) offering a RESTful service,
and (3) providing a SOAP interface. This example shows how different functionality from pa-
rameter transformation to process logic can be expressed using microflows. Because all three
microflows implement the same interface and are described using the same language, they can
be transparently used by customers.

As all three microflows shown in Fig. 4 are invoked through the class level operation ’search’,
they all share the same input format and all deliver output in the same format.

The Input message includes title, date and time when a user wants to watch a movie. The
Output message includes a list of possible shows, as well as details about these shows.

For a Static Cinema Service the microflow is defined as follows: in the step “transform
Input” the input date and time information has to be converted to a different format, in “request

12

Cinema I (Static)
Instance Level

S
ta

ti
c
 C

in
e
m

a
 S

e
rv

ic
e

Input

Output

request
homepage

filter
Output

transform
Output

transform
Input

Ci
ne

m
a

II
 (

R
ES

Tf
ul

)
In

st
an

ce
 L

ev
el

RESTful Cinema Service

Input
Output

request
Output

transform
Output

transform
Input

Cinema III (SOAP)
Instance Level

S
O

A
P

 C
in

e
m

a
 S

e
rv

ic
e FilmList

Request

request
FilmList

add data
to Output

transform
Input

request
FilmInfo

FilmInfo
Request

FilmInfo
Resp.

FilmInfo
Resp.

more
FilmList
entries?

transform
FilmList

Figure 4: Three Examples of Cinemas Instance Level Microflows

13

homepage” the page (in XHTML format) is fetched. In the step “filter Output” the relevant
information is extracted, and compared against the input (title, date, time, ...). The final step
“transform Output” translates the filtered information to the necessary format expected from the
(class level) operation ’search’.

For a RESTful Cinema Service, some steps are different. Again, the input date and time
have to be converted (“transform Input”). Then the RESTful service is queried for results with
the Input data (“request Output”). A filtering is not necessary, while the step “transform Output”
is still available.

For a SOAP Cinema Service the microflows tend to be more complex. Again, the input date
and time have to be converted (“transform Input”). After requesting a list of films constrained
by the input data (“request FilmList”), the film id’s have to be extracted (“transform FilmList”)
and looped. For every film id, a call to the SOAP interface of the service is made (“request
FilmInfo”), the result is then added to the output (“add data to Output”).

It can be observed, that the microflows for static cinema services are most resource intensive
for clients and include complex transformation and extraction steps, whereas the microflows for
SOAP cinema services typically contain more complex logic and produce more network traffic
because of a high number of calls. RESTful cinema service normally provide a good balance
between two extremes.

6. Related Work

A repository always manages metadata related to services. As pointed out in [12, 13] meta-
data management covers the following topics:

1. Distribution, uniformity of access.
2. Metadata should be accessible using service-oriented protocols.
3. Management of the metadata life-cycle.
4. Granular and uniform access control to metadata.

Comparing the above mentioned concepts the marketplace covers the topics 1, 2 and 4. As
described in this paper, vendor maintained metadata (instance level) is available through the
RESTful API. A common, reliable schema for the metadata is accessible at class level. The topic
Management of metadata life-cycle is not covered by the marketplace. The client needs to take
care about this by itself, e.g. using the techniques associated with ATOM feeds.

Bernstein et al. [14] pointed out that a repository should store information about the descrip-
tion of objects and the location of objects. They further stated that the most important aspect of
a repository is a simple interface to interact with it. We came to the same conclusion and there-
fore provide a resource oriented and RESTful API. It allows customers to request ATOM feeds,
listing the provided resources and further to request the schemas and microflows describing each
resource.

Additionally Jha et al. [15] claimed that a system, which is intended to act as a marketplace
for services, must provide two different kinds of services: (1) high level services, which offer a
more powerful service and aggregate the interfaces and combine the execution of a number of
(2) low level services for simpler usage. The usage of high level services is typical for cloud
computing scenarios. Our service marketplace closely resembles this by providing class and
instance level.

14

A common technique to explore services provided over the web is UDDI [7]. But as stated
by Blake et al. [16] most of the resources consumed by UDDI are used for message parsing and
transmissions. UDDI’s weakness is, that it is just a flat list of services. Finding similar services
depends on semantic annotations on the actual services. In ’A RESTful Repository To Store
Services For Simple Workflows’ [17] we also discuss the feasibility of UDDI in the context of
service repositories.

Our approach also shares many goals with OWL-S [5]. OWL-S is used to bring semantic
annotations to UDDI. Instead of simple querying for service parameters, it allows for sophisti-
cated matchmaking. It furthermore provides a process model that describes how to use a service
to achieve certain goals. It as well provides information for the actual execution. In Tab. 1 we
compare the concepts of UDDI, UDDI extended with OWL-S and the marketplace.

All three concepts allow for service groups, whereas nested groups (tree structure) are only
implicit in UDDI (by creatively using additional parameters). All three techniques support an-
notation of attributes to services. These attributes can be used when specifying a query. The
browse pattern refers to returning a compact service list without all the details. The market-
place only differs from the other two solutions in the format of the returned data (ATOM). The
drill-down pattern refers to returning detailed information for actual services. As the market-
place ensures the technical compatibility of all possible services, no services have to be excluded
for technical reasons. Thus it returns potentially more services (S M 6 S Q, see Tab. 2 for de-
tails). The invocation pattern is supported by all three solutions. Service Selection holds the
biggest conceptual difference between the three techniques. The marketplace focuses on “usage”
or “use cases” instead of services (functionality first, services later), all services associated with a
functionality fully support the use case. Interface unification means that different services with
slightly different syntactic properties are to be used. Whereas for UDDI this has to be ensured
by the client, an OWL-S enabled repository delivers information how a client may transform and
invoke a service. For an example implementation of OWL-S see Srinivasan et al. [18]. With the
marketplace this is not necessary, as both the transformation and invocation is contained in the
microflow. By knowledge about the item usage we express that for the first two approaches in-
formation is returned that has to be analyzed, before calling an actual service. As the marketplace
is focused on use cases, this step is not necessary.

7. Run-Time Analysis

As the marketplace is passive (data is only read, no transformations take place at server), a
benchmark would only show our prototype’s ability to serve static files. Groups and subgroups
(e.g. cinemas, multiplex) only consist of static information. When this information is distributed
to different nodes, and load-balanced by a http-proxy, a benchmark would additionally test the
http-proxy’s performance, and due to the simple topology it will show linear scalability. The
overhead of a redirect through the http-proxy is negligible. For our prototype (the booking of
cinemas) most of the time (> 99%) is spent calling the actual services (cinemas).

Therefore we decided to compare our approach to OWL-S, as OWL-S has similar goals but
a very different way to achieve them. To compare the performance of the two approaches we
compare how resource intensive typical steps are.

In Tab. 2 we show six steps that must be performed whenever a service from the registry /

marketplace is used.
Service Query: Both techniques can query for services. While OWL-S searches through

an ontology for semantic matches, the marketplace traverses a tree and executes a simple
15

Tab. 1: OWL-S vs. Marketplace

D
iscoveryG

roups

N
ested G

roups

Attributes

Brow
se Pattern

D
rill-D

ow
n Pattern

UDDI

Yes

Implicit

Yes

1

n

UDDI + OWL-S

Yes

Explicit

Yes

1

n

Marketplace

Yes

Explicit

Yes

1

m

Invocation Pattern

Yes Yes Yes

B
in

d
in

g

Interface U
nification Pattern

Focused Item

WSDL

Service

Client

WSDL

Service

Client/Server

abstract definition

Use-Case

Server

D
escription Language

Know
ledge About Item

 U
sage

Client Client Server

S
election

Attributes Semantics Usage

Based on

16

Tab. 2: Run-Time Analysis OWL-S, Marketplace

 (1) Service Q
uery

(2) M
atch M

aking

(3) Request Service M
odel

(4) D
erive Input Transform

ation Schem
a

(5) Service M
odel Execution

(6) D
erive O

utput Transform
ation Schem

a

Run-Time

OWL-S

Registry/Server

Marketplace
When is
it done?

Who does
the work?

When is
it done?

Who does
the work?

Run-Time
Effort

Repository/Server

Run-Time

Run-Time

Run-Time

Run-Time

Run-Time

Client/Application

Provider

Generated by
the Client

Client/Application

Generated by
the Client

Design-Time

Design-Time

Design-Time

Run-Time

Run-Time

Run-Time

Process- /
Application Designer

Service-Designer/
Provider

Client/
Workflow Engine

Repository/Server

Service-Designer/
Provider

Run-Time
Effort

N * SA* C * PA 1 * SA* C * 1

m
e
d

h
ig

h
h

ig
h

h
ig

h
lo

w
lo

w

lo
w

lo
w

n
o

n
e

n
o

n
e

n
o

n
e

m
e
d

SQ * AA
2

SM * AA
2

SM * AA
2

SM SM

0

0

Σ
SM

i=0
Ei Σ

SM

i=0
Ei

0

Variable Intent Relations
N

S

P

C

A
Ei

Classes
Instances
Instance Properties

Query Constraints

Instance Interface
Instance Process

SM ⊆ SQ ⊆ SA

PS ⊆ PA

AP ⊆ AA

∀i ∈ SM

Runtime Analysis Cheat Sheet

parameter query (see Fig. 3(a) for details). In general the effort for parsing an ontology is
1+(N−1) = N, where N is the number of all concepts/classes within it. The algorithm first
searches the directly addressed concept and further collects all concepts related to it up to
the second degree [18], which may be all included concepts (N). S A defines the number
of all services/instances stored within the ontology. Because each service (S A) may be
related to each class (N), the overall effort is N ∗ S A. In OWL-S each service provides
its own conceptual ontology defining its properties (PS) using attributes. When the query
is compared with the properties of the services (PS), the properties ontology (PA) has to
be searched for each property referenced in the constraints (C) separately. Because PS

could be equal to PA, resulting in the relation PS ⊆ PA, the effort for property comparison
per services is C ∗ PA. Therefore the overall effort in OWL-S during the query execution,
where all services and its properties are checked, is up to N ∗ S A ∗ C ∗ PA. Because the
marketplace does not support relationships between classes at the same level, N is always
1. Furthermore, the marketplace provides strict schemas for properties definition (see Sec.
4.1.2) resulting in P equals 1 for each service, as no ontology needs to be searched. These
two definitions lead to an overall effort of the marketplace of 1 ∗ S A ∗ 1 ∗C.

Match Making: An OWL-S based system has to compare the expected capabilities for a
request, to the advertised capabilities of the services selected in step 1 (see Tab. 2 line 1)
to which we further refer as S Q given that S Q ⊆ S A. How often the ontology is searched for
each service (S Q) depends on the interface provided by the process (AP) and the collected
interfaces of all advertised services (AA). Therefore the overall effort for matchmaking is
S Q ∗ AP ∗ AA. As it is given that AP ⊆ AA, the overall run-time effort is up to S Q ∗ A2

A. This
step is not necessary for the marketplace, as it is ensured that all services share a common

17

Service Vendor
Client

Account Provider
(Bank)

Trust Manager
(Marketplace)4

1

6
2

3

5

Figure 5: Secure Electronic Marketplace Transactions

schema (AP = AA), which results in an overall effort of zero.
Request Service Model: Both systems request the service model / instance level description

(Section 5) for each service. We assume that the effort is equal for both systems and
depends on the number of matching services from step 2 (S M , thus there is a relation
S M ⊆ S Q ⊆ S A).

Derive Input / Output Transformation Schema: A client using an OWL-S based system has
to interpret the returned information, and figure out how to transform its data to fit a service
call. Some implementations e.g. Match Maker [18] generate this information during step
2 (see Tab 2 line 2) and therefore avoid additional effort without significantly increasing
its effort for step 2. If not, the effort of this step is similar to the “Match Making”, as
again each parameter of the process (AP) has to be transformed for each service (S M) to
fit to the service interface defined in AA with the given relation AP ⊆ AA. Therefore the
effort in OWL-S is S M ∗A2

A. As for the marketplace, both, the actual transformation and the
service call are part of the fetched microflow. The client can supply local service endpoints
that contain functionality how to create subprocesses for instance level connections, and
service selection. Still the effort for the marketplace client is zero.

Service Model Execution: The service model (process in OWL-S terms) has to be orches-
trated from the OWL-S client. The microflow is called for the marketplace. The effort to
do so should be similar, as the concept is the same. We define this effort related to the
number of instruction included in the according microflow by

∑S M
i=0 Ei.

We conclude that the marketplace concept is more efficient when services have to be discov-
ered, selected and called based on use cases. This better performance characteristics result from
the fact that the marketplace does not support ontologies and not from conceptual improvements.

8. Marketplace Integration

In order for a marketplace to thrive we identified three important ingredients;

Reliable Results: as addressed in the previous sections a desired behavior of a repository of
a marketplace is, that for given use-cases (class-level operations), it has always to return a
result. Use-cases (see Fig. 2) are executable microflows with well defined instance level
(e.g. perform search) or class level calls (e.g. perform class search):

– Calls receive a set of inputs and produce a set of outputs (as defined in the parameter
schema block in Section 4.2.2).

18

– The user may select a set of instance level services filtered by properties as defined
in Section 4.

– It is up to the user which instance level microflow to execute, they all take the same
input and all produce the same output.

SLA-Mapping and Uniform SLA-Negotiation: As elaborated by Risch et al. [19], it is cru-
cial, to ensure the all market participants are able to interpret SLA’s in a common way.
SLA’s may be rather static properties (see Sec. 4), that can be saved in the repository, or
dynamic values that need to be queried from the service each time a service is planned
to use. Thus, negotiation involves the transformation of values from different services to
establish a common understanding between client and services. We envision this transfor-
mation to be part of the microflows. In Fig. 2, select show is a manual task that presents
a selection of services to the user. Or in other words: it presents a set of ranked service
level agreements to the user, the steps perform class search and perform search

just processes the information from different services to present a unified SLA. The mi-
croflows can thus also be used to (a) map different inconsistent SLA templates, and (b)
realize a per use-case (class level) SLA negotiation. The SLA expectations are input to the
use-case, measuring the performance of SLA’s can again be part of the microflow.

Secure Anonymous Payment: One property of real world marketplaces is, that most small
transactions can be payed in cash, or in other words, the service vendors and client engage
in business transaction (including a warranty or SLA), through a trusted third party (the
national bank). Both do not expose personal information such as bank accounts or names.

As elaborated by Mangler et. al [6], such a relationship is also possible for online market-
places through gSET [20]. As depicted in Fig. 5, the marketplace functions as a Trust

Manager between Client and Service Vendor. After 1 SLA-Negotiation, the client
sends a 2 dual signature (created with marketplace and service vendor keys) to the service
vendor. The service vendor extracts the part dedicated to him and checks the validity of
the request, and then 3 forwards the request to the marketplace. The marketplace extracts
and checks his part, and the 4 forwards the request to the account provider (bank). After
finishing the necessary checks, a confirmation is returned to the 5 service vendor and to
the 6 client. The marketplace again acts as a passive proxy. It does not store any data,
but only checks messages and forwards them. Through the usage of the marketplace both
parties, client and service vendor, agree on the marketplace as a trusted partner, and utilize
this trust to implement secure anonymous payment.

9. Conclusion and Future Work

In this paper we presented the structure of a scalable and flexible service marketplace. The
marketplace is realized by providing high level use cases represented by microflows, as well as
low level microflows that describe the interaction between the high level use cases and actual
services. Additionally the marketplace provides a set of properties for the selection / filtering of
services.

As the presented marketplace contains no active functionality, but instead concentrates on the
multi-level description of services it is a business enabler, but not a gateway or bottleneck. The
feasibility of the marketplace (and its implementation) was shown by including real world ser-
vices, in our case a diverse set of cinema services exposing searching and booking functionality.

19

Figure 6: Mobile Cinema Client

With the incarnation of the marketplace as a basis, we will concentrate on further elaborating
more real world use cases and client applications. The real-world mobile cinema client (see Fig.
6), acts as a testbed to further the integration of secure payment [6], service specific SLA’s and
SLA-negotiation as outlined in Section 8.

References

[1] L. Schubert, K. Jeffery, B. Neidecker-Lutz, The future of cloud computing, Tech. rep. (2010).
[2] M. F. Greaver, Strategic outsourcing: a structured approach to outsourcing decisions and initiatives, AMACOM

Div American Mgmt Assn, 1999.
[3] C. D. Huang, J. Goo, Rescuing IT outsourcing: Strategic use of Service-Level agreements, IT Professional 11 (1)

(2009) 50–58.
[4] P. Lambros, M. T. Schmidt, C. Zentner, Combine business process management technology and business services

to implement complex web services, IBM Corporation.
[5] D. Martin, M. Burstein, D. Mcdermott, S. Mcilraith, M. Paolucci, K. Sycara, D. L. Mcguinness, E. Sirin, N. Srini-

vasan, Bringing semantics to web services with owl-s, World Wide Web 10 (3) (2007) 243–277.
[6] J. Mangler, C. Witzany, O. Jorns, E. Schikuta, H. Wanek, I. U. Haq, Mobile gSET - secure business workflows

for Mobile-Grid clients, Concurrency and Computation: Practice and Experience 9999 (9999) (2009) n/a. doi:

10.1002/cpe.1437.
URL http://dx.doi.org/10.1002/cpe.1437

[7] L. Clement, A. Hately, C. von Riegen, T. Rogers, et al., UDDI version 3.0. 2, http://www.uddi.org/pubs/
uddi_v3.htm, [Last access: 02.08.2010] (2004).
URL http://www.uddi.org/pubs/uddi_v3.htm

[8] R. T. Fielding, Architectural styles and the design of network-based software architectures, Ph.D. thesis, University
of California (2000).

[9] V. Cardellini, M. Colajanni, P. Yu, Dynamic load balancing on web-server systems, Internet Computing, IEEE 3 (3)
(1999) 28–39. doi:10.1109/4236.769420.

[10] Relax NG home page, http://www.relaxng.org/, [Last access: 05.08.2010].
URL http://www.relaxng.org/

[11] J. Eder, J. Mangler, E. Mussi, B. Pernici, Using stateful activities to facilitate monitoring and repair in workflow
choreographies, in: Proceedings of the 2009 Congress on Services - I, IEEE Computer Society, 2009, pp. 219–226.
URL http://portal.acm.org/citation.cfm?id=1591556

20

http://dx.doi.org/10.1002/cpe.1437
http://dx.doi.org/10.1002/cpe.1437
http://dx.doi.org/10.1002/cpe.1437
http://dx.doi.org/10.1002/cpe.1437
http://dx.doi.org/10.1002/cpe.1437
http://www.uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/uddi_v3.htm
http://www.uddi.org/pubs/uddi_v3.htm
http://dx.doi.org/10.1109/4236.769420
http://www.relaxng.org/
http://www.relaxng.org/
http://www.relaxng.org/
http://portal.acm.org/citation.cfm?id=1591556
http://portal.acm.org/citation.cfm?id=1591556
http://portal.acm.org/citation.cfm?id=1591556

[12] O. Corcho, P. Alper, P. Missier, S. Bechhofer, C. Goble, Grid metadata management: requirements and architecture,
in: Proceedings of the 8th IEEE/ACM International Conference on Grid Computing, 2007, p. 97–104.

[13] P. Missier, P. Alper, O. Corcho, I. Dunlop, C. Goble, Requirements and services for metadata management, IEEE
Internet Computing 11 (5) (2007) 17–25.

[14] P. A. Bernstein, U. Dayal, An overview of repository technology, in: Proceedings of the International Conference
on Very Large Data Bases, INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS (IEEE), 1994, p.
705–705.

[15] S. Jha, A. Merzky, G. Fox, Using clouds to provide grids with higher levels of abstraction and explicit support for
usage modes, Concurrency and Computation: Practice and Experience.

[16] M. B. Blake, A. L. Sliva, M. zur Muehlen, J. V. Nickerson, Binding now or binding later: The performance of
uddi registries, in: 40th Annual Hawaii International Conference on System Sciences, 2007. HICSS 2007, 2007, p.
171c–171c.

[17] R. Vigne, J. Mangler, E. Schikuta, C. Witzany, A RESTful repository to store services for simple workflows, in:
Austrian Grid, National Symposium, OCG, Linz, Austria, 2009, p. 1.

[18] N. Srinivasan, M. Paolucci, K. Sycara, An efficient algorithm for OWL-S based semantic search in UDDI, Semantic
Web Services and Web Process Composition (2005) 96–110.

[19] M. Risch, I. Brandic, J. Altmann, Using SLA mapping to increase market liquidity, in: A. Dan, F. Gittler,
F. Toumani (Eds.), Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops, Vol. 6275, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 238–247.
URL http://www.springerlink.com/content/f6j07244581r7498/

[20] T. Weishaupl, C. Witzany, E. Schikuta, gSET: trust management and secure accounting for business in the grid, in:
Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006. CCGRID 06, Vol. 1, 2006.

21

http://www.springerlink.com/content/f6j07244581r7498/
http://www.springerlink.com/content/f6j07244581r7498/

	Introduction
	Requirements and Design Goals
	Heterogeneity Aspects: Parameters and Microflows
	Two-Level Structure
	Client Perspective

	A Sample Marketplace
	Implementation
	Schemas
	Service Schema
	Properties Schema

	Class Level Operations
	Description
	Parameters Schema Block

	The Vendors Perspective
	Related Work
	Run-Time Analysis
	Marketplace Integration
	Conclusion and Future Work

