
Technical Report

Bernhard Haslhofer,

A Comparative Study of Mapping Solutions for
Enabling Metadata Interoperability

February 2008TR-20080202

A Comparative Study of Mapping Solutions for
Enabling Metadata Interoperability

Bernhard Haslhofer

University of Vienna
Department of Distributed and Multimedia Systems

bernhard.haslhofer@univie.ac.at

Abstract. A prerequisite for enabling uniform access to metadata in
distributed, autonomous repositories is to deal with the heterogeneities
among metadata information objects. Metadata mapping is one possible
technique for handling incompatible metadata originating from distinct
repositories and mapping solutions are its technical manifestation. Cur-
rently, there exists a variety of mapping solutions, with different con-
ceptual characteristics and varying potential of solving solving specific
types of interoperability problems. In this work, we give a comprehensive
overview of existing mapping solutions and systematically compare their
features and characteristics. Our analysis shows that the majority of
mapping solutions are standalone-systems and support experts in map-
ping and integrating structured and semi-structured metadata. Solutions
that conceive mapping as being a process and target broader metadata
environments such as the Web are still rare.

1 Introduction

Metadata are information objects that describe some resource. Example re-
sources are digital images, videos, or other multimedia content objects but also
non-digital objects such as artefacts in museums or books in libraries. The na-
ture of metadata information objects, i.e., their structure and the meaning of
their elements (e.g., author, description, etc.), largely depends on the metadata
creator’s design choices and the characteristics of the repository they reside in
(e.g., relational database, flat files).

For establishing access to multiple autonomous metadata repositories, one
needs to deal with the distinct characteristics of the information objects stored
therein. Hence, one must establish metadata interoperability and find an appro-
priate technique to deal with various heterogeneities among these objects.

Metadata mapping is such a technique. It allows domain experts to recon-
cile the various heterogeneities that impede metadata information objects from
being interoperable. Systems can support experts in various mapping tasks: in
discovering mappings, in representing mappings, in compiling mappings into ex-
ecutable code, and in maintaining and reusing existing mappings.

Currently there exists a variety of solutions that support experts in these
tasks whereas some cover a broader, others a narrower spectrum of tasks. The

majority of solutions is implemented as standalone tools having a single domain
expert as target user. Others, such as Yahoo Pipes, follow a novel collaborative,
Web based approach and let ordinary Web users create and share their mappings
via an intuitive, easy to use Web interface. In fact, each mapping solution has
its individual features and potential of reconciling metadata heterogeneities.

The main contribution of this work is a comprehensive analysis and evalua-
tion of existing solutions that can be applied for mapping incompatible metadata
information objects. Based on the state-of-the-art literature on data integration
and mapping, we set up a requirements framework against which we compare a
representative selection of mapping solutions. Our analysis reveals which solu-
tions cover which requirements and to what extend they support the mapping
tasks required for establishing metadata interoperability.

The remainder of this work is organised as follows: in Section 2, we briefly
introduce the notion of metadata and explain what metadata interoperability
means in our context. In Section 3, we analyse requirements for metadata map-
ping solutions and set up the evaluation framework for our analysis. In Section 4,
we present and categorise a representative selection of mapping solutions, which
is then, in Section 5, evaluated against the evaluation framework. Finally, we
conclude this paper with Section 6.

2 Metadata Mapping

Mapping is one possible technique for achieving metadata interoperability. Map-
ping solutions are the technical manifestation of this technique. Before further
discussing and comparing the various characteristics of mapping solutions, we
first introduce our conception of metadata mapping.

In Section 2.1, we first concentrate on the notion of metadata and regard
its building blocks from a technical perspective. Then, in Section 2.2, we out-
line the heterogeneities that impede metadata information objects from being
interoperable. In Section 2.3, we concentrate on the facets of metadata mapping.

2.1 Metadata — A Technical Perspective

Metadata are information objects that describe some resource, digital or non-
digital. They consist of three main building blocks: schema definition languages,
metadata schemes, and metadata instances. Schema definition languages provide
the technical means to define metadata schemes and exist in various forms. The
Unified Modelling Language (UML) [1], for instance, is a conceptual language for
defining metadata schemes using a graphical notation. XML Schema (XSD) [2]
and Java are languages on the programming/represenation level in information
systems and permit the definition of schemes using other language primitives and
a different syntax. A metadata schema is a set of elements, optionally connected
by some structure, with a well-defined semantics, tailored to a certain applica-
tion domain. Examples for metadata schemes in the digital libraries domain are
the Dublin Core Element Set (DC) [3], the Visual Resource Association Core

2

(VRA Core) [4] elements, or the Learning Objects and Metadata (LOM) [5]. Be-
sides defining elements such as “title”, “creator”, “description”, etc., metadata
schemes can also constrain the range of permitted values for each of its elements.
Metadata instances comprise elements from the corresponding metadata schema
and content values making up a metadata description. Figure 1 illustrates an ex-
ample Dublin Core metadata description, hence an instance of the Dublin Core
metadata schema, expressed in RDF/XML. Page 1 of 1dc_sample_oai_abbrev.xml

Printed: Tuesday, February 19, 2008 10:16:08 AM Printed For: Bernhard Haslhofer

<rdf:RDF

! xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

! xmlns:dc="http://purl.org/dc/elements/1.1/">

<rdf:Description rdf:about="http://media.example.com/audio/guide.ra">

! <dc:creator>Mahony, David (David James)</dc:creator>

 <dc:title>Sydney Olympics 2000, marathon runners cross Sydney

! ! Harbour Bridge [picture] /</dc:title>

 <dc:description>Photograph by David Mahony -- On reverse in pencil.;

! ! Condition: Good. Group of [marathon] runners feature eventual Gold Medal

! ! Winner Gezahgne Abero of Ethiopia (No. 1651) [Sydney, N.S.W., September 2000]

! </dc:description>

 <dc:date>2001-01-20</dc:date>

</rdf:Description>

</rdf:RDF>

Fig. 1. Sample Dublin Core metadata description.

When applying a technical view on these three blocks, we can regard both
schema definition languages and metadata schemes as models. The former rep-
resents a set of language primitives (e.g., class, property, association), the latter
a set of real world entities (e.g., person, name). Both define a precise semantics
and syntax for their elements. We denote the model of a schema definition lan-
guage as metadata meta-model and the model of a metadata schema as metadata
model. Further, there is an instance-of relationship metadata instance, metadata
model and metadata meta-model.

2.2 Heterogeneities impeding Metadata Interoperability

Metadata interoperability is a qualitative property of metadata information ob-
jects that enables systems and applications to work with or use these objects
across system boundaries. In practice this means that a digital library system,
for instance, can exchange bibliographic metadata descriptions with another sys-
tem and both systems can correctly process these information objects regarding
their syntax and semantics.

In reality, however, metadata interoperability is usually not given per de-
fault — especially when distinct systems have been developed independently
from each other. As illustrated in Figure 2, we distinguish three main groups of
heterogeneities that need to be considered for establishing metadata interoper-
ability: model-level structural, model-level semantic, and instance-level semantic
heterogeneities.

3

Metadata Heterogeneities

Structural

Heterogeneities

Domain Conflicts

Terminological

Mismatches

Abstraction Level

Incompatibility

Mulitlateral

Correspondences

Semantic

Heterogeneities

M
o

d
e

l L
e

ve
l H

e
te

ro
ge

n
e

it
ie

s

(M
1

 +
 M

2
)

In
st

an
ce

 L
e

ve
l

H
e

te
ro

ge
n

e
it

ie
s

(M
0

)

Scaling/Unit Conflicts

Representation

Conflicts

Naming Conflicts

Identification Conflicts

Constraints Conflicts

Domain Representation

Conflicts

Element Definition

Conflicts

Meta-Level

Discrepancy

Domain Coverage

Fig. 2. Categorisation of metadata heterogeneities.

Model-level structural heterogeneities occur because the element of distinct
models have assigned different names, identifiers, or conflicting constraints. We
denote such heterogeneities as element definition conflicts. Model level struc-
tural heterogeneities also arise because of domain representation conflicts: do-
main experts represent the constituents of a domain in different generalisation
hierarchies, using a different number and different types of elements.

Model-level semantic heterogeneities are caused by semantically overlapping,
subsuming, or incompatible model elements (domain conflicts) and also by ter-
minological mismatches, which occur whenever model elements with the same
lexical name are mapped to distinct domain concepts (homonym) and vice versa
(synonym).

Instance-level semantic heterogeneities appear when different scales (e.g.,
inch, centimetre) or different encoding representations (e.g., date-format) are
used for content values.

2.3 Metadata Mapping

Metadata mapping is an interoperability technique for reconciling schema and
instance level heterogeneities among metadata information objects, i.e. among
distinct metadata models and their instance metadata information objects. In
our context, mapping does not deal with heterogeneities among schema definition
languages but assumes that metadata information objects are expressed in the

4

same language. If this is not the case, they must be transformed into the same
language representation. On a technical level, metadata mapping has two facets:

First, a metadata mapping is a specification that relates the elements of
two models in the same domain of discourse in a way that their schematic struc-
tures and semantic interpretation is respected on the metadata model and on the
metadata instance level. A mapping is defined through a set of mapping relations
between elements of a source and target schema, whereas a mapping relation is
represented as a mapping element. The semantics of a mapping element is defined
by a mapping expression. For reconciling instance level heterogeneities, a map-
ping element carries an appropriate instance transformation function. Figure 4
shows an example mapping specification consisting of a single mapping element
that defines the semantic and structural correspondence between elements from a
source schema Ss and a target schema St. The instance transformation function
“concat()” concatenates the content values of the respective fields.

Ss

Person
Name

GivenName

FamilyName

St

Creator

m1
(includes)

concat()

Fig. 3. Metadata mapping example.

Second, as illustrated in Figure 4, metadata mapping is a process consisting
of a cyclic sequence of four phases: (i) mapping discovery, (ii) mapping represen-
tation, (iii) mapping execution, and (iv) mapping maintenance. We regard this
sequence as being cyclic because through mapping maintenance it is possible
to derive additional mapping between schemes. Throughout this work, we will
concentrate in detail on each of these phases.

3 Evaluation Framework

In the subsequent presentation, we focus on requirements for metadata mapping
solutions. They form the basis for the evaluation framework we use for our
mapping tool analysis in Section 5.

We have organised the requirements into general requirements for mapping
tools (Section 3.1) and requirements for each of the previously mentioned phases
in the mapping process: mapping discovery (Section 3.2), mapping representa-
tion (Section 3.3), mapping execution (Section 3.4), and mapping maintenance

5

Mapping
Discovery

Mapping
Representation

Mapping
Execution

Mapping
Maintenance

Fig. 4. Metadata mapping process.

(Section 3.5). Finally, in Section 3.6 we summarise the requirements in an eval-
uation framework for comparing existing mapping solutions.

3.1 General Requirements

Turning metadata mapping into practice requires the implementation of a map-
ping component, which is usually part of a larger metadata integration archi-
tecture. Like any other piece of software, such an integration architecture has
some general requirements. First, it fulfils some architectural properties com-
mon to any metadata integration architecture. Second, it should be able to lift
and normalise metadata represented in various schema definition languages to
a common level; otherwise, if language mismatches are not resolved, metadata
mapping is hardly possible. Third, and this is essential for creating mappings,
it should provide a graphical user interface that supports domain experts in
creating mappings.

Architecture Design The ultimate goal of any metadata interoperability tech-
nique is to achieve uniform access to metadata and digital media objects stored in
multiple autonomous media repositories. Like other interoperability techniques,
metadata mapping is just a prerequisite for achieving this goal. Therefore, the
ultimate goal and the general requirement for any metadata integration architec-
ture is uniform accessibility of metadata via a single interface. This requirement
can be fulfilled by providing a query interface for a certain query language or by
exposing a well-defined Application Programming Interface (API) for accessing
the metadata.

Another basic requirement for an integration architecture is modularity. For
each data source involved in an integration scenario, one has to implement an

6

adapter. Also the mappings and particularly the processing of the mappings
must be embedded into a software component. An additional data source joining
an integration scenario, should not affect the adapters of other data sources.
Also the (re-)specification of mappings should not affect the implementation of
software components; this should rather be a configuration task.

Domenig and Dittrich [6] give an overview of possible integration architec-
tures. A very well known architecture for a modular integration approach are
Mediated Query Systems, proposed by Wiederhold [7]. They consist of two types
of software modules: mediators and wrappers. Each data source is encapsulated
by a wrapper, which is program-specific for each data source. Its task is to
accept queries from a mediator and to answer them on the basis of the under-
lying data source’s technology. Mediators are modules that accept user queries
formulated over a user-selected mediation model and reformulate them into sub-
queries according to previously defined metadata mappings. Then they disperse
them to the local sources where they are executed, collect and combine the
results and present them to the user in a certain format. Other architectural
designs, especially Peer-to-Peer data management systems (e.g. Piazza [8], P-
Grid [9], Edutella [10], Hyperion [11]), abstain from central mediators and medi-
ation models and define point-to-point mappings directly between the models of
the involved data sources (e.g. GridVine [12]). However, as Halevy et al. observe
in [8], from a formal mapping perspective there is little difference between these
two kinds of mappings.

Lifting and Normalisation As already mentioned in Section 2.3, metadata
mapping postulates that all metadata information objects are expressed in the
same schema definition language. This means, that all metadata models are in-
ternally represented as instances of the same metadata meta-model. Therefore,
lifting and normalisation of metadata expressed in distinct languages to a com-
mon representation is another general requirement. A practical example from
typical data integration scenarios, is the mapping of relational database schemes
to XML Schema.

The LIFT tool which is part of the MAFRA ontology mapping framework [13]
is an example for a component that fulfils this requirement. It provides means
to lift DTDs, XML Schemes, and relational databases to a common structural
ontology level.

Graphical User Interface Metadata mapping cannot be fully automated and
will always depend on interactions with domain experts. Usually it is not the
technicians who define semantic relations between schema elements, but expert
users such as librarians, curators, or knowledge workers. Technicians are con-
cerned with the technical implementation of mappings. Based on the semantic
relations, they reconcile structural heterogeneities among schemes and concen-
trate on the implementation of instance transformation functionality. For both
aspects, the domain expert view, and the technician view, a mapping solution
should provide a graphical user interface (GUI) to support the domain experts

7

as well as the technicians in their mapping tasks. Especially the domain expert
view must have a simple structure and guide the users’ attention to the relevant
places, especially when large metadata schemes need to be mapped.

Robertson et al. [14] present several advanced visualisation methods for larger
schemes. Following and highlighting existing links when a model element is se-
lected is one of the proposed techniques, auto-scrolling during typing and an
incremental search mechanism are other examples.

Another useful design strategy is to separate between a schema and a data
view, as it is implemented in Clio [15, 16]. The schema view represents the main
perspective for mapping definition. To get further information on a schema ele-
ment’s semantics, the user can switch to the data view and retrieve sample data
for that element.

The majority of mapping solutions is implemented as stand-alone desktop
applications. However, recently they have also begun to emerge on the Web,
Yahoo Pipes [17] being the prime example for this category. Via a simple, intu-
itive Web-interface users can aggregate XML data and define mappings between
model elements. Provided that a Web-based mapping solution is simple enough,
this category of mapping solutions can attract a large number of users, lead to
collaborative mapping efforts, and give insights on the different semantic per-
ceptions of model elements.

3.2 Mapping Discovery Requirements

The first metadata mapping step is to determine the relations between a source
and a target schema. In the literature the task of discovering the mappings is also
denoted as matching, mapping, and especially in combination with ontologies,
alignment. Although finding the matching elements is an intellectual task, which
is mainly carried out by humans, there are automated approaches to support
users in mapping discovery. When many users are involved in determining the
right mappings, building consensus on the defined mappings is essential.

Matching / Alignment Support The larger metadata schemes are, the more
difficult it is to find the set of potential mappings between schema elements.
Fully automatic mapping between schemes is considered to be an AI-complete
problem, that is, as hard as reproducing human intelligence [18]. Although this
problem is not yet solvable, there are many (semi-)automatic techniques that can
support the user in matching tasks. Hence, a mapping solution should provide
some mechanism for the automated resolution of semantic correspondences be-
tween the elements of heterogeneous metadata schemes; we call this requirement
alignment support1.

1 On the Web, there are two sites which provide up-to-date information on the
research topic of ontology alignment: the Ontology Alignment Source (http://
www.atl.lmco.com/projects/ontology/) and OntologyMatching.org (http://www.
ontologymatching.org/)

8

The term “alignment” frequently occurs in the context of “ontology align-
ment” and is used interchangeably with the term “ontology mapping”, wherefore
Kafoglou and Schorlemmer [19] provide a survey of (semi-)automatic techniques.
Rahm and Bernstein [20] provide a survey of approaches in the database do-
main, Shvaiko and Euzenat [21] analyse both schema and ontology mappings,
and Doan and Halevy [22] analyse mapping discovery solutions from a data in-
tegration perspective. Most of the approaches cited in these surveys are based
on heuristic algorithms comparing the lexical and structural features of models
(e.g., PROMPT [23]), or employ machine learning techniques to find mappings
(e.g., GLUE [24]). Some approaches operate either on the schema level (e.g.,
Cupid [25]) or only on the instance level (e.g. SemInt [26]), recent developments
(e.g., COMA++ [27]) include both levels in order to automatically discover
mappings between models.

Consensus Building When metadata schemes are developed independent from
each other, their structural and semantic properties are likely to be different and
lead to the heterogeneities we have discussed earlier in this work. This is also
the case when two schemes are mapped. As their semantic interpretation, also
the mappings between two metadata schemes are always bound to a certain con-
text. A mapping created by person A might not necessarily be true for person
B. Therefore, consensus building is a principal requirement for any integration
scenario. The prerequisite for consensus building is a precise definition and doc-
umentation of the semantics of the schemes to be mapped. If only one person
is involved in establishing the mappings, no tool support is required for consen-
sus building. Larger scenarios involving several persons and extensive metadata
schemes to be mapped will benefit from tool support for consensus building.

Zhdanova and Shvaiko [28] propose a public, community-driven approach for
mapping discovery where end users, knowledge engineers, and developer commu-
nities take part in the process of establishing mappings. The resulting mappings
are handled as “subjective alignments”, hence as mappings that are customised
to a certain user, a community, or application requirements. From already exist-
ing mappings, and the information about users, communities, groups, and social
networks, the system can determine valuable information for mapping discovery.
For instance, if several users have mapped their user defined schemes with the
same common mediated scheme, the system can leverage past experience and
propose mappings for new mapping tasks.

Another approach which supports consensus building is the ESP game, pro-
posed by von Ahn and Dabbish [29]. Although being developed for another
purpose, which is the labelling of online images, it demonstrates how a game
like approach can motivate people to build a consensus on the semantics of
an online resource. If we consider metadata schemes and mappings as online
resources, such game-like approaches could open the door for novel consensus
building techniques.

9

3.3 Mapping Representation Requirements

After metadata mappings have been discovered, they must be represented in
a machine read- and interpretable way. A semantically well-defined formalism
ensures that mappings can actually be processed in the subsequent mapping
phases. Since the decision whether a metadata mapping is semantically correct,
depends on the context, the formalism must provide the means to represent the
corresponding context. Finally, the properties of a metadata mapping largely
depends on the schema definition language used for describing metadata schemes.
Therefore, a mapping formalism should be flexible in its language bindings.

Mapping Formalism For reconciling heterogeneities by means of metadata
mappings, one needs to formally declare mapping relations between the ele-
ments of two metadata schemes. A set of such relations between two schemes is
denoted as mapping specification. A mapping formalism builds the basis for map-
ping specifications. It provides a machine read- and interpretable language for
creating mappings and, as it is the case with schema definition languages, a con-
crete and an abstract syntax. The concrete syntax (e.g. a serialisation in XML or
the graphical illustration of a mapping element) allows the serialisation, registra-
tion, and exchange of mapping specifications and also enables human readability.
The abstract syntax, i.e., the meta-model of mapping specifications, represents
a semantically well-defined corpus for mapping specifications and ensures the
correct interpretation of mappings across machines and system boundaries.

The strength of a mapping formalism denotes its ability to express those
relations that are required to reconcile the various kinds of heterogeneities, men-
tioned in Section 2.2. We have distinguished between two levels (model and in-
stance level) and two main families of heterogeneity (structural and semantic).
In combination with instance transformation, metadata mapping can reconcile a
broad range of heterogeneities: naming, identification, and constraints conflicts
as well as abstraction level incompatibilities, multilateral correspondences, do-
main coverage conflicts, terminological mismatches and meta-level discrepancies
can be resolved through mappings on the schema level. Instance transforma-
tion, if it is an integral part of a mapping formalism, can resolve the remaining
semantic heterogeneity conflicts on the instance level.

In literature we can find many approaches that support mappings among
metadata schemes. Unfortunately, many of them do not consider the whole het-
erogeneity spectrum but focus mainly on schema level mappings and disregard
the instance level. Observer [30], for instance, only allows the specification of
“synonym”, “homonym”, “overlap”, “disjoint”, and “overlap” relations between
entities of metadata schemes. Xiao and Cruz [31] have defined a mapping lan-
guage for P2P systems, which provides one-to-one mappings such as “equiv-
alent”, “broader”, “narrower”, “union”, and “intersection” between schemes.
Even less expressive is GridVine [12] which relies on the very restricted set
of built-in OWL mapping primitives (e.g. “owl:equivalentProperty”). Although
these kind of mappings suffice for human interpretation, the question remains

10

how machines can provide uniform access to the sources. They need exact infor-
mation about relations between concepts and precise processing instructions for
dealing with the instances or data originating from heterogeneous sources.

The MAFRA ontology mapping framework [13] is an example for a system
that covers the whole heterogeneity spectrum through the definition of “semantic
bridges”. Piazza [8] is a representative for the family of integration systems that
uses queries (views) as representation mechanism for mappings. This approach
is well known from the domain of relational databases and is, depending on the
expressiveness of the query language, also suitable for other technologies (e.g.,
XML, XQuery).

Mapping Context Like metadata schema definitions, also metadata mappings
are formal declarative specifications that are subject of interpretation. More
specifically, metadata mappings define how heterogeneity conflicts, when they
are detected, should be resolved. The problem is that even within a single meta-
data integration scenario, data sources as well as the mappings created between
their metadata schemes and instances may embody different assumptions on how
information should be interpreted. If, for instance, one schema A is mapped to
two schemes B and C, which differ in their semantic domain, an element of A
could be interpreted differently in relation with elements of B than it is inter-
preted in relation with elements of C. If mappings are created across integration
scenarios, the importance of context grows. Therefore, it is necessary to capture
the mapping context, hence the setting in which the interpretation of a metadata
mapping is semantically correct. A mapping formalism should provide support
for capturing mapping context.

COIN [32] was one of the early information integration system that has ex-
plicitly incorporated context into mapping definitions. With the “context in-
terchange framework”, it provides a formal, logical specification for modelling
metadata models, axioms for identifying correspondences between model ele-
ments, and context axioms, that permit the specification of named contexts
and therefore the definition of alternative interpretations of information objects.
Based on this work, Wache [33] has provided an integration formalism which al-
lows not only the representation of context but also the transformation of infor-
mation objects between contexts, in order to reconcile semantic heterogeneities
even across contexts.

Language Binding As described in Section 2.1, metadata information objects
are instances of metadata models which, can be expressed in various schema
definition languages. A metadata scheme for describing books, for instance, can
be, depending on an application’s needs, expressed as a model in Java or XML
Schema. If mappings between schemes are established, the resulting mapping is
always bound to a certain language.

For expressing and representing mappings, one needs a formalism which can
either be language independent or bound to a certain schema definition language.

11

The advantages of a language independent or generic approach are its applicabil-
ity for other schema definition languages. The main disadvantage is the increased
complexity and additional development effort: if a mapping tool follows a lan-
guage independent approach, hence is open to any schema definition language, a
generic metadata meta-meta model must be defined and language-specific exten-
sions must be built. However, we believe that flexibility in the language binding
is necessary to support the variety of existing schema definition languages and
for being open to future developments.

With the Ontology Definition Metamodel Specification (ODM) [34], the Ob-
ject Management Group (OMG) has defined a set of metadata meta-models that
reflect the abstract syntax of RDF, OWL, Common Logic (CL), and Topic Maps.
In addition, mappings between a number of the meta-models, being expressed in
the MOF QVT Relations Language [35] are provided. The goal of this approach
is to support interoperability between MOF-based modelling tools independent
of the schema definition language they support. Since metadata mapping tools
can be regarded as a feature extension of modelling tools, it is worthwhile to
consider MOF based strategies for implementing mapping solutions.

MAFRA [13], a mapping framework that enables the transformation of in-
stances of source ontologies into instances of target ontologies is an example
for a language dependent approach that expresses mappings as instances of a
meta-ontology, which in this case is expressed in DAML-OIL [36]. We can find
language dependent bridging axioms in ontology languages such as OWL which
provide language primitives to define semantic relations (e.g. equivalent, sameAs)
between ontology concepts. RuleML [37] is an effort to develop a rule language
that is independent of any schema definition language. Semex [38] is an example
for a system which formulates mappings between schemes in terms of queries.
In other words, elements from one schema model are defined as a query over the
elements in another schema model.

3.4 Mapping Execution Requirements

“We have the mappings. Now What?” With this question, Noy [39] points out
that the definition and representation of mappings is the necessary precondition
but not the goal in itself. The ultimate goal of metadata mapping is to achieve
uniform access to metadata in multiple autonomous information systems.

In the mapping execution phase, mappings are used for reformulating queries
over one schema into queries over another schema, for calculating query plans
for query optimisation, and for generating stubs or wrappers to data sources.

Query Reformulation Users of an integrated and interoperable system en-
vironment should have the possibility to formulate queries over a user selected
metadata schema and receive results from a set of integrated data sources, each
potentially employing a different metadata schema. Hence, the integration sys-
tem must convert the queries formulated over the user selected schema into terms
of the data sources’ metadata schemes. Metadata mappings are the technical

12

specifications that serve as input for this process, which is commonly referred to
as query reformulation.

If we regard metadata mapping as definitions that describe how to construct
the elements of a target schema from the elements in a source schema, they
fulfil the same functionality as views. Previously, we have already mentioned
that using views is a common formalism for representing mappings. Hence, if
mapping specifications are not available in terms of views per se, as it is the case
in systems such as Piazza [8], they can be transformed into such a representation.
In principle, there are two ways of representing mappings using views: (i) the
data sources, i.e. their schema elements, are described as queries (views) over the
user selected schema — this is referred to as Local as View (LaV) — or (ii) the
user selected schema is described as a set of views over the data sources — this
is known as Global as View (GaV). In the first case query reformulation means
rewriting the queries similar to rewriting a query using a view [40]. In the second
case, reformulation works analogously to view unfolding in traditional relational
database systems.

Rajaraman et al. [41] took an approach similar to view-based query reformu-
lation. They define query templates in a global query language consisting of a
head and a body. The head contains a predicate denoting the view, arguments
for the predicate, and binding patterns which indicate which arguments of the
predicate are expected to be bound and which are free. The body is a program
in some notation that produces a result to the query.

Query Plan For efficiently accessing integrated data sources the system must
calculate a query plan and use it to optimise query reformulation. Usually, the
main goal of a query plan is to reduce the execution time of queries on the data
sources. There are two main tuning possibilities to achieve that: first, by avoiding
redundant queries, i.e. queries that return a subset of results of a previously
executed query. This is also known as query containment [42] and is a metric that
can be calculated prior to query execution. Second, query time can be reduced by
analysing the capabilities [43] of the involved data sources. The capabilities of a
data source depend on its physical properties such as network connection speed,
average response time, but also on logical properties, such as the availability of
data in a data source2. Another optimisation goal that can be achieved by a
query plan is the minimisation of response time. This reduces the time it takes
until the first query response is returned from a data source, which is important
especially in distributed environments, such as P2P systems.

Calculating query plans and optimisation techniques are well studied in the
domain of traditional database systems. Jarke and Koch [44] provide a survey of
available techniques. Tatarinov and Halevy [45] propose optimisation techniques
for Peer-to-Peer Data Management Systems and describe an algorithm for cal-
culating XQuery query containment and optimisation algorithms for pruning of
redundant queries and for minimising the required query reformulations.
2 Even if a certain entity is represented in a data source’s metadata schema, this

doesn’t guarantee that the instance data are available.

13

Integration Component Generation In order to enable a data source to be
integrated with other sources, all the previously mentioned requirements must be
packed into data source specific integration components. If a mapping solution
follows a federated architecture, such components are typically mediators or
wrappers. In other environments, stubs or adapters are required to access the
metadata contained in third party data sources according to previously defined
mappings.

To avoid manual implementation of integration components for each data
source, it is desirable to have some at least semi-automatic mechanism that sup-
ports users in setting up such components. Although it will always be necessary
to perform certain source specific adoptions, at least some generic aspects (e.g.
query reformulation) can be realised automatically. Such a feature could, for ex-
ample, be embedded in a mapping tool and allow the generation of source code
skeletons based on mapping specifications.

TSIMMIS [46] is one of the early systems which automatically generates me-
diator as well as wrapper components based on high level descriptions of the
information processing they need to do. Another approach, which is also rele-
vant for capability based optimisation, is to transform the mapping specifications
into templates, which represent the possible queries a mediator can ask. Wrap-
per Generators [47] can be applied to create a table holding the various query
patterns contained in the templates; since it is not realistic to create a template
for each possible form of a query, the wrapper must include a mechanism which
works with query containment. It must determine if the result of a specific query
pattern is included in a broader query and filter the results accordingly.

3.5 Mapping Maintenance Requirements

Together with the metadata schemes involved in an integration scenario, also
mapping specifications can be registered in a kind of metadata registry. If a reg-
istry maintains several metadata schemes and mappings between these schemes
are available, it is possible to verify mapping specifications by detecting potential
conflicts with other mappings, to reuse existing mappings for the same or simi-
lar metadata schemes, or to infer potential, not yet explicitly expressed mapping
relations.

Mapping Verification Although the “truth” of a mapping always depends
on an interpretation bound to a certain context (e.g., the one of the mapping
creator), it is possible to detect potential conflicts with other already existing
metadata mappings. Although resolving conflicts automatically is difficult, it is
at least possible to provide some kind of notification mechanism. In general,
mapping verification can improve the quality of mappings and could also con-
tribute to building consensus on mappings in the context of a certain application
domain.

In Clio [15, 16], mappings are verified by presenting alternative mappings to
the user. They see example data from a selected source and of the target as they

14

would appear under the current mapping. This should illustrate a given mapping
and the perhaps subtle differences between other mappings.

Mapping Reusability Mappings can potentially be reused for future integra-
tion tasks. A metadata registry can analyse the relationships between existing
schemes and mappings and use heuristics to identify similarities. Based on that
the system can, for instance, propose possible mappings to domain experts. Es-
pecially with a growing number of schemes and mappings, mapping registries
play an important role for determining the reuse potential of mappings.

Mapping Inference Based on existing mapping relations, a mapping registry
could also infer not yet explicitly available mappings. Suppose we have three
metadata schemes A, B, and C. If there is mapping between the elements of A
and B, and B and C, it is possible to exploit these transitive relations and ex-
plicitly express mapping relations from A to C. In another setting, if for instance
some elements of B are “subclasses”, or “subproperties” of elements of A, and
there exist mapping relations between the elements of A and C, the system can
automatically infer relations between the elements of B and C.

GridVine [12] and Piazza [8], both belonging to the domain of Peer-to-Peer
data management infrastructures, are systems that perform a kind of transitive
mapping inference. Each node in the system has mappings to a small set of
nodes. When a query is posed over a node, it transitively follows the nodes that
are connected by semantic mappings (chaining mappings).

3.6 Requirements Summary

In this section, we have outlined the set of requirements which are, in our concep-
tion, the essential ingredients for building mapping solutions. We do not consider
them as obligatory features that must be fulfilled by any mapping solution, but
rather as complementary building blocks, some of which are more essential than
others. A mapping solution could, for instance, exist without providing align-
ment support for end users; but not if there was no formalism for representing
mappings.

Through the arrangement of the requirements along the four phases of the
metadata mapping cycle, we want to emphasise the importance of considering
metadata mapping as a process rather than a single step. Mapping discovery, for
instance, is not enough to achieve the goal of uniform accessibility. It requires a
formalism that can capture the various heterogeneity aspects and a mechanism
for executing mapping specifications. Also having some kind of mapping registry
gains great importance when the number of data sources and metadata schemes
to be integrated grows.

Different from many other approaches in the field of metadata mapping, we
discuss mapping discovery only superficially: we only distinguish between so-
lutions that support users in discovering mapping relations and those that do

15

not. For further details on this topic we refer to the surveys of Rahm and Bern-
stein [20] as well as Kalfoglou and Schorlemmer [19]. As depicted in the require-
ments summary in Figure 5, the main focus of our analysis lies on the mapping
process as whole and especially on the strength of the mapping formalisms.

Requirement Description

Uniform Accessibility Provide access to a set of (distributed) metadata sources via a single access point

Modularity
Adding additional sources and mappings without affecting/changing existing

system components

Lifting & Normalisation
Flexible means to convert metadata expressed in distinct schema definition

languages to a common metadata meta-model

Mapping GUI
A graphical user interface supporting domain experts and technicians in creating

mappings

Schema Matching / Alignment

Support

(Semi-)automatic support for determining mappings; either on the schema, the

instance, or on both levels

Consensus Building Features
Providing features that support users in building consensus on conflicting

mappings

Model-Level Structural

Heterogeneity Reconciliation
The ability to represent and reconcile structural heterogeneities on the model level

Model-Level Semantic

Heterogeneity Reconciliation
The ability to represent and reconcile semantic heterogeneities on the model level

Instance-Level Semantic

Heterogeneity Reconciliation

The ability to represent and reconcile semantic heterogeneities on the instance

level

Context Representation The ability to capture the interpreation context of a metadata mapping

Flexible Language Binding
A generic, language independent mapping formalism that can easily be bound to a

certain schema definition language

Query Reformulation
Reformulate queries over a user selected schema into queries over the target

schema representation according to mapping definitions

Query Plan / Optimisation Algorithmic support for minimising the query execution / response time

Integration Component

Generation

(Semi-)automatic generation of data-source specific integration components

(mediators, wrappers, adapters, etc.)

Mapping Verification Detection of potential conflicts with other mappings

Mapping Reusability System support for reusing existing mapping definitions

Mapping Inference
Infer not yet explicitly expressed mapping relations from existing mapping

specifications

G
e

n
e

ra
l

M
a

p
p

in
g

D
is

c
o

v
e

ry
M

a
p

p
in

g
 R

e
p

re
s

e
n

ta
ti

o
n

M
a

p
p

in
g

 E
x

e
c

u
ti

o
n

M
a

p
p

in
g

 M
a

in
te

n
a

n
c

e

Fig. 5. Requirements framework for the evaluation of metadata mapping solutions.

16

4 Mapping Solutions

Mapping solutions are the means to achieve metadata interoperability in inte-
gration scenarios where mapping has been chosen as being the appropriate tech-
nique. We can regard them as technical manifestation of the previously men-
tioned mapping phases (discovery, representation, execution, maintenance) —
though it depends on the mapping solution how and to what extent it supports
a certain phase.

There exists a multitude of mapping solutions with varying mapping capabil-
ities, different stages of stability and distinct underlying business models. In this
section we present a categorisation for a representative while not complete se-
lection of mapping solutions. It includes tools from major software vendors that
are active in the domain of data integration, such as BEA, IBM, Sybase, Mi-
crosoft, Cape Clear, Altova, and Data Direct, as well as frequently cited research
projects, and novel Web-based solutions such as Yahoo Pipes. The focus of our
evaluation is on solutions and tools; theoretical mapping approaches lacking an
at least prototypical implementation are therefore not part of this evaluation. We
will describe each mapping solution in detail in Sections 4.2 to 4.5 and conclude
with preliminary observations in Section 4.6.

4.1 A Categorisation of Mapping Solutions

For a coarse-grained categorisation of mapping solutions we fall back on their ar-
chitectural properties, which are a direct result of the application domain they
were designed for. In industrial, large scale environments metadata mapping
solutions are an integral part of Enterprise Information Integration (EII) and
Enterprise Application Integration (EAI) suites. EII and EAI systems are usu-
ally extensive and heavyweight software suites where mapping is usually only a
small subset of the supported features. Besides that, we have also identified the
category mapping tool, which contains lightweight standalone tools designed for
the sole purpose of mapping. The category other solutions contains all mapping
tools that cannot be assigned to any of the previously mentioned categories, such
as XML editors or modelling tools that may also provide mapping support for
certain kinds of schema definition languages, or Web applications.

Figure 6 gives an overview of available mapping solutions. For each solution
we describe what type of software it is (commercial, research prototype) and to
which solution category it belongs (EII suite, EAI suite, mapping tool, other).
Furthermore, we analyse for what kind of schema definition languages a solu-
tion provides mapping capabilities and which software platforms are supported.
Additionally we briefly sketch which mapping phases are covered by a certain
mapping solution.

4.2 Enterprise Information Integration (EII) Suites

EII subsumes industrial solutions dealing with the problem of data integration.
Generally, they aim at (i) identifying data sources, (ii) building virtual schemes,

17

License Type
Schema Definition

Language Support

Supportted

Platforms
Discovery Representation Execution Maintenance

BEA Liquid Data 8.1 Commercial XML Schema

HP-UX, MS

Windows

2000/XP, Red Hat

Linux, Sun Solaris,

IBM AIX

Sybase Data

Integration Suite -

Avaki (Studio/Server)

7.0

Commercial Proprietary

Red Hat/Suse

Linux, Windows

2003/XP, Sun

Solaris, IBM AIX

Microsoft BizTalk

Server 2006
Commercial XML Schema Windows 2003/XP

Cape Clear 7

(Studio/Server)
Commercial XML Schema

 Red Hat Linux,

Sun Solaris,

Windows 2003/XP

IBM WebSphere

Integration Developer
Commercial

Proprietary, XML

Schema

Red Hat/Suse

Linux, Windows

2000/2003/XP

Altova MapForce /

SchemaAgent
Commercial Proprietary

Windows

2000/2003/

XP/Vista

COMA++ Research Proprietary Java

Clio Research Proprietary Java

StylusStudio /

DataDirect XML

Converters

Research XML Schema
Windows

Platforms

TopBraid Composer Commercial OWL Java

Yahoo Pipes Commercial XML Windows 2000/XP

 Supported

 Not Supported

M
a
p

p
in

g
 T

o
o

ls
O

th
e
r

S
o

lu
ti

o
n

s

General Properties Mapping Phases Support

E
II

 S
u

it
e
s

E
A

I
S

u
it

e
s

Fig. 6. Metadata Mapping Solutions — Categorisation and Overview.

and (iii) reformulating queries over a virtual schema into queries over multiple
data source specific schemes. EII systems provide real-time information by in-
tegrating heterogeneous data sources on demand without moving or replicating
them [48]. In such solutions, mappings are generally represented as views and ex-
ecuted through a query rewriting mechanism. To what extent mapping discovery
and maintenance is supported depends on the solution.

BEA Liquid Data 8.1 BEA Liquid Data for WebLogic [49] is an Enterprise In-
formation Integration suite allowing a real-time unified view over heterogeneous
data sources such as relational databases, XML data, flat files (e.g., CSV-files),

18

and third party application data. It leverages XML standards throughout the
mapping phases and also delivers the query results structured in XML. Liquid
Data is available for all major software platforms.

While not supporting the discovery phase of the mapping process, BEA Liq-
uid Data offers a view-based approach for the mapping representation phase: all
supported schema definition languages are lifted to the level of XML Schema.
The mappings between source and target schemes are expressed in XQuery.
For executing mappings, BEA provides the Liquid Data Server for deploying
mapping specifications and a distributed query processor for translating queries
according to the mappings. To a certain extent, BEA Liquid Data also supports
the mapping maintenance phase: schemes as well as mappings between schemes
are stored in the Liquid Data Repository, which enables the reuse of mappings.

Sybase Data Integration Suite — Avaki Studio / Server 7.0 The Sybase
Data Integration Suite [50] with its components Avaki Studio and Avaki Server
7.0 is a data federation solution which provides standardised access to distributed
heterogeneous data through a single layer. It supports the integration of the same
types of data sources as BEA Liquid data, but follows a mapping approach based
on the relational model. Both Avaki Studio and Server are available for all major
software platforms.

Mappings are created using the Avaki Studio application — support during
the mapping discovery phase is not provided. For mapping representation Avaki
defines a mapping model based on the relational model. One or more input
sources, a single result element, and a set of operators which can be arranged
sequentially to combine or transform data from one or more input sources, are
the main constituents of that mapping model. For the mapping execution phase,
the mapping models are deployed as data services exposing SQL-DDL (view)
schema definitions. All data services and mapping models are registered and
maintained in a data catalogue.

4.3 Enterprise Application Integration (EAI) Suites

EAI systems deal with the problem of integrating applications through business
processes. They are well known in the context of Service Oriented Architectures
(SOA) where they connect and integrate loosely coupled, distributed software
components usually by using Web Services in order to fulfil a certain business
task (e.g. booking a flight). Since the applications involved in a business process
usually provide metadata corresponding to various, incompatible schemes, also
EAI systems require mapping techniques for resolving these discrepancies.

Different than EII systems, which can query a set of heterogeneous sources
via a virtual unified target schema, the focus of EAI systems is on the exchange
of data residing at multiple sites. Hence, during the execution phase, mappings
do not serve as input for query reformulation but for transforming data from a
source into a target schema.

19

Microsoft Biztalk 2006 Microsoft BizTalk Mapper [51] is part of the BizTalk
Server Enterprise Application Integration suite and allows to create and edit
mappings to translate or transform messages within business processes from one
format into another. Since BizTalk is a pure EAI suite and XML has evolved as
de facto standard for structuring messages within business processes, mapping
is supported among XML schema definitions. Like the whole BizTalk suite, also
the mapper is available only for Microsoft Windows 2003 and XP platforms.

The mapping discovery phase is not supported by the Microsoft BizTalk
Mapper, meaning that expert users must find the mapping relations among the
source and target schemes without technical assistance. Schemes as well as map-
pings are represented in a BizTalk-specific mapping model and are transformed
to XSL style-sheets during the mapping executing phase. For maintaining map-
pings, BizTalk relies on a simple WebDav repository where mappings can be
published and reused in other integration tasks.

Cape Clear Studio and Server 7 The Cape Clear EAI suite [52] comprises
two main products: the Cape Clear Server and the Cape Clear Studio. The for-
mer provides the environment for deploying business processes and Web Service
components. The latter is a design tool for creating Web Services and BPEL
processes. Data Transformation Web Services are a special kind of service: they
permit the integration of non-XML data sources that represent data as struc-
tured text (e.g., CSV, EDI, SWIFT). However, they first must be lifted to the
level of XML Schema in order to be mappable with other message formats within
a business process. Cape Clear Studio and Server are both Java applications —
the Studio is an Eclipse Rich Client Application — and therefore run on all
major software platforms.

Like all mapping solutions mentioned so far, also the Cape Clear Studio does
not support mapping discovery. Mappings must be defined manually between
XML Schema definitions using the Cape Clear Studio XSLT mapper. This im-
plies that mappings are represented as XSL style-sheets. For the execution of
mappings at run-time, a Data Transformation Service can be deployed on the
Cape Clear Server and be incorporated into any business process. So far the
mapping maintenance phase is not supported because there is no possibility to
publish or share the created mappings.

IBM WebSphere Integration Developer 6.0.2 IBM’s contribution to the
market of EAI suites is the WebSphere platform, an environment for deploy-
ing reusable business processes on a Service Oriented Architecture (SOA) foun-
dation. The IBM WebSphere Integration Developer [53], a tool for modelling
business processes, also has mapping capabilities. Since business objects are the
WebSphere internal representation of application data, the Integration Developer
supports mappings among instances of that proprietary model. Additionally it
also supports the development of mediation services, which are services that
intercept and modify messages passed between existing services within a busi-
ness process. For this kind of service, the Integration Developer provides XML

20

Schema mapping capabilities. As the whole WebSphere EAI suite, also the IBM
WebSphere Integration Developer is available for all major software platforms.

Although the extent is minimal, we can categorise the IBM WebSphere Inte-
gration Developer as solution that supports the mapping discovery phase: it can
automatically create mapping relations among attributes having the same lexical
name. Mappings are represented either in a proprietary model (business object
maps) when they are created between business objects, or as XSL style-sheet
when XML Schema definitions are mapped. They can be deployed as software
modules on a WebSphere Process Server or a WebSphere Enterprise Service Bus.
Mapping maintenance is not supported.

4.4 Mapping Tools

Different from EAI and EII suites, where mapping solutions are only part of
a broader application infrastructure, mapping tools are lightweight standalone
systems created for the sole purpose of mapping. The market for this category
of mapping solutions is still sparsely populated; Altova with its products Map-
Force [54] and SchemaAgent [55] turned out to be the only well-known commer-
cial representative.

Altova MapForce and SchemaAgent 2008 At the time of this writing, Al-
tova MapForce in combination with Altova SchemaAgent is the most powerful
mapping solution on the market. MapForce supports mapping between any com-
bination of SQL-DDL definitions in relational databases, XML Schema and DTD
declarations, and flat files formats such as CSV or EDI. The main drawback is
that these tools are currently available only for Microsoft Windows platforms.

MapForce assists the user during the mapping discovery phase by automat-
ically matching child elements of already mapped elements. In contrast to any
other mapping solution mentioned so far, MapForce allows the definition of
mappings among several kinds of schema definition languages (XML Schema,
SQL-DDL, etc.); this implies that internally MapForce has a common, generic
representation for these kind of schemes and also for the mapping between them.
For the mapping executing phase, it provides the possibility to generate code
from these proprietary mapping representations; a mapping specification can be
compiled into XSLT code, XQuery, Java, C++, and C#. The mapping mainte-
nance phase has been completely outsourced to Altova SchemaAgent, which is
another standalone product that works in combination with Altova MapForce.
Besides capabilities for registering schemes and mappings, it provides graphical
means to view and analyse dependencies between them.

COMA++ The COMA++ [27] research prototype, an extension of COMA [56],
is a generic schema mapping tool. It supports the user in the mapping discovery
phase by matching schemes expressed in SQL-DDL, XML Schema, XML Data
Record (XDR), or OWL. The tool is written in Java and is therefore platform-
independent.

21

The focus of COMA++ is on the mapping discovery phase; it allows the
combination of a variety of matching algorithms in order to find appropriate
mappings between schemes. Internally, the schemes are uniformly represented as
directed graphs, i.e., also the mappings are represented in a proprietary format.
Currently, COMA++ does not support the mapping execution phase, neither for
query rewriting nor for transforming models from one schema to another. For the
mapping maintenance phase, COMA++ provides a repository component which
centrally stores schemes, matching results, and mappings between schemes. An
outstanding feature in this phase is the ability to derive new mappings from
previously determined matching results.

Clio Clio [15, 16] is an IBM research prototype for creating and executing map-
pings among schemes expressed in SQL-DDL or XML Schema. It is implemented
in Java and therefore platform independent.

For the mapping discovery phase, Clio relies on a semi-automatic tableaux-
based algorithm which calculates all the possibilities in which schema elements
relate to each other and prompts the user to select the semantically correct
relation. Internally, mappings are represented as an abstract query graph which
can be serialised into specific languages such as XQuery, XSLT, and SQL/XML.
The execution of queries in the mapping execution phase is left to the user. Clio
does not provide any mapping maintenance support.

4.5 Other Solutions

Mapping support may also be a feature of solutions that do not belong to one
of the above mentioned categories. In the following we briefly discuss tools and
applications offering mapping capabilities.

Stylusstudio 2007 / DataDirect XML Converters Stylusstudio [57] is
an XML Integrated Development Environment (IDE) which supports mappings
among schemes expressed in SQL-DDL, XML instance documents, XML schemes,
DTDs, and EDI documents. In combination with DataDirect XML Converters,
it allows the conversion of any legacy data format into XML. At the moment,
Stylusstudio is available for Windows platforms only.

The mapping discovery phase is not supported by Stylusstudio. For repre-
senting mappings, Stylusstudio relies on standardised XML technologies and
compiles mapping relations drawn on the user interface directly into XSLT or
XQuery; hence it does not define a proprietary mapping model. Executing the
XQuery code on a certain data source or transforming XML documents using
the resulting XSL style-sheet is left to the user. With Stylussstudio it is currently
not possible to deploy mapping services covering the mapping execution phase.
The mapping maintenance phase is also unsupported.

22

TopBraid Composer TopBraid Composer [58], which is the commercial ex-
tension of the Protégé OWL editor3, is a Semantic Web ontology development
platform which also supports the creation of mappings between ontologies. The
tool has been implemented in Java, using the Eclipse Rich Client Platform and
therefore runs on any Java-enabled software platform.

In version 2.3.0, TopBraid does not support the mapping discovery and main-
tenance phases. However, it is possible to create mappings between ontologies,
which can be compiled either into SPARQL4 query construct statements or into
SWRL5 rules. Support for the mapping execution phase is currently not pro-
vided.

Yahoo Pipes Yahoo Pipes [17] has introduced a novel facet into the topic of
metadata mapping. Through a Web application, users can aggregate data from
various sources such as XML feeds, online CSV files, or other online applications
(e.g., Flickr, Google and Yahoo search results) and deploy new data services
(mashups) that provide uniform access to these sources. This also includes map-
ping between the various source formats — a task which is supported by Yahoo
Pipes by an intuitive, easy-to-use online interface. Since all Yahoo Pipes features
are part of a Web application, this mapping solution can run in an ordinary Web
browser on any platform.

Mapping discovery is the only phase not supported by Yahoo Pipes; the users
have to identify the semantic and structural correspondences on their own. For
representing metadata (e.g., XML tags of feeds), Yahoo Pipes relies on a very
simple internal model consisting only of elements and sub-elements. Thus, it
does not regard any schema definitions, which might not even exist for certain
data sources, but concentrates on the instance level. Users only create mappings
between elements without being confronted with complex schema definitions. For
representing the mappings between the data elements, Yahoo Pipes employs its
own proprietary model which defines a collection of modules for assembling data
transformation pipes. That Yahoo Pipes also supports the mapping execution
phase becomes obvious when creating a pipe: during the modelling process, each
mapping module automatically executes itself and presents the resulting instance
data to the user. Each pipe created is stored and optionally published on Yahoo
Pipes — the maintenance phase is therefore supported. Other users can copy
existing pipes and adapt them to their needs or include the resulting instance
data of an existing pipe as data source in their own pipe. These features enable
even non-expert users to collaboratively assemble pipes and create mappings in
a trial-and-error manner, a frequently applied strategy6 in the Web context and
also a main factor for its success.

3 Protégé OWL editor: http://protege.stanford.edu/overview/protege-owl.html
4 SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/
5 Semantic Web Rule Language (SWRL): http://www.w3.org/Submission/SWRL/
6 Many users create Web sites by simply copying and adapting other already existing

Web sites. This is possible because the source code of any Web site is available.

23

4.6 Preliminary Observations

In this section, we have given an overview of existing mapping solutions and
categorised them according to their application domain. We have outlined their
basic architectural properties, their mapping capabilities in respect to schema
definition languages, and the software platforms they support. Additionally, we
have outlined what mapping solutions support which metadata mapping phases.
Before we perform an in-depth analysis of each mapping solution in respect to
the supported mapping phases, we conclude this section with some preliminary
observations.

First, only Altova MapForce in combination with Altova SchemaAgent as
well as Microsoft BizTalk Server support all four mapping phases. Other tools
lack at least one phase. Especially mapping discovery, an issue which has gained
much attention in scientific literature, has not yet found its implementation in
commercial mapping solutions — and if at all, then only to a minor, rather
trivial extent such as the comparison of schema element names.

The second observation is that many solutions use their own proprietary
models for representing schemes and mappings among them. Additionally, we
notice that there is a strong support for XML technologies (XML Schema and
DTD) and the relational model (SQL-DDL); support for other technologies is
rather minor.

Third, we can observe that most mapping solutions support the mapping
execution phase by compiling mapping specifications into executable code (e.g.,
XSLT, XQuery) and providing the possibility to deploy this code as an executable
service.

Our last observation is that the majority of mapping solutions support the
mapping maintenance phase, but in a varying degree: in Microsoft BizTalk,
for instance, users can publish their mappings in a web-accessible WebDav
repository which does not provide any further sophisticated functions. Altova’s
SchemaAgent, COMA++, and Yahoo Pipes mark the opposite end of the spec-
trum of possibilities.

5 Analysis

After we have set up the evaluation framework in Section 3 and presented a
representative selection of mapping solutions in Section 4, we now analyse these
solutions according to the imposed requirements.

In the previous section, where we briefly introduced the mapping solutions,
we already outlined which mapping phases a solution supports. Here we analyse
in detail how and to what extent a solution supports the requirements of a
certain mapping phase.

5.1 General Requirements

In the evaluation framework, this category contains all requirements that must
be supported by any mapping solution but cannot be assigned to any of the four
mapping phases.

24

Uniform Accessibility Uniform accessibility denotes the possibility of deploy-
ing a single access point to a set of heterogeneous sources from previously defined
metadata mappings. A single access point could be a query interface or a service
that provides transparent access the metadata provided by other services.

By nature, Enterprise Information Integration (EII) Suites fulfil exactly that
requirement. BEA Liquid Data, for example, provides the means to create data
views over a set of data sources that can be queried in a uniform manner using
XQuery. Also the Sybase Data Integration Suite allows the deployment of a
unified data layer.

Different from EII Suites, the mapping solutions categorised as Enterprise
Application Integration Suites (Microsoft BizTalk Server, Cape Clear, and IBM
Websphere Integration Developer), do not provide uniform access via a single
query interface but rather allow transparent access to data from incompatible
data sources through deployed business processes. In Service Oriented Architec-
tures, a business process typically exposes the aggregated and converted data
via a Web Service interface.

Among the “pure” metadata mapping tools we cannot find any solution that
supports uniform accessibility. Although it is possible to deploy mappings with
Altova MapForce in terms of services that provide integrated access to a single
source, this is not possible for multiple sources. COMA++ does not support
mapping execution at all and therefore cannot provide uniform access. Clio has
the the facilities to convert mappings into queries or transformation style-sheets
without considering query execution.

From the group of non-categorised solutions, StylusStudio enables the de-
ployment of so called XML Pipelines7. An XML Pipeline allows to aggregate
metadata from a set of XML sources and define various processing steps to
transform them into a single format exposed by a single endpoint. StylusStudio
therefore supports uniform accessibility. Yahoo Pipes acts in a similar manner,
with the difference that all pipelines may be created and shared on the Web.
TopBraid Composer does provide means to deploy a uniform access interface for
various sources.

Modularity Assuming that a mapping solution already provides access to a
set of data sources, often the need arises to add additional or remove already
integrated data sources without changing any existing implementation. Depend-
ing on the modularity of a mapping solution’s architecture, this requirement can
optionally be supported. Obviously this is only relevant for solutions that do
fulfil the previous requirement and provide uniform access to multiple sources.

When using EII Suites such as BEA Liquid Data or the Sybase Data In-
tegration Suite, removing or adding metadata sources requires the redefinition
and redeployment of previously created views. We regard this task as a minor
modification of an integration definition rather than a change in the implemen-
tation and therefore categorise EII Suites as mapping solutions that support
modularity.
7 ttp://www.w3.org/TR/xml-pipeline/

25

With EAI Suites the required effort is similar: BizTalk Server, Cape Clear
Server, and the IBM WebSphere Server require the redefinition and redeployment
of existing business processes and service orchestrations whenever new sources
are added. Therefore they partially fulfil the requirement of being modular.

Mapping solutions that follow a pipe-line approach for providing uniform
access to metadata sources (StylusStudio, Yahoo Pipes) require the redefinition
of the processing steps within the pipes, a task requiring only minor modification
effort.

Flexibility in Lifting and Normalisation Lifting and Normalisation denotes
the ability to lift metadata expressed in distinct schema definition languages to
a common metadata meta-model. As already mentioned in Section 2.3, it is
commonly agreed that this is a pre-condition for metadata mapping. Therefore
mapping solutions should provide the flexibility to lift metadata of any kind to
that common meta-model.

All analysed Enterprise Information Integration as well as all Enterprise Ap-
plication Integration Suites fulfil this requirement. BEA Liquid Data can lift any
data available in Relational Databases (RDB), XML files, delimited files, Web
Services, and third party applications (e.g. Siebel, SAP) to the level of XML
Schema. The Sybase Data Integration Suite offers so called “Data Services” to
transform data available in specific source formats to its internal, proprietary
representation. Microsoft BizTalk and IBM WebSphere both provide extensible
and customisable adapter frameworks8 for lifting external data to their inter-
nal representation. Also CapeClear provides a fixed set of data transformers for
common formats such as SOAP, CSV, structured text (e.g. EDI, SWIFT), or
Excel spread-sheets.

Since Altova MapForce supports mapping between any combination of SQL-
DDL, XML Schema, Flat Files, and EDI messages, internally it also must have
the facilities to lift these meta-models to a common representation. However,
it is not possible to extend MapForce with adapters for custom data formats.
Although not providing the flexibility to lift any proprietary format, COMA++
and Clio can both lift SQL-DDL and XML Schema definitions to their internal
representation. COMA++ also supports lifting of OWL ontologies and XML
Data Records (XDR).

The DataDirect XML Converters give StylusStudio the flexibility to lift prac-
tically any format to the level of XML Schema, which is its internal meta-model.
DataDirect already contains a large number of converters for widely-used for-
mats and give the users the means to easily build their own converters. TopBraid
supports the lifting of a fixed set of other meta-models (e.g., UML) to the level
of OWL. The same is the case for Yahoo Pipes which provides data sources
adapters for XML, RDF, JSON, iCal, and CSV files.

8 Microsoft BizTalk Adapter Framework and IBM WebSphere Integration Framework

26

Mapping GUI Metadata mapping is a complex task, both for domain experts
and technicians. Therefore any mapping solution must support these user groups
by providing a Graphical User Interface (GUI).

Since all analysed solutions fulfil this requirement, its importance becomes
obvious. The EII Suites provide graphical means for building data views (BEA
Data View Builder, Sybase Avaki Studio), and the EAI Suites provide orches-
tration design tools (BizTalk Orchestration Designer, Cape Clear Studio, Web-
Sphere Integration Developer). Also all other solutions offer graphical means for
creating mapping specifications. Compared to all other solutions, Yahoo Pipes
provides an outstanding and easy to use Web-based mapping GUI.

5.2 Mapping Discovery Requirements

This category of the evaluation framework lists the common requirements that
occur during the first mapping phase, which is mapping discovery. From the
previous section we already know that this phase is supported only by a few
tools.

Schema Matching / Alignment Support The requirements of Schema
Matching or Alignment denotes the ability to (semi-)automatically support users
in determining metadata mappings.

Among the commercial solutions, IBM WebSphere Integration Developer
supports the user in creating mappings by automatically aligning model elements
with the same lexical representation. This could be the case, if, for instance, two
attributes in two distinct schemes have the same label (e.g., “Person”). Altova
MapForce extends this feature and automatically aligns lexical equivalent child
elements (e.g., “firstName”) of already mapped elements. Since this kind of map-
ping support is trivial, these solutions support the schema matching requirement
only partly.

Microsoft BizTalk, or more specifically the BizTalk-Mapper, offers advanced
schema matching capabilities and therefore supports this requirement. Besides
having the capability of matching schema elements based on their lexical names,
it can also “autolink” elements based on their structure (e.g., their sub-elements).

COMA++ and Clio are research prototypes whose main feature is in fact
schema matching. While the Clio matching algorithm operates only on the
schema level, COMA++ uses a composite approach to combine different schema
and instance level matching algorithms.

Consensus Building Features A mapping solution offering consensus build-
ing features supports users or user communities in building consensus on con-
flicting mappings.

From all solutions under investigation, only Yahoo Pipes partly supports this
requirement. It has built-in user and community management features, which are
an important prerequisite for building consensus. Further it is built upon Web
technology, which lowers the entry barriers for building communities. For existing

27

mappings Yahoo Pipes offers search and browsing as well as ranking features.
Mappings can be cloned and reused for other integration tasks; one can assume
that cloning demands at lest a minimal degree of agreement and consensus on a
certain mapping.

5.3 Mapping Representation Requirements

By their nature, all mapping solutions require a formalism for representing map-
pings. As we have seen in Figure 6 in the previous section, this is indeed the case
for all solutions under consideration. At this point we will analyse the strengths
of each formalism, i.e., its ability to capture the various kinds of heterogeneities
and interoperability conflicts.

Model-Level Structural Heterogeneity Reconciliation Structural con-
flicts on the model level fall into two categories: element definition conflicts oc-
cur because the elements of distinct models might have assigned different names,
identifiers, or conflicting constraints. Domain representation conflicts arise be-
cause domain experts reflect the constituents of a domain in different generalisa-
tion hierarchies, using a different number and different types of elements. While
element definition conflicts are easily resolvable by renaming elements, dealing
with domain representation conflicts is a more complex task. They can be rec-
onciled by providing the ability to relate, for instance, a general entity in one
model with more concrete entities in another model.

All EII Suites under investigation can resolve element definition conflicts
and relate elements with different names, identifiers, or data type constraints.
BEA Liquid Data can also resolve a majority of domain representation conflicts.
Although not directly reflected in the Data View Builder GUI, one can cre-
ate XQuery expressions to relate a source element to multiple target elements.
Further it is possible to deal with different generalisation hierarchies and relate
concrete with more general model elements by defining conditions that filter out
relevant data values. By providing a rich set of operators, Sybase Avaki Studio
can also resolve these heterogeneity conflicts.

Among the EAI Suites, Microsoft BizTalk and Cape Clear Studio both rely on
the power of XSLT to transform objects from a source schema to a target schema.
The creation of XSL style-sheets is supported by mapping GUIs, which in both
cases do not reflect the full power of XSLT. In Biz Talk Mapper for instance, it is
not possible create 1:n mapping relationships between model elements. However,
when manipulating the XSL style-sheets directly, all element definition and do-
main representation conflicts can be resolved. The IBM WebSphere Integration
Developer does not rely on standardised technologies such as XQuery or XSLT,
but allows the definition of so called “business maps” among business objects.
Using a predefined set of “Transform Type” objects, domain experts can relate
different model structures and resolve structural heterogeneities.

Altova provides a powerful mapping model for reconciling any structural
heterogeneity and can transform such representations into XSLT or XQuery.

28

Clio does not provide these capabilities on the GUI, but also relies on XQuery
and can therefore represent the required mapping information. Since COMA++
is a schema matching tool with the primary intent to discover mappings, it can
represent a mapping relationship between two attributes but cannot relate an
entity with one or more attributes.

Stylusstudio also relies on XQuery and can therefore deal with any struc-
tural heterogeneity. TopBraid Composer uses SPARQL, or more specifically, the
SPARQL CONSTRUCT statement, which like XQuery gives the freedom to de-
sign and construct any target model from a set of source models. Finally, also
Yahoo Pipes can indirectly represent structural mappings through its operators.

Model-Level Semantic Heterogeneity Reconciliation The two main classes
of semantic conflicts on the model-level are domain conflicts (e.g., semantically
overlapping, subsuming, or incompatible model elements) and terminological
mismatches (e.g., synonyms and homonyms). A mapping formalism should pro-
vide means to define the type of heterogeneity between two model elements (e.g.,
“element X and element Y semantically overlap”, “element X and element Y are
synonyms”) and the ability to reconcile that conflict, if possible.

From the category of EII Suites, all solutions provide means to resolve domain
conflicts and terminological mismatches. Of course, only if they are resolvable —
mapping two models from incompatible domains (e.g., billing and gardening),
for instance, is not feasible for any tool. However, it is possible, for instance, to
map semantically subsuming elements (e.g., “author” and “person”) by filtering
and transforming instances according to specific conditions (“authors = persons
that have written books”). Sybase Avaki provides a library of operators and
expressions, BEA Liquid Data the expressiveness of XQuery to perform that
task. However, none of them provides the means to explicitly define the type
of heterogeneity (e.g., “subsume”, “overlap”, “synonym”, etc), which is remark-
able because many scientific approaches in literature concentrate on this kind of
semantic representation (see Section 3.3).

EAI Suites support semantic heterogeneity reconciliation on the model level
in a similar way as EII Suites and neither offer means to represent the semantics
of a mapping relation. Microsoft BizTalk provides an extensible set of functions
that fulfil the same task as operators in the above mentioned EII Suites. Web-
Sphere relies on the definition of maps that are made of a series of transformation
steps, which define how to transform source into target business objects. Since
each map is in fact Java code, one has the full expressiveness of a programming
language for semantically reconciling model elements.

For Altova our analysis bears the same results as for EII and EAI Suites: se-
mantic reconciliation is possible through a set of operators but there is no mech-
anism to represent the nature of a mapping relation. Clio does not provide such
operators or functions (sort, join, rename) in its mapping model and therefore
does not have any advanced capabilities for resolving semantic heterogeneities,
if we disregard the fact that one could manually edit the XQuery interpretation
of the mapping generated by Clio. The same is the case for COMA++ — it has

29

no reconciliation operators and does not offer means to represent the semantics
of a mapping relationship.

Stylusstudio utilises the full power of XQuery and its functions for hetero-
geneity reconciliation; TopBraid represents mappings in SPARQL which also
uses the set of XQuery function primitives for model reconciliation. Yahoo Pipes
is not extensible with respect to its operators but provides a fixed set, which is
sufficient to deal with semantically conflicting model elements.

Instance-Level Semantic Heterogeneity Reconciliation Instance trans-
formation is the means for reconciling semantic heterogeneities on the instance
level. It specifies how an instance value can be transformed from one repre-
sentation into another. A transformation is usually implemented in terms of
functions, which can define simple operations such as data type conversion (e.g.,
string to integer) but also more complex tasks such as converting scales (e.g.,
weight:pound to weight:kg). For the complex tasks, a mapping formalism should
support the implementation of custom, domain-specific functions.

BEA Liquid Data provides a set of standard functions for creating data views
and is also extensible by creating custom functions to perform specialised tasks.
The same is the case for the Sybase Data Integration Suite.

Also the EAI Suites provide such means: Microsoft BizTalk and Cape Clear
rely on XSLT which in fact is a fully functional language for implementing a
broad range of transformation scenarios. IBM WebSphere does not rely on stan-
dard technologies but allows to implement custom transform types for converting
data values within business objects from one representation to another.

Altova offers a variety of standard functions for transforming data and also
allows the implementation and registration of custom functions. Clio implicitly
supports this feature by relying on XQuery but does not provide the necessary
means on the GUI level. COMA++ does not have any data transformation
capabilities.

Also Stylusstudio and TopBraid Composer support instance level reconcilia-
tion of semantic heterogeneities. The former allows the definition of user-defined
XQuery functions. The latter relies on SPARQL which also uses the XQuery
function set. Yahoo Pipes currently provides only a fixed set of functions that
cover a wide, but not extensible spectrum of possible transformations.

Context Representation Since the semantic correctness of mappings depends
on the mapping context, i.e., the setting in which a mapping has been created,
a mapping formalism should be able to capture such information.

A simple form of context representation is to capture user information, i.e.,
the user-name of the domain expert that has created a mapping. From all map-
ping solutions under consideration, only Yahoo Pipes binds established mappings
to a certain user.

Flexible Language Binding If a mapping solution relies on a generic formal-
ism, it is open for mappings between schemes expressed in a variety of schema

30

definition languages. The drawback of such an approach is the increased com-
plexity and additional implementation effort for each single language. As already
illustrated in Figure 6, some solutions have mapping capabilities for specific lan-
guages (e.g., XML Schema, OWL) while others rely on proprietary meta-models.

Solutions bound to a specific language do not have the flexibility to map
metadata expressed in other languages without lifting them to a common repre-
sentation. BEA Liquid Data, all EAI Suites, Stylusstudio, and also Yahoo Pipes
are bound to XML Schema or XML respectively and therefore cannot be con-
sidered as having a flexible language binding. This also the case for TopBraid
composer, which is bound to OWL.

Sybase Avaki relies on a proprietary model and has specific bindings for other
types of models. Also Altova MapForce, Clio and COMA++ rely on a generic
approach and have bindings for languages such as XML, OWL, or SQL-DDL.

5.4 Mapping Execution Requirements

In this section, we analyse to what extent the analysed mapping solutions fulfil
common requirements that occur when mappings are executed during run-time.

Query Reformulation Mapping solutions that are part of virtually integrated
systems, hence systems that leave the data in their data sources without repli-
cating them to a central store, require a mechanism that reformulates queries
according to a mapping definition. A common way to implement such a mecha-
nism is to work with views, i.e., the user selected schema is described as a set of
views over the data sources.

Regarding our representative selection of mapping solutions, we can further
divide them into two categories: those that use mappings to generate views,
and those that use them to transform metadata from one representation to
another. Only the Enterprise Information Integration (EII) Suites fall into the
first category: in BEA Liquid Data, the domain experts create views over a set of
data sources using XQuery. Sybase Avaki follows a hybrid approach: it supports
the definition of so called “view models”, which are sequences of operations that
combine or transform data from one or more sources. Other solutions, such as
Altova MapForce or Stylussstudio, allow to generate XQuery code from mapping
definitions, but do not provide means to execute these queries. Therefore we
consider them to not support query reformulation in the mapping execution
phase.

Query Plan / Optimiser Obviously, only metadata solutions that provide
capabilities for query reformulation, can offer means for optimising query access
to data sources.

BEA Liquid Data offers a variety of features for query optimisation. First it
allows to view query plans and to analyse the execution times for each part of a
query. Users can either rely on a built-in optimiser or perform manual optimisa-
tion by, for instance, changing the order of the data sources to be queried or by

31

giving optimisation hints that override the default behaviour of that optimiser.
Sybase Avaki does not provide any query optimisation features but relies on a
built-in caching service, which stores (temporary) query results for a definable
time span.

Integration Component Generation A mapping solution should provide at
least some semi-automatic means to compile mapping specifications into exe-
cutable integration components, such as data source adapters, stubs, wrappers,
or mediators.

With BEA Liquid Data on can deploy mapping specifications on the Liquid
Data Server and Sybase Avaki allows to deploy mapping models as data services.
On Microsoft BizTalk Server and all other EAI Suites under investigation, map-
ping specifications are deployed as part of executable business processes. Altova
MapForce provides the possibility to generate executable Java or C# source
code from a mapping specification and also in Yahoo Pipes users can deploy and
execute their pipes.

5.5 Mapping Maintenance Requirements

The mapping maintenance phase is is usually supported by a kind of mapping
registry, which stores information about available schemes and mappings between
schemes.

Mapping Verification If schemes and mappings between schemes used in a
certain integration context are available, an automated mechanism could detect
conflicting mapping specifications.

None of the mapping solutions under investigation provides such a fully au-
tomatic mechanism. Only Clio and Altova SchemaAgent partly support this
requirement: Clio verifies mappings by presenting alternative mappings to the
user during the mapping discovery phase. SchemaAgent provides a GUI that
allows users to browse available schemes and already established mappings be-
tween those schemes.

Mapping Reusability Reusing existing schema definitions is a very simple way
of achieving interoperability; the same is the case with schema mappings. If there
is already a mapping specification which reconciles the heterogeneities among
two schemes, and the mapping could also fit for other integration scenarios, one
should reuse and possibly modify that mapping.

As soon as mappings are available in a mapping repository, they can be
discovered and reused in other scenarios. Additional repository features, for in-
stance searching and browsing mappings, could even improve the reuse poten-
tial. However, only Altova SchemaAgent and Yahoo Pipes provide such advanced
functionality. In SchemaAgent users can browse existing schemes and mappings
and Yahoo Pipes provides a faceted search interface which guides users through

32

the bulk of already created pipes. All other solutions offer rather unsophisticated
repository features such as storing mapping specifications in a central WebDAV
repository.

Mapping Inference Deriving new mapping relationships from existing ones
currently seems to be an invariably scientific topic because it has not yet been
implemented in any of the commercial mappings solutions or research prototypes
we have analysed in this section.

5.6 Analysis Results

Regarding the results of our analysis, summarised in Figure 7, from a high level
perspective, we can make the following observations:

Most mapping solutions fulfil the general requirements we have set up for
our analysis; heavyweight EII and EAI Suites fulfil them better than standalone
mapping tools. This is because the latter are designed solely for the task of map-
ping and produce mappings that can be deployed in other systems. Heavyweight
suites cover the whole spectrum from creating mappings to providing uniform
access to data sources.

The mapping discovery phase is weakly supported, which leads us to the
conclusion that the field of automatic schema matching, which has extensively
been studied in literature, is still not mature enough for being deployed in prac-
tice. Only the category of research prototypes includes sophisticated schema
matching support; if a commercial solution supports this phase, then only in a
very unsophisticated way, such as comparing the lexical representation of model
elements.

Mapping representation is well supported: almost all solutions provide the
means to reconcile heterogeneities among schemes and their instances. However,
none of them puts an emphasis on the semantic nature of a mapping relationship.
Furthermore, none of them has strong means to represent a mapping context and
most mapping solutions rely on a single, specific schema language (e.g., XML
Schema). This implies that these tools must support lifting and normalisation
in order to provide support for metadata expressed in other schema definition
languages.

The mapping execution phase is very weakly supported. From the analysed
EII Suites, only BEA Liquid Data executes queries, reformulates them according
to previously defined mappings and optimises the queries using a tailorable query
optimisation algorithm. EAI Suites do not provide such means but rely on the
deployment of business processes, which also transform data from one format into
another using pre-defined mappings. In a similar way, in Yahoo Pipes, mappings
are an integral part of pipes definitions, which can be deployed and executed on
the Web.

The potential of mapping maintenance has not yet been considered by most
mapping solutions. Only Altova SchemaAgent can be regarded as a suitable
and useful schema and mapping repository, which enables (manual) mapping

33

B
E

A
 L

iq
u

id
 D

a
ta

 8
.1

S
y
b

a
s
e

 D
a

ta
 I

n
te

g
ra

ti
o

n
 S

u
it
e

 -

A
v
a

k
i
(S

tu
d

io
/S

e
rv

e
r)

 7
.0

M
ic

ro
s
o

ft
 B

iz
T

a
lk

 S
e

rv
e

r
2

0
0

6

C
a

p
e

 C
le

a
r

7
 (

S
tu

d
io

/S
e

rv
e

r)

IB
M

 W
e

b
S

p
h

e
re

 I
n

te
g

ra
ti
o

n

D
e

v
e

lo
p

e
r

A
lt
o

v
a

 M
a

p
F

o
rc

e
 /

S
c
h

e
m

a
A

g
e

n
t

C
O

M
A

+
+

C
lio

S
ty

lu
s
S

tu
d

io
 /

 D
a

ta
D

ir
e

c
t

X
M

L

C
o

n
v
e

rt
e

rs

T
o

p
B

ra
id

 C
o

m
p

o
s
e

r

Y
a

h
o

o
 P

ip
e

s

Uniform Accessibility ! ! ! ! ! " " " ! " !

Modularity ! ! ! ! ! " " " ! " !

Lifting & Normalisation " " ! ! ! " " " ! " "

Mapping GUI ! ! ! ! ! ! ! ! ! ! !

Schema Matching /

Alignment Support
" " ! " # # ! ! " " "

Consensus Building

Features
" " " " " " " " " " #

Model-Level Structural

Heterogeneity

Reconciliation

! ! ! ! ! ! # ! ! ! !

Model-Level Semantic

Heterogeneity

Reconciliation

" " # #

Instance-Level Semantic

Heterogeneity

Reconciliation

! ! ! ! ! ! ! ! ! ! #

Context Representation " " " " " " " " " " #

Flexible Language

Binding
" ! " " " ! ! ! " " "

Query Reformulation ! # " " " " " " " " "

Query Plan /

Optimisation
! " " " " " " " " " "

Integration Component

Generation
! ! ! ! ! ! " " " " !

Mapping Verification " " " " " # " # " " "

Mapping Reusability " " " " " ! " " " " !

Mapping Inference " " " " " " " " " " "

! Supported

" Not Supported

!"#$%&'()**+#$,-

M
a

p
p

in
g

 M
a

in
te

n
a

n
c

e
G

e
n

e
ra

l
M

a
p

p
in

g

D
is

c
o

v
e

ry
M

a
p

p
in

g
 R

e
p

re
s

e
n

ta
ti

o
n

M
a

p
p

in
g

 E
x

e
c

u
ti

o
n

Fig. 7. Metadata mapping solutions evaluation summary.

verification and reuse. Due to its Web-based nature Yahoo Pipes, implicitly
enables mapping maintenance. Users can search existing pipes, i.e., also existing
mappings, for specific sources, and tailor them to their specific needs. This leads
to high reusability of existing mappings and thereby to higher interoperability.

34

6 Summary and Conclusions

In this paper we have analysed the characteristics of a representative set of meta-
data mapping solutions against an evaluation framework we have derived from
the state-of-the-art literature. Different from other surveys, we have conceived
metadata mapping as being a cyclic sequence of phases rather than a single task
(e.g., mapping discovery). We believe that this viewpoint is essential for domain
experts that want to employ these solution also in real-world scenarios.

One outcome of this study is that many solutions concentrate only on a
specific mapping task: research prototypes concentrate mainly on mapping dis-
covery and disregard how these mappings could be executed in a real-world
system. Commercial solutions, in contrast, have a completely different focus.
They support the mapping representation and execution phases, and disregard
the discovery phase. Both research and commercial solutions have in common,
that the support for mapping maintenance is rather weak.

So far, the majority of mapping solutions targets domain experts working
in closed environments on the basis of metadata available in structured data
sources. Yahoo Pipes has revolutionised this view and provides a tool that in-
tegrates with the Web architecture. It allows users — also non-experts — to
create and share mapping specifications (pipes) that integrate metadata from
metadata sources exposed on the Web. We believe that this shift of mapping
solutions toward the Web will continue and that it requires a lightweight meta-
data integration solution that can operate with common Web protocols as well
as Web-enabled metadata schemes and schema definition languages. One chal-
lenge will be to provide intuitive user interfaces that allow users to create map-
pings without confronting them with the whole complexity of metadata schema
definitions and mapping features. Also in this regard, Yahoo Pipes has set an
important milestone.

References

1. OMG: Unified Modelling Language (UML). Object Management Group (OMG).
(2007) Available at: http://www.uml.org/.

2. W3C: XML Schema 1.1 Part 1: Structure. W3C XML Core Working Group. (2006)
Available at: http://www.w3.org/TR/xmlschema11-1/.

3. DC: Dublin Core Metadata Element Set, Version 1.1. Dublin Core Metadata
Initiative. (2006) Available at: http://dublincore.org/documents/dces/.

4. VRA: VRA Core 4.0. Visual Resources Association’s (VRA) Data Standards Com-
mitee. (2007) Available at: http://www.vraweb.org/projects/vracore4/index.
html.

5. IEEE WG-12: IEEE Standard for Learning Object Metadata: 1484.12.1-2002.
IEEE Inc. (2002) Available at: http://ltsc.ieee.org/wg12.

6. Domenig, R., Dittrich, K.R.: An overview and classification of mediated query
systems. SIGMOD Rec. 28(3) (1999) 63–72

7. Wiederhold, G.: Mediators in the architecture of future information systems. Com-
puter 25(3) (1992) 38–49

35

8. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infras-
tructure for semantic web applications. In: WWW ’03: Proceedings of the 12th
international conference on World Wide Web, New York, NY, USA, ACM Press
(2003) 556–567

9. Aberer, K.: P-grid: A self-organizing access structure for p2p information systems.
In: CooplS ’01: Proceedings of the 9th International Conference on Cooperative
Information Systems, London, UK, Springer-Verlag (2001) 179–194

10. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,
M., Risch, T.: Edutella: a P2P networking infrastructure based on rdf. In: WWW
’02: Proceedings of the 11th international conference on World Wide Web, New
York, NY, USA, ACM Press (2002) 604–615

11. Rodŕıguez-Gianolli, P., Kementsietsidis, A., Garzetti, M., Kiringa, I., Jiang, L., Ma-
sud, M., Miller, R.J., Mylopoulos, J.: Data sharing in the hyperion peer database
system. In: VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, VLDB Endowment (2005) 1291–1294

12. Aberer, K., Cudre-Mauroux, P., Hauswirth, M., van Pelt, T.: GridVine: Building
internet-scale semantic overlay networks. In: International Semantic Web Confer-
ence (ISWC). Volume 3298 of LNCS. (2004) 107–121

13. Maedche, A., Motik, B., Silva, N., Volz, R.: Mafra — an ontology mapping frame-
work in the semantic web. In: Proceedings of the ECAI Workshop on Knowledge
Transformation, Lyon, France, 2002. (2002)

14. Robertson, G.G., Czerwinski, M.P., Churchill, J.E.: Visualization of mappings
between schemas. In: CHI ’05: Proceedings of the SIGCHI conference on Human
factors in computing systems, New York, NY, USA, ACM Press (2005) 431–439

15. Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Fagin, R., Popa,
L.: The Clio project: managing heterogeneity. SIGMOD Rec. 30(1) (2001) 78–83

16. Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: from
research prototype to industrial tool. In: SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, New York, NY,
USA, ACM Press (2005) 805–810

17. Yahoo! Inc.: Yahoo Pipes (2007) Available at: http://pipes.yahoo.com.

18. Bernstein, P.A., Melnik, S., Petropoulos, M., Quix, C.: Industrial-strength schema
matching. SIGMOD Record 33(4) (2004) 38–43

19. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. Knowl.
Eng. Rev. 18(1) (2003) 1–31

20. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4) (2001) 334–350

21. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal
of Data Semantics 3730 (2005) 146–171

22. Doan, A., Halevy, A.Y.: Semantic-integration research in the database community.
AI Magazine 26(1) (2005) 83–94

23. Noy, N.F., Musen, M.A.: The prompt suite: interactive tools for ontology merging
and mapping. Int. J. Hum.-Comput. Stud. 59(6) (2003) 983–1024

24. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to map between on-
tologies on the semantic web. In: WWW ’02: Proceedings of the 11th international
conference on World Wide Web, New York, NY, USA, ACM Press (2002) 662–673

25. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snod-
grass, R.T., eds.: VLDB, Morgan Kaufmann (2001) 49–58

36

26. Li, W.S., Clifton, C.: Semint: a tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data Knowl. Eng. 33(1) (2000)
49–84

27. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with COMA++. In Özcan, F., ed.: SIGMOD Conference, ACM (2005) 906–908

28. Zhdanova, A.V., Shvaiko, P.: Community-driven ontology matching. In Sure, Y.,
Domingue, J., eds.: ESWC. Volume 4011 of Lecture Notes in Computer Science.,
Berlin, Heidelberg, Springer (2006) 34–49

29. von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: CHI ’04:
Proceedings of the SIGCHI conference on Human factors in computing systems,
New York, NY, USA, ACM Press (2004) 319–326

30. Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.P.: Observer: An approach
for query processing in global information systems based on interoperation across
pre-existing ontologies. Distrib. Parallel Databases 8(2) (2000) 223–271

31. Xiao, H., Cruz, I.F.: Ontology-based query rewriting in peer-to-peer networks. In:
In Proceedings of the 2nd International Conference on Knowledge Engineering and
Decision Support, 2006. (2006)

32. Goh, C.H., Bressan, S., Madnick, S., Siegel, M.: Context interchange: new features
and formalisms for the intelligent integration of information. ACM Trans. Inf.
Syst. 17(3) (1999) 270–293

33. Wache, H.: Semantische Mediation für heterogene Informationsquellen. PhD thesis,
University of Bremen (2003)

34. OMG: Ontology Definition Metamodel Specification (ODM). Object Management
Group (OMG). (2006) Available at: http://www.omg.org/docs/ptc/06-10-11.

pdf.
35. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification.

Object Management Group (OMG). (2005) Available at: http://www.omg.org/

cgi-bin/apps/doc?ptc/05-11-01.pdf.
36. W3C: DAML+OIL. (2001) Available at: http://www.w3.org/TR/daml+

oil-reference.
37. The Rule Markup Iniative: RuleML – version 0.91 (2006) Available at: http:

//www.ruleml.org/.
38. Cai, Y., Dong, X.L., Halevy, A., Liu, J.M., Madhavan, J.: Personal information

management with semex. In: SIGMOD ’05: Proceedings of the 2005 ACM SIG-
MOD international conference on Management of data, New York, NY, USA, ACM
Press (2005) 921–923

39. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. SIGMOD
Rec. 33(4) (2004) 65–70

40. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal 10(4)
(2001) 270–294

41. Rajaraman, A., Sagiv, Y., Ullman, J.D.: Answering queries using templates with
binding patterns (extended abstract). In: PODS ’95: Proceedings of the fourteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems,
New York, NY, USA, ACM Press (1995) 105–112

42. Millstein, T., Levy, A., Friedman, M.: Query containment for data integration
systems. In: PODS ’00: Proceedings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, New York, NY, USA, ACM
Press (2000) 67–75

43. Papakonstantinou, Y., Gupta, A., Haas, L.: Capabilities-based query rewriting in
mediator systems. In: Proceedings of 4th International Conference on Parallel and
Distributed Information Systems, Miami Beach, Flor. (1996)

37

44. Jarke, M., Koch, J.: Query optimization in database systems. ACM Comput. Surv.
16(2) (1984) 111–152

45. Tatarinov, I., Halevy, A.: Efficient query reformulation in peer data management
systems. In: SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, New York, NY, USA, ACM Press (2004) 539–
550

46. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J.D., Widom, J.: The TSIMMIS project: Integration of heterogeneous
information sources. In: 16th Meeting of the Information Processing Society of
Japan, Tokyo, Japan (1994) 7–18

47. Ullman, J.D., Widom, J., Garcia-Molina, H.: Database Systems - The Complete
Book. Prentice Hall, Inc. (2002)

48. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosen-
thal, A., Sikka, V.: Enterprise information integration: successes, challenges and
controversies. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of data, New York, NY, USA, ACM Press (2005)
778–787

49. BEA: BEA Liquid Data for WebLogic 8.1. BEA Systems, Inc. (2007) Available
at: http://edocs.bea.com/liquiddata/docs81/index.html.

50. Sybase: Sybase Data Integration Suite. Sybase Inc. (2007) Available at: http:
//www.sybase.com/products/dataintegration/dataintegrationsuite.

51. Microsoft: Microsoft BizTalk Mapper. Microsoft Inc. (2007) Available at: http:
//www.microsoft.com/biztalk/techinfo/tips/mapper/default.mspx.

52. Cape Clear: CapeClear Studio / Server. Cape Clear Software Inc. (2007) Available
at: http://www.capeclear.com/products/index.shtml.

53. IBM: IBM WebSphere Integration Developer. IBM Inc. (2007)
54. Altova: Altova MapForce. Altova, Inc. (2007) Available at: http://www.altova.

com/products/mapforce/data_mapping.html.
55. Altova: Altova SchemaAgent. Altova Inc. (2007) Available at: http://www.

altova.com/schemaagent_mapforce.html.
56. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching

approaches. In: VLDB, Morgan Kaufmann (2002) 610–621
57. DataDirect Technologies: Stylus Studio 2007 and DataDirect XML Converters

(2007) Available at: http://www.stylusstudio.com/.
58. TopQuadrant Inc.: TopBraid Composer (2007) Available at: http://www.

topbraidcomposer.com/.

38

