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Abstract—Synchronization of running process instances has
been identified as major challenge in literature and practice.
Although process instances are, for example, often required to
share resources such as printers or centrifuges, the necessary in-
stance synchronization is not supported by most process engines.
While existing (scarcely supported) patterns deal with the intra-
process synchronization of activities, a model for a more generic
synchronization mechanism is still missing. The contribution of
this paper is two-fold. (1) We introduce a generic model to
describe the state transitions of process instances at runtime, and
based on this model (2) define a subscription based event / voting
mechanism that enables arbitrary synchronization within and
between running instances. In order to demonstrate the validity
of our approach, we will conduct an extensive evaluation against
existing synchronization patterns, as well as describe a generic
rule engine prototype that implements the presented approach.

I. INTRODUCTION

One purpose of Process Aware Information Systems (PAIS),
such as WebSphere Process Server [1] or AristaFlow [2], is
to support their users processes, in tracking and governing the
progress of running process instance. In order to do so, the
processes are made explicit through a process description at
design time. Processes are started, executed, and monitored
by a process engine based on this process description. Typical
processes consist of a set of activities that rely on resources
(human or machine) in order accomplish a certain process
goal. As a process is basically a computer program describ-
ing a certain control flow logic, it possible to implement a
very fine-grained model of how certain resources are used.
Consider, for example, the following scenario: In a company
several departments share a printer. The printer is specialized
in large, printing jobs (e.g. folders or enveloped letters) which
involves the retrofitting with special paper / envelopes. It is
not efficient to always retrofit the printer with a different kind
of paper each time a print job arrives because this wastes
time and effort and leads to errors. As the departments already
use a process management system to support their work, it is
important to efficiently integrate the printing activity into these
processes in to reduce waste.

Planning the concurrent use of a single activity (in our case
the printer) is describe by a special group of process patterns
by van der Aalst et al. [3]: Multiple Instance Patterns.

Multiple instance patterns are defined to “describe situa-
tions where there are multiple threads of execution active in
a process model which relate to the same activity”. These
situations may occur when either (a) an activity is able to

invoke multiple instances of itself, (b) an activity is invoked
as part of a loop that spawns concurrent execution threads, or
(c) when two activities share the same implementation, and
are concurrently invoked.

One problem with this kind of planning for a concurrent
use of an activity is however: it demands to handle the
planning from the point of view of the printer. The printer
is retrofitted (one process instance is created) and then works
on queued incoming jobs. Designing process on the basis
of solving resource problems instead of designing them in
order to describe business processes is arguably not good. For
example consider the following additional scenarios (similar
to [4]):

• Instead of the departments just contributing print jobs
to a queue as part of the printing process, they could
spawn their own printing process instances. In this case
the printing activities from different process instances are
overlapping and thus need to be synchronized.

• Different departments use the printer as part of their own
custom processes. In this case printing activities from
instances of different processes need to be synchronized.

The focus of this paper is to tackle the above mentioned
scenarios by introducing a generic process / instance synchro-
nization mechanism, that covers “Multiple Instance Patterns”
for concurrent invocation of activities (a) within one instance
of one process as described by van der Aalst et al., (b) between
instances of one process, and (c) between instances of arbitrary
processes.

The two main contributions of this paper are:

Extended Activity Lifecycle: As we want to avoid to tie
the synchronization logic to some specific process engine
properties or implementation, we define a simple exten-
sion of the common activity lifecycle, which is the base
for all process engine implementations. Relying solely on
the activity states and state changing events allows us to
define a minimal but comprehensive mechanism that can
easily be embraced by existing process engines.

Independent Rule Based Synchronization: “Multiple In-
stance Patterns” as defined by van der Aalst et al. outline
not only simple scenarios that occur exactly as described,
but actually refer to a class of scenarios that can include
more complex behavior. For the printer example an
intelligent job queue may be implemented, that not only
deals with already submitted jobs, but predicts jobs that
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may be submitted soon according to process instance
progress. In order to make the synchronization as flexible
and independent from the process engine as possible, we
propose an ECA (Event Condition Action) rule based
synchronization. In this paper we present an extensive
evaluation of a rule based synchronization according to
the above mentioned patterns.

The paper is structured as follows: in Sect. II we start
by provide and discussing an extensive example scenario.
In Sect. III we present a state-based interaction model for
monitoring and manipulating process execution. In Sect. IV we
present define the necessary vocabulary and concepts for rule
based synchronization. In Sect. V we present a set of patterns
to allow for synchronization of processes with parameters
devised at design time or runtime. In Sect. VI we give a
short presentation of our prototype and its connection to a
process engine. Finally, we discuss related work in Sect. VII
and present our conclusions in Sect. VIII.

II. A USE-CASE FOR PROCESS INSTANCE
SYNCHRONIZATION

Many businesses rely on lean manufacturing systems in
order to operate effectively. In lean management the elim-
ination of waste is an important goal [5]. Waste denotes
e.g. unnecessary movement of materials, excess inventory not
directly required for current manufacturing jobs, or extra steps
taken by employees due to ever-changing manufacturing jobs.

The elimination of waste by supporting efficient use of
resources is also a primary goal of process instance syn-
chronization. Consider, for example, a company with an in-
house printing facility, that prints thousands of fliers, letters
and posters a day. To minimize waste as defined above, the
company wants to introduce the following rules:

There are three print queues for letters, fliers, and posters.
The activity reflecting the print job constitutes the synchro-
nization point, i.e., the activity where the different print queues
are to be synchronized. Empirical data shows that there is a
certain amount of serial letters every morning. Therefore the
employees have to prepare letter production first. When the
other queues reach a certain fill level, the letter production
is stopped and the machinery is prepared for flier or poster
production. This process is repeated until the end of the day,
under the premise that each form is at least processed once.

The printing facility operates independently of other facil-
ities. Processes of other facilities are to be kept as simple as
possible. It is possible to send a request-for-demand and later
the actual print job. In order to avoid a massive spooling server
the actual print-jobs are sent as late as possible.

By analyzing this use-case we found different properties:
1) Several independent business entities exist.
2) Each business entity has its own processes.
3) In order to enable a simple printing activity to be in-

corporated in existing processes we can utilize a simple
rule-based synchronization.

In the following we want to justify the third statement
above: In a process environment it is advisable to rely on rules

Fig. 1. Generic Process Engine State Chart

when, first of all, a certain interrelationship spawns multiple
processes. Traditionally this is solved by introducing additional
activities in conjunction with triggers and mutexes, which
tend to slightly clutter the process description. This makes
the processes harder to understand and maintain and therefore
is a source for hidden errors. Additionally when a certain
interrelationship is subject to sporadic change and or involves
significant conditional branching or decision-making a rule-
based approach is advisable. Thus, for synchronizing process
instances we opt for a rule-based approach.

III. OBSERVABLE LIFECYCLE OF INSTANCES AND
ACTIVITIES

Before discussing synchronization it is important to deal
with the lifecycle of instances and activities. The notion of an
activity lifecycle is covered in a wide range of publications,
ranging from discussions about BPEL implementations [6] and
exception handling [7], to API descriptions [8].

All models more or less share three basic states for an
activity: ready, processing, finished. These states are then
extended by additional states for error and recovery (like, e.g.,
retrying, failed) [9]. As the goal of this paper is to allow for
synchronization by an external synchronization engine (see
Section VI), it is crucial describe a fine grained state model
(as well as state changes) observable from the outside as a
series of events.

In order to further streamline the model, we differentiate
between states that are related to process instance, and states
that are related to the execution of activities. For this paper
we explicitly exclude states that deal with exception handling
or repair.

A. Instance Level States

We differentiate between the following states (see Fig. 1):
ready: The initial state after a client requests a new instance.

It is possible to set the context, endpoints and process
description.

running: Denotes that an activity is executed. The progress
of this execution is reflected by a series of states for each
activity (i.e. Activity Level States).

stopped: Whenever an error occurs (e.g., connection prob-
lems to services that represent activities), an exception



Fig. 2. Interaction between Synchronization and Process Engine

may be raised that puts the process engine into the state
stopped.

finished: This is the final state of a process instance. Infor-
mation like the context, endpoints or process description
is read-only.

B. Activity Level States

While running, the process engine goes through a series of
states per activity. As multiple activities may be executed in
parallel, this states are not observable from the outside, but
instead they are communicated as a series of events:

calling: Active during a connection to an external service
that implements an activity. It occurs when actual services
are called.

failed: Whenever an error occurs a failed state for this
specific activity is communicated and the process instance
state is set to stopped.

manipulating: Active while the result of a call to an external
service is merged into the context. It also occurs for
activities that only manipulate context.

done: Occurs for all activities after they are committed. This
also marks the point where changes to the context are
observable from the outside.

The above mentioned states are in a similar form to be
found in all process engine. Especially for synchronization
we include the following two states:

syncing: Can be used by to decide if the control flow can
continue or if the engine has to be stopped (in case of a
synchronization error). The idea is to keep activities in the
syncing state, in or order to wait for activities in parallel
branches of the same process instance or activities in
different process instances. Syncing before is a state every
activity holds before state calling. Syncing after is a state
every activity holds after state done.

C. Utilizing States

In order to utilize the states we assume that states and
state-changes are communicated to subscribers (see Fig. 2).
Subscribers are modules or external services such as monitors
or a synchronization service, that are interested in a particular
process instance execution. These subscribers can subscribe()
to “Activity Level States” changes, such as syncing.

We further assume that subscribers can interact with process
instances by:

• Triggering “Instance Level States” running and stopped
by calling start() and stop().

• By voting for “Activity Level States: syncing before
and after”. We define voting as allowing an activity
to progress to the next change. Voting also includes the
possibility to prohibit this state change (answer later) by
delaying the vote and thus delaying execution.

IV. RULE-BASED SYNCHRONIZATION

As laid out in Sect. III we will rely on some simple
foundations for implementing synchronization. First of all,
external services can subscribe to process instances. A running
process instance communicates its progress through a series of
states changes pushed to subscribers . A subscriber may stop a
process instance as well as continue, or delay the execution of
a process instance. For a stopped process instance, a subscriber
may furthermore skip activities by changing the control flow
pointer as well as restart the process instance.

As the logic for synchronizing activities spawns multiple
instances we decided for a declarative (rule-based) approach.
As mentioned before this allows for a great degree of flexibility
in comparison to static implementation of patterns.

A. Rules Syntax

For our simple rule engine we rely on Event Condition
Action (ECA) rules [10], which incorporate many familiar
concepts found in many information systems:

We define a set of events E = {e1, . . . , en} where each
event ei has a set of attributes: ei ← {x1, . . . , xn}. Events are
for example triggered by state changes received from running
process instances.

As a rule engine also needs to have an internal state (i.e.
variables) in order to e.g. only trigger an action after a
minimum number of events occurred, we introduce the notion
of contexts C = {c1, . . . , cn}. Each context ci consists of one
or more variables: ci ← {v1, . . . , vn}. The context may be
changed in the action part of the rule. A single context variable
may be directly referred as cvji . The purpose of contexts is to
group the variables together, that hold the state of the rule
engine. We define a change of a variable inside a group to
also trigger an event, that can potentially be processed by a
rule.

Finally we define action calls A = {a1 . . . an}. In addition
to modifying the context one or more calls ai may be used in
the action part of the rule. These calls represent the invocation
of custom external functionality, in our case to control a
process instance.

A rule is triggered either by an event ei or by modifying
a context ci (changing one or more context variables vi).
The condition part consists of a set of propositions P =
{p1, . . . , pn} about event attributes xn and/or context variables
c
vj
i (e.g. to test if an event attribute matches a certain value).

The condition part of a rule triggered by an event may include
propositions about contexts.



TABLE I
Rule Quick Reference

Events E = {e1, . . . , ek}
Attributes ei ← {x1, . . . , xl}
Single Attribute e

xj

i
Contexts C = {c1, . . . , cm}

Variables ci ← {v1, . . . , vn}
Single Variable c

vj
i

Conditions (Propositions) P = {p1, . . . , pp}, check E and C
Shortcut Values S = {s1xi

, . . . , srxi
}

Named Shortcut Value sname
xi

= value
Actions A = {a1 . . . ao}, modify C

As a rule is potentially triggered multiple times, we will use
the ∀ quantifier and henceforth denote rules:

∀〈ey, cz1 , . . . , czq 〉 • ∃ey ∧ ey ← {x1, . . . , xn} ∧ ey ∈ E ∧
∃cz1 ∧ . . . ∧ ∃czq∧
cz1 ← {v1z1 , . . . , v

n
z1} ∧ . . .∧

czq ← {v1zq , . . . , v
n
zq} ∧

cz1 ∈ C ∧ . . . ∧ czq ∈ C ∧
p1 ∧ . . . ∧ pn

⇒ a1, . . . , ao •

In this context we use ey to denote an existing event ei
identified by y. The same semantic is used in conjunction
with cz1 , . . . , czq . To make this more readable we will from
now on use the following equivalent notion:

∀〈ei, c1, . . . , cn〉 : p1, . . . , pp •
a1, . . . , ao

where all expressions related to the naming and existence-
checking of events, contexts and variables are left out. Fur-
thermore the propositions and actions are visually separated
with a •. These can be read as

∀〈Event〉 : Condition • Action

with an event being either triggered from outside (ei) or
triggered through changing a context ci in any other rule.

In the propositions the event attributes have to be compared
to actual values and these values may clutter the rules. There-
fore we introduce a set of shortcut values S = {s1xi

, . . . , srxi
}.

Values are bound to event attributes xi, and associated with
unique symbolic identifiers 1 . . . r: e.g., sname

xi
= val denotes

that the value val for attribute xi can be identified by name.
In case one or more values sname

xi
exist, each rule with

an event that includes xi can (1) use each associated id as
a shortcut (to simplify notation), and (2) is not invoked if a
value other than defined ones is pushed: the values also act as
a filter, to reduce the number of propositions.

B. Prerequisite Vocabulary for Rule-Based Synchronization

In the following sections we want to apply our rule-based
approach to synchronize process instances. Prior to this we
have to define the following vocabulary that is shared for
several synchronization patterns we present. Synchronization

is possible based on only two synchronization events due to
the fact that we synchronize either before or after execution
of a rendezvous point.

ebefore ← {instance, position, endpoint}
eafter ← {instance, position, endpoint}

These events are triggered before and after an activity is
called, and may be used to delay the execution of an activity
or the execution of the next activity by means of voting, as
described in Sect. III. Both events share the same attributes.
Further, we can rely on a simple set of action calls A, derived
from the state-based model. Altogether:
xinstance is the process instance that pushed the event.
xposition is the unique id of the activity in the process

description of a certain instance. When an activity is
called several times in a loop, the position is the same for
each iteration. It is persistent not across process instances.

xendpoint is the unique identifier of an activity. It is persistent
across process instances.

acontinue continues the control flow for a given activity and
instance.

askip skips an activity in a given instance. This requires a
series of steps: stop process instance, change position
information of a given activity to ”after” (see Sect. III),
restart process instance.

A concrete example for a rule as described above is

∀〈ebefore〉 : eendpoint
before = http://someuri • acontinue(x)

For the attribute values of an event ebefore

xinstance = Instance 1
xposition = Activity C
xendpoint = http://someuri

this rule triggers the corresponding process engine (in syncing
state) to continue “Activity C” of “Instance 1”. In the above
example only xendpoint is part of the condition of the rule, but
not xinstance and xposition. This results from the fact that the
rule is intended to fire for all possible values of xinstance (e.g.
Instance 1) and xposition (e.g. Activity C).

V. RULE-BASED SYNCHRONIZATION PATTERNS

In this section we specify the rules necessary to synchronize
on activities.[3] and evaluate our approach by applying them
to the scenario presented in Sect. II:

P34: Static Partial Join for Multiple Instances.
P35: Canceling Partial Join for Multiple Instances.
P36: Dynamic Partial Join for Multiple Instances.
We will show that our simple method covers synchroniza-

tion of multiple instances of an activity used in different
processes or process instances1.

For easier comprehension of the patterns described in the
next subsections, please use:

1As our approach is based on events, it is also possible to synchronize on
activities inside a single process instance.



Fig. 3. Graphical Notation to Describe Synchronization

• The Rule Quick Reference Table I.
• Fig. 3 shows our BPMN based graphical notation to

describe synchronizations. This extension is necessary,
because we have to describe synchronization between
processes or process instances, as well as describe process
instance snapshots that represent different times during
execution (runtime).

A. P34 - Static Partial Join:

In our print queue use-case (cf. Sect. II) patterns P34 (Fig.
4(a)) and P35 (Fig. 4(b)) occur e.g. during the preparation of
the printing facility. When the facility is put into configuration
mode, three independent test teams have to prepare the facility,
extract test data, and file a test report. When the configuration
is done once, the teams look at different aspects of the test data
yielded by the test mode. Whenever two teams successfully
complete the configuration and testing, the printing facility is
prepared for production.

Individual teams (independent processes or branches) are
represented by swimlanes. They all have an activity b to gather
data from the test run. When all three teams are ready to
start b, the test-run can be started. Whenever two teams finish
gathering data through b, the teams are allowed to move on
and produce a summary. The remaining team continues with
the data gathering, although the result has no consequences.
All activities b have to be finished before a new configuration
run.

To realize this behavior we define the following values and
contexts as a basis for the rules:

sbendpoint = http://b cwait ← {buf : Array}
csync ← {run : Array,fin : Array}

We defined two synchronization points: We use σ1 to group
all rules that are hooked to ebefore and σ2 to group all rules
that are hooked to eafter.

To ease the understanding of the process we will use the
test scenario depicted in Fig. 5. Above the activities small
triangles denote the progress. A triangle at the left upper or
right upper corner means, that the activity waits for a continue,
either before or after its execution. A triangle in the middle of
an activity means that it is currently executed. More than one

(a) P34: Static Partial Join

(b) P35: Canceling Partial Join

Fig. 4. Static & Canceling Partial Join for Multiple Instances

Fig. 5. P34 Example Scenario

triangle per swimlane shows the progress made by the events
in the caption (e.g. after p1:b).

∀〈ebefore〉 : ∅ • cbuf
wait.append

(
einstance

before , eposition
before

)
(P34-σ1-a)

∀〈cwait〉 : cbuf
wait.length > 3 •
crun

sync := first 3 from cbuf
wait,

foreach crun
syncas t {acontinue (tinstance, tposition)}

(P34-σ1-b)

Rule P34-σ1-a fires when ebefore occurs. In Fig. 5-(1) it fires
two times, when team 1 and team 3 are ready to start the
configuration run.

Whenever P34-σ1-a fires, the activity, identified by the
attributes instance and position, is added to cbuf

wait. There is
no condition, as through the introduction of a shortcut value
saendpoint, rules implicitly only match rules when the given
endpoint is matching the value in sbendpoint.

In Fig. 5-(2) rule P34-σ1-a fires again, leading to three
entries in cbuf

wait. This context change triggers rule P34-σ1-b.



The consequence is, that three activities are moved to crun
sync and

acontinue is called for each of them. While crun
sync is not empty,

eafter activities are saved in cbuf
wait (rule P34-σ1-a) but it is not

possible that rule P34-σ1-b is triggered.

∀〈eafter〉 : ∅ • cfin
sync.append

(
einstance

after , eposition
after

)
(P34-σ2-a)

∀〈csync〉 : cfin
sync.length = 2 •

foreach cfin
sync as t {acontinue (tinstance, tposition)}

(P34-σ2-b)

∀〈csync〉 : cfin
sync.length > 2 •
acontinue

(
cfin

sync.lastinstance, c
fin
sync.lastposition

)
(P34-σ2-c)

∀〈csync〉 : cfin
sync.length = crun

sync.length •
cfin

sync := Array, crun
sync := Array

(P34-σ2-d)

Rule P34-σ2-a fires when eafter occurs, as seen in Fig. 5-
(3). This happens when one team successfully completes the
configuration run. As a consequence the activity is copied
to cfin

sync. Rule P34-σ2-a fires again for Fig. 5-(4), when the
second team completes the configuration run. This also leads
to the firing of rule P34-σ2-b, because two teams finishing the
configuration run means that the production run is possible.
The consequence is that these two teams can continue with the
last activity in their process, the submission of a test report.

The third team continues gathering data from the con-
figuration run, although the findings have no consequences.
When the team is finished, as seen in Fig. 5-(5), the overall
configuration run is deemed over. This triggers rule P34-σ2-
c, therefore team 3 can immediately continue with filing the
report. As soon as all activities are finished, also rule P34-
σ2-c is triggered, crun

sync and cfin
sync are set to empty. Therefore

P34-σ1-b may trigger whenever three activities are available.

B. P35: Canceling Partial Join

This join is very similar to P34. The buffering of ebefore

events and the triggering, denoted by σ1 is the same. This
means that rules P34-σ1-a and P34-σ1-b are reused.

∀〈eafter〉 : ∅ • cfin
sync.append

(
einstance

after , eposition
after

)
,

crun
sync.delete

(
einstance

after , eposition
after

) (P35-σ2-a)

∀〈csync〉 : cfin
sync.length = 2 •

foreach cfin
sync as t {acontinue (tinstance, tposition)}

foreach crun
sync as t {askip (tinstance, tposition)}

cfin
sync := Array, crun

sync := Array
(P35-σ2-b)

The rules for σ2 are simpler for P35. Again, when one team
successfully completes the configuration run, eafter occurs and
therefore rule P35-σ2-a fires. As a consequence the activity is
copied to cfin

sync, but additionally it is removed from crun
sync.

Fig. 6. P36: Dynamic Partial Join for Multiple Instances

Rule P35-σ2-b is triggered when two teams successfully
gather the test data. This means that the configuration run is
finished (all remaining activities sbendpoint are skipped) and all
three teams file their report. This is done by calling acontinue

for all activities in cfin
sync, and then calling askip for all activities

in crun
sync. Finally crun

sync and cfin
sync are set to empty.

C. P36: Dynamic Partial Join

While P34 and P35 are design time patterns, with a fixed
number of activities to start or end synchronization, P36 is
a runtime pattern. Again we interpret this pattern not in the
context of a single instance, but we want to allow it to
synchronize on multiple independent process instances.

By applying the pattern to our example we can come up
with the following scenario (see Fig. 6): The printing facility,
consisting of several subsystems, has sustained damage that
has to be repaired. To keep the downtime minimal, several
teams work in parallel, on different issues. Initially two teams
are dispatched. During the process it may be necessary to
dispatch additional teams to work on new problems. When
a number of teams finish reparation of critical subsystems,
the printing facility may return to operational status, although
other teams may be still busy working on minor subsystems.
The supervision of the repair is to be done by a control team.

As in P34 we assume, that some teams may finish their
work, without consequences for the operation. For the example
depicted in Fig. 6 we assume activity a to represent the assem-
bly of the team and necessary resources, activity b represents
the repair act, yielding standardized repair protocols, whereas
c represents a detailed report. To realize P36 we need the
following vocabulary:

ssynendpoint = http://b cwait ← {buf : Array}
sctlaendpoint = http://x csync ← {run : Array,fin : Array}
sctldendpoint = http://y cctl ← {buf : Array, add : false, done : true}

Rules P36-σ1-a and P36-σ1-b realize queues for activities
ssyn

endpoint and sctla
endpoint, meaning that a repair team or control

team is ready.

∀〈ebefore〉 : eendpoint
before = syn ∧ cadd

ctl = false •

cbuf
wait.append

(
einstance

before , eposition
before

) (P36-σ1-a)



∀〈ebefore〉 : eendpoint
before = ctla •

cbuf
ctl .append

(
einstance

before , eposition
before

) (P36-σ1-b)

Rule P36-σ1-c describes that as soon as a control team
is ready and no other repair processes are running (crun

sync is
empty), the repair may start. For this purpose the context
cctl holds two variables: add tells if additional teams are still
requested to join the repair effort, done tells if the printing
facility is repaired to a point where it can be restarted again.
These variables are set to initial values, then all waiting repair
teams are dispatched.

∀〈csync, cctl〉 : crun
sync.empty? ∧ cbuf

ctl > 0 •
cdone

ctl := false, cadd
ctl := true,

remove cbuf
ctl .first,move cbuf

wait to crun
sync,

foreach crun
syncas u {acontinue (uinstance, uposition)}

(P36-σ1-c)

Rule P36-σ1-d describes that repair teams which are ready
for work, are allowed to join the repair, as long as cadd

ctl is true
(when it is false rule P36-σ1-a is firing).

∀〈ebefore〉 : eendpoint
before = syn ∧ cadd

ctl = true •

crun
sync.append

(
einstance

before , eposition
before

)
,

acontinue

(
einstance

before , e
position}
before

) (P36-σ1-d)

Rule P36-σ2-a fires whenever the control team decides that
no more teams are necessary, represented by the finishing of
activity x: cadd

ctl is set to false.

∀〈eafter〉 : eendpoint
after = ctla • cadd

ctl := true (P36-σ2-a)

Rule P36-σ3-a represents that teams that finish their repair
are put on standby as long as the control team not decided that
the facility can be restarted (cdone

ctl is false). The teams that are
in standby mode are moved to cfin

sync.

∀〈eafter〉 : eendpoint
after = syn ∧ cdone

ctl = false •

cfin
sync.append

(
einstance

after , eposition
after

) (P36-σ3-a)

As soon as the control team decides that the printing facility
can be restarted (rule P36-σ3-b, cdone

ctl is set to true), all teams
currently in standby (cfin

sync) are allowed to continue. All teams
teams still working are allowed to continue as soon as they
finish (rule P36-σ3-c).

∀〈eafter〉 : eendpoint
after = ctle • cdone

ctl := true,

foreach cfin
syncas u {acontinue (uinstance, uposition)}

(P36-σ3-b)

Fig. 7. Screenshot of Synchronized Process Instances

∀〈eafter〉 : eendpoint
after = syn ∧ cdone

ctl = true •

cfin
sync.append

(
einstance

after , eposition
after

)
,

acontinue

(
einstance

after , eposition
after

) (P36-σ3-c)

As in P34, when all teams are finished, crun
sync and cfin

sync are
set to empty.

∀〈csync〉 : cfin
sync.length = crun

sync.length •
cfin

sync := Array, crun
sync := Array

(P34-σ2-d)

VI. IMPLEMENTATION

In Fig. 7 the visual representation of a set of three instances
can be seen in the upper half, whereas in the lower half, the
internal representation of the state of the rule engine is visible.

Our prototype synchronization engine is connected to the
CPEE (Cloud Process Execution Engine) by Stuermer et
al. [11], [12] which supports the all the concepts described
in Sect. III including HTTP based subscription and voting
mechanisms.

For this prototype implementation we not only implemented
the patterns mentioned in this paper, but we also identified and
implemented additional synchronization related patterns. The
implementation including rules realizing additional patterns
(17, 18, 39, 40) can be found under: http://www.pri.univie.
ac.at/workgroups/wee/?t=rulespattern.

VII. RELATED WORK

Early approaches [13] for process instance synchronization
proposed a database transaction inspired approach: ensure that
the execution of activities is serializeable. Some years later,

http://www.pri.univie.ac.at/workgroups/wee/?t=rulespattern
http://www.pri.univie.ac.at/workgroups/wee/?t=rulespattern


multi instantiation of activities has been addressed by the
workflow patterns project [3]. There are implementations of
multi instantiation patterns with and without a priori runtime
knowledge [14], [15], [16]. However, no comprehensive im-
plementation of synchronization patterns has been presented
yet. Specifically, there is no implementation in connection with
processes executed within the cloud. Aside of workflow pat-
terns, synchronization between instances of different process
types has been addressed by Heinlein [17] based on a central
unit that is controlling whether inter-process dependencies are
fulfilled. While Heinlein proposes only a set of instructions
to execute the activities in multiple processes in a particular
order (akin to serialization in databases), we concentrate on
parallel execution of activities in combination with complex
synchronization logic (e.g. execute n of m activities). Heinleins
approach can be implemented as special use-case of our
approach. Approaches in the context of semantic compliance
[18], [19], [20] of processes have merely focused of verifying
constraints, often implemented as rules, for certain instances
of one process type. However, they have not addressed inter-
instance dependencies so far. Thus, the approach presented in
this paper can be seen as complementary to these approaches.

In addition, compliance approaches are interesting in the
way they implement the constraints: Among the formal lan-
guages proposed for compliance rule modeling, we often come
across temporal logics such as linear temporal logic (LTL) or
computational tree logic (CTL) [21]. Both are fragments of
first-order logic (FOL). Due to its linear time semantics, which
is more suitable in the business process context [22], LTL has
been clearly preferred over CTL which has branching time
semantics. Nonetheless, expressivness of both, LTL and CTL,
is necessary for expressing semantic constraints, but is not very
suitable for implementing synchronization rules: Synchroniza-
tion deals not mainly with complex dependencies to establish
the order of tasks, but with the description of circumstances
for the (parallel) execution of tasks. Thus identifying the tasks
(events and conditions) can be simpler, while additionally it is
necessary to deal with the runtime aspect (actions and context
variables). As discussed in the paper, we found ECA rules
perfectly sufficing our requirements for synchronization.

VIII. CONCLUSION

In this paper we presented a simple mechanism for syn-
chronizing process activities founded on a simple extension
of the established activity lifecycle. Based on ECA rules it is
possible to synchronize activities inside single instances, and
more important: synchronize independent process instances.
In comparison to existing approaches, synchronization is only
loosely coupled with process engines (by just delaying the
execution of activities). It also focuses on synchronization as
defined by existing process patterns, instead of serialization of
process descriptions. Future work will include more sophisti-
cated dynamic synchronization mechanisms that can predict
activity instantiation (negative example: print jobs that arrive
only one second late, have to wait for a full day) and thus
further reduce resource waste.
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