
Computing and Informatics, Vol. 22, 2011, 1001–1020, V 2010-Dec-23

LIBNMF – A LIBRARY FOR
NONNEGATIVE MATRIX FACTORIZATION

Andreas Janecek, Stefan Schulze Grotthoff,
Wilfried N. Gansterer

University of Vienna, Austria
Faculty of Computer Science
Research Lab Computational Technologies & Applications
Lenaugasse 2/8
1080-Vienna, Austria
e-mail: <andreas.janecek,wilfried.gansterer>@univie.ac.at

Abstract. We present libNMF – a computationally efficient high performance li-
brary for computing nonnegative matrix factorizations (NMF) written in C. Various
algorithms and algorithmic variants for computing NMF are supported. libNMF is
based on external routines fromBlas (Basic Linear Algebra Subprograms), Lapack
(Linear Algebra package) and Arpack, which provide efficient building blocks for
performing central vector and matrix operations. Since modern Blas implemen-
tations support multi-threading, libNMF can exploit the potential of multi-core
architectures.

In this paper, the basic NMF algorithms contained in libNMF and existing

implementations found in the literature are briefly reviewed. Then, libNMF is
evaluated in terms of computational efficiency and numerical accuracy and com-
pared with the best existing codes available. libNMF is publicly available at
http://rlcta.univie.ac.at/software.

Keywords: Nonnegative matrix factorization, low-rank approximation, evaluation,

NMF library, NMF software

1 INTRODUCTION

Low-rank approximations of data (e. g., based on the singular value decomposition)
have proven very useful in various data mining applications. Nonnegative matrix
factorization (NMF, cf. [22, 27]) leads to special low-rank approximations which

preprint
appeared in Computing and Informatics Volume 30, 2011, No. 2
copyright by Slovak Acad Sciences Inst Informatics

1002 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

satisfy non-negativity constraints. Non-negativity may improve interpretability and

sparseness of the low-rank approximations. In general, the NMF approximates a
given nonnegative matrix A∈ R

m×n by two nonnegative factor matrices W ∈ R
m×k

and H ∈ R
k×n, where k ≪ min{m,n} is the rank of the approximation WH ≈ A.

Although the NMF is not unique and in general converges only to local minima,
it has been shown that even a relatively low approximation quality can achieve
acceptable classification accuracy in data mining applications [21].

The goal of this paper is to present and introduce a software library called libNMF

that provides efficient implementations of several NMF routines. It contains various
state-of-the-art NMF algorithms for computing NMF found in the literature and
methods for initializing the NMF factorsW andH in order to speed up convergence.
libNMF is purely written in C and allows for manually setting every parameter
relevant for the calculation of NMF, but also offers default values for non-expert
users. The library calls external routines from the software libraries Lapack [1] and
Arpack [24], and is based on the Blas (Basic Linear Algebra Subprograms). The
routines use double-precision floating-point arithmetic. For some algorithms, single-
precision versions are also provided. The documented source code of libNMF, some
sets of test data, and a detailed documentation of the library are publicly available
at http://rlcta.univie.ac.at/software.

Related work. In the last decade, many publications focused on improving, adapt-
ing, extending and re-designing algorithms for computing NMF. Various codes for
computing NMF can be found in the literature. Table 1 provides a summary of
important sources of publicly available code for computing NMF. The majority of
available NMF code is written in Matlab. The function nnmf.m included in the
Matlab Statistics Toolbox [33] since Matlab’s R2008a release is probably one of
the most widely used NMF codes. This function implements two of the original
NMF algorithms – multiplicative update (MU) and alternating least squares (ALS)
– introduced in [22] and [27], respectively. Cemgil [5] provides a Matlab implemen-
tation of variational Bayes for Kullback-Leibler divergence based NMF. Cichocki et
al. [6] provide Matlab toolboxes for computing NMF for signal processing and im-
age processing. Their algorithms comprise MU, exponentiated gradient, projected
gradient (PG), conjugate gradient, and quasi-Newton. The same authors provide
Matlab code in their book [7] about nonnegative matrix/tensor factorization. An-
other Matlab NMF toolbox has been written by Hansen et al. [14]. This toolbox
contains a collection of existing NMF algorithms such as MU, ALS, and PG [25],
as well as a self-developed algorithm called ALSOBS. Like with ALS the negative
elements are set to zero but all other elements are adjusted using a method called

optimal brain surgeon (OBS, [15]).
Hoyer [16] provides a widely used Matlab package for performing a projected

gradient algorithm with sparseness constraints. Basic NMF is extended by including
an option for controlling the sparseness of the factors W and H explicitly. Kim et

al. [19] provide Matlab implementations of fast Newton-type NMF methods in two
versions: One based on an exact least squares solver for applications that require
high accuracy, and an inexact implementation, which uses heuristics to solve the
least squares problem in order to reduce computational effort at each iteration. The
latter is better suited if computational efficiency is more important than accuracy.

lib
N
M
F

–
A

L
ib
ra
ry

fo
r
N
o
n
n
eg
a
tiv

e
M
a
trix

F
a
c
to
riza

tio
n

1003
Authors Ref. Language URL for software

The Mathworks [3, 33] Matlab http://www.mathworks.com/access/helpdesk/help/toolbox/stats/nnmf.html
Cemgil [5] Matlab http://www.cmpe.boun.edu.tr/∼cemgil/bnmf
Cichocki et al. [6] Matlab http://www.bsp.brain.riken.jp/ICALAB/nmflab.html

Cichocki et al. [7] Matlab http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470746661.html
Hansen et al. [14] Matlab http://isp.imm.dtu.dk/toolbox/nmf/index.html
Hoyer [16] Matlab http://www.cs.helsinki.fi/u/phoyer/software.html
Kim et al. [19] Matlab http://userweb.cs.utexas.edu/users/dmkim/Source/software/nnma/index.html
Lin [25] Matlab/Python http://www.csie.ntu.edu.tw/∼cjlin/nmf/index.html
Schmidt et al. [30] Matlab http://mikkelschmidt.dk/index.php?id=2
Gaujoux [10] R http://cran.r-project.org/web/packages/NMF/index.html
Liu [26] R http://cran.r-project.org/web/packages/NMFN/index.html
Battenberg et al. [2] Python http://www.eecs.berkeley.edu/∼ericb
Schmitt et al. [31] Python http://www.procoders.net/?p=409
Dhillon et al. [8] C++ http://www.kyb.mpg.de/bs/people/suvrit/work/progs/nnma.html
Greene et al. [13] C++ http://mlg.ucd.ie/nmf
Pathak et al. [28] C++ http://www.insight-journal.org/browse/publication/152
Wang et al. [34] C++ http://www.biomedcentral.com/1471-2105/7/175

Table 1: Overview of publicly available NMF codes

1004 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

Another often cited Matlab package was written by Lin [25]. Two projected
gradient methods for NMF are proposed: the ALSPG method uses projected
gradient methods for solving the update steps of the ALS algorithm, and the
second method aims at directly applying projected gradients to NMF. Schmidt
et al. [30] provide Matlab codes for sparse NMF using adaptive MU rules and
least squares with block principal pivoting, as well as Bayesian NMF.
Aside from Matlab, other NMF codes found in the literature are mainly

written in R, Python or C/C++. Gaujoux [10] provides a framework for sev-
eral NMF algorithms written in R, comprising several already published algo-
rithms as well as an initialization method for W and H, called NNDSVD [4].
Liu [26] provides a similar framework in R, which is partly based on the
codes available in [14]. Python codes for computing NMF are available in [25]
and [31].Moreover, an interesting study investigating the performance of par-
allel NMF (written in Python) using OpenMP for shared-memory multi-core
systems and CUDA for many-core graphics processors has been given in [2].
Dhillon et al. [8] provide a C++ library which contains several NMF algo-

rithms and exploits the performance gains provided by optimized Blas rou-
tines. The implemented algorithms comprise the basic MU algorithm (plus
variants), variants of the ALS algorithm, a hybrid form of ALS and MU, as
well as two NMF algorithms based on Bregman divergence as described in [8].
Green et al. [13] provide a C++ implementation of several NMF algorithms
used for hierarchical clustering, and Pathak et al. [28] provide a generic NMF
framework for the ITK toolkit (http://www.itk.org) – an open-source devel-
opment framework for image segmentation and image registration programs.
Wang et al. [34] provide C++ code for computing least squares nonnegative
matrix factorization (LS-NMF).

Despite the fact that there is a large number of available NMF codes, so far
there is no comprehensive, computationally efficient, well documented, and
modularly structured library for computing NMF, with options to load/save
all data involved in computing NMF, and with integrated initialization meth-
ods. The libNMF library presented in this paper is meant to be a first step
in this direction. libNMF is freely available, computationally highly compet-
itive with Matlab and other codes in high level languages, and considerably
faster than Matlab clones, or codes written in R or Python. Compared to the
C++ library [8], libNMF tends to be faster for comparable algorithms (similar
performance for MU, significantly faster for ALS), and important additional
algorithms (such as ALSPG and PG) are included. A detailed comparison of
libNMF with other codes found in the literature is given in Section 4.2.

Notation: In this article a matrix is represented by an uppercase italic letter
(example: A, B, Σ, . . .). A vector is represented by a lowercase bold letter
(example: u, x, q1, . . .). A scalar is represented by a lowercase Greek letter
(example: λ, µ, . . .). Matrix-matrix multiplications are denoted by “∗” and
element-wise multiplications by “·”.

libNMF – A Library for Nonnegative Matrix Factorization 1005

Synopsis: In Section 2 we review some basics of NMF and discuss important
NMF algorithms and variants. In Section 3 we introduce our libNMF library
and discuss the implemented routines for calculating the NMF algorithms
mentioned in Section 2. Experimental evaluation of libNMF is summarized
in Section 4, and in Section 5 we conclude our work and summarize ongoing
and future research activities in this area.

2 REWIEV OF NMF

The nonnegative matrix factorization (NMF, cf. [27, 22]) consists of reduced
rank nonnegative factors W ∈ R

m×k and H ∈ R
k×n with (problem dependent)

k ≪ min{m, n} that approximate a given nonnegative data matrixA∈ R
m×n:

A ≈ WH. The nonnegativity constraints require that all entries in A, W and
H are zero or positive. Although the product WH is only an approximate
factorization of A of rank at most k, WH is called a nonnegative matrix
factorization of A. The non-linear optimization problem underlying NMF can
generally be stated as

min
W,H

f(W,H) =
1

2
||A−WH||2F , (1)

where ||.||F is the Frobenius norm (||A||F = (
∑

|aij|
2)1/2). Although the

Frobenius norm is commonly used to measure the error between the original
data A and WH, other measures are also possible, for example, an exten-
sion of the Kullback-Leibler divergence to positive matrices [8], a convergence
criterion based on the Karush-Kuhn-Tucker (KKT) conditions [20], or an an-

gular measure based on the angle θi between successive basis vectors W
(t+1)
i

and W
(t)
i [21]. A survey of distance measures for NMF can be found in [38].

Unlike the SVD, the NMF is not unique, and convergence is not guaranteed
for all NMF algorithms. If they converge, then usually only to local minima
(potentially different ones for different algorithms). Fortunately, the data com-
pression achieved with only local minima has been shown to be of significant
quality for many data mining applications [21, 17].
Due to its non-negativity constraints, NMF produces so-called “additive

parts-based” (or “sum-of-parts”) representations of the data (in contrast to
many other representations such as SVD, PCA or ICA). This is an important
benefit of NMF, since it makes the interpretation of the NMF factors much
easier than for factors containing positive and negative entries, and enables
NMF a non-subtractive combination of parts to form a whole [22]. For ex-
ample, the features in W (called “basis vectors”) may be topics of clusters
in textual data, or parts of faces in image data. Another favorable conse-
quence of the nonnegativity constraints is that both factors W and H are
often naturally sparse.

1006 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

Initialization. Algorithms for computing NMF are generally iterative and
require initialization of W and/or H. In the literature, random initialization
of W and H is mostly used. In this case it may be necessary to run several in-
stances of the algorithm. Moreover, algorithms based on random initialization
are likely to suffer from slow convergence. It has been shown that better ini-
tialization strategies can lead to improvements in terms of faster convergence
and faster error reduction. Besides classical initialization strategies based
on k -means clustering techniques [36, 37], there are initialization techniques
based on two successive SVD processes called NNDSVD (Nonnegative Double
Singular Value Decomposition, [4]), and techniques based on efficient feature
subset selection techniques [17, 18].

2.1 Algorithms for Computing NMF

Most existing NMF algorithms in the literature can be assigned to one of three
general classes: multiplicative update (MU), alternating least squares (ALS)
and projected gradient (PG) algorithms. A review of these three classes can
be found, for example, in [3, 7, 25]. Pseudocode for the general structure of
all NMF algorithms is given in Algorithm 1.

Algorithm 1 – General structure of NMF algorithms.

given matrix A ∈ R
m×n and k ≪ min{m, n}:

for rep = 1 to maxrepetition do
W = rand(m, k);
[H = rand(k, n);]
for t = 1 to maxiter do
update W and H

check termination criterion
end for

end for

The variable maxrepetition specifies the number of repetitions of the com-
plete algorithm for the case of randomly initializedW andH. Most algorithms
need factorsW andH both pre-initialized, but some algorithms (e. g., the ALS
algorithm) only need one pre-initialized factor. In each repetition, NMF up-
date steps are processed iteratively until a maximum number of iterations is
reached (maxiter). The different update steps for the three basic NMF algo-
rithms are briefly summarized in the following. If the approximation error of
the algorithm drops below a pre-defined threshold, or if the change between
two successive iterations is very small, the algorithm may terminate before
maxiter iterations are processed (for details, see Section 2.2).

libNMF – A Library for Nonnegative Matrix Factorization 1007

2.1.1 Multiplicative Update (MU) Algorithm

The update steps for the original MU algorithm given in [23] are based on the
mean squared error objective function. The update in each iteration consists
of multiplying the current factors by a measure of the quality of the current
approximation. The parameter ε in each iteration is often used to avoid
division by zero. Following [29], a typical value used in practice is ε = 10−9.

H(t+1) = H(t) ·
(W⊤(t) ∗ A)

(W⊤(t) ∗W (t)) ∗H(t) + ε
(2)

W (t+1) = W (t) ·
(A ∗H⊤(t+1))

W (t) ∗ (H(t+1) ∗H⊤(t+1)) + ε
(3)

The divisions in Eqns. (2) and (3) are to be performed element-wise. Com-
ments about the convergence of the MU algorithm can be found, for example,
in [3, 11, 25].

2.1.2 Alternating Least Squares (ALS) Algorithms

Alternating least squares algorithms have been used and improved in several
studies such as [20, 21, 27]. All ALS algorithms have in common that alterna-
tively one factor (eitherW orH) is fixed, and the other one is minimized under
corresponding constraints. In most algorithms, negative elements resulting in
the process are set to 0 to ensure non-negativity.

Basic ALS algorithm. The basic ALS algorithm only needs to initialize
one factor (W or H), the other factor is computed in the first iteration. In an
alternating manner, a least squares step is followed by another least squares
step. Typical implementations of ALS algorithms (see, for example, the imple-
mentation included in the Matlab Statistics Toolbox [33]) proceed as follows:

First, solve for H(t+1) :
W (t) ∗H(t+1) = A (4)

such that f(W (t), H(t+1)) ≤ f(W (t), H(t)), and set all negative elements in
H(t+1) to 0. Then solve for W (t+1) :

H(t+1) ∗W (t+1) = A(t) (5)

such that f(W (t+1), H(t+1)) ≤ f(W (t), H(t+1)). Some studies, for example [11,
25], have analyzed the convergence properties of ALS algorithms. It has been
proven that ALS will converge to a fixed point which may be a local extremum
or a saddle point (cf. [21]). The solution of Eqns. (4) and (5) can, for example,
be computed using a QR-factorization or an LU-factorization, or based on
computing the pseudo inverse of H and W , respectively.

Normal equations ALS algorithm. This variant of the ALS algorithm has
computational advantages over the implementation included in the Matlab

1008 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

Statistics Toolbox [33] in some cases – especially if k ≪ min{m, n}. This
variant which we call NEALS (normal equations alternating least squares)
changes Eqns. (4) and (5) to:

(W⊤(t) ∗W (t)) ∗H(t+1) = W⊤(t) ∗ A, (6)

(H⊤(t+1) ∗H(t+1)) ∗W (t+1) = H⊤(t+1) ∗A. (7)

In exact arithmetic, there is no difference between ALS and NEALS. NEALS
has some numerical disadvantages compared to ALS because of the squaring
of the condition numbers. However, in the given context NEALS can be very
attractive for various reasons: (i) Since in many cases we need to compute
a low rank NMF with relatively small k, the resulting normal equations are
much smaller than the least squares formulations of basic ALS. (ii) The ad-
ditional expense is the matrix multiplication required for forming the normal
equations. However, it is well known that this operation has a favorable com-
putation per communication ratio and thus can be mapped well onto modern
multi-core architectures. (iii) The potential loss in numerical accuracy is
usually not too severe, because the computation of an NMF is only an ap-
proximation anyway.

2.1.3 Projected Gradient Algorithms

This third group of algorithms is based on the idea to take a step in the di-
rection of the negative gradient, the direction of the steepest descent (which
can be computed using the partial derivatives for H and W , respectively). An
interesting study investigating gradient descent algorithms was published by
Lin [25]. In this paper, the author proposed the use of a projected gradient
bound-constrained optimization method for computing the NMF in two sit-
uations: by solving the alternating nonnegative least squares problems with
projected gradient methods, and by directly minimizing the objective function
in Equation (1) using projected gradients.

ALS using Projected Gradient (ALSPG) Algorithm. Here, the pro-
jected gradient is used to solve the nonnegative least squares problem discussed
in Section 2.1.2. Analogously to ALS, one factor (W or H) is updated while
A and the other factor are kept constant. The general update steps look as
follows:

H(t+1) = H(t) − αH∇Hf(W
(t), H(t)) (8)

W (t+1) = W (t) − αW∇Wf(W (t), H(t+1)). (9)

αH and αW are step-size parameters which have to be chosen carefully in
order to get a good approximation (cf. the discussion in [25]). The partial
derivatives in Eqns. (8) and (9) are ∇Hf(W

(t), H(t)) = W⊤(t)(W (t)H(t) − A)
and ∇Wf(W (t), H(t+1)) = (W (t)H(t+1)−A)H⊤(t+1), respectively. Experiments

libNMF – A Library for Nonnegative Matrix Factorization 1009

in [25] show that this method is computationally very competitive and has
better convergence properties than the standard MU approach in many cases.

Direct Projected Gradient (PG) Algorithm. In this algorithm pro-
jected gradient methods are used to directly minimize the objective function
in Eqn. (1). From the current solution (W (t), H(t)), both matrices are simul-
taneously updated to (W (t+1), H(t+1)) in the general form:

(W (t+1), H(t+1)) = (W (t), H(t))− α(∇Wf(W (t), H(t)),∇Hf(W
(t), H(t))) (10)

2.2 Termination Criteria

Generally, three termination criteria can be applied. The simplest convergence
criterion which is used in almost all NMF algorithms is to run for a fixed num-
ber of iterations (cf. the parameter maxiter in Algorithm 1). Since the most
appropriate value for maxiter is problem-dependent, this is not a mathemati-
cally appealing way to control the number of iterations, but applies when the
required approximation accuracy does not drop below a pre-defined thresh-
old. Another problem-dependent convergence criterion is the approximation
accuracy of the NMF objective function, which obviously depends on the size
and structure of the data but may be useful to compare the approximation
accuracy of different algorithms. As already mentioned, different convergence
measures can be applied, such as the Frobenius norm (see Eqn. (1)), Kullback-
Leibler divergence, KKT, or angular measures. The relative change of factors
W and H from one iteration to the next iteration is the basis for another
convergence criterion. If this change is below a pre-defined threshold δ, the
algorithm is terminated. Depending on the NMF algorithm used, additional
termination criteria may apply (e. g., time limit, change of the projection norm
for projected gradient methods, etc.).

3 LIBNMF

In this section we present the first public version (version 1.02) of our libNMF

library, summarize general characteristics, and discuss its usage. Then we
focus on the computational routines implemented in libNMF.

3.1 General Notes

We assume that matrices are stored in two-dimensional arrays. To simplify the
usage of Fortran high performance routines (e. g., from Lapack), arrays are
logically accessed in column-major order, which is how Fortran accesses two-
dimensional arrays. Unless stated otherwise, all routines use IEEE double-
precision floating-point arithmetic.

1010 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

3.1.1 External Libraries

libNMF utilizes routines from Blas and Lapack. The NNDSVD initializa-
tion (LIBNMF/nndsvd, cf. Section 3.2.6) requires computation of SVDs, which
is done using Arpack routines [24].

3.1.2 Subroutines

The Blas, Lapack, and Arpack routines utilized by libNMF are listed
together with their functionality in Table 2

Double precision Blas routines

BLAS/daxpy calculating y = a ∗ x+ y

BLAS/dcopy copying a vector to another vector
BLAS/dgemm matrix-matrix multiplication
BLAS/dgemv matrix-vector multiplication
BLAS/dlamch determining machine precision epsilon
BLAS/dscal scaling a vector by a constant

Double precision Lapa
k routines

LAPACK/dgeqp3 QR-factorization with column pivoting
LAPACK/dgesv solving system of linear equations (LU)
LAPACK/dlacpy copying a matrix to another matrix
LAPACK/dlange calculating the Frobenius norm
LAPACK/dorgqr generating economy sized explicit Q in QR factorization
LAPACK/dtrtrs solving a triangular systemArpa
k routines for LIBNMF/nndsvd

ARPACK/dsaupd implicitly restarted Arnoldi iteration
ARPACK/dseupd post-processing routine for large-scale symmetric

eigenvalue calculation

Table 2. Blas, Lapack and Arpack routines used in libNMF.

3.2 Computational Routines

The main routines included in version 1.02 of libNMF are discussed briefly
in the following. In the next versions additional routines will be added to
libNMF in order to cover a wider spectrum of different NMF algorithms.

3.2.1 LIBNMF/nmf mu

This routine implements the multiplicative update algorithm as described
in Section 2.1.1. Each matrix-matrix multiplication is calculated by calling
BLAS/dgemm, and all element-wise operations (·, +, and the division) are cal-
culated in a for-loop.

libNMF – A Library for Nonnegative Matrix Factorization 1011

With increasing number of iterations the number of very small positive and
zero entries increases in both factor matrices W and H. Performance tests
showed that this leads to an increase of runtime per iteration. Therefore small
positive entries (in the order of machine precision) are set to zero explicitly
in every iteration. Moreover, experiments showed that also an increasing
number of zero entries slowed down LIBNMF/nmf mu. This effect could be
almost completely compensated by checking if the result will be zero and in
that case directly setting it instead of computing it.
The routine LIBNMF/nmf mu singleprec implements a single precision ver-

sion of LIBNMF/nmf mu, using the single precision versions of Blas and La-
pack routines (i. e., BLAS/sgemm instead of BLAS/dgemm.)

3.2.2 LIBNMF/nmf als

This routine implements an ALS algorithm as described in Section 2.1.2.
For calculating H(t+1), first a QR-factorization (LAPACK/dgeqp3) with col-
umn pivoting of W (t) is computed, resulting in an explicit representation of
R and an implicit representation of Q. Then, the upper triangular sub-block
of R∈ R

k×k is copied (LAPACK/dlacpy) and an economy sized explicit Q∈
R

m×k is computed (LAPACK/dorgqr). After calculating U = Q⊤ ∗ A ∈ R
k×n

(BLAS/dgemm), the equation R ∗ H(t+1) = U is solved (LAPACK/dtrtrs). Fi-
nally, the rows of H(t+1) are permuted according to the pivoting of the factor-
ization (BLAS/dcopy), and negative entries are set to zero. Based on H(t+1),
W (t+1) is calculated in the next step using a QR-factorization with column
pivoting of H⊤(t+1).

3.2.3 LIBNMF/nmf neals

This routine implements the NEALS algorithm from Section 2.1.2. For cal-
culating H(t+1), first two auxiliary matrices are calculated (BLAS/dgemm):
T1 = W⊤(t) ∗ W (t) ∈ R

k×k and T2 = W⊤(t) ∗ A ∈ R
k×n. Then, an LU-

factorization (LAPACK/dgesv) is used to solve the equation T1 ∗ H(t+1) = T2

for H(t+1), and negative elements are set to zero.
For calculatingW (t+1), T3 = H(t+1)∗H⊤(t+1) ∈ R

k×k and T4 = H(t+1)∗A⊤ ∈
R

k×m are calculated. Then the equation T3 ∗W
⊤(t+1) = T4 is solved for W (t+1)

using an LU-factorization, and negative elements are set to zero.

3.2.4 LIBNMF/nmf alspg

This routine implements the ALSPG algorithm as proposed in [25]. Prior
to the iterative update steps initial gradients are calculated (using three
BLAS/dgemm calls):

∇H = W (0) ∗ (H0 ∗H⊤(0))− A ∗H⊤(0) (11)

1012 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

∇W = (W⊤(0) ∗W (0)) ∗H(0) −W⊤(0) ∗ A (12)

Moreover, the norm of the initial gradients is calculated (LAPACK/dlange),
which is used as an additional stopping condition for projected gradient algo-
rithms (cf. Section 2.2).

Update steps: In every iteration, first the new projection norm is calculated,
then W (t+1) and H(t+1) are updated alternately. Update steps are computed
in a separate routine called LIBNMF/pg subprob which is also used by the PG
algorithm (cf. Section 3.2.5), and briefly discussed in the following.

LIBNMF/pg subprob. First, two auxiliary matrices T5 = W⊤ ∗ A and T6 =
W⊤ ∗W are calculated (BLAS/dgemm).Then, two nested loops are run. In the
outer loop the new gradient ∇ = T5 ∗H − T6 is calculated (LAPACK/dlacpy,
BLAS/dgemm). In the inner loop the step-size parameters α and β are deter-
mined based on the change from the current solution to the newly computed
solution (LAPACK/dlacpy, BLAS/daxpy, BLAS/dgemm).

3.2.5 LIBNMF/nmf pg

This routine implements the projected gradient algorithm as proposed in [25].
In every iteration, gradients ∇H and ∇W are calculated similar to Eqns. (11)
and (12). In the first iteration the initial gradient (using LAPACK/dlange), and
H (using LIBNMF/pg subprob) are calculated. In all iterations (including the
first iteration) the new projection norm is calculated and W (t+1) and H(t+1)

are updated, again using a step-size parameter which is calculated in an inner
loop (LAPACK/dlacpy, BLAS/daxpy).

3.2.6 LIBNMF/nndsvd

As a first initialization strategy (cf. Section 2) for W and H we implemented
the Nonnegative Double Singular Value Decomposition (NNDSVD) technique
as described in [4]. It is based on two SVD processes – one approximating
the data matrix A (rank-k approximation), the other approximating positive
sections of the resulting partial SVD factors (BLAS/dgemm, ARPACK/dsaupd,
ARPACK/dseupd).

4 EXPERIMENTAL EVALUATION

We performed detailed experiments to evaluate the performance of the rou-
tines in libNMF. First, we briefly discuss the setup (data sets and hardware)
used to measure the runtimes. Then, we discuss some performance issues of
existing NMF codes found in the literature. Finally, we provide a runtime
comparison of libNMF with Matlab implementations of identical algorithms
as well as with representative NMF codes found in the literature written in
different programming languages.

libNMF – A Library for Nonnegative Matrix Factorization 1013

4.1 Experimental Setup

We used the p53 Mutants dataset from the UCI machine learning reposi-
tory (publicly available at http://archive.ics.uci.edu/ml). It consists of
16 772 instances described by 5 409 attributes (including a binary class at-
tribute which separates the instances into two groups “actives/inactives”).
180 instances with missing values were deleted and the remaining instances
were separated into a training set consisting of the first 75% active instances
and the first 75% inactive instances, and a test set consisting of the remaining
25% of each group.

Hardware. All runtimes were measured on a SUN FIRE X4600 M2 with 8
AMD Opteron 8 356 quad-core processors with 3.2 GHz, 2MB L3 cache, and
32GB of main memory (DDR-II 666). CPUs are connected to each other by
a HyperTransport link running at 8 GB/second.

Software. As already mentioned in Section 1, most of the available NMF
codes are written in Matlab.In the last years, the support of multithreaded
computations for several linear algebra operations included in Matlab has been
improved, and the newest Matlab version (2010a) shows noteworthy speedup
in several cases (e. g., matrix multiply, linear equations, etc. [32]) compared to
older Matlab versions. Matlab efficiently utilizes Blas and thus also achieves
a good performance for most NMF algorithms.
However, in many circumstances it may not be efficient or not feasible

to use a commercial software product like Matlab. Matlab clones, such as
Octave, O-Matrix or Scilab, are significantly cheaper or even free, but usu-
ally cannot compete with Matlab in term of computational efficiency, number
of available routines, support, usability, etc. Implementations in O-Matrix
(http://www.omatrix.com) showed competitive runtimes compared to cur-
rent Matlab routines in our experiments (e. g., the matix multiply routine
which is essential for NMF is even slightly faster than with Matlab 2010a), but
O-Matrix is only available for Windows. Scilab (http://www.scilab.org)
and Octave (http://www.gnu.org/software/octave) are also available for
Unix-like systems and can also be built with optimized Blas routines. How-
ever, we experimented with Scilab and Octave on several machines with the
outcome that overall both programs could not compete with Matlab in terms
of runtime performance. Scilab also showed severe memory allocation prob-
lems when large matrices were used. Moreover, for Scilab the Matlab files
need to be converted to Scilab files, which works smoothly for simple code-
fragments but is often more difficult for complex code.
Other available NMF codes are written in R [10, 26] or Python [31]. Several

benchmarks (e. g., http://mlg.eng.cam.ac.uk/dave/rmbenchmark.php) as
well as our own evaluation showed that R is generally slower than Matlab

1014 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

for matrix operations, which are an essential part of all NMF algorithms.
Comparisons of runtimes with Python codes from [31] are given in Section 4.2.
The Python modules announced in [2] were not available at the time when
this paper was written.
NMF codes written in C/C++ are among the fastest if they are based

on Blas and Lapack routines. However, not all available C/C++ codes
are directly comparable to libNMF. For example, [13] use NMF to compute
an ensemble clustering algorithm based on the symmetric NMF algorithm as
proposed in [9]. Since this algorithm works only for a symmetric matrix A

and creates ensembles on NMF instead of single factorizations the achieved
runtimes are not directly comparable to libNMF. The code from [28] was
written to be used within an image processing toolkit, which makes it difficult
to compare it to libNMF. Moreover, it is not possible to compile the code
separately without linking the complete toolkit. The parallel code from [34]
is based on LAM/MPI and was intended for use on Beowulf clusters. We
compiled the desktop version of the code (which is also available), however,
this version does not support the linking of Blas routines.

Overall, we performed detailed runtime comparisons of libNMF routines with

•Matlab implementations, in particular of the algorithms implemented [33]
(MU, ALS), [25] (ALSPG, PG), of the NEALS algorithm as discussed
in Section 2.1.2, and of the NNDSVD initialization from Section 3.2.6.
Moreover, we measured the runtime needed to achieve a given accuracy
for algorithms from [14, 16, 20, 30], which are not yet implemented in
libNMF.

•C++ implementations, in particular of the MU and the ALS algorithm im-
plemented in [8] compiled with Goto-Blas and the GNU Scientific Library
(http://www.gnu.org/software/gsl).

•Python implementations, in particular with the Python modules from [31]
compiled with Atlas Blas version 3.9.23.

4.2 Runtime Comparison

The runtime comparisons are split up into two parts. In the first part, we
compare the runtime of libNMF routines to implementations of identical al-
gorithms in Matlab (v2010a). In the second part, we compare libNMF rou-
tines to the best algorithms/implementations found in the literature from a
user’s point-of-view. In this setting, the “best” routines are those which are
able to achieve a given accuracy in the shortest amount of time. In our ex-
periments we experimented with Atlas-Blas version 3.8.3 and development
version 3.9.11 [35], and with Goto-Blas version 1.13 [12]. Overall, Goto-Blas
seemed to be faster, setting an emphasis on parallel performance. Atlas-Blas
3.8.3 seemed to utilize multiple CPU cores considerably less than Goto-Blas,
which improved in the newer version (which features a new multithreading

libNMF – A Library for Nonnegative Matrix Factorization 1015

implementation). However, all libNMF runtimes in this paper are based on
Goto-Blas v1.13. Goto-Blas utilizes all 32 cores available on our system.

libNMF alspg
libNMF pg
libNMF neals
libNMF mu
libNMF als

First dimension of A (A = m× 5408)

S
p
e
e
d
u
p

12000100008000600040002000

1.8

1.6

1.4

1.2

1

Fig. 1. Speedup over Matlab2010a – k = 50

Speedup over Matlab 2010a: Figures 1 and 2 show the speedup of libNMF

routines over Matlab routines implementing identical NMF algorithms (i. e.,
the results after each iteration are numerically identical, there is only a differ-
ence in runtime) for varying rank k, using randomly initialized factors W and
H. In order to investigate the runtimes for varying shapes of rectangular data
sets, we truncated the larger dimension of our dataset in steps of 2 000. As
Fig. 1 shows, libNMF routines are always faster than corresponding Matlab
routines – overall, a speedup of about 1.4 over Matlab 2010 could be achieved.
It is interesting to note the higher speedup of LIBNMF/nmf alspg with lower
rank k in Fig. 2, which differs from the behavior of the other algorithms. For
rank k = 10, LIBNMF/nmf alspg is on average more than twice as fast as the
Matlab implementation.
For computing the NNDSVD initialization (cf. Section 3.2.6, not shown

in Figures 1 and 2) libNMF achieved an impressive speedup of 24 (!) over
Matlab 2010a. However, this speedup needs to be considered carefully since
Matlab’s svds routine only utilized one core in our experiments.

Runtime for fixed accuracy: Figure 3 shows a runtime comparison of
several implementations of NMF algorithms from a user’s point-of-view for
a 12 000 × 5 408 subset of the training set mentioned in Section 4.1. The

1016 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

libNMF alspg
libNMF pg
libNMF neals
libNMF mu
libNMF als

First dimension of A (A = m× 5408)

S
p
e
e
d
u
p

12000100008000600040002000

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

Fig. 2. Speedup over Matlab2010a – k = 10

libNMF mu
libNMF als
libNMF neals
C++ mu
ML bayesNMF
ML fastNMF

libNMF alspg
PY fnmai sparse
ML alsOBJ
PY fnmai
libNMF pg
PY rri

||A−W H||F

R
u
n
ti
m
e
[s
e
c.
]

< 0.0450 < 0.0425 < 0.0400 < 0.0375 < 0.0350 < 0.0325 < 0.0300

1000

100

10

1

Fig. 3. Runtime per Accuracy (NNDSVD) – k = 25

libNMF – A Library for Nonnegative Matrix Factorization 1017

runtime needed to achieve a given approximation accuracy (measured in the
Frobenius norm) is plotted along the y-axis (log10 scale). Curves which do
not continue indicate that the corresponding algorithm is not able to achieve
a specific accuracy. The runtimes of the five libNMF algorithms are plotted
together with the seven “best” NMF implementations found in the literature.
All algorithms from [8, 14, 16, 20, 30, 31] that are not present in Figure 3
needed considerably longer to reach a specific approximation accuracy. The
runtimes are shown for pre-initialized factors W and H (using NNDSVD) and
k = 25.
Figure 3 can be interpreted as follows: a fast and rough approximation

(approximation error < 0.0450) can be achieved in about two seconds with the
libNMF algorithms LIBNMF/nmf mu, LIBNMF/nmf als, or LIBNMF/nmf neals,
but only LIBNMF/nmf mu is able to achieve even an approximation error <

0.0400 in the same time. If a better approximation is desired, other algorithms
are faster than LIBNMF/nmf mu. It turns out that the fastNMF and bayesNMF
algorithms from [30], and the alsOBJ algorithm from [14] are the fastest ones
for computing a close approximation of A – even faster than the best libNMF

algorithm LIBNMF/nmf alspg. Since algorithms implemented in libNMF are
almost always faster than identical algorithms implemented in Matlab, we are
currently working on integrating the algorithms from [14, 30] into libNMF.

5 CONCLUSION AND FUTURE WORK

We introduced a new library for computing nonnegative matrix factorization
(NMF) called libNMF, which implements several computationally efficient
NMF routines. libNMF is a modularly structured, open source library writ-
ten in C which calls computationally efficient external libraries, such as Blas,
Lapack and Arpack. Runtime comparisons with Matlab version 2010a and
other NMF codes found in the literature showed that libNMF achieves signif-
icant speedups over other implementations of identical algorithms.
Our experiments also revealed that some algorithms which are not yet in-

tegrated into libNMF achieve high approximation accuracy in shorter time.
We are currently working on improvements and extensions of libNMF. Be-
sides additional algorithms, such as fastNMF and bayesNMF from [30] or
quasi-Newton algorithms, we plan to implement sparseness constraints [16],
different error measures (such as the ones mentioned in Section 2), and sup-
port for other initialization strategies (e. g., [18]). Moreover, we plan to extend
our library with NMF variants optimized for graphic processing units (GPUs).
libNMF is available at http://rlcta.univie.ac.at/software.

Acknowledgments. This work was supported by the CPAMMS-Project
(grant# FS397001) in the research focus area “Computational Science” of
the University of Vienna, and by the project S10608 in the NFN SISE of the
Austrian science fund FWF.

1018 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

REFERENCES

[1]E. Anderson, Z. Bai, and C. Bischof et al. LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999.

[2]E. Battenberg and D. Wessel. Accelerating non-negative matrix factorization for
audio source separation on multi-core and many-core architectures. In Proc. of

10th Int. Society for Music Information Retrieval Conf., pages 501–506, 2009.

[3]M. W. Berry, M. Browne, A. N. Langville, P. V. Pauca, and R. J.
Plemmons. Algorithms and applications for approximate nonneg-
ative matrix factorization. Computational Statistics & Data Analysis,
52(1):155–173, 2007.

[4]C. Boutsidis and E. Gallopoulos. SVD based initialization: A head
start for nonnegative matrix factorization. Pattern Recogn., 41(4):1350–1362,
2008.

[5]A. T. Cemgil. Bayesian inference for nonnegative matrix factori-
sation models. Intell. Neuroscience, 2009:1–17, 2009.

[6]A. Cichocki, R. Zdunek, and S. Amari. Csiszr’s divergences for
non-negative matrix factorization: Family of new algorithms. LNCS,
3889(1):32–39, 2006.

[7]A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari. Nonnegative Matrix and

Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis

and Blind Source Separation. Wiley, 2009.

[8]I. S. Dhillon and S. Sra. Generalized nonnegative matrix approxi-
mations with Bregman divergences. Advances in Neural Information Pro-

cessing Systems, 18:283–290, 2005.

[9]C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix
factorization and spectral clustering. In Proc. SIAM Data Mining Conf, pages
606–610, 2005.

[10]R. Gaujoux. Package NMF, 2010. http://cran.r-project.org/web/

packages/NMF.

[11]E. Gonzales and Y. Zhang. Accelerating the Lee-Seung algorithm for non-
negative matrix factorization. Technical report, Department of Computational
and Applied Mathematics, Rice University, 2005.

[12]K. Goto and R. A. van de Geijn. High-performance implementation
of the level-3 BLAS. ACM Trans. Math. Softw., 35(1):1–18, 2008.

[13]D. Greene, G. Cagney, N. Krogan, and P. Cunningham. Ensemble
non-negative matrix factorization methods for clustering protein-
protein interactions. Bioinformatics, 24(15):1722–1728, 2008.

[14]L. K. Hansen. NMF:DTU Toolbox, 2006. http://isp.imm.dtu.dk/toolbox/
nmf/index.html.

[15]B. Hassibi, D. Stork, and G. Wolff. Optimal brain surgeon and general network
pruning. In IEEE International Conference on Neural Networks, pages 293–299,
1993.

libNMF – A Library for Nonnegative Matrix Factorization 1019

[16]P. O. Hoyer. Non-negative matrix factorization with sparseness

constraints. Journal of Machine Learning Research, 5:1457–1469, 2004.

[17]A. G. K. Janecek and W. N. Gansterer. E-mail classification based on NMF.
In 9th SIAM International Conference on Data Mining 2009, Proceedings in
Applied Mathematics, 3, SIAM, pp. 1345–1354, 2009.

[18]A. G. K. Janecek and W. N. Gansterer. Utilizing nonnegative matrix factoriza-
tion for e-mail classification problems. In M. W. Berry and J. Kogan, editors,
Survey of Text Mining III: Application and Theory. Wiley, 2010.

[19]D. Kim, S. Sra, and I. S. Dhillon. Fast newton-type methods for the least squares
nonnegative matrix approximation problem. In Proc. SIAM Data Mining Conf,
pages 343–354, 2007.

[20]H. Kim and H. Park. Nonnegative matrix factorization based on
alternating nonnegativity constrained least squares and active
set method. SIAM J. Matrix Anal. Appl., 30(2):713–730, 2008.

[21]A. N. Langville, C. D. Meyer, and R. Albright. Initializations for the nonnegative
matrix factorization. In SIGKDD ’06: Proceedings of the 12th ACM Interna-

tional Conference on Knowledge Discovery and Data Mining, 2006.

[22]D. D. Lee and H. S. Seung. Learning parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791, 1999.

[23]D. D. Lee and H. S. Seung. Algorithms for non-negative matrix
factorization. Advances in Neural Information Processing Systems, 13:556–
562, 2001.

[24]R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users Guide: Solution

of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
SIAM, 1998.

[25]C.-J. Lin. Projected gradient methods for nonnegative matrix fac-
torization. Neural Comput., 19(10):2756–2779, 2007.

[26]S. Liu. Package NMFN. Available on-line: http://cran.r-project.

org/web/packages/NMFN/NMFN.pdf, 2009.

[27]P. Paatero and U. Tapper. Positive matrix factorization: A non-
negative factor model with optimal utilization of error estimates of data values.
Environmetrics, 5(2):111–126, 1994.

[28]S. Pathak, D. Haynor, C. Lau, and M. Hawrylycz. Non-negative matrix fac-
torization framework for dimensionality reduction and unsupervised clustering.
The Insight Journal (open-source), http://hdl.handle.net/1926/502, 2007.

[29]J. Piper, V. P. Pauca, R. J. Plemmons, and M. Giffin. Object characterization
from spectral data using nonnegative factorization and information theory. In
Proc. of Amos Technical Conf., pages 591–600, 2004.

[30]M. N. Schmidt and H. Laurberg. Non-negative matrix factoriza-
tion with Gaussian process priors. Comp. Intelligence and Neuroscience,
2008(1):1–10, 2008.

[31]U. Schmitt. NNMA Toolbox. http://www.procoders.net/?p=409, 2008.

[32]The Mathworks. Matlab release notes. Available on-line, 2010.

1020 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

http://www.mathworks.com/access/helpdesk/help/pdf_doc/matlab/rn.

pdf (visited 03/2010).

[33]The Mathworks. Matlab statistics toolbox. Available on-line, 2010. http://
www.mathworks.com/products/statistics.

[34]G. Wang, A. V. Kossenkov, and M. F. Ochs. LS-NMF: a modified
non-negative matrix factorization algorithm utilizing uncertainty
estimates. BMC Bioinformatics, 7(175):1–10, 2006.

[35]R. C. Whaley and A. Petitet. Minimizing development and main-
tenance costs in supporting persistently optimized BLAS. Software:
Practice and Experience, 35(2):101–121, 2005.

[36]S. M. Wild. Seeding non-negative matrix factorization with the spherical k-
means clustering. Master’s thesis, University of Colorado, 2002.

[37]S. M. Wild, J. H. Curry, and A. Dougherty. Improving non-negative
matrix factorizations through structured initialization. Pattern

Recog., 37(11):2217–2232, 2004.

[38]Y. Xue, C. S. Tong, and W. Zhang. Survey of distance measures for nmf-based
face recognition. In International Conference on Computational Intelligence and

Security, pages 1039–1049, 2007.

Andreas Jane
ek received his PhD degree in Computer Science in 2010, and his MS
degree in Business Informatics in 2005, both from the University of Vienna, Austria. His
research activities include several machine learning and data mining applications, such as
classification problems, feature selection, dimensionality reduction, low-rank approxima-
tions, as well as high performance and distrbuted computing aspects of these techniques.
Andreas is currently a post-doctoral researcher at the School of Electronic Engineering
and Computer Science, Peking University, China.

Stefan S
hulzeGrotthoff is currently studying Computer Science in the Bachelor
programme at the University of Vienna, Austria. His research activities revolve around

nonnegative matrix factorizations and their application for data classification.

Wilfried N. Gansterer is an assistant professor of Computer Science at the Univer-
sity of Vienna, Austria. He received a PhD degree in Scientific Computing from Vi-
enna University of Technology, Austria, in 2000, a Master’s degree in Scientific Comput-
ing/Computational Mathematics from Stanford University, USA, in 1996, and a Master’s
degree in Mathematics from Vienna University of Technology in 1994. His research inter-
ests are in scientific and high performance computing, parallel and distributed computing,
data mining and machine learning algorithms, and in related application problems in
computational life sciences and internet security.

