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Abstract. Business Process Compliance (BPC) has gained significant
momentum in research and practice during the last years. Although many
approaches address BPC, they mostly assume the existence of some kind
of unified base of process constraints and focus on their verification over
the business processes. However, it remains unclear how such an inte-
grated process constraint base can be built up, even though this con-
stitutes the essential prerequisite for all further compliance checks. In
addition, the heterogeneity of process constraints has been neglected so
far. Without identification and separation of process constraints from
domain rules as well as unification of process constraints, the success-
ful IT support of BPC will not be possible. In this technical report we
introduce a unified representation framework that enables the identifica-
tion of process constraints from domain rules and their later unification
within a process constraint base. Separating process constraints from
domain rules can lead to significant reduction of compliance checking
effort. Unification enables consistency checks and optimizations as well
as maintenance and evolution of the constraint base on the other side.

1 Introduction

Business Process Compliance (BPC) has gained significant momentum in re-
search and practice during the last years. BPC requires that business processes
comply with certain relevant rules, regulations, or norms. The rules can be de-
rived from internal quality directives such as Six Sigma or ITIL. Examples for
external rules comprise regulations by standards (e.g., ISO 001), regulations by
authorizing bodies, or regulations based on contracts (business contracts) [14].

Although many approaches address BPC [12,9,14,10,3], they mostly assume
the existence of some kind of unified base of process constraints and focus on
the verification of these constraints over the business processes. By process con-
straints we refer to those rules in the domain of interest, that are associated
with processes. As a general remark: the co-existence of processes and process
constraints is common and desired (“Separate [Rules] From Processes, Not Con-
tained In Them”, cf. [4]). However, it remains unclear how such an integrated
process constraint base can be built up, even though this constitutes the essential
prerequisite for all further compliance checks.
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Fig. 1. Current Situation: “Zoo” of Process-Relevant Constraints

In addition, the heterogeneity of process constraints has been mostly ne-
glected so far. For a specific application scenario consider Fig. 1 that displays
example processes and rules from the medical domain: here, business processes
might be subject to medical guidelines or clinical pathways on the one side [9]
and also subject to authorization and privacy constraints on the other side. Fig.
1 also covers simple resource synchronization as well as temporal rules. Assum-
ing that all of these rules are process constraints, how can they be integrated
within a unified representation? In summary, building up a unified basis of pro-
cess constraints out of all rules existing in a certain business context, basically
poses the following requirements:

– Requirement 1: Process constraints should be identified and separated
from the overall set of business rules.

– Requirement 2: Process constraints should be unified based on a common
representation in order to facilitate consistency checking and optimization.



Requirement 1 is crucial in order to reduce BPC verification effort to those
constraints that are associated with processes. This is particularly important
since compliance verification for processes, which is mostly based on some kind
of model checking technique, tends to be complex [10]. The second requirement
demands for a unified representation that allows to fully match the heterogeneity
of vastly different constraint types. It can then be used for filtering and opti-
mization of process constraints. Furthermore, it also contributes to evolution
and maintenance of the constraint base which is particularly important, since
constraints are often subject to change and evolution [11].

In this technical report, we present a definition for process constraints that
enables their distinction from business rules that are not associated with any
process. This definition bases on results from general business rules frameworks
as well as analysis of existing BPC approaches and case studies. Further, a unified
representation for process constraints is provided. It covers process perspectives
such as control flow, data flow, time, and resources which can be subject to
process constraints. The unified representation also enables the specification of
behavior which is relevant for process constraints that require some sort of action
(e.g., synchronization between process instances).

In Sect. 2 we derive means to identify process constraints from domain rules.
The IUPC unification representation is presented in Sect. 3. Sect. 4 discusses
the IUPC representation along different constraint properties in PAIS followed
by an evaluation in Sect. 5. Sect. 6 compares related approaches and Sect. 7
concludes with summary and outlook.

2 Identification of Process Constraints

This section addresses Requirement 1 as stated in the introduction: from all
business rules relevant for “business practice and guidance” (cf. GUIDE [4]),
those constraints that are relevant in the context of process execution should
be filtered out. Reason is that the effort for checking constraints imposed over
processes can be reduced to those which are actually associated with the pro-
cess (structure). Note that verifying constraints over processes is often complex
although different approaches offer optimization techniques [10].

In order to be able to identify and separate process constraints from business
rules, a definition of process constraints is required. In turn, a definition requires
to know the specifics of process constraints in contrast to business rules. In-
tuitively, process constraints should be somehow associated with a process. In
literature on business rules, association of business rules and real-world objects is
expressed by so called anchor objects [6]. In the example rule “A car must have
a registration number”, real-world object “car” constitutes the anchor object
[6]. More precisely, within the generally accepted “If ... Then” rule structure,
the anchor object would be contained within the if part, triggering execution of
the rule. The question is now which anchor objects are suitable to distinguish a
process constraint from a general business rule.



As process literature study shows, all formalisms on process constraints (im-
plicitly) contain a process-specific anchor object, i.e., a structural pattern con-
tained within the process of interest which the process constraint refers to. A
structural pattern contains at least one activity either executed within a process
stored within the process activity repository. An example for the first case is con-
straint C3 depicted in Fig. 1, referring to process activity blood test executed
within the treatment process. We denote such process constraints as enabled. By
contrast process constraint C1 for example does not refer to any process activity
currently executed within the treatment process. In turn, it refers to processs
activities administer Aspirin and administer Marcumar, stored within the
associated process activity repository. Hence, any time one of these two activ-
ities will be added to some process, C1 will become enabled and thus is to be
considered as process constraint. Until then, we denote C1 as idle.

Specifically, we use the general term structural pattern, since it might refer to
a set of process activities as well as to control flow patterns [2], e.g., a sequence
or a parallel branching.

Definition 1 (Process Constraint). Let P be a set of all process types of
consideration. Let further A := AP ∪̇ AR be the set of all process activities
within the domain where AP denotes the set of process activities executed within
a process P ∈ P and AR denotes the set of process activities stored within the
associated process repository.1 Finally, let R be the set of all domain rules. Then
we denote a rule r ∈ R as process constraint if it contains a structural pattern
SPc as anchor object with SPc is structural pattern over AP or SPc ⊆ AR.

In the SeaFlows project [10] process constraints are tied to one or more
process activities and consist of an antecedent and a consequence part. More
precisely, based on a triggering antecedent pattern, a consequence pattern must
hold to fulfill the constraint. This directly corresponds to the general notion of
anchor object, since the structural pattern contained within the antecedent pat-
tern triggers the constraint (if part). Process constraints as defined in DECLARE
also refer to process activities and the semantics for relations between activities
are based on LTL (Linear Temporal Logic) [13]. BPMN-Q offers compliance pat-
terns containing structural patterns within the triggering part of the constraint
[3]. Consequently, we can state that a business rule is a process constraint if its
anchor object contains a structural pattern within a process.

3 Process Constraint Unification

As we can now identify process constraints, the second challenge is to unify the
partly strongly varying process constraints. Hence, in this section we present the
IUPC representation for unifying and structuring process constraints in to sub-
sequently support process constraint optimization, maintenance, and evolution.

1 For definition purposes we assume disjoint sets here. However, the definition can be
easily adapted when used and idle process activities are contained in both sets.



3.1 Expressing Process Context by Linkage

The following definition of Linkage integrates the context Contextc of a process
constraint c together with its structural pattern SPc and a trigger position TPc
(cf. Fig. 2).

Definition 2 (Linkage). Let P be a set of all process types of consideration and
IP be the set of process instances running according to a process type P ∈ P.
A process type P ∈ P is described by a process schema SP := (AP , EP , DP )2

where AP denotes the set of activities, EP the set of control/data edges, and DP

the set of data elements SP consists of. Then the linkage Linkagec to a process
type P is defined as follows:

Linkagec ⊆ Contextc × SPc × TPc where

Contextc ⊆ P × IP ∧
∃SPc ∧
TPc ∈ ∅, before(an,P ), after(an,P )

In Def. 2, Contextc describes in which processes or process instances a con-
straint may occur. Possibilities include single instances (e.g. SLAs for services
that have been dynamically selected), all instances of a process (attribution of
resources to tasks) or even instances in multiple processes (when a resource is
used in multiple processes, and synchronization has to take place). Structural
patterns SPc express the association between process constraint and process. In
connection with context, it defines for which parts of process types and pro-
cess instances the corresponding process constraint is to be enforced or verified.
Structural patterns may not only spawn single activities but also several activ-
ities connected through complex control decisions. Finally, the trigger position
TPc is relevant for synchronization constraints, since synchronization constraints
are constraints that not only set out certain conditions on process execution, but
enforce an action. In this case the trigger position specifies whether the action
should take place before the affected activity is started or after. The Trigger
Position is solely present for run-time (behavioral) constraints. As a structural
pattern may not only spawn a single activity but also several activities connected
through complex control decisions, it is necessary to determine when exactly a
constraint has to fire. This is the equivalent of describing the condition under
which an event occurs, in an Event Condition Action (ECA) rule. The trigger
position itself is simple: before or after an activity occurs. Of course multiple
before / after positions can be specified.

Both, SPC and TPc are grouped as Connection in Fig. 2 to express their
tight integration. A TPc can not exists without a set of activities matched by
a structural pattern SPc. Apart from TPc, linkage information can be statically
matched against processes, thus it is possible to determine enabled and idle
constraints (as described before).

2 In order to stay meta-model independent, we assume a simple generic representation
for process schemas that can be adopted by any (imperative) process meta model.



From now on we will denote a linkage Linkagec in the compact form:

Linkagec : ((P, IP ), SPc, TPc)

Consider compliance constraint C6 depicted in Fig. 1: “C6: Before any

invasive operation, patient must be examined”.
The antecedent pattern “existence of activity invasive operation”

within a process triggers the check whether this activity is preceded by an activ-
ity “patient examination”. The linkage for this compliance constraints turns
out as

LinkageC6 : ((Invasive Surgery, ALL), SPC6, ∅)

with

SPC6 : ∃a1 Is(a1, examine patient) ∧
∃a2 Is(a2, conduct surgery) ∧
a1A∗a2

where
A∗ : arbitrary activities between a1 and a2

3.2 Integrating Data, Time, and Resources

Existing approaches mostly deal with control flow constraints, i.e., constraints
that are only referring to structural patterns within a process [3]. The only
approaches that have addressed data flow aspects within process constraints are
SeaFlows [8] and BPMN-Q [3]. In accordance to these approaches, the data flow
perspective within a process constraint can be represented as condition on the
structural pattern it refers to. Consider constraint C8 from Fig. 1: “C8: Beyond

age 62, a blood test must be performed”.
We can see that the data flow condition “Beyond age 62” imposes a re-

striction on the structural pattern of the constraint (“blood test”). However,
control and data flow are only two perspectives of a process. As case studies
show, process constraints might also refer to conditions on time and resources,
e.g., constraints C3, C4, C5, C7, C9, and C11 within the example depicted in
Fig. 1. Hence, constraint unification requires the specification of data, time, and
resource conditions on top of the linkage part of the process constraint.

Definition 3 (Condition). Let c be a process constraint with linkage Linkagec
referring to a process type P described by process schema on linkage SP := (AP ,
EP , DP ). The condition of c imposed on Linkagec is defined as

Conditionc ⊆ expr(DP )× expr(timec)× expr(resourcec)

where

– expr(DP ) denotes a logical expression over the data elements of P
– expr(timec) denotes a temporal expression and



– expr(resourcec) denotes a logical expression over the resources associated with
P (typically modeled within a organizational or resource model)

It is important to mention that a condition cannot exist without referring
to a linkage. Thus, a condition describes, under the premise of a given linkage,
either (a) a combination of data, temporal or resource conditions that have to
be present or (b) a combination of data, temporal or resource conditions that
have to be present in order for a given behavior to be apply.

For constraint C6, for example, no specific condition is imposed on the linkage
part. Hence:

ConditionC6 : ∅

When considering constraint C3 in Fig. 1, things get more interesting, since
“After a blood test wait 4 hours before sonography” obviously imposes
a time condition on the linkage part. Less obviously, an additional condition is
imposed on the data flow, since the 4 hours time frame between blood test and
sonography are only required for the same patient, formally:

LinkageC3 : (Invasive Surgery, ALL), SPC3, ∅)

with

SPC3 : ∃a1 Is(a1, blood test) ∧
∃a2 Is(a2, sonography) ∧
a1A∗a2

and

ConditionC3 : patient(a1) = patient(a2) ∧
min time between(a1, a2, 4h)

Similar considerations can be made for data (“C8: beyond age 62”) and re-
sources (C7: examination by same user as surgery) which can be also rep-
resented by a condition part imposed on the linkage of a constraint.

3.3 Expressing Behavior within Process Constraints

The last missing piece is, given a certain linkage and condition, to allow for a
certain assignment or behavior. Assignment becomes necessary for access con-
straints such as C11. Behavior specifies for example the action part of a syn-
chronization constraint such as C10. Hence, we complete the unified constraint
representation by a Behavior part.

Definition 4 (Behavior). Let c again be a process constraint. For a given
Linkagec and Conditionc, a behavior can be either empty, the attribution of
resource or time information or instructions specific for process execution (e.g.
exceptions).



3.4 Summary: Linking, Condition, Behavior

The overall representation for process constraints consisting of linkage, condition,
and behavior is summarized in Fig. 2. In Sect. 5 we will evaluate the unified
representation against constraints as shown Fig 1.

Fig. 2. Constraint Structure

4 Discussing Unified Representation along Constraint
Properties in Process-Aware Information Systems

In the previous sections, a unified representation for process constraints has been
presented. In this section, we discuss its usage within Process-Aware Information
Systems (PAIS) along different constraint properties as set out in Fig. 3.

Fig. 3. Process Constraint Properties

Usage: Process constraints can be used to verify the compliance of business pro-
cesses with relevant regulations and constraints. This is useful for process design
and evolution. Constraints can also be used to alter or affect the behavior of
processes (behavioral). Affecting the behavior of processes includes the attribu-
tion of process activities or, more generic, the attribution of structural patterns.
Examples include resources allocation of process activities.

Additionally, constraints can be used to specify meta constraints. Meta con-
straints are intended to check the consistency of other constraints, for example,
constraint C5 in Fig. 1. Another example is a meta constraint specifying that



for each process activity referring to a resource centrifuge synchronization
constraint C10 in Fig. 1 is assigned to.

Application: Application deals with the question at which phase of a pro-
cess life cycle constraints may be enforced. Basically, at design-time constraints
are checked to verify that a process complies to certain criteria (compliance)
constraints. All constraints that are checked at design-time are compliance con-
straints or meta constraints.

All behavioral constraints, and some compliance constraints are checked at
run-time. Examples include the checking for data value constraints, or the attri-
bution of structural patterns (the attributes are used at run-time, though can be
checked by meta constraints at design-time). Compliance constraints may affect
run-time under certain circumstances. E.g. although a process may not conform
to a specific constraint at design-time, it may do so at run-time, because only
a certain execution path violates the constraint. Hence corresponding process
instances are to be monitored at run-time [10].

Scope: The four perspectives of the constraint scope have been discussed in
Sect. 2, capturing which kind of information constraints a PAIS can contain.
The most important scope perspective is structure as in all constraints structural
information has to be present (either explicit or implicit through connections of
information to structure), as otherwise they would not be connected to processes
and could thus not be enforced in PAIS. Note that if a constraint holds on only
structural information, it is always a compliance constraint.

Data is also an integral part of a process, that is tightly connected to struc-
ture. At design-time, it is possible to check if data types and data flow conform
to a certain schema. Further it can be checked whether certain data values will
lead to compliance violations are run-time. If, for example, a treatment process
states that a lab test is to be performed for all patients beyond 65 years and the
corresponding medical guideline states that the lab test is mandatory for pa-
tients beyond 62 year, it can be already checked at design-time, that for patients
between 62 and 64 there will be a violation of the corresponding constraint at
run-time.

Resource and time are attributes that are typically connected to structure (or
data). Their purpose is to describe information that aids the execution of a pro-
cess. Resource-aware and time-aware constraints in PAIS are typically checked
or enforced at run-time including:

– Resource assignment to process activities, typically specified based on access
constraints (e.g., constraint C11 in Fig. 1). Based on role assignment, process
activities are offered to authorized actors in their work lists at run-time (e.g.
by a RBAC component).

– On top of access constraints, authorization constraints can be specified such
as dynamic separation of duties. Dynamic authorization constraints are ver-
ified during run-time.

– Assign temporal information to activities (e.g. the normal duration of a
certain activity is 2 hours with a standard deviation of 10 minutes).



Origin: When do constraints become available for application to a process? All
constraints become available through not specified external resources, either
at design time, run-time or change time. They are identified and structured by
constraint designers and then made available through a constraint-base, and
have to be enacted from this point on. One exception is constituted by SLAs for
dynamic service selection. These constraints become available through execution
of a process instance, and vanish after the instance finishes.

5 Evaluation

The feasibility of the unified representation is evaluated by means of the overall
16 process constraints depicted in Fig. 1 and along the constraint properties
described in Section 4. For this we classify the 16 process constraint into different
constraint types that embody a combination of properties as represented by the
unified representation.

Table 1. Constraint Types

As depicted in Tab. 1 we identified 14 different process constraint types.
The first two constraint types deal with Resource Attribution (e.g., roles, actors,
nodes) and Timing Information Attribution (e.g., minimal, maximal, average
duration) to process structure. All this information is necessary at run-time, for
a temporal monitor as a basis to verify if a process behaves correctly, or an
RBAC system to select actors in a worklist. The only difference between these
two is, that during change-time timing information may have to be adapted to
account for the duration of changes. E.g. constraint C11 in Fig. 1 can represented



as follows:

LinkageC11 : ((Invasive Surgery, ALL), SPC11, ∅) with

SPC11 : ∃a1 Is(a1, affirm diagnosis)

ConditionC11 : ∅
BehaviorC11 : {ROLE := Doctor}

For attribution TPc is always empty, as the matched structural pattern im-
plies, that the attribution is available all the time.

The third constraint type describes Business Compliance Constraints in gen-
eral. We decided to include this very generic constraint type (which should not be
confused with several of the other constraint types) to show some specific char-
acteristics we derived by studying constraint sources as mentioned in Section
2. Business compliance constraints, are exclusively compliance constraints, they
never carry a behavioral part, they most of the time verify a certain structure
of the process, with a possibility of checking also data, resource and tempo-
ral aspects. Therefore the design-time Structural constraints also in this list are
Business Compliance Constraints, as well as some Temporal Constraints or Data
constraints (whenever only design-time aspects are covered). Separation / Bind-
ing of Duty, Resource Attribution, and Timing Information Attribution are the
exception to the rule. They may be very well applied at design time, just only
the impact can only be seen at run-time.

6 Related Work

Many approaches for checking BPC either at design or run time exist, e.g.,
[9,14,5]). As argued before, identification and unification of process constraints
has been outside the scope of these approaches so far. Validation of the IUPC
representation compared to selected existing approaches is presented in Table 2.

Representation SeaFlows [10] DECLARE [13] BPMN-Q [3] IUPC
Linkage activity set control flow pat. control flow pat. control flow pat.

global scope process context
trigger position

Condition data – data data, time, resource
Behavior – – – X

Table 2. Comparison of Existing Approaches

The above mentioned approaches try to ensure BPC either a-priori at design
time or by detecting inconsistencies at run-time. In addition, there are also a-
posteriori approaches that offer techniques to analyze process logs (i.e., data of
already executed and finished processes) with respect to certain properties such
as adhering to compliance constraints [1]. In these approaches, different aspects
logged during process execution can be checked, e.g., separation of duties. Doing
so the a-posteriori approach reflects the need for unified compliance checking, not



only a-posteriori, but also a-priori. Other approaches use constraints to synchro-
nize between business processes of different type (e.g., between a chemotherapy
and a radiation process) [7]. Based on our unification approach, synchroniza-
tion constraints can be unified and managed in combination with the other
constraints in PAIS.

7 Summary and Outlook

This technical introduced the IUPC representation for identification and unifica-
tion of process constraints. By separating process constraints from domain rules,
effort for compliance verification can be significantly reduced. Offering a unified
representation enables consistency checks and optimizations of the constraint
base. Furthermore, unification and structuring of constraints in PAIS enables
the development of an integrated checking component instead of isolated and
distributed checking components as present nowadays.

In upcoming publications we provide (on the basis of this classification) ex-
tensive evaluation based on case studies from different domains, e.g., health care
and financial sector. We furthermore work towards an implementation of the
unified and structured IUPC representation on top of our adaptive cloud pro-
cess execution engine CPEE [15]. Particular focus will be put on maintenance
of the constraint base and an integrated verification component for the engine.
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