
A Fast Solver for Modeling the Evolution
of Virus Populations

Gerhard Niederbrucker
University of Vienna,

Research Group Theory and
Applications of Algorithms

gerhard.niederbrucker@univie.ac.at

Wilfried N. Gansterer
∗

University of Vienna,
Research Group Theory and

Applications of Algorithms
wilfried.gansterer@univie.ac.at

ABSTRACT
Solving Eigen’s quasispecies model for the evolution of virus
populations involves the computation of the dominant eigen-
vector of a matrix whose size N grows exponentially with
the chain length of the virus to be modeled. Most biolog-
ically interesting chain lengths are so far well beyond the
reach of existing algorithms and hardware.

We show how to exploit the special properties of the prob-
lem under consideration and design a fast and accurate solver
which reduces the complexity to Θ(N log2 N). Our solver is
even faster than existing approximative strategies and con-
trary to those it can also be applied to more general formu-
lations of the quasispecies model. Substantial further im-
provements and high parallelism can be achieved for special
fitness landscapes in the evolution model.

Beyond theoretical analysis, we evaluate the performance
of our new solver experimentally on a GPU with an OpenCL
implementation and illustrate that it achieves speedup fac-
tors of more than 107 over standard approaches.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on matrices; G.1.3 [Numerical Analysis]: Numerical Lin-
ear Algebra—eigenvalues and eigenvectors (direct and iter-
ative methods); sparse, structured, and very large systems
(direct and iterative methods); J.3 [Life and Medical Sci-
ences]: Biology and genetics

General Terms
Algorithms, Performance

Keywords
evolution models for virus populations, quasispecies, GPU
computing, large eigenproblems

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

1. INTRODUCTION
Under some assumptions on the environment the evolu-

tion and the long-term behavior of a virus population can be
modeled by the quasispecies model [5]. In this model, each
virus is represented by an RNA molecule and each RNA
molecule is represented as a string over a finite alphabet
with a fixed length ν (the so called chain length). In this
paper, we consider a binary alphabet. The probability of a
single point mutation in an RNA sequence is modelled by
the error rate p satisfying 0 < p ≤ 1/2. Given a fixed chain
length ν, all N := 2ν possible RNA sequences have to be
considered since any RNA molecule can potentially mutate
into any other one (although the overall probability for some
of these mutations may be very low).

The overall goal is to numerically compute the relative
concentrations of the so-called quasispecies [7] which de-
scribe an ordered stationary distribution in the model. At
the core of the effort summarized in this paper is the nu-
merical computation of the eigenvector corresponding to the
largest eigenvalue of a non-negative matrix W ∈ RN×N
which basically describes the constitution and the mutation
probabilities of the N different RNA molecules with chain
length ν (see Section 1.1). This eigenvector contains the in-
formation about the concentration of the quasispecies in the
course of the evolution of the virus population. Since the
dimension N of this eigenvalue problem grows exponentially
with the chain length ν of the RNA molecules to be mod-
elled, numerical solutions of the model were so far restricted
to very small chain lengths and most biologically interesting
cases were out of scope of computational methods, even on
high-end supercomputers. In this paper, we show how to de-
rive very fast algorithms for solving this eigenvalue problem
by exploiting the specific problem properties and structure.
Beyond a fast algorithm for the general case we show how to
achieve further improvements for special cases of the fitness
landscape. In combination with a hardware-efficient imple-
mentation on GPUs we are able to significantly extend the
range of computationally tractable problem instances.

We pursue a similar approach as in [10], where we investi-
gated the power iteration method based on an implicit ma-
trix vector product for the problem at hand. In this paper,
we go a big step further and show that the matrix vector
product to be performed can be expressed as a transforma-
tion with similar properties as the FFT. This implies that
there is no need to store any element of the matrix and that
we have an Θ(N log2 N) algorithm for directly performing
the required matrix vector product without additional stor-

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

age requirements.
By definition our algorithms enable equally fast computa-

tions for more general formulations of the quasispecies model
than the ones usually considered. In particular, the assump-
tion of a uniform error rate, which goes back to the origins of
the quasispecies model [5], can easily be replaced by far more
general error rate models. Additionally, we also present re-
sults about the efficient solution of models with specially
structured fitness landscapes. Overall, the new algorithms
discussed compute fully accurate solutions of the problem
at a cost which is even lower than the one of approxima-
tive approaches considered earlier. Moreover, they exhibit a
high degree of parallelism and are consequently suitable for
exploiting the characteristics of modern GPU hardware.

Synopsis.
The remainder of Section 1 summarizes the background

of the quasispecies model for the evolution of virus popula-
tions, the resulting eigenvalue problem, and related work
on solving this problem. The derivation of fast implicit
matrix vector operations for this problem is topic of Sec-
tion 2. In Section 3, solution methods for the occurring
eigenvalue problem are developed. Section 4 discusses effi-
cient GPU implementations and summarizes experimental
performance evaluations. Finally, in Section 5 it is shown
how further performance improvements can be achieved if
additional structural properties are present.

1.1 Biochemical Background
We briefly review the model which leads to the eigenvalue

problem we are dealing with. For a more detailed discussion
and further references see [13, 15].

As already mentioned, each RNA molecule is represented
over a binary alphabet. In particular, Xi with 0 ≤ i < N1

denotes the RNA molecule and the corresponding species
which is represented by the binary encoding (b0, . . . , bν−1)
of length ν of the integer i. The error-free sequence X0

associated with the integer 0 is called the master sequence.
As a distance measure between species Xi and Xj we use the
Hamming distance dH(Xi, Xj) which represents the minimal
number of elementwise mutations required to transform Xi
into Xj .

Due to Eigen [5] the following system of ODEs models the
evolution of RNA molecules for i = 0, . . . , N − 1:

dxi
dt

=

N−1∑
j=0

fj ·Qi,j · xj(t)− xi(t) · Φ(t) (1)

Φ(t) =

N−1∑
j=0

fj · xj(t),
N−1∑
j=0

xj(t) = 1.

In this model, xi denotes the relative concentration of the
molecular species Xi (initially, x0 = 1), the positive fitness
value fi describes the constitution of the molecular species
Xi, and the (i, j) entry of the mutation matrix Q is the
probability that sequence Xi mutates into sequence Xj :

Qi,j = pdH (Xi,Xj) · (1− p)ν−dH (Xi,Xj). (2)

By definition, the values Qi,j depend only on dH(Xi, Xj)
and therefore the entire matrix Q contains only ν + 1 dif-
ferent values. It should be pointed out that this standard
1Throughout the entire paper, we use zero-based indexing
for vectors and matrices.

model assumes that p is an average error rate over all pos-
sible mutations since it does not depend on the position or
on the overall number of the mutations. Equation (2) also
shows that an index i (row or column) corresponds to the
sequence Xi. It would be possible to reorder the sequences
by applying a permutation π such that index i corresponds
to sequence Xπ(i).

2

The ODE system (1) is a Bernoulli system, and thus a
proper change of variables leads to a linear system with con-
stant coefficients ż = W ·z with W = Q·F where Q is defined
by Equation (2) and F , the fitness landscape, is a diagonal
matrix with the fitness values fi > 0 along the diagonal.
The search for the quasispecies then reduces to the compu-
tation of the eigenvector corresponding to the dominating
eigenvalue of W [14]. In fact, there are several mathemat-
ically equivalent formulations of the problem with slightly
differing structure:

Q · F · xR = λ · xR (3)

F
1
2 ·Q · F 1

2 · xS = λ · xS (4)

F ·Q · xL = λ · xL (5)

Since F is diagonal, their solutions can easily be transformed
into each other:

xR = F−
1
2 · xS , xS = F−

1
2 · xL, xR = F−1 · xL.

Note that in the special case where all values in F are equal
the problem reduces to the computation of the dominating
eigenvector of a bistochastic matrix, which is trivial and
leads to an eigenvector where all entries are equal. This is
not at all surprising since for equally fit sequences we clearly
expect the uniform distribution as result.

Since the xi represent relative concentrations, we are only
interested in solutions where all components of the computed
eigenvector are non-negative (negative concentrations do not
have a physically meaningful interpretation). W satisfies the
conditions of the Perron-Frobenius theorem [16], and thus
this nonnegativity property is guaranteed. Based on the
computed eigenvector with the relative concentrations for
each sequence, one can compute cumulative concentrations
of so-called error classes. The error class Γk,i contains all
sequences j which have a fixed Hamming distance k from
the fixed sequence i:

Γk,i := {j | 0 ≤ j < N ∧ dH(Xi, Xj) = k} (6)

Since the error classes with respect to the master sequence
are particularly relevant, we denote Γk := Γk,0. Γk contains(
ν
k

)
sequences. In the style of the definition of the error

classes we denote the ν+1 different values of Q by QΓk , i. e.,
QΓk := pk · (1− p)ν−k for 0 ≤ k ≤ ν. When the meaning is
clear from the context we also use just i instead of Xi for
denoting the binary string corresponding to the integer i.

After the dominating eigenvector of W has been com-
puted, the cumulative concentrations [Γk] :=

∑
j∈Γk

xj of
the error classes Γk in the stationary distribution are ob-
tained. Plotting these cumulative concentrations for dif-
ferent error rates p leads to curves as the ones shown in

2For example, using the Gray code as permutation would de-
liver a matrixQ where the first diagonal above and below the
main diagonal are constant. This comes from the basic defi-
nition of the Gray code which states that dH(Xi, Xi+1) = 1
for all i.

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

0 0.02 0.04 0.06 0.08

[Γ0], [Γ20]

[Γ1], [Γ19]

[Γ2], [Γ18]

[Γ3], [Γ17]

[Γ4], [Γ16]

[Γ5], [Γ15]

[Γ6], [Γ14]

[Γ7], [Γ13]

[Γ8], [Γ12]

[Γ9], [Γ11]

[Γ10]

Error rate p

0

0.2

0.4

0.6

0.8

1

R
e
la
ti
v
e
C
o
n
c
e
n
tr
a
ti
o
n

in
Γ
k

0 0.02 0.04 0.06 0.08

[Γ0], [Γ20]

[Γ1], [Γ19]

[Γ2], [Γ18]

[Γ3], [Γ17]

[Γ4], [Γ16]

[Γ5], [Γ15]

[Γ6], [Γ14]

[Γ7], [Γ13]

[Γ8], [Γ12]

[Γ9], [Γ11]

[Γ10]

Error rate p

0

0.2

0.4

0.6

0.8

1

R
e
la
ti
v
e
C
o
n
c
e
n
tr
a
ti
o
n

in
Γ
k

Figure 1: A visualization of the error threshold phenomenon is shown on the left for ν = 20 and the simple
single peak fitness landscape with f0 = 2, fi = 1 for all 1 ≤ i < N . An ordered stationary distribution results up
to pmax ≈ 0.035, and for p > pmax a sudden change to the uniform distribution of all sequences occurs. Error
classes with the same number of elements (Γk and Γν−k) are shown in the same color and therefore their
curves meet when the uniform distribution is reached at the error threshold. On the right, the behavior for
ν = 20 and the so-called linear landscape defined as fi = f0 − (f0 − fν) · dH(i, 0)/ν for all 0 ≤ i < N with f0 = 2
and fν = 1 are shown. For this landscape a smooth transition into the uniform distribution is observed and
no error threshold phenomenon occurs.

Figure 1. Such figures can be used to get a better under-
standing of how a certain fitness landscape influences the
evolution of the virus population. They would be even more
interesting at the level of granularity of single sequences but
they are very rare in the literature due to the limitations in
chain lengths which can be handled computationally. De-
pending on the concrete fitness values, the error threshold
phenomenon may occur or not. If it occurs there is an or-
dered stationary distribution of the concentrations up to a
critical value pmax for the error rate p, where some sequences
clearly dominate, whereas others do not appear at all or only
in very low concentrations. For p > pmax, the structure of
the population changes immediately into a uniform station-
ary distribution where all sequences occur in the same con-
centration, which is equivalent to random replication. Note
that in Figure 1 cumulative concentrations are shown for the
error classes. Although all sequences have the same concen-
tration for p > pmax, the cumulative concentrations of the
error classes differ because their cardinality differs. Typi-
cal values for pmax on certain fitness landscapes are in the
range 0.01 − 0.1 [14, 15], depending on the concrete fitness
values and the chain length. Such small values for pmax are
quite surprising since random replication as exact solution
of the ODE system (1) is obtained only for p = 0.5 [14].
This sudden change from an ordered distribution to random
replication is of potential interest as a building block for new
antiviral strategies [6] because the error rates of RNA viruses
are usually close to this critical value [2] and an increase of
p is possible by the use of pharmaceutical drugs.

1.2 Related Work
So far, computational investigations in the large body of

literature about the quasispecies model are all limited to the
case where the landscape F is defined via the Hamming dis-
tance fi := ϕ(dH(i, 0)) for some function ϕ (see e. g., [15]).
Practically this means that all sequences with the same dis-
tance to the master sequence are equally fit, which is of-
ten a rather unrealistic assumption. With this simplifying

assumption one expects that the problem reduces from an
N×N to a (ν+1)×(ν+1) problem since all sequences in the
same error class Γk are considered equivalent. For this spe-
cial constellation efficient approximative schemes have been
developed [11, 17], and this is the way how the quasispecies
model and the error threshold phenomenon have usually
been studied so far.

In contrast to these approximation methods our objec-
tive is to deal with the general form of the problem without
any special assumptions, where so far no fast solvers are
available [15]. For the general problem without assumptions
on the structure of the fitness landscape we showed in [10]
how to achieve a speedup factor of about 700 already for
relatively short chain lenghts (ν = 25) over standard ap-
proaches on mainstream hardware (see also Section 4). This
was achieved by introducing an implicit sparse matrix vector
product for the matrices arising in the quasispecies model.
Our approach in [10] is based on the binary bitwise XOR
operator and also sparsifies the matrix Q by taking into ac-
count only sequences within a maximum Hamming distance
of dmax

H . Henceforth we refer to the matrix vector prod-
uct introduced in [10] as Xmvp(dmax

H), whereas the standard
matrix vector product which does not take into account the
structure of W is called Smvp. As shown in [10], Xmvp(ν)
is basically identical to Smvp, and Xmvp(dmax

H) reduces the
space complexity to Θ(N) as well as the time complexity

to Θ
(
N ·∑dmax

H
k=0

(
ν
k

))
from Θ

(
N2
)

in both cases for Smvp.

This illustrates that the sparsfied XOR-based matrix vector
product nicely reduces the memory requirements, but the
potential runtime reduction strongly depends on the level of
tolerable inaccuracy in the computed concentrations of the
species. Nevertheless, in the context of this paper Xmvp(ν)
is an important benchmark for evaluating our new exact ap-
proach.

The main contributions in this paper are threefold. First,
we develop fast algorithms for general formulations of the
quasispecies model without special assumptions on the fit-

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

ness landscape. More specifically, we derive an exact implicit
matrix vector product Fmmp. It has a runtime complexity
of Θ(N log2 N) and clearly outperforms all the previous ap-
proaches in terms of speed as well as in terms of accuracy.
In contrast to [11, 17], the only assumption on F is that
it is a diagonal matrix. We partly use randomly generated
landscapes to illustrate the generality of our results. Second,
we also show in Section 5 that solving the eigenvalue prob-
lems (3)-(5) with special assumptions on the fitness land-
scape can even be exactly reduced from an N × N to a
(ν + 1)× (ν + 1) problem and that the solution of the orig-
inal problem can be recovered exactly from the solution of
the reduced problem. Third, we present efficient high per-
formance implementations of the new solvers on GPUs and
show how to exploit the high parallelization potential arising
for fitness landscapes with Kronecker structure.

2. FAST MUTATION MATRIX PRODUCT
Most important algorithms for computing extreme eigen-

pairs of large scale eigenvalue problems are based on a ma-
trix vector product, and we derive an efficient implicit ma-
trix vector product with Q · F in this section. Since F is
diagonal we can focus on a matrix vector product with the
mutation matrix Q.

According to the definition of Q in Equation (2), mutation
is modeled in the quasispecies model by independent coin
flips with probability p for each position in the sequence.
Each entry Qi,j is the result of the product of ν independent
stochastic processes (coin flips). As already observed in [3,
12], this property allows for using the following Kronecker
product representation which avoids the use of the Hamming
distance and combines the ν independent stochastic single
point mutation processes implicitly:

Q(ν) =

ν⊗
i=1

(
(1− p) p

p (1− p)

)
. (7)

This representation can also be described recursively:

Q(0) := 1

Q(ν) :=

(
(1− p) ·Q(ν − 1) p ·Q(ν − 1)

p ·Q(ν − 1) (1− p) ·Q(ν − 1)

)
. (8)

It was already noted in [12] that as an immediate conse-
quence of the Kronecker product based representation (7)
the eigenvalues Λ(ν) and corresponding eigenvectors V (ν)
of Q(ν) can be directly computed as

Λ(ν) :=

ν⊗
i=1

(
1 0
0 1− 2p

)

V (ν) := 2−
ν
2 ·

ν⊗
i=1

(
1 1
1 −1

)
.

Since V (ν) is symmetric, this leads to the representation
Q(ν) = V (ν) · Λ(ν) · V (ν). This implicit description of the
eigendecomposition can be transformed back into a compo-
nentwise representation:

(Λ(ν))i,i = (1− 2p)dH (i,0)

(V (ν))i,j = 2−
ν
2 · (−1)1/2·(dH (i,0)+dH (j,0)−dH (i,j)).

One can conclude that Q(ν) has the eigenvalues (1 − 2p)k

for 0 ≤ k ≤ ν with multiplicities
(
ν
k

)
. For p < 1/2 this

implies that the mutation matrices Q are always positive

definite. By (F
1
2 x)T · Q · (F 1

2 x) > 0 for any landscape F
and vector x, we also see that the eigenvalue problems from
Equations (3)-(5) deal with positive definite matrices, and
therefore all eigenvalues of W are positive real numbers.

Moreover, the eigendecomposition of Q(ν) also indicates
that we may expect an efficient matrix vector product for
Q(ν), since multiplication with the eigenvector matrix V (ν)
(which is a Hadamard matrix) can be performed by the well
known fast Walsh-Hadamard transform (FWHT, [8]) with
Θ(N log2 N) operations. Similar to the FWHT, we derive
an efficient matrix vector product with W in the following.

2.1 Kronecker Product Representations
Fast transformations (matrix vector products) usually ap-

pear hand in hand with a Kronecker product representation
of the underlying matrix [18]. Based on Equation (8), the
N ×N matrix vector product

Q(ν)·v =

(
(1− p) ·Q(ν − 1) p ·Q(ν − 1)

p ·Q(ν − 1) (1− p) ·Q(ν − 1)

)
·
(
v1

v2

)
can be computed efficiently in two ways. We can either
first compute the two N/2 × N/2 matrix vector products
v̄1 := Q(ν − 1) · v1 and v̄2 := Q(ν − 1) · v2 and then

Q(ν) · v =

(
(1− p)v̄1 + pv̄2

pv̄1 + (1− p)v̄2

)
, (9)

or we directly compute

Q(ν) · v =

(
Q(ν − 1) · ((1− p)v1 + pv2)
Q(ν − 1) · (pv1 + (1− p)v2)

)
. (10)

Lemma 1. Computing the matrix vector product Q(ν) · v
using Equation (9) or Equation (10) recursively has a run-
time complexity Θ(N log2 N).

Proof. The complexity result can be deduced easily by
using the Master Theorem from [1, p.73]. Setting a = b = 2

and f(n) ∈ Θ(nlogb(a)) in the recurrence T (n) = aT (n/b) +
f(n) (f(n) describes the cost for combining the solutions of
the recursively solved subproblems) and applying the theo-
rem leads to a runtime complexity Θ(N log2 N).

Due to the Kronecker product representation of Q we also
observe that both matrix vector products (9) and (10) work
in situ as it is common for such transformations (cf. the
FFT, for example). Since F is diagonal, matrix vector prod-

ucts with the matrices Q ·F , F
1
2 ·Q ·F 1

2 or F ·Q (cf. Equa-
tions (3)-(5)) also have a complexity of Θ(N log2 N). We
refer to the fast matrix vector product based on (9) or (10)
as fast mutation matrix product (Fmmp). The efficient im-
plementation of Fmmp on GPUs is discussed in Section 4.

Comparison with approximative approaches.
A natural question arising now is how this newly defined

implicit matrix vector product compares to the sparse ma-
trix vector product Xmvp(dmax

H) investigated in [10] for dif-
ferent dmax

H . The maximum possible degree of sparsification
in Xmvp(dmax

H) is achieved by setting dmax
H = 1 (consider

only the “neighboring” sequences with Hamming distance
one). This leads to a time complexity of Θ(N · (ν + 1)) =
Θ(N log2 N +N) for evaluating the matrix vector product.
This shows that our new implicit matrix vector product

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

Fmmp with the full information of the matrix W is asymp-
totically even faster than the approximative matrix vec-
tor product Xmvp(dmax

H) with the coarsest approximation
dmax
H = 1. Figure 2 illustrates that in practice Fmmp even

outperforms Xmvp(1) already for quite small ν. This is actu-

10 15 20 25
10

−3

10
−2

10
−1

10
0

10
1

O(N2)
Xmvp(ν)
O(N log2 N)
Xmvp(1)
Fmmp

Chain Length ν

E
x
e
c
u
ti
o
n

T
im

e
[s
]

Figure 2: Runtimes of different implicit matrix vec-
tor products W · x on a single CPU core: Xmvp(ν)
(fully accurate, corresponds to Smvp up to some
small constant factor), Xmvp(1) (lowest possible ac-
curacy), and Fmmp (fully accurate).

ally not surprising since the implementation of Xmvp(dmax
H)

requires some additional computational overhead compared
to the standard matrix vector product (see [10]), and due
its memory access patterns it tends to get less competitive
for increasing chain lengths.

2.2 More General Mutation Processes
One of the well known points of criticism about the qua-

sispecies model concerns the assumption of a uniform error
rate, which states that mutations in different positions of
the sequence are entirely independent and that they happen
with the same probability p, which leads only to a coarse ap-
proximation of the evolution behavior of the population. A
more general formulation of the model (1) only requires that
Q is column stochastic. In the following, we discuss how to
apply our fast algorithms in this more general setting with
weaker assumptions on the structure of Q.

In the representation of Q in Equation (7) we see that
there is actually no need for the single point mutations to
have the same properties. Because the Kronecker product of
two column stochastic matrices is again column stochastic
(which can be easily verified), the only property which is re-
quired is that each of the 2×2 matrices is column stochastic.

Consequently, for arbitrary diagonal fitness landscapes F
a fast matrix vector product with Q · F can be constructed
as long as the mutation process is modeled as the compo-
sition of ν independent processes, one for each position in
the RNA sequence. For such generalizations, Q may lose
some properties such as symmetry, but this does not affect
the performance of our approach since it just relies on the
Kronecker product based definition of Q.

Even the restriction to 2 × 2 column stochastic matri-
ces can be relaxed when needed for modeling more general

situations. In principal, our approach allows for efficiently
handling mutation matrices Q of the more general structure

Q =

g⊗
i=1

QGi , QGi ∈ R2gi×2gi ,

g∑
i=1

gi = ν, (11)

which models 1 ≤ g ≤ ν groups of independent mutation
processes where each group contains gi single point muta-
tions which are dependent on each other. Again the only
requirement is that the matrices QGi be column stochastic
such that the model is valid. Clearly the size of the gi in-
fluences the complexity of the resulting algorithms, but as
long as they are not too large we still get efficient methods
also for this very general setting. More formally, the gen-
eralization (11) may increase the complexity of f(n) when
applying the Master theorem in Lemma 1, and therefore
possibly higher complexity bounds may result.

3. COMPUTING THE QUASISPECIES
Up to now we derived an efficient matrix vector product

for the matrix W in the quasispecies model, but we did not
yet address the problem of computing the desired extremal
eigenvector. Remember that we are free to choose any of
the problem formulations shown in Equations (3)-(5). In
particular, this implies that without loss of generality we
may restrict our investigation to a symmetric eigenproblem
with real eigenvalues.

As already noted, at this point we are considering prob-
lems without any specific assumptions on the fitness land-
scape beyond diagonality. F is thus a general diagonal ma-
trix and all its N values have to be stored. An unstructured
landscape F also implies an unstructured resulting extremal
eigenvector with N = 2ν values to be stored. Due to this
exponential growth with ν it is crucial to consider methods
with minimum storage requirements beyond that.

Potentially relevant methods for computing an extremal
eigenvector on the basis of an (implicitly available) ma-
trix vector product are the basic power iteration or Lanc-
zos/Arnoldi iterations. The latter require storing more in-
termediate vectors than the simpler power iteration and are
thus less attractive for very large scale instances of the prob-
lem considered here. A completely different approach to the
problem of computing the extremal eigenvector of a matrix
would be to use randomized methods as suggested in [4, 9].
Although they usually allow for a strong reduction of the
problem dimension, this reduction tends to strongly reduce
the accuracy of the result. In the problem at hand, increas-
ing ν not only leads to growing storage requirements, but
also to growing accuracy requirements since the eigenvector
to be computed contains relative concentrations. Especially
for large ν we need higher accuracy and thus randomized
methods are not the first choice in this context.

Power Iteration-Based Approach.
In the following, we focus on the investigation of a power

iteration (Pi) approach, which provides the best balance be-
tween storage requirements and accuracy. The matrix vec-
tor product used will be stated as argument in the nota-
tion, e. g., Pi(Fmmp) denotes the power iteration method
on the basis of the fast Fmmp matrix vector product intro-
duced in Section 2.1. Since W is positive definite and the
Perron-Frobenius theorem is applicable, it is assured that

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

the eigenvalues of W satisfy

λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1 > 0,

and thus convergence of the power iteration is guaranteed.
As starting vector s for the power iteration we use the

fitness landscape itself s = diag(F)/‖diag(F)‖1, since we
can expect the extremal eigenvector of W = Q · F to be of
a similar shape (remember that the extremal eigenvector of
Q is a multiple of (1, 1, . . . , 1)T . As stopping criterion we

monitor the residual R(λ̃, x̃) = ‖Wx̃− λ̃x̃‖2.

Shifting for Convergence Acceleration.
The convergence rate of the power iteration depends on

the ratio λ1/λ0 < 1. In the following we derive a shift µ from
the properties of the problem considered in order to enhance
the convergence rate to (λ1 − µ)/(λ0 − µ). Of course, µ has
to be chosen such that λ0−µ remains the largest eigenvalue
of W − µI.

In order to derive a generally applicable shift µ, we again
examine the Kronecker product representation of Q(ν) in
Equation (7). By exploiting the property (A⊗B)−1 = A−1⊗
B−1 we can represent the inverse Q(ν)−1 as

Q(ν)−1 = (1− 2p)−ν
ν⊗
i=1

(
(1− p) −p
−p (1− p)

)
. (12)

According to Equation (12), the absolute row and column
sums of Q(ν)−1 are all (1− 2p)−ν . With this knowledge we
can compute ‖·‖1 of the matrices W = Q · F and W−1 =
F−1 ·Q−1 in order to derive bounds for the largest eigenvalue
λ0 as well as for the smallest eigenvalue λN−1 of W :

λ0 ≤ ‖W‖1 ≤ ‖Q‖1 · ‖F‖1 = fmax :=
N−1
max
i=0

fi

and

λ−1
N−1 ≤

∥∥W−1
∥∥

1
≤

∥∥F−1
∥∥

1
·
∥∥Q−1

∥∥
1

= f−1
min · (1− 2p)−ν ,

where fmin := minN−1
i=0 fi. Since fmin > 0 and p < 1/2 we

can conclude that λN−1 ≥ (1−2p)νfmin and therefore apply-
ing the shift µ := (1− 2p)νfmin is in any case possible, since
λ0 − µ remains the largest eigenvalue and hence the shifted
power iteration still converges to the desired eigenvector. Al-
though this choice of the shift µ is very conservative, using
it results in a clearly measurable reduction of the number
of iterations of about ten percent and more for the random
landscapes we considered.

Towards a Shift-and-Invert Method.
We would like to point out that for Q there even exists a

Θ(N log2 N) implicit shift and invert matrix vector product
since

(Q(ν)− µI)−1v = (V (ν)Λ(ν)V (ν)− µI)−1v

= V (ν) (Λ(ν)− µI)−1 V (ν)v,

where V (ν)v can be computed efficiently by the FWHT
and the cost of the multiplication with the diagonal matrix
(Λ(ν)− µI)−1 is linear in N .

The construction of an efficient solver for Q(ν)F−µI with
arbitrary diagonal F is more complicated and is one of the
topics of our current work. With such a building block the
application of inverse iteration or Rayleigh quotient iteration

becomes possible. Other improvements for special structures
of the landscape F are discussed in Section 5.

4. EFFICIENT GPU IMPLEMENTATION
In this section a parallel implementation of the power

iteration based on Fmmp and, for comparison, based on
Xmvp(dmax

H), is discussed. We illustrate that the new Fmmp-
based approach is well suited for exploiting the potential of
state-of-the-art GPU hardware. For improving portability
we implemented our algorithms using OpenCL. In particu-
lar, this implies that our codes can also make use of modern
multi-core CPUs besides GPUs.

The implementation presented only uses standard tech-
niques and is not highly optimized yet. There is still space
for further performance gains by applying advanced code
optimization techniques known from optimized implemen-
tations of FFT and FWHT, respectively. Nevertheless, in
view of the exponential growth of the problem at hand, the
pivotal aspect is the algorithmic improvement. Relatively
speaking, the improvements achievable by further code op-
timizations are expected to be lower.

Our implementation of the fast matrix vector product
Fmmp shown in Algorithm 1 is based on Equation (9), but
in an iterative instead of a recursive formulation. The cor-
responding algorithm for Equation (10) can be obtained by
turning around the outermost i-loop. Note that up to some

Algorithm 1 Fmmp based on Equation (9)

Input: v ∈ RN
Output: Q(ν) · v

1: for i← 1 to N/2 by 2 · i do
2: for j ← 0 to N − 1 by 2 · i do
3: for k ← 0 to i− 1 do
4: t1 ← v[j + k]
5: t2 ← v[j + k + i]
6: v[j + k]← (1− p) · t1 + p · t2
7: v[j + k + i]← p · t1 + (1− p) · t2
8: end for
9: end for

10: end for

multiplications with constants this formulation is very sim-
ilar to basic implementations of the FWHT or of the FFT.

For execution on a GPU or, more general, for the compu-
tations with OpenCL we need to provide a so-called kernel
function where the current thread id is queried for deciding
which computations have to be executed. A corresponding
formulation is shown in Algorithm 2, where ID denotes the
thread id and “&” denotes the bitwise AND operation.

Like Algorithm 1, Algorithm 2 performs exactly log2 N
iterations of the outer i-loop, but in contrast to Algorithm 1
the second ID-loop has a constant range of N/2. However,
we see that those N/2 iterations of the ID-loop are entirely
independent of each other and therefore a very high degree
of parallelism is available. The index computation in line 3
can be easily verified starting from the usual formula for this

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

Algorithm 2 GPU ready implementation of Equation (9)

Input: v ∈ RN
Output: Q(ν) · v

1: for i← 1 to N/2 by 2 · i do
2: for ID← 0 to N/2− 1 by 1 do
3: j ← 2 · ID− (ID & (i− 1))
4: t1 ← v[j]
5: t2 ← v[j + i]
6: v[j]← (1− p) · t1 + p · t2
7: v[j + i]← p · t1 + (1− p) · t2
8: end for
9: end for

task:

2 · i · bID/ic+ ID mod i

= 2 · (ID− (ID mod i)) + ID mod i

= 2 · ID− ID mod i

= 2 · ID− (ID & (i− 1))

The last step exploits that i is always a power of two and
that in this case the modulo computation can be performed
via the cheaper bitwise AND operation. When using Algo-
rithm 2 as base for an OpenCL implementation, the i-loop
runs at the host, in each iteration of the i-loop the kernel
is called with N/2 threads, and lines 3-7 correspond exactly
to the kernel function where ID is determined by the proper
OpenCL command.

This implementation of the fast matrix vector product
Fmmp scales nicely with the parallelization potential of the
underlying hardware. Since there is a relatively high num-
ber of memory operations compared to floating-point oper-
ations, one can expect that the memory bandwidth of the
hardware has an important influence on the overall perfor-
mance. This can be observed in the experiments, since the
performance achieved on the GPUs used exactly corresponds
to their particular memory bandwidth.

Beyond the matrix vector product, the power iteration
method only needs a fast procedure for the summation of
the components of a vector for computing norms and the
residual after each iteration. Since the summation of the
components of a vector can be relatively well parallelized,
this part of the power iteration method has almost no influ-
ence on the overall execution time.

Experimental Results
For our experiments, we did not make any special assump-
tions on the values of the fitness landscape F , but similar
to [15] we used the following random landscapes:

f0 = c, fi = σ · (ηrnd(i) + 0.5), (13)

where c > 0, σ ∈ (0, c/2) and ηrnd(i) is a call to a uniform
random number generator on the interval [0, 1].

For evaluating the methodical improvement provided by
our fast matrix vector product we compare Pi(Fmmp) with
Pi(Xmvp(ν)) and Pi(Xmvp(5)). The choice dmax

H = ν in
the approximative matrix vector product Xmvp(dmax

H) illus-
trates how Fmmp compares to the standard matrix vector
product Smvp ≡ Xmvp(ν), and the choice dmax

H = 5 in
Xmvp(dmax

H) has been shown in [10] to yield an approxima-
tion error around 10−10. The accuracy achieved with smaller

values for dmax
H is usually too low [10] and thus these values

are not considered here (remember that we have shown in
Section 2.1 that Fmmp is faster than Xmvp(dmax

H) even for
the lowest possible accuracy with dmax

H = 1!).
Figure 3 shows the great improvement Fmmp delivers as

building block of the power iteration. In all cases p = 0.01
was chosen and the iteration was stopped when the residual
R(λ̃, x̃) for the approximated eigenpair (λ̃, x̃) was less than
an appropriate threshold τ (τ = 10−15 for dmax

H = ν, τ =
10−10 for dmax

H = 5). All computations were performed on
an Nvidia Tesla C2050 with 3Gb memory. The runtimes
shown are overall execution times which include the data
transfer from and to the GPU.

10 15 20 25

Pi(Xmvp(ν))
Pi(Xmvp(5))
Pi(Fmmp)

Chain Length ν

10−2

10−1

100

101

102

103

104

E
x
e
c
u
ti
o
n

T
im

e
[s
]

Figure 3: Overall execution times on a GPU for
finding the dominating eigenvector of Q ·F (p = 0.01)
on a random landscape (13) with c = 5 and σ = 1 for
increasing chain length ν.

In Figure 2 we illustrated execution times different vari-
ants of the matrix vector product Wv on a CPU core, and
in Figure 3 we showed GPU execution times of the entire
power iteration for computing the desired dominant eigen-
vector based on these matrix vector products. In order to
better differentiate the influence of different algorithms from
the influence of different hardware platforms, we depict the
speedups for solving the quasispecies model for various com-
binations of algorithms and hardware in Figure 4. As refer-
ence value for evaluating the speedup we used the execution
times of Pi(Xmvp(ν)) running on a CPU (Intel I5 750 @
2.67Ghz with 4Gb memory), which achieves the same ac-
curacy as Pi(Fmmp). For ν ≥ 22 the execution times for
Pi(Xmvp(ν)) are so long that they had to be extrapolated
based on the curves in Figures 2 and 3 for estimating the
speedup values.

Figure 4 basically summarizes the results discussed in this
paper and in [10]. For different algorithms on the same hard-
ware we always observe a different slope of the speedup curve
as we would expect from theory. This means that our algo-
rithms scale well with the underlying hardware. We also see
that the speedup delivered by Fmmp over O(N2) algorithms
is of the expected order of magnitude. The speedup values
of Fmmp on the CPU are partly above the theoretically ex-
pected value of N2/(N log2 N), which is caused by the com-
putational overhead in Xmvp(ν). For the same algorithms

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

10 15 20 25

N2/(N log2 N)
GPU-Pi(Fmmp)
CPU-Pi(Fmmp)
GPU-Pi(Xmvp(5))
CPU-Pi(Xmvp(5))
GPU-Pi(Xmvp(ν))

Chain Length ν

101

102

103

104

105

106

107

108

S
p
e
e
d
u
p

to
C
P
U
-P

i(
X
m
v
p
(ν
))

Figure 4: Speedup factors for solving the quasis-
pecies model based on various combinations of algo-
rithms and hardware over power iteration based on
Xmvp(ν) running on a CPU. For a given algorithm,
different hardware platforms lead to (asymptoti-
cally) parallel speedup curves with the same slope,
whereas the curves for different algorithms have dif-
ferent slopes.

on different hardware we observe parallel shifted speedup
curves and great performance benefit from exploiting the po-
tential of GPUs. One should keep in mind that the reference
computation and the fastest combination, Pi(Fmmp) on the
GPU, deliver the same results. The observed speedup factor
of about 2 · 107 for ν = 25 underlines the combined benefits
of algorithmic improvements and efficient implementation
which exploits the potential of GPUs.

5. SPECIAL FITNESS LANDSCAPES
Up to now the presented methods were designed for the

most general formulation of the quasispecies model when
there are no special assumptions on the diagonal fitness land-
scape F . We made already the observation that the muta-
tion matrix Q may be defined via the Hamming distance or
somewhat more generally via the Kronecker product. If the
fitness landscape also has such a representation one can ex-
pect that the matrices Q and F in some sense ”fit together”
and that this structure translates to the product W = Q ·F .
How this additional structure in the matrixW can be used to
derive further enhancements is discussed in Section 5.2. In
fact, Kronecker product structure of F does not only trans-
late into the matrix W , it even translates into the dom-
inating eigenvector, which emphasizes that such structure
should also translate into our algorithms and their complex-
ity, respectively. The resulting structure in the dominating
eigenvector reflects the loss of generality in the results since
the usually N degrees of freedom in the fitness landscape F
are drastically reduced by further assumptions on the struc-
ture of F . How well such specially structured landscapes
agree with observations in nature has to be clarified.

5.1 Hamming Distance-Based Landscapes
Since efficient solvers for general landscapes have not been

available so far and since good approximative methods have

been developed for landscapes based on the Hamming dis-
tance [11, 17], the existing literature almost exclusively deals
with landscapes of this very special type. In this section we
show that given a fitness landscape based on the Hamming
distance with fi = ϕ(dH(i, 0)), it is sufficient to solve a
(ν + 1)× (ν + 1) eigenproblem to get the exact eigenvector
of the full N × N eigenproblem and therefore approxima-
tive methods are not really needed in this case. One should
note that this dimensionality reduction also takes place in
the extremal eigenvector which corresponds to a reduction
from N to ν + 1 degrees of freedom in the structure of the
eigenvector.

The usual way to treat Hamming distance-based land-
scapes (see, e. g., [14]) is by defining a reduced mutation
matrix Q based on the observation that mutations do not
longer have to be considered on the granularity of single
molecules, but instead as mutations from some fixed ele-
ment of an error class Γd to any element of another error
class Γk. For 0 ≤ d, k ≤ ν the reduced mutation matrix is
defined as

QΓd,k :=

min(k,d)∑
j=k+d−ν

(
ν − d
k − j

)(
d

j

)
pk+d−2j

(1− p)(k+d−2j)−ν , (14)

which can be derived by explicitly computing the probabil-
ity that some fixed molecule from error class Γd mutates
into some molecule from error class Γk. Based on this defi-
nition, approximative methods apply low order pertubation
theory [11, 17].

In order to develop a better understanding of this prob-
lem reduction, we present a more computationally oriented
perspective. We start by considering the power iteration for
the full N × N problem as we did so far for the general
case, and then we simplify it step by step. At the end we
basically also arrive at the same reduced formulas but with
the advantage of a clear interpretation and understanding
of the structures arising. This knowledge can then be used
to efficiently compute the desired eigenvector.

We call v = (v0, . . . , vν−1) an error class vector if

{i, i′} ⊆ Γk ⇒ vi = vi′

holds for all 0 ≤ k ≤ ν and all 0 ≤ i, i′ < N . We identify
the ν + 1 different values of v by vΓ0 , . . . , vΓν , therefore we
have the relationship vi = vΓdH (i,0)

. Analogously to error

class vectors we define error class landscapes: We call F an
error class landscape iff diag(F) is an error class vector.

For i, i′ with {i, i′} ⊆ Γk we define a permutation σi,i′
for ν-bit vectors which maps the k bits which are set in i
to the k bits which are set in i′. Let {β0

i , . . . , β
k−1
i } and

{β0
i′ , . . . , β

k−1
i′ } denote the indices of the bits set in i and i′,

respectively, then σi,i′ is in cycle notation defined as

σi,i′ := (β0
i β

0
i′)(β

1
i β

1
i′) . . . (β

k−1
i βk−1

i′).

When writing σi,i′(j) we mean that the bits of the ν-bit
vector j are permuted according to σi,i′ . Just by definition
it is clear that for σi,i′ with any two integers i, i′ satisfying
dH(i, 0) = dH(i′, 0) the following statements hold:

(I) dH(j, 0) = dH(σi,i′(j), 0) for all 0 ≤ j < N

(II) {σi,i′(j) | j ∈ Γk} = Γk for all 0 ≤ k ≤ ν

(III) σi,i′(i) = i′

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

(IV) dH(i, j) = dH(σi,i′(i), σi,i′(j)) = dH(i′, σi,i′(j)) for all
0 ≤ j < N

Using these properties we can show the following Lemma 2.

Lemma 2. Given W = Q·F with F representing an error
class landscape and an error class vector v. Then the vector
W · v = v̄ is also an error class vector.

Proof. Examining the multiplication componentwise we
get

N−1∑
j=0

Qi,j · fj · vj = v̄i for all 0 ≤ i < N.

We know that v is an error class vector and have to prove
that

{i, i′} ⊆ Γk ⇒ v̄i =

N−1∑
j=0

Qi,j · fj · vj =

N−1∑
j=0

Qi′,j · fj · vj = v̄i′

holds because then v̄ is clearly also an error class vector.
Now suppose we are given any i, i′ with dH(i, 0) = dH(i′, 0),
then the following equivalences hold:

N−1∑
j=0

Qi,j · fj · vj =

N−1∑
j=0

Qi′,j · fj · vj

⇔
N−1∑
j=0

(Qi,j −Qi′,j) · fj · vj = 0

⇔
ν∑
k=0

∑
j∈Γk

(Qi,j −Qi′,j) · fj · vj = 0 (15)

⇔
ν∑
k=0

FΓk · vΓk ·
∑
j∈Γk

(Qi,j −Qi′,j) = 0 (16)

⇔
ν∑
k=0

FΓk · vΓk ·
∑
j∈Γk

(Qi,j −Qi′,σ(i,i′)(j))︸ ︷︷ ︸
=0 (by (IV))

= 0 (17)

⇔
ν∑
k=0

FΓk · vΓk · 0 = 0

⇔ 0 = 0

(15) ⇔ (16) because v is an error class vector and F is
an error class landscape. (16)⇔ (17) since error classes are
invariant under σi,i′ (by (II)).

Using Lemma 2 we can now conclude that the dominating
eigenvector of Q ·F under the assumption that F is an error
class landscape is also an error class vector. This follows im-
mediately by using any error class vector as starting vector
for the power iteration. We also know now that by using the
power iteration all intermediate vectors are error class vec-
tors. Apparently we should not compute the resulting value
for all vector components during an iteration, but instead of
that it is more efficient to compute the resulting value only
for an arbitrary representative index from each error class.
The natural and most obvious choices of such representa-
tives would probably be the set {2k − 1 | 0 ≤ k ≤ ν}.

So far, these insights reduced the original N ×N problem

v̄i =

N−1∑
j=0

Qi,j · fj · vj

to a (ν + 1)×N problem

v̄Γd =

ν∑
k=0

FΓk · vΓk ·
∑
j∈Γk

Q2d−1,j .

Now remember the definition of QΓd,k in Equation (14)
with the interpretation that QΓd,k is the probability that
some fixed element from Γd mutates into any element of
Γk. Observe that this is exactly what the last sum in the
previous equation computes and therefore we arrive at the
(ν + 1)× (ν + 1) problem

v̄Γd =

ν∑
k=0

QΓd,k · FΓk · vΓk .

Thus, efficiently computing the eigenvector of the original
problem by the power iteration shows that the original eigen-
vector can be computed out of the eigenvector of the reduced
(ν + 1)× (ν + 1) matrix. But note that when v denotes the
original and vΓ the eigenvector of the reduced problem it is
not the case that we get [Γk] = vΓk =

∑
j∈Γk

vj , because
the reduced matrix itself does not correspond to a change
of variables from single molecules to error classes. As we
have seen, it corresponds to a change from single molecules
to representatives of classes. In summary, this means that
given vΓ, the dominating eigenvector of the reduced prob-
lem, we can compute the cumulative concentrations for the
original problem by

[Γk] =

(
ν

k

)
vΓk∑ν

j=0

(
ν
j

)
vΓj

.

This rescaling reflects the interpretation that the eigenvector
of the reduced problem contains the concentrations of some
representatives of the error classes Γk.

Besides its low computational complexity, the main ad-
vantage of this exact problem reduction is that we do not
have to worry about approximative aspects or about the de-
tails of the perturbation theory used. It is sufficient to set up
the needed matrices by the well known formulas and to use
a standard solver for computing the extremal eigenvector of
a small (ν + 1)× (ν + 1) matrix.

5.2 Kronecker Product-Based Landscapes
In Section 2.2 we showed already that using a Kronecker

product-based definition of Q resulted in a significant in-
crease in the generality of Q without causing higher compu-
tational cost. Analogously, if we have a Kronecker product
representation of the fitness landscape F , we can derive so-
lution methods more efficient than the ones for arbitrary
landscapes.

When we considered the Kronecker product-based repre-
sentation of Q in Section 2, we saw that this representation
resulted in a great reduction of the complexity in the ma-
trix vector product with Q. The product with the diagonal
matrix F is inherently fast, but a Kronecker product rep-
resentation of F has additional benefits: on the one hand,
it leads to a reduction of the memory requirements, on the
other hand, it allows for splitting up the problem into inde-
pendent subproblems which can be solved in parallel.

Following the same scheme as for Q in Equation (11), we
define Kronecker landscapes F via the Kronecker product of

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

matrices FGi of dimension 2gi × 2gi :

F =

g⊗
i=1

FGi , FGi ∈ R2gi×2gi ,

g∑
i=1

gi = ν. (18)

The big advantage of a Kronecker product-based repre-
sentation is that it decouples the problem entirely and we
therefore get an implicit description of our solution. In terms
of complexity this means that the usual multiplicative con-
nection becomes an additive one. More concretely, if all gi
are equal, it allows for reducing the problem for chain length
ν into g subproblems of size 2ν/g which can all be solved in-
dependently instead of solving one problem of size 2ν . For
example, the quasispecies model for a chain length ν = 100
(which occurs in existing viruses of interest) is by far out of
reach of any of the currently available computational tech-
nology. However, for a Kronecker fitness landscape with
g = 4 it could be reduced to four subproblems of dimension
225, which can be solved fast with the methods introduced
in this paper.

We also observe that Kronecker product-based landscapes
have a much richer structure than the ones based on Ham-
ming distances, since they have

∑g
i=1 2gi degrees of freedom

compared to only ν + 1 in the case of Hamming distance
based landscapes.

If Q and F both have a Kronecker product representa-
tion and if these representations are also compatible (the
simplest case would be that Q and F have the same gi in
Equations (11) and (18)), then it is not even necessary to
compute the entire eigenvector. By the theory of the Kro-
necker product we get an implicit description of the desired
eigenvector, since the eigenvalues and eigenvectors of a ma-
trix M =

⊗g
i=1 Mi can be computed out of the eigenvalues

and eigenvectors of the component matrices Mi.
We still have to clarify how well Q and F fit together.

This is limited by the applicability of the so called mixed
product formula

(A⊗B)(C ⊗D) = AC ⊗BD
This formula is obviously only valid if AC and BD exist
and this is exactly the point where we can see a possible
increase in the joint group sizes of Q and F when considering
W = Q · F . But since our new solvers easily handle chain
lengths of ν ≈ 25 within a few seconds, one can still expect
efficient computations for fairly complex structures.

Based on an implicit description of the eigenvalues and
eigenvectors of the component matrices one could develop al-
gorithms for retrieving informations about the desired eigen-
vector of the full matrix W . More specifically, it is quite
simple to compute the extremal eigenvalue or relevant parts
of it efficiently. For example, one could compute the mini-
mum and maximum concentration for each error class which
should provide sufficient information for investigating the
question whether the error threshold phenomenon occurs or
not. So far, we did not investigate such methods in great
detail because the biological relevance of Kronecker product-
based fitness landscapes is not yet clear. From a computa-
tional point of view they obviously have many interesting
properties and together with efficient methods for extract-
ing information out of the implicit eigenvector description it
would be possible to model chain lengths far beyond what
is possible today, easily including complex viruses with long
RNA chains. Moreover, for Kronecker product-based land-
scapes it is relatively easy to extend the quasispecies model

beyond a binary alphabet to the full four element RNA al-
phabet.

6. CONCLUSIONS
We showed how to efficiently and accurately solve the very

large scale eigenvalue problem occurring in Eigen’s quasis-
pecies model for the evolution of virus populations. By ex-
ploiting the special structure and properties of the eigen-
value problem, we developed the fast matrix vector product
Fmmp which allows for partly utilizing concepts similar to
the fast Walsh-Hadamard Transform and for reducing the
arithmetic complexity from Θ

(
N2
)

to Θ(N log2 N). In con-
trast to earlier approximative approaches [10, 11, 17] our
new solver produces results as accurate as possible within
the limitations of floating-point accuracy. Moreover, it can
handle models with more realistic mutation processes which
are too complex for earlier approaches.

With an efficient parallel implementation of a power itera-
tion approach based on Fmmp and by utilizing modern GPU
hardware we achieved enormous speedups up to 2 ·107 (for a
chain length ν = 25) over equivalent standard solvers. Even
compared to existing approximative methods which loose
about 5 decimal digits of accuracy [10], we could achieve
speedups up to 250 (for a chain length ν = 25).

Beyond the improvements for general fitness landscapes
in the quasispecies model we outlined how to reduce the
computational cost even further for special cases of fitness
landscapes, leading to further substantial reductions of the
space and runtime complexity as well as to an even higher
parallelization potential.

Given the new solver presented in this paper, the main
limiting factor in computationally solving the quasispecies
model is not any more the runtime, but the memory re-
quirements. Consequently, in the future we will focus on
distributed memory approaches, on approximative strate-
gies for a fast matrix vector product, and on efficient meth-
ods which allow for computing quasispecies concentrations
at various resolution levels.

Acknowlegdements.
This work was partly supported by the Austrian Science

Fund (FWF) under contract S10608 (NFN SISE). We would
like to thank Peter Schuster for introducing us to the qua-
sispecies model.

7. REFERENCES
[1] Cormen, T. H., Stein, C., Rivest, R. L., and

Leiserson, C. E. Introduction to Algorithms, 2nd ed.
McGraw-Hill Higher Education, 2001.

[2] Drake, J. Rates of spontaneous mutation among
RNA viruses. Proceedings of The National Academy of
Sciences 90, 9 (1993), 4171–4175.

[3] Dress, A. W. M., and Rumschitzki, D. S.
Evolution on sequence space and tensor products of
representation spaces. Acta Applicandae Mathematicae
11 (1988), 103–115.

[4] Drineas, P., Drinea, E., and Huggins, P. S. An
experimental evaluation of a Monte-Carlo algorithm
for singular value decomposition. Proceedings of the
8th Panhellenic conference on Informatics (2003),
279–296.

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

[5] Eigen, M. Selforganization of matter and the
evolution of biological macromolecules.
Naturwissenschaften 58 (1971), 465–523.

[6] Eigen, M. Error catastrophe and antiviral strategy.
Proceedings of the National Academy of Sciences of the
United States of America 99, 21 (2002), 13374–13376.

[7] Eigen, M., and Schuster, P. A principle of natural
self-organization. Naturwissenschaften 64 (1977),
541–565.

[8] Fino, B., and Algazi, V. Unified matrix treatment
of the fast Walsh-Hadamard transform. IEEE
Transactions on Computers C-25, 11 (1976), 1142
–1146.

[9] Mascagni, M., and Karaivanova, A. A parallel
quasi-monte carlo method for computing extremal
eigenvalues. Monte Carlo and Quasi-Monte Carlo
Methods 2000 (2000), 369 – 380.

[10] Niederbrucker, G., and Gansterer, W. N.
Efficient solution of evolution models for virus
populations. Procedia Computer Science 4 (2011), 126
– 135.

[11] Nowak, M., and Schuster, P. Error thresholds of
replication in finite populations mutation frequencies
and the onset of Muller’s ratchet. Journal of
Theoretical Biology 137, 4 (1989), 375 – 395.

[12] Rumschitzki, D. S. Spectral properties of Eigen
evolution matrices. Journal of Mathematical Biology
24 (1987), 667–680.

[13] Schuster, P. Prediction of RNA secondary
structures: from theory to models and real molecules.
Reports on Progress in Physics 69 (May 2006),
1419–1477.

[14] Schuster, P. The mathematics of Darwinian systems.
2008. Appendix for the book: Manfred Eigen, ’From
Strange Simplicity to Complex Familiarity, Vol.I’.

[15] Schuster, P. Mathematical modeling of evolution.
Solved and open problems. Theory in Biosciences 130
(2011), 71–89.

[16] Seneta, E. Non-negative Matrices and Markov Chains
(Springer Series in Statistics). Springer, January 2006.

[17] Swetina, J., and Schuster, P. Self-replication with
errors: A model for polynucleotide replication.
Biophysical Chemistry 16, 4 (1982), 329 – 345.

[18] van Loan, C. F. The ubiquitous Kronecker product.
J. Comput. Appl. Math. 123 (November 2000),
85–100.

© ACM, 2011. This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis – see http://doi.acm.org/10.1145/2063384.2063483

