
An O(n2) Time Algorithm for Alternating Büchi Games

Krishnendu Chatterjee∗ Monika Henzinger†

Abstract
Computing the winning set for Büchi objectives in alternat-
ing games on graphs is a central problem in computer aided
verification with a large number of applications. The long
standing best known upper bound for solving the problem
is Õ(n · m), where n is the number of vertices and m is
the number of edges in the graph. We are the first to break
the Õ(n · m) boundary by presenting a new technique that
reduces the running time to O(n2). This bound also leads
to O(n2) time algorithms for computing the set of almost-
sure winning vertices for Büchi objectives (1) in alternat-
ing games with probabilistic transitions (improving an earlier
bound of Õ(n ·m)), (2) in concurrent graph games with con-
stant actions (improving an earlier bound of O(n3)), and (3)
in Markov decision processes (improving for m > n4/3 an
earlier bound of O(min(m1.5,m ·n2/3)). We also show that
the same technique can be used to compute the maximal end-
component decomposition of a graph in time O(n2), which
is an improvement over earlier bounds for m > n4/3. Fi-
nally, we show how to maintain the winning set for Büchi
objectives in alternating games under a sequence of edge in-
sertions or a sequence of edge deletions in O(n) amortized
time per operation. This is the first dynamic algorithm for
this problem.
Keywords: (1) Graph games; (2) Büchi objectives; (3)
Graph algorithms; (4) Dynamic graph algorithms; (5)
Computer-aided verification.

1 Introduction
Consider a directed graph (V,E) with a partition (V1, V2)
of V and a set B ⊂ V of Büchi vertices. This graph
is called a game graph. Let n = |V | and m = |E|.
Two players play the following alternating game on the
graph that forms an infinite path. They start by placing a
token on an initial vertex and then take turns indefinitely
in moving the token: At a vertex v ∈ V1 player 1 moves
the token along one of the out-edges of v, at a vertex
u ∈ V2 player 2 moves the token along one of the out-
edges of u. A first question to ask is given a start vertex

∗IST Austria (Institute of Science and Technology Austria) Email:
krishnendu.chatterjee@ist.ac.at

†Research Group Theory and Applications of Algorithms, University of
Vienna, Austria. Email: monika.henzinger@univie.ac.at

x ∈ V can player 1 guarantee that the infinite path visits
a vertex in B at least once, no matter what choices player
2 makes. If so player 1 can win from x and x belongs to
the winning set of player 1. The question of computing
the set of vertices from which player 1 can win (called the
winning set) is called the (alternating) reachability game
problem. The problem is PTIME-complete and the winning
set of player 1 can be computed in time linear in the size
of the graph [2, 19]. A second, more central question
is whether player 1 can guarantee that the infinite path
visits a vertex in B infinitely often, no matter what choices
player 2 makes. Computing the winning set of player 1 for
this setting is called the (alternating) Büchi game problem.
The best known algorithms for this problem are algorithms
that repeatedly compute the alternating reachability game
solution on the graph after the removal of specific vertices.
Their running time is Õ(n · m). We present in this paper
a new algorithmic technique for the alternating Büchi game
problem which is inspired by dynamic graph algorithms and
which reduces the running time to O(n2).

Two-player games on graphs played by player 1 and
the adversary player 2 are central in many problems in
computer science, specially in verification and synthesis of
systems such as the synthesis of systems from specifications
and synthesis of reactive systems [11, 26, 27], verification
of open systems [1], checking interface compatibility [14],
well-formedness of specifications [15], and many others.
Besides their application in verification, they have also been
studied in artifical intelligence as AND-OR graphs [24], and
in the context of alternating Turing machines [6].

The class of Büchi or repeated reachability objectives
was introduced in the seminal works of Büchi [3, 4, 5]
in the context of automata over infinite words. The alter-
nating Büchi game problem is one of the core problems
in verification and synthesis. For example, (a) the solu-
tion of the synthesis problem for deterministic Büchi au-
tomata is achieved through solving the alternating Büchi
game problem (see [23] for the importance of determinis-
tic Büchi automata); and (b) the verification of open systems
with liveness and weak fairness conditions (two key speci-
fications used in verification) is again solved through alter-
nating Büchi game problem [1]. Vardi [30, 29] discusses
further applications of the alternating Büchi game problem
and its importance. The classical algorithm for alternat-

ing Büchi games follows from the results of [16, 25, 31],
its complexity is O(n · m). The algorithm was improved
in the special case of game graphs with m = O(n) to
O(n2/ log n) time in [9]. A generalization of the algorithm
from [9] was presented in [8], and the new algorithm requires
O((n ·m · log ∆)/ log n) time, where ∆ is the maximum out-
degree. Thus the long standing best known upper bound for
solving the alternating Büchi game problem is Õ(n ·m).

In the design and verification of open systems it is
natural that the systems under verification are developed
incrementally by adding choices or removing choices for
the system, which is represented by player 1. However
the adversary, modeled by player 2, is the environment,
and the system design has no control over the environment
actions. Hence there is a clear motivation to obtain dynamic
algorithms for the alternating Büchi game problem, when
edges leaving player-1 vertices are inserted or deleted, while
edges leaving player-2 vertices remain unchanged.

Our contributions. In this work we present improved static
and the first dynamic algorithms for the alternating Büchi
game problem using graph algorithmic techniques. Our main
results are as follows.

1. We present an O(n2) time algorithm for the alternating
Büchi game problem, and thus break the long standing
barrier of Õ(n · m) for the problem. It follows that
in combination with the O(n2/ log n) algorithm for
m = O(n), we break the O(n ·m) barrier for all cases.

2. We present the first incremental and decremental algo-
rithms for the alternating Büchi game problem for in-
sertion and deletion of player-1 edges. Our algorithm
is based on the progress measure algorithm of [20] and
generalizes the Even-Shiloach algorithm for decremen-
tal reachability in undirected graphs [17]. The total time
for all operations is O(n · m), i.e., the amortized time
per operation is O(n).

3. Using our techniques to solve alternating Büchi games
we also show that the maximal end-component decom-
position problem (a core problem in probabilistic ver-
ification) can also be solved in O(n2) time (see [13]
and other references of [7] for the importance of the
problem). The best known bound for this problem was
O(min(m1.5,m · n2/3)) [7]. Thus, our algorithm is
faster for m > n4/3 and we obtain an improved bound
of O(min(m1.5, n2)) for the problem.

Decremental and incremenal algorithms for computing the
maximal end-component decomposition was given in [7].
However, our algorithms are the first dynamic algorithms for
the alternating Büchi game problem and completely different
from [7]. Our result for alternating Büchi games improves
the bounds for other problems as well. We list them below.

1. The problem of computing the set of almost-sure (or
probability 1) winning vertices in alternating games
with probabilistic transitions (aka simple stochastic

games [12]) and Büchi objectives can be solved in
O(n2) time improving the previous known Õ(n · m)
bound: this follows from the linear reduction of [10]
from simple stochastic games to alternating Büchi
games for almost-sure winning and our Büchi games
algorithm.

2. The problem of computing the set of almost-sure (prob-
ability 1) and limit-sure (probability arbitrarily close
to 1) winning vertices in concurrent graph games (aka
games with simultaneous interaction) with constant ac-
tions with Büchi objectives can be solved in O(n2)
time: this follows from the linear reduction from con-
current games to alternating Büchi games [21] and our
Büchi algorithm. The best known bound for concurrent
graph games with constant actions with Büchi objec-
tives was O(n · |δ|), where |δ| is the number of tran-
sitions which is O(n2) in the worst case. Thus, in the
worst case the previous best known bound was O(n3).

3. As a consequence of our O(n2) algorithm for Büchi
games and the linear reduction of [10], we also obtain
an O(n2) algorithm for computing almost-sure winning
states for Markov decision processes with Büchi ob-
jectives. The best known bound for this problem was
O(min(m1.5,m · n2/3)) [7]. Thus, our algorithm is
faster for m > n4/3 and we obtain an improved bound
of O(min(m1.5, n2)) for the problem.
Our main technical contribution is twofold: (1) The

classical algorithm for alternating Büchi games repeatedly
removes non-winning vertices from the game graph and
then recomputes the player-1 winning set for the alternat-
ing reachability game problem. Similar to the classical al-
gorithm our algorithm repeatedly removes non-winning ver-
tices from the game graph. However, it finds these vertices
more efficiently using a hierarchical graph decomposition
technique. This technique was used first by Henzinger et
al. [18] for processing repeated edge deletions in undirected
graphs. We show how this technique can be extended to work
for vertex deletions in (directed) game graphs. As a result
we achieve faster algorithms for the alternating Büchi game
problem and for computing the maximal end-component de-
composition. Moreover, even in sparse graphs, our technique
can be useful. If m = c ·n and c is a large constant, then our
hiercharical decomposition can be used with a small number
of levels, such as 2 or 3, to speed up the algorithm in practice.

(2) Even and Shiloach [17] gave a deletions-only algo-
rithm for maintaining reachability in undirected graphs. We
show how to extend this algorithm to edge deletions in di-
rected game graphs. A purely graph-theoretic proof of the
correctness of the new algorithm would be lengthy. How-
ever, by using an elegant argument based on fix-points we
give a simple proof of the correctness and an analysis of the
running time of the new algorithm. The new algorithm is
simple and, like the algorithm in [17], does not need any

sophisticated data structures. We use a “dual” fix point ar-
gument to construct an incremental algorithm for alternating
Büchi games.

The paper is organized as follows: We give all necessary
definitions in Section 2. Section 3 and Section 4 contain the
new static algorithms for the alternating Büchi game and the
maximal end-component decomposition problem. Section 5
finally contains the new dynamic algorithms.

2 Definitions
Alternating Game graphs. An (alternating) game graph
G = ((V,E), (V1, V2)) consists of a directed graph (V,E)
with a set V of n vertices and a set E of m edges, and a
partition (V1, V2) of V into two sets. The vertices in V1

are player 1 vertices and the vertices in V2 are player 2
vertices. For a vertex u ∈ V , we write Out(u) = {v ∈
V | (u, v) ∈ E} for the set of successor vertices of u and
In(u) = {v ∈ V | (v, u) ∈ E} for the set of incoming edges
of u. We assume that every vertex has at least one out-going
edge. i.e., Out(u) is non-empty for all vertices u ∈ V .
Plays. A game is played by two players: player 1 and
player 2, who form an infinite path in the game graph by
moving a token along edges. They start by placing the token
on an initial vertex, and then they take moves indefinitely in
the following way. If the token is on a vertex in V1, then
player 1 moves the token along one of the edges going out of
the vertex. If the token is on a vertex in V2, then player 2 does
likewise. The result is an infinite path in the game graph,
called plays. We write Ω for the set of all plays.
Strategies. A strategy for a player is a rule that specifies
how to extend plays. Formally, a strategy σ for player 1 is
a function σ: V1 → V such that σ(v) ∈ Out(v) for all
v ∈ V1, and analogously for player 2 strategies1. We write Σ
and Π for the sets of all strategies for player 1 and player 2,
respectively. Given a starting vertex v ∈ V , a strategy σ ∈ Σ
for player 1, and a strategy π ∈ Π for player 2, there is a
unique play, denoted ω(v, σ, π) = 〈v0, v1, v2, . . .〉, which is
defined as follows: v0 = v and for all k ≥ 0, if vk ∈ V1,
then σ(vk) = vk+1, and if vk ∈ V2, then π(vk) = vk+1.
Objectives. We consider game graphs with a Büchi objective
for player 1 and the complementary coBüchi objective for
player 2. For a play ω = 〈v0, v1, v2, . . .〉 ∈ Ω, we define
Inf(ω) = {v ∈ V | vk = v for infinitely many k ≥ 0} to
be the set of vertices that occur infinitely often in ω. We

1In general strategies are defined as functions σ: V ∗ · V1 → V that,
given a finite sequence of vertices (representing the history of the play so
far) which ends in a player 1 vertex, chooses the next vertex. The strategy
must choose only available successors, i.e., for all w ∈ V ∗ and v ∈ V1

we have σ(w · v) ∈ Out(v). The strategies for player 2 are defined
analogously. However for all objectives considered in the paper there exists
a winning memoryless strategy for a player at a vertex v iff there exists a
winning strategy with memory for the player at v. Thus for simplicity we
only consider the simpler class of memoryless strategies.

also define reachability and safety objectives as they will be
useful in the analysis of the algorithms.

1. Reachability and safety objectives. Given a set T ⊆
V of vertices, the reachability objective Reach(T) re-
quires that some vertex in T be visited, and dually, the
safety objective Safe(F) requires that only vertices in
F be visited. Formally, the sets of winning plays are
Reach(T) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃k ≥ 0. vk ∈ T}
and Safe(F) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∀k ≥ 0. vk ∈
F}. The reachability and safety objectives are dual in
the sense that Reach(T) = Ω \ Safe(V \ T).

2. Büchi and coBüchi objectives. Given a set B ⊆ V
of vertices, the Büchi objective Buchi(B) requires that
some vertex in B be visited infinitely often, and dually,
the coBüchi objective coBuchi(C) requires that only
vertices in C be visited infinitely often. Thus, the sets of
winning plays are Buchi(B) = {ω ∈ Ω | Inf(ω)∩B 6=
∅} and coBuchi(C) = {ω ∈ Ω | Inf(ω) ⊆ C}. The
Büchi and coBüchi objectives are dual in the sense that
Buchi(B) = Ω \ coBuchi(V \B). Observe that Büchi
and coBüchi objectives are tail (or prefix-independent)
objectives, i.e., a play satisfies the objective if and only
if the play obtained by adding or deleting a finite prefix
also satisfies the objective.

Winning strategies and sets. Given an objective Φ ⊆ Ω
for player 1, a strategy σ ∈ Σ is a winning strategy for
player 1 from a vertex v if for all player 2 strategies π ∈ Π
the play ω(v, σ, π) is winning, i.e., ω(v, σ, π) ∈ Φ. The
winning strategies for player 2 are defined analogously by
switching the role of player 1 and player 2 in the above
definition. A vertex v ∈ V is winning for player 1 with
respect to the objective Φ if player 1 has a winning strategy
from v. Formally, the set of winning vertices for player 1
with respect to the objective Φ is W1(Φ) = {v ∈ V | ∃σ ∈
Σ. ∀π ∈ Π. ω(v, σ, π) ∈ Φ} the set of all winning vertices.
Analogously, the set of all winning vertices for player 2 with
respect to an objective Ψ ⊆ Ω is W2(Ψ) = {v ∈ V | ∃π ∈
Π. ∀σ ∈ Σ. ω(v, σ, π) ∈ Ψ}.

THEOREM 2.1. (CLASSICAL MEMORYLESS DETERMI-
NACY [16]) For all game graphs G = ((V,E), (V1, V2)),
all Büchi objectives Φ for player 1, and the complementary
coBüchi objective Ψ = Ω \ Φ for player 2, we have
W1(Φ) = V \W2(Ψ).

Thus the theorem shows that every vertex of V either belongs
to the winning set of Büchi objectives of player 1 or to the
winning set of coBüchi objectives for player 2. Since we
only consider this setting we simply say in the rest of the
paper that every vertex either is winning for player 1 or
winning for player 2.

The algorithmic question in alternating graph games
with Büchi objective Φ is to compute the set W1(Φ).

3 Algorithms for Büchi Games
In this section we consider algorithms for Büchi games, and
when we mention winning vertices or strategies we mean
winning for Büchi objectives, unless explicitly mentioned
otherwise. In this section we present the classical iterative
algorithm for Büchi games to compute the winning sets. We
then present our new algorithm. We start with the notion
of closed sets, attractors, and alternating reachability which
are key notions for the analysis of the algorithm. We present
the graph theoretic definitions, and then present well-known
facts that establish the connection of the graph definitions
and strategies in alternating game graphs.

Closed sets. A set U ⊆ V of vertices is a closed set for
player 1 if the following two conditions hold: (a) For all
vertices u ∈ (U ∩ V1), we have Out(u) ⊆ U , i.e., all
successors of player 1 vertices in U are again in U ; and
(b) for all u ∈ (U ∩V2), we have Out(u)∩U 6= ∅, i.e., every
player 2 vertex in U has a successor in U . The closed sets for
player 2 are defined analogously as above by exchanging the
roles of player 1 and player 2 (exchanging V1 and V2). Every
closed set U for player ` ∈ {1, 2}, induces a sub-game graph,
denoted G � U .

Fact 1. Consider a game graph G, and a closed set U for
player 1. Then the following assertions hold:

1. Player 2 has a winning strategy for the objective
Safe(U) for all vertices in U , i.e., player 2 can ensure
that if the play starts in U , then the play never leaves set
U .

2. For all T ⊆ V \ U , we have W1(Reach(T)) ∩ U = ∅,
i.e., for any set T of vertices outside U , player 1 does
not have a strategy from vertices in U to ensure to reach
T .

3. If U ∩ B = ∅ (i.e., there is no Büchi vertex in U), then
every vertex in U is winning for player 2.

Attractors. Given a game graph G, a set U ⊆ V of target
vertices, and a player ` ∈ {1, 2}, the set Attr `(U,G) (called
attractor) is the set of vertices from which player ` has
a strategy to reach a vertex in U against all strategies of
the other player; that is, Attr `(U,G) = W`(Reach(U)).
The set Attr1(U,G) can be defined inductively as follows:
let R0 = U ; let Ri+1 = Ri ∪ {v ∈ V1 | Out(v) ∩
Ri 6= ∅} ∪ {v ∈ V2 | Out(v) ⊆ Ri} for all i ≥ 0;
then Attr1(U,G) =

⋃
i≥0 Ri. The inductive definition of

Attr2(U,G) is analogous with V1 replaced by V2 and vice-
versa. For all vertices v ∈ Attr1(U,G), define rank(v) =
i if v ∈ Ri \ Ri−1, that is, rank(v) denotes the least
i ≥ 0 such that v is included in Ri. Define a memoryless
strategy σ ∈ Σ for player 1 as follows: for each vertex
v ∈ (Attr1(U,G) ∩ V1) with rank(v) = i, choose a
successor σ(v) ∈ (Ri−1 ∩ Out(v)) (such a successor exists
by the inductive definition). It follows that for all vertex v ∈
Attr1(U,G) and all strategies π ∈ Π for player 2, the play

ω(v, σ, π) reaches U in at most |Attr1(U,G)| transitions.
Observe that for ` ∈ {1, 2}, we have U ⊆ Attr `(U,G),
i.e., the set U always belongs to the attractor.
Alternating reachability. For ` ∈ {1, 2}, for a vertex u ∈
Attr `(U,G) we say that u can alt`-reach the set U . In other
words, alt`-reach denotes that player ` has a strategy to reach
the target set, irrespective of the strategy of the other player.
Fact 2. For all game graphs G, all players ` ∈ {1, 2}, and all
sets U ⊆ V of vertices, the following holds:

1. The set V \ Attr `(U,G) is a closed set for player `,
i.e., no player ` vertex in V \ Attr `(U,G) has an edge
to Attr `(U,G) and every vertex of the other player in
V \Attr `(U,G) has an edge in V \Attr `(U,G).

2. The set Attr `(U,G) can be computed in time
O(|

∑
v∈Attr`(U,G) In(v)|) [2, 19].

COROLLARY 3.1. Every vertex in the set V \ Attr1(B,G)
is winning for player 2 and is not winning for player 1.

3.1 Classical algorithm for Büchi games In this subsec-
tion we present the classical algorithm for Büchi games. We
start with an informal description of the algorithm.

Informal description of classical algorithm. The classical
algorithm (Algorithm 1) works as follows. We describe an
iteration j of the algorithm: the set of vertices at iteration
j is denoted by V j , the game graph by Gj and the set of
Büchi vertices B ∩ V j by Bj . At iteration j, the algorithm
first finds the set of vertices Rj from which player 1 can alt1-
reach the set Bj , i.e., computes Attr1(Bj , Gj). The rest of
the vertices Tr j = V j\Rj is a closed subset for player 1, and
Tr j ∩ Bj = ∅. Thus the set Tr j is winning for player 2 (by
Corollary 3.1). Then the set of vertices Wj+1, from which
player 2 can alt2-reach the set Tr j , i.e., Attr2(Tr j , Gj) is
computed. The set Wj+1 is winning for player 2, and not
for player 1 in Gj and also in G. Thus, it is removed from
the vertex set to obtain game graph Gj+1. The algorithm
then iterates on the reduced game graph, i.e., proceeds to
iteration j + 1 on Gj+1. In every iteration a linear-time
attractor computation is performed with the current Büchi
vertices as target to find the set of vertices which can alt1-
reach the Büchi set. Each iteration takes O(m) time and
the algorithm runs for at most O(n) iterations, giving a total
time of O(n · m). The algorithm is formally described as
Algorithm 1. The correctness proof of the algorithm shows
that when the algorithm terminates, all the remaining vertices
are winning for player 1 [25, 28].

THEOREM 3.1. (CORRECTNESS AND RUNNING TIME)
Given a game graph G = ((V,E), (V1, V2)) and B ⊆ V the
following assertions hold:

1. W = W2(coBuchi(V \ B)) and V \ W =
W1(Buchi(B)), where W is the output of Algorithm 1;
and

2. the running time of Algorithm 1 is O(n ·m).

Algorithm 1 Classical algorithm for Büchi Games
Input : A game graph G = ((V,E), (V1, V2) and B ⊆ V .
Output: W ⊆ V .
1. G0 := G; V 0 := V ; 2. W0 := ∅; 3. j := 0
4. repeat

4.1 Wj+1 := AvoidSetClassical(Gj , B ∩ V j)
4.2 V j+1 := V j \Wj+1; Gj+1 = G � V j+1; j := j + 1;

until Wj = ∅
5. W :=

⋃j
k=1 Wk;

6. return W .

Procedure AvoidSetClassical
Input: Game graph Gj and Bj ⊆ V j .
Output: set Wj+1 ⊆ V j .
1. Rj := Attr1(Bj , Gj); 2. Tr j := V j \Rj ; 3. Wj+1 := Attr2(Tr j , Gj)

3.2 New Algorithm In this section we present our new
algorithm for computing the winning set for game graphs
with Büchi objectives in time O(n2).

Notations. Given an alternating game graph G =
((V,E), (V1, V2)) and a set B of Büchi vertices, we label the
Büchi vertices as priority 0 vertices, and the set V \B as pri-
ority 1 vertices. For every vertex v the inedges have a fixed
order such that all edges from priority 1 player-2 vertices
come before all other edges. We maintain log n graphs Gi

such that Gi = (V,Ei). The set Ei contains all edges (u, v)
where (a) outdeg(u) ≤ 2i, where outdeg(u) = |Out(u)|
or (b) the edge (u, v) belongs to the first 2i inedges of ver-
tex v. Note that Ei−1 ⊆ Ei since the order of the inedges
is fixed. We color every player-1 vertex v in Gi blue if
outdeg(v) > 2i. We color every player-2 vertex v in Gi or-
ange if outdeg(v) > 2i. All other vertices have color white.
For every vertex v that is white in Gi, all its outedges Out(v)
are contained in Ei. These edges add up to 2i · n edges to
Ei. Additionally the first up to 2i inedges of every vertex
belong to Ei, adding another up to 2i · n edges to Ei. Thus
|Ei| ≤ 2i+1 · n. We denote by G the full graph. Note that
G = Glog n and thus all vertices in Glog n are white.

The new algorithm NEWALGO. The new algorithm con-
sists of two nested loops, an outer loop with loop counter j
and an inner loop with loop counter i. The algorithm will
iteratively delete vertices from the graph, and we denote by
Dj the set of vertices deleted in iteration j, and by U the set
of vertices deleted in all iterations upto the current iteration
(initially U is empty). For j ≥ 1, we will denote by Gj

i the
sub-graph of Gi induced after removal of the set U of ver-
tices at the beginning of iteration j, and G0

i is Gi (the initial
graphs). We denote the vertex set in iteration j as V j and
the Büchi set as Bj (i.e., Bj := V j ∩ B). The intuitive de-
scription of the algorithm is as follows: Starting from i = 0
the algorithm searches in each iteration j in each graph Gj

i

for a special player-1 closed set Sj with no Büchi vertex and
stop at the smallest i at which such a closed set exists. Since
Sj ∩ Bj = ∅, Fact 1 implies that all the vertices in Sj are
winning for player 2. Thus, by the same arguments as for
the classical algorithm the player-2 attractor Attr2(Sj , Gj

i)
are winning for player 2 in Gj

i and, as our correctness proof
shows, also winning in G. Thus they are removed from the
vertex set and the algorithm iterates on the reduced game
graph. Computing Sj takes time O(2i · n) and, due to the
fact that no such set was found in Gj

i−1 we can show that
Sj it contains at least 2i−1 vertices. Thus, using amortized
analysis we charge O(n) to each of the 2i−1 vertices in Sj

that are removed, giving a total running time of O(n2). The
details of NEWALGO follow.

1. For j = 0, let Y0 := Attr1(B,G0) (where G0 is the
initial game graph); X0 := V \ Y0 (i.e., X0 is the
set of vertices that cannot alt1-reach the Büchi vertices
in the initial game graph G); and compute D0 :=
Attr2(X, G) using attractor computation.

2. Remove the vertices of Dj from all log n graphs Gj
i to

create graphs Gj+1
i ; j := j + 1; and U := U ∪Dj ;

3. i := 1;
4. repeat

(a) Let Zj
i be the vertices of V j that are (i) either

orange with no outedges in Gj
i or (ii) blue in Gj

i .
(b) Compute the set Y j

i of vertices in Gj
i that can

alt1-reach the Büchi vertices or Zi
j , i.e., compute

Y j
i := Attr1(Bj ∪ Zj

i , Gj
i) using attractor com-

putation.
(c) Sj := V j \ Y j

i (i.e., V j \ Attr1(Bj ∪ Zj
i , Gj

i));
i := i + 1

5. until Sj is non-empty or i = log n
6. if Sj 6= ∅, then Dj := Attr2(Sj , G

j) and go to Step 2,
else the whole algorithm terminates and outputs V \U .

Let U∗ be the set of vertices removed from the graph
over all iterations and Y ∗ = V \ U∗ be the output of the
algorithm. We first show that Y ∗ ⊆ W1(Φ), where Φ is
the Büchi objective, i.e., Y ∗ is winning for player 1. Then
we show that U∗ ∩ W1(Φ) = ∅ (i.e., U∗ is not winning
for player 1). Together with Theorem 2.1 this shows that
Y ∗ = W1(Φ) estabilishing the correctness of the algorithm.
Finally we analyze the running time of the algorithm.

LEMMA 3.1. Let Y ∗ be the output of NEWALGO, and let
G∗ and B∗ be the game graph and the Büchi set on termi-
nation, respectively (i.e., G∗ is the graph induced by Y ∗ and
B∗ is B ∩ Y ∗). The following assertions hold:

1. Y ∗ = Attr1(B∗, G∗), i.e., player 1 can alt1-reach the
set B∗ in G∗ from Y ∗.

2. Y ∗ is a player-2 closed set in the original game graph
G.

3. Y ∗ ⊆ W1(Φ), where Φ is the Büchi objective.

Proof. We prove the three parts below.
1. Consider the last iteration j∗ of the outer loop of the

algorithm. Since it is the last iteration, the set Sj∗

must be empty. It follows that i must have been log n
in the last iteration of the repeat loop, i.e., the last
iteration of the repeat loop considered Gj∗

log n = G∗. Let
i = log n. Note that all vertices are white in G∗, i.e.,
Zj∗

i was empty. Hence we have Y j∗

i = Attr1(B∗ ∪
Zj∗

i , G∗) = Attr1(B∗, G∗). Hence the fact that Sj∗

was empty at the end of the iteration implies that V j∗ \
Y j∗

i was empty, i.e., that all vertices of G∗ belong to
Attr1(B∗, G∗). Hence Y ∗ = Attr1(B∗, G∗).

2. Whenever a set of vertices is deleted in any iteration, it
is an player-2 attractor. Hence if a vertex u ∈ Y ∗ ∩ V2

would have an edge to a vertex v ∈ U∗, then u would
have been included in U∗ (where U∗ = V \ Y ∗).
Similarly for a player 1 vertex u ∈ Y ∗ ∩ V1 it must
have an edge in Y ∗, as we assume that it has at least
one out-edge and if all its out-edges pointed to U∗ it
would have been included in U∗. It follows that Y ∗ is a
player-2 closed set in G.

3. The result is obtained from the previous two items.
Consider a memoryless attractor strategy σ in G∗ for
player-1 that ensures that for all vertices in Y ∗ the set
B∗ is reached within |Y ∗| steps against all strategies of
player-2. Moreover the strategy only chooses successor
in Y ∗. Since Y ∗ is a player-2 closed set, it follows
that against all strategies of player-2 the set Y ∗ is never
left, thus it is ensured that B∗ is visited infinitely often.
Hence the strategy σ ensures that for all vertices v ∈ Y ∗

and all strategies π we have ω(v, σ, π) ∈ Φ. It follows
that Y ∗ ⊆ W1(Φ).

The desired result follows.

To complete the correctness proof we need to show that
if U∗ = V \ Y ∗, then U∗ ∩ W1(Φ) = ∅, where Φ is the

Büchi objective. We will show the result by induction on
the number of iterations. Let us denote by Uj the set of
vertices removed till iteration j. The base case is trivial as
initially U is emptyset. By inductive hypothesis, we assume
for j ≥ 1 we have Uj−1 ∩ W1(Φ) = ∅, and then show that
Uj ∩ W1(Φ) = ∅. Let Gj be the alternating game graph
obtained after removal of the set Uj−1 of vertices. We will
show the following claim.
Claim 1. In Gj , let Sj be the non-empty set identified in
iteration j, then Attr1(Bj , Gj) ∩ Sj = ∅.
In the following two lemmata we first show how with
Claim 1 we establish the correctness of our algorithm and
finally prove Claim 1 to complete the correctness proof.

LEMMA 3.2. The inductive hypothesis that Uj−1 ∩
W1(Φ) = ∅ and Claim 1 implies that Sj ∩W1(Φ) = ∅.

Proof. By Claim 1 we have Attr1(Bj , Gj) ∩ Sj = ∅, and it
follows that if player 1 follows a strategy from any vertex in
Sj such that the set V j = V \ Uj−1 of vertices is never
left, then no Büchi vertex is ever reached. If the set V j

is left after a finite number of steps, then the set Uj−1 is
reached, and by inductive hypothesis Uj−1 ∩ W1(Φ) = ∅,
i.e., player 2 can ensure from Uj−1 that the set of Büchi
vertices is visited finitely often. Since the Büchi objective
is independent of finite prefixes, it follows that if V j is left
and Uj−1 is reached, then player 2 ensures that the Büchi
objective is not satisfied. It follows that Sj ∩W1(Φ) = ∅.

LEMMA 3.3. The inductive hypothesis that Uj−1 ∩
W1(Φ) = ∅ and Claim 1 implies that Uj ∩W1(Φ) = ∅.

Proof. Observe that Uj \ Uj−1 is obtained as a player 2
attractor to Sj , and hence player 2 can ensure from Uj \
Uj−1 that Sj is reached in finite number of steps. Since
Büchi objective is independent of finite prefixes, by inductive
hypothesis Uj−1 ∩W1(Φ) = ∅, and by Lemma 3.2 we have
that Sj ∩W1(Φ) = ∅, it follows that Uj ∩W1(Φ) = ∅.

Hence to complete the proof we need to establish
Claim 1 and this is achieved in the following two lemmata.
We start with the notion of a separating cut.
Separating cut. We say a set S of vertices induces a
separating cut in a graph Gi or Gj

i if (a) the only edges from
S to V \S come from player-2 vertices in S, (b) every player-
2 vertex in S has an edge to another vertex in S, (c) every
player-1 vertex in S is white, and (d) B∩S = ∅. Thus S is a
player-1 closed set where every player-1 vertex is white and
which does not contain a vertex in B.

LEMMA 3.4. Let G = ((V,E), (V1, V2)) be a game graph
where every vertex has at least outdegree 1, and G′ =
((V,E′), (V1, V2)) be a sub-graph of G with E′ ⊆ E. Let
Z be a set of blue player-1 and orange player-2 vertices of
G′ such that all orange vertices have outdegree 0 in G′. If S
induces a separating cut in G′, then no vertex of S belongs
to Attr1(B ∪ Z,G).

Proof. We first show that every vertex in S has an edge to
another vertex in S in G′. For player-2 vertices this follows
from condition (b) of a separating cut. For player-1 vertices
this follows since they have outdegree 1 in G, are white in
G′, and cannot have an edge to a vertex in V \ S.

Note that S ∩ (B ∪ Z) = ∅ since S contains no blue
vertex of Gi, every orange vertex in S has outdegree at least
1 and B ∩ S = ∅ by condition (d) of a separating cut. By
condition (a) for all player-1 vertices in S all out-going edges
are in S. It follows that S is a player-1 closed set, and since
S ∩ (B ∪ Z) = ∅, the result follows from Fact 1.

LEMMA 3.5. We have Sj ∩Attr1(Bj , Gj) = ∅.

Proof. Let v be a vertex in Sj . By construction v cannot
alt1-reach Bj ∪ Zj

i∗ in Gj
i∗ , where i∗ was the last value of i

in the repeat loop of iteration j. We will show that v cannot
alt1-reach Bj in Gj . If suffices to show that Sj induces a
separating cut in Gj . Then we can simply apply Lemma 3.4
with G = Gj , G′ = Gj

i∗ , Z = ∅, and S = Sj to prove the
lemma.

1. Condition (a). By construction no player-1 vertex in
Sj has an edge to V j \ Sj , otherwise it would belong
to the player-1 attractor of Bj ∪ Zj

i∗ . Since all player-
1 vertices in Sj are white in Gj

i∗ , the outedges of the
player-1 vertices in Sj are the same in Ej

i∗ and in Ej .
Thus condition (a) of a separating cut holds in Gj .

2. Condition (b). Every player-2 vertex in Sj must have
an edge to another vertex in Sj , otherwise all its edges
would go to vertices in V j \Sj and thus it would belong
to Attr1(Bj ∪ Zj

i∗ , G
j
i∗). Since Ej

i∗ ⊆ Ej , the same
holds in Gj . Hence condition (b) of a separating cut
holds in Gj .

3. Condition (c). All vertices are white in Gj . Thus
condition (c) holds trivially.

4. Condition (d). The condition (d), Sj ∩ Bj = ∅ holds,
since otherwise a vertex of Sj would belong to Bj and,
thus, to Attr1(Bj ∪ Zj

i∗ , G
j
i∗).

Thus Sj induces a separating cut in Gj . The desired
result follows.

Lemma 3.5 proves Claim 1 and this completes the
correctness proof, and gives the following lemma.

LEMMA 3.6. Let Y ∗ be the output of NEWALGO. Then we
have Y ∗ = W1(Φ), where Φ is the Büchi objective.

Running time analysis. We now analyze the running time
of the algorithm.

LEMMA 3.7. Let Gj
i be a game graph in iteration j and let

Zj
i be the set of blue and degree-0 orange vertices of Gj

i as
defined in iteration j of the outer loop and i of the inner loop
of the algorithm. If S induces a separating cut in Gj

i , then
S ⊆ Sj .

Proof. None of the vertices in S can alt1-reach B in Gj by
Lemma 3.5. By Lemma 3.4 none of the vertices in S can
alt1-reach Bj ∪ Zj

i . Hence we have S ⊆ V j \ Attr1(Bj ∪
Zj

i , Gj
i). Thus S ⊆ Sj .

Since Sj is a complement of a player-2 attractor it is a
player-1 closed set, all vertices in Sj are white, and there
is no Büchi vertex in Sj . Hence Sj is a separating cut. The
previous lemma shows that every separating cut S is a subset
of Sj . It follows that Sj is the largest (under set inclusion)
separating cut.

LEMMA 3.8. The total time spent by NEWALGO is O(n2).

Proof. We present the O(n2) running time analysis and we
consider two cases.
All other than the last iteration of the outer loop. Assume in
iteration j the algorithm stops the repeat until loop at value
i and this is not the last iteration of the algorithm. Then
Sj is not empty. Note that all player-1 vertices in Sj are
white, since Zj

i contains all blue player-1 vertices of V j

and Sj = V j \ Attr1(Bj ∪ Zj
i , Gj

i). Thus, Sj induces a
separating cut in Gj

i . Consider the set Sj in Gj
i−1. There are

2 cases to consider:
Case 1: Sj contains a player-1 vertex x that is blue in

Gj
i−1. Thus x has outdegree at least 2i−1 in Gj

i and none of
these edges go to vertices in V j \Sj in Gj

i . Thus, Sj contains
at least 2i−1 vertices.

Case 2: All player-1 vertices in Sj are white in Gj
i−1.

Thus, their outedges in Gj
i and Gj

i−1 are identical.
Note that no priority-1 player-2 vertices in V j \Sj point

to vertices of Sj in Gj
i . Since Ej

i−1 ⊆ Ej
i it follows that

no priority-1 player-2 vertices in V j \ Sj point to vertices
in Sj in Gj

i−1. Consider a player-2 vertex u in Sj . Thus
there exists an edge (u, v) ∈ Ej

i with v ∈ Sj . There are two
possibilities.

Case 2a: For all player-2 vertices u ∈ Sj there exists
a vertex v ∈ Sj with (u, v) ∈ Ej

i−1. But then Sj would be
a separating cut in Gj

i−1. By Lemma 3.7 it follows that Sj

would be non-empty in iteration i − 1 and thus the repeat
loop would have stopped after iteration i− 1. This is not the
case and thus the condition of Case 2a does not hold.

Case 2b: There exists a player 2 vertex u ∈ Sj that has
an edge (u, v) ∈ Ej

i to a vertex v ∈ Sj but this edge is not
contained in Ej

i−1. This can only happen if u is orange in
Gj

i−1 and v has 2i−1 other inedges in Ej
i−1. Since the edge

(u, v) where u is a priority-1 player-2 vertex is not in Gj
i−1,

all inedges of v that are in Gj
i−1 are from priority-1 player-2

vertices by the fixed order of inedges. It follows that none of
the inedges of v in Gj

i−1 are from V j \Sj and, thus, Sj must
contain at least 2i−1 player-2 vertices.

Thus in either case Sj contains at least 2i−1 vertices
and all these vertices are deleted. The time spent for all the

executions of the repeat loop in this iteration of the outer loop
it the time spent in all graphs G1, G2, ..., Gi∗ , which sums to
O(2i ·n). We charge O(n) work to each deleted vertex. This
accounts for all but the last iteration of the outer loop. As the
algorithm deletes at most n vertices the total time spent over
the whole algorithm other than the last iteration is O(n2).
The last iteration of the outer loop. In the last iteration of the
outer loop, when no vertex is deleted, the algorithm works on
all log n graphs, spending time O(n · 2i) in graph Gi. Since
there are log n graphs, the total time is O(n · 2 · 2log n) =
O(n2). An identical argument also shows that the time to
built all the initial graphs Gi is at most O(n2). Hence the
desired result follows.

THEOREM 3.2. Given a game graph G with n vertices,
and an Büchi objective Φ, algorithm NEWALGO correctly
computes the winning set W1(Φ) in time O(n2).

4 Maximal End-component Decomposition Algorithm
In this section we present an algorithm for the maximal
end-component decomposition problem that runs in O(n2)
time. The maximal end-component problem is the core
algorithmic problem in verification of probabilistic systems,
and the graph theoretic description of the problem for game
graphs is defined below.
Maximal end-component decomposition. Given a game
graph G = ((V,E), (V1, V2)), an end-component U ⊆ V
is a set of vertices such that (a) the graph (U,E ∩ U × U)
is strongly connected; (b) for all u ∈ U ∩ V2 and all
(u, v) ∈ E we have v ∈ U ; and (c) either |U | ≥ 2, or
U = {v} and there is a self-loop at v (i.e., (v, v) ∈ E).
In other words, an end-component is a player-2 closed set
that is strongly connected. Note that if U1 and U2 are end-
components with U1 ∩ U2 6= ∅, then U1 ∪ U2 is an end-
component. A maximal end-component (mec) is an end-
component that is maximal under set inclusion. Every ver-
tex of V belongs to at most one maximal end-component.
The maximal end-component (mec) decomposition consists
of all the maximal end-components of V and all vertices of
V that do not belong to any maximal end-component. Max-
imal end-components generalize strongly connected compo-
nents (scc’s) for directed graphs (with V2 = ∅) and closed
recurrent sets for Markov chains (with V1 = ∅).
Notations. Given a game graph G = ((V,E), (V1, V2)),
we will denote by Reachable(X, G) the set of vertices that
can reach a vertex in X in the graph (V,E). Note that
X ⊆ Reachable(X, G). We maintain log n graphs Gi

such that Gi = (V,Ei) and Ei contains all edges (u, v)
where outdeg(u) ≤ 2i. We denote by G the full graph.
We color vertices v in Gi blue if outdeg(v) > 2i, i.e.,
Bli = {v ∈ V | outdeg(v) > 2i} and all other vertices are
colored white, i.e., Whi = {v ∈ V | outdeg(v) ≤ 2i}. Note
that G = Glog n and thus all vertices in Glog n are white.

Thus, none of the outedges of the blue vertices of Gi belong
to Gi, i.e., all blue vertices have outdegree 0 in Gi. A bottom
scc C of a graph is a scc that has no edge leaving out of C.
Every graph has a bottom scc and every bottom scc is a mec.

Maximal end-component decomposition algorithm. The
algorithm consists of two nested loops, an outer loop with
loop counter j and an inner loop with loop counter i. The
algorithm will iteratively delete vertices from the graph, and
we denote by Dj the set of vertices deleted in iteration j. We
will denote by Gj

i the sub-graph of Gi at the beginning of
iteration j (as for NEWALGO) and the vertex set in iteration
j is denoted as V j . The set Blji is the set of vertices in
Gj

i with outdegree greater than 2i in Gj
i . Basically the

algorithm is similar to NEWALGO, and instead of searching
for separating cuts, the algorithm for mec decomposition
searches for bottom scc’s. The steps of the algorithm are
as follows and we refer the algorithm as NEWMECALGO.

1. Let Dj be the set of vertices deleted in iteration j. For
j := 0, let D0 := Attr2(X, G0), where X is the set of
vertices that are in the bottom scc’s in the initial graph
G. Every bottom scc is an mec and included in the mec
decomposition.

2. Remove the vertices of Dj from all log n graphs Gj
i

to create graph Gj+1
i ; j := j + 1. If all vertices

are removed, then the whole algorithm terminates and
outputs the mec decomposition.

3. i := 1;
4. repeat

(a) Compute all the vertices in Gj
i that can reach

the blue vertices using the standard linear-time
algorithm for reachability.

(b) Let Sj = V j \ Reachable(Blji , G
j
i) be the set of

vertices that cannot reach the set Blji blue vertices
in Gj

i ; i := i + 1
5. until Sj is non-empty
6. if Sj 6= ∅, then let Dj := Attr2(X, Gj), where X is

the set of vertices that are in the bottom scc’s in the
sub-graph induced by Sj in Gj

i . Every bottom scc is an
mec and included in the mec decomposition. Go to Step
2.

Basic correctness argument. Let us denote Gj to be the
remaining game graph after iteration j. Let Sj be the
set identified at iteration j, and let the inner iteration stop
at i∗. All vertices in Sj are white, since Sj = V j \
Reachable(Blji∗ , G

j
i∗) and Blji∗ ⊆ Reachable(Blji∗ , G

j
i∗).

For all v ∈ Sj , all outedges from v end in a vertex in Sj :
otherwise if there is an edge from v to Reachable(Blji∗ , G

j
i∗),

then v would have been included in Reachable(Blji∗ , G
j
i∗).

Hence any bottom scc in the subgraph induced by Sj in
Gj

i∗ is also a bottom scc of Gj . The correctness of the
identification the bottom scc as an mec and removal of the
attractor follows from the following two lemmata established

in [7] (see Lemma 2.1 and Lemma 2.2 of [7]). The first
lemma below establishes that the player-2 attractor of a mec
and the player-2 attractor of certain vertices of an scc do
not belong to any mec and that it, thus, can be removed
without affecting the mec decomposition of the remaining
graph. Hence, the lemma is used to identify vertices that
do not belong to any mec. The second lemma below shows
under which condition an scc is an mec. Thus, it can be used
to identify vertices that form a mec. It follows trivially from
the second lemma that every bottom scc is a mec.

LEMMA 4.1. ([7]) Let G = ((V,E), (V1, V2)) be a game
graph, and let (V,E) be the graph.

1. Let C be a scc in (V,E). Let U = {v ∈ C ∩ V2 |
Out(v) ∩ (V \ C) 6= ∅} be the player-2 vertices in C
with edges out of C. Let Z = Attr2(U,G) ∩ C. Then
for all non-trivial mec’s X in G we have Z ∩ X = ∅
and for any edge (u, v) with u ∈ X and v ∈ Z, u must
belong to V1.

2. Let C be a mec in G. Let Z = Attr2(C,G) \ C. Then
for all non-trivial mec’s X with X 6= C in G we have
Z ∩ X = ∅ and for any edge (u, v) with u ∈ X and
v ∈ Z, u must belong to V1.

LEMMA 4.2. ([7]) Let G = ((V,E), (V1, V2)) be a game
graph, and let (V,E) be the graph. Let C be a scc in (V,E)
such that for all v ∈ C ∩ V2 we have Out(v) ⊆ C. Then C
is a mec.

The correctness of the algorithm follows.

LEMMA 4.3. Algorithm NEWMECALGO correctly com-
putes the mec decomposition of a game graph.

Running time analysis. The crucial result of the running
time analysis depends on the following lemma. It shows that
in an outer iteration j, if the inner iteration stops at iteration
i∗ and X is the set of vertices identified as bottom scc, then
X ∩ Blji∗−1 is non-empty.

LEMMA 4.4. Consider an outer iteration j of the algorithm,
and let the inner iteration stop at iteration i∗. Let X be hte
set of vertices identified as bottom scc of the graph induced
by S in Gj

i∗ . Then X ∩ Blji∗−1 6= ∅.

Proof. Assume towards contradiction that there is a bottom
scc C in the induced subgraph of S in Gj

i∗ such that
C ∩ Blji∗−1 = ∅. Now we consider the iteration i∗ − 1
and then for every vertex in C in Gj

i∗−1 all outedges end
in a vertex in C. Since C does not contain a vertex
from Blji∗−1 and C has no outgoing edges, it follows that
C ⊆ V j \ Reachable(Blji∗−1, G

j
i∗). Since all edges of

Gj
i∗−1 are contained in Gj

i∗ it follows that C ⊆ V j \
Reachable(Blji∗−1, G

j
i∗−1). It follows that a non-emptyset

Sj would have been identified in iteration i∗ − 1, and this
contradicts that the algorithm stops at iteration i∗ and not in
i∗ − 1.

LEMMA 4.5. The total time spent by NEWMECALGO is
O(n2).

Proof. Assume that for an outer iteration j, the inner iter-
ation stops the repeat until loop at value i∗. By the previ-
ous lemma, one of the vertices v in X must have belong to
Blji∗−1 and thus it has outdegree at least 2i∗−1. Since we
identify the bottom scc that contain v it must contain all the
endpoints of the outedges from v. Hence X contains at least
2i∗−1 vertices. The time spent for all the executions of the
repeat loop in this iteration of the outer loop it the time spent
in all graphs Gj

1, Gj
2, ..., Gj

i∗ , which sums to O(2i∗ · n). We
charge O(n) to each deleted vertex. As the algorithm deletes
at most n vertices the total time spent over the whole algo-
rithm is O(n2). The removal of all the player-2 attractors
overall iterations takes O(m) = O(n2) time. Similar to the
proof of Lemma 3.8, the time required to built all the initial
graphs Gi is at most O(n2). The result follows.

THEOREM 4.1. Algorithm NEWMECALGO correctly com-
putes the mec decomposition of a game graph in O(n2) time.

5 Decremental and Incremental Algorithms
In this section we present the decremental and incremental
algorithms for computing the winning set in game graphs
with Büchi objectives. We will show that the progress
measure algorithm of [20] works in total time O(n · m) for
a sequence of player-1 edge deletions (or insertions), and
hence the amortized time per operation is O(n). Since Büchi
objectives generalize reachability objectives, and alternating
game graphs generalize directed graphs, our algorithm is
a generalization of the Even-Shiloach algorithm [17] for
decremental reachability in graphs. However our proof is
very different, based on a fix-point argument, and is much
simpler. We first present the algorithm for the decremental
case.

5.1 Decremental algorithm for Büchi games In this sec-
tion we present the decremental algorithm, and we consider
only deletion of player-1 edges. Our decremental algorithm
is based on the notion of progress measure and we start with
the notion of a progress measure and valid progress measure.
Progress measure. Given a game graph with n vertices, a
progress measure is a function ρ : V → [n] ∪ >, where
[n] = {0, 1, 2, . . . , n}, that assigns to every vertex either a
number from 0 to n, or the top element >. We will follow
the conventions that: (a) for all j ∈ [n] we have j < >;
(b) n + 1 = >; (c) > + 1 = >; (d) > ≥ >. Given a game
graph with a set B of Büchi vertices, a progress measure ρ
is a valid progress measure if the following conditions hold
for all v ∈ V : (i) for v ∈ V1 ∩ B, we have ρ(v) = > if for
all (v, w) ∈ E we have ρ(w) = >, and 0 otherwise; (ii) for
v ∈ V2 ∩ B, we have ρ(v) = > if there exists (v, w) ∈ E
with ρ(w) = >, and 0 otherwise; (iii) for v ∈ V1 \ B, we

have ρ(v) = min(v,w)∈E ρ(w) + 1; and (iv) for v ∈ V2 \B,
we have ρ(v) = max(v,w)∈E ρ(w) + 1. We define the
comparison operators ≤,≥ on progress measures with the
pointwise comparison, i.e., for ./∈ {≤,≥} and progress
measures ρ1 and ρ2, we write ρ1 ./ ρ2 iff for all v ∈ V
we have ρ1(v) ./ ρ2(v).
Lift operation on progress measure. Given a game graph
G, the function LiftG takes as input a progress measure and
returns a progress measure. For all input progress measures
ρ, the output progress measure ρ′ = LiftG(ρ) is defined
as follows: for all v ∈ V , (i) for v ∈ V1 ∩ B, we have
ρ′(v) = > if for all (v, w) ∈ E we have ρ(w) = >, and 0
otherwise; (ii) for v ∈ V2 ∩ B, we have ρ′(v) = > if there
exists (v, w) ∈ E with ρ(w) = >, and 0 otherwise, (iii) for
v ∈ V1 \ B, we have ρ′(v) = min(v,w)∈E ρ(w) + 1; and
(iv) for v ∈ V2 \B, we have ρ′(v) = max(v,w)∈E ρ(w) + 1.

LEMMA 5.1. For all game graphs G, the function LiftG is
monotonic (if ρ1 ≤ ρ2, then LiftG(ρ1) ≤ LiftG(ρ2)).

Proof. Consider progress measures ρ1, ρ2 such that ρ1 ≤ ρ2.
For a non-Büchi vertex v ∈ (V \ B) we have the following
two cases: for v ∈ V1 \B,

LiftG(ρ1)(v) = min
(v,w)∈E

ρ1(w) + 1

≤ min
(v,w)∈E

ρ2(w) + 1 = LiftG(ρ2)(v);

and for v ∈ V2 \B,

LiftG(ρ1)(v) = max
(v,w)∈E

ρ1(w) + 1

≤ max
(v,w)∈E

ρ2(w) + 1 = LiftG(ρ2)(v);

where E is the set of edges in G. It follows that for all
v ∈ (V \ B) we have LiftG(ρ1)(v) ≤ LiftG(ρ2)(v). Note
that for vertices in B, progress measures are either 0 or >.
For v ∈ B we have the following cases: (i) v ∈ V1 ∩ B: if
LiftG(ρ1)(v) = >, then for all (v, w) ∈ E we have ρ1(w) =
>, and hence for all (v, w) ∈ E we have ρ2(w) = >; thus
LiftG(ρ2)(v) = >; and (i) v ∈ V2∩B: if LiftG(ρ1)(v) = >,
then there exists (v, w) ∈ E with ρ1(w) = >, and hence we
have ρ2(w) = >; thus LiftG(ρ2)(v) = >. It follows that we
have LiftG(ρ1) ≤ LiftG(ρ2). The desired result follows.

Since LiftG is a monotonic function on a finite lattice,
by the Tarski-Knaster Theorem [22] it has a least fix-point.
Given a player-1 attractor Attr1(U,G), the minimal alter-
nating distance of a vertex v ∈ Attr1(U,G) is the rank
rank(v) of the vertex v (in other words it is the alternat-
ing shortest distance to U where player-1 minimizes the dis-
tance and player-2 maximizes the distance to U). The result
of [20] established that for all game graphs G, (i) there is
a unique least fix-point of LiftG, (ii) the least fix-point is a
valid progress measure, (iii) in the winning set the progress

measure equals the minimal alternating distance to the set of
Büchi vertices in the winning set and all Büchi vertices in the
winning set have progress measure 0, and (iv) all vertices in
the complement of the winning set are assigned >. The re-
sult of [20] is for the more general case of parity objectives,
and the specialization to Büchi objectives yields the above
properties.
THEOREM 5.1. ([20]) For all game graphs G, let ρ∗ be the
least fix-point of LiftG, and let ||ρ∗|| = {v ∈ V | ρ(v) ∈
[n]} denote the set of vertices that are not assigned the
top element. Then ||ρ∗|| = W1(Φ), where Φ is the Büchi
objective.

Decremental algorithm. Our algorithm initially computes
the least fix-point progress measure ρ∗ of the graph and then
maintains it after each edge deletion by repeatedly applying
the lift operator to the fix-point ρ∗ stored before the edge
deletion. To prove the correctness we will show that the fix-
point obtained by repeatedly applying the lift operator on the
previous least fix-point converges to the least fix-point of the
new game graph. The algorithm maintains the following data
structure: (i) For each vertex x ∈ V1 ∩ B it keeps a list of
vertices w such that (x,w) ∈ E and ρ∗(w) 6= > and (ii)
for each vertex x ∈ V1 \ B a list of vertices w such that
(x,w) ∈ E and ρ∗(x) = ρ∗(w) + 1. (iii) Every edge (x,w)
has a pointer to its location in the list of x if it is stored in
such a list. We next describe the algorithm in detail.
Computation of the initial ρ∗. Use the static Büchi algo-
rithm from the previous section to compute the player-1
and player-2 winning sets and assign > to all vertices in
the player-2 winning set. Use the backward search algo-
rithm [2, 19] to determine the rank of every vertex in the
player-1 winning set and set its initial progress measure
equal to its rank. Then we compute for each vertex of V1

its list.
Deletion of the edge (u, v). Maintain a queue of vertices to
be processed to update the progress measure until the least
fix-point is reached such that a vertex of V2 is only added to
the queue when its progress measure has increased. Initially,
enqueue u. Then iteratively process and dequeue the vertices
from the queue.

Case 1: A vertex x of V1 is dequeued. Check whether
given the current progress measure, the progress measure of
x needs to be increased to satisfy the lift operation for x. To
do this we first check whether the list of x is empty. If it
is not empty, nothing needs to be done. If it is empty, all
remaining outedges of x are checked to compute the new
progress measure value of x and the new list of x. Then
all inedges (u, x) of x are processed as follows: If u is a
player-1 non-Büchi vertex (u ∈ V1 \B), then it is enqueued
(if it is not already in the queue) and x is removed from the
list of u if it was there. If u is a player-2 non-Büchi vertex
(u ∈ V2 \B), then check whether the change in the progress
measure value of x also increases the progress measure value

of u. If it does, then u is enqueued (if it is not already in the
queue), otherwise u is not enqueued. If u is a player-1 Büchi
vertex (u ∈ V1 ∩ B), then (i) if the progress measure of x
is not >, then do nothing; (ii) else remove x from the list of
u, and if the list of u is empty, assign progress measure >
to u and u is enqueued (if it is not already in the queue). If
u is a player-2 Büchi vertex (u ∈ V2 ∩ B), then (i) if the
progress measure of x is not >, then do nothing; (ii) else
assign progress measure > to u and u is enqueued (if it is
not already in the queue).

Case 2: A vertex x of V2 is dequeued. In this case the
progress measure of x has increased and it has already been
updated. Thus all what remains is to process all inedges
(u, x) of x as follows: If u is a player-1 non-Büchi vertex,
then it is enqueued (if it is not already in the queue) and
x is removed from the list of u if it was there. If u is a
player-2 non-Büchi vertex, then check whether the change in
the progress measure value of x also increases the progress
measure value of u. If it does, then u is enqueued (if it is not
already in the queue), otherwise u is not enqueued. If u is a
player-1 Büchi vertex, then (i) if the progress measure of x
is not >, then do nothing; (ii) else remove x from the list of
u, and if the list of u is empty, assign progress measure > to
u and u is enqueued (if it is not already in the queue). If u is
a player-2 Büchi vertex, then (i) if the progress measure of x
is not >, then do nothing; (ii) else assign progress measure
> to u and u is enqueued (if it is not already in the queue).

This algorithm is a generalization of the Even-Shiloach
algorithm [17] for maintaining the connected component
(or more precisely the breadth-first-search tree) of a vertex
b in an undirected graph. Assume B = {b} and that
V = V1. Then the progress measure value of a vertex v
is exactly v’s level in the breadth-first search tree rooted at
b (or equivalently its shortest path distance to b). Applying
the lift operator to a vertex v is exactly the same as checking
whether v has still an edge to an edge at level level(v) − 1
and if not, increasing the level of v by 1.

Correctness. Let G be a game graph, and let ρ∗ be the least
fix-point of LiftG. Let G = G \ {e}, where e ∈ E ∩V1 ×V ,
be the game graph obtained by deleting a player-1 edge e.
Let ρ∗ be the least fix-point of G. Let ρ∗new be the new fix-
point obtained by iterating LiftG on ρ∗. We will show that
ρ∗ = ρ∗new.

LEMMA 5.2. We have ρ∗ ≤ ρ∗new.

Proof. Let ρ0 be the progress measure that assings 0 to all
vertices, i.e., the least progress measure. Clearly, ρ0 ≤ ρ∗.
Let us denote by (LiftG)i the result of applying the lift op-
erator i-times on G, for some i ∈ N. From a simple ap-
plication of Lemma 5.1 it follows that (LiftG)i is mono-
tonic. Hence we have (LiftG)i(ρ0) ≤ (LiftG)i(ρ∗). Since
ρ∗ = (LiftG)j(ρ0) for some j, and ρ∗new ≥ (LiftG)i(ρ∗) for

all i (in particular for the j for which the least fix-point is
obtained from ρ0), it follows that ρ∗ ≤ ρ∗new.

LEMMA 5.3. We have ρ∗new ≤ ρ∗.

Proof. Observe that the graph G is obtained by deleting an
edge for player-1, and hence the winning set for player 1
can only decrease and the minimal alternating distance to
the Büchi set in the winning set can only increase. In
other words, we have ρ∗ ≤ ρ∗, i.e., the least fix-point
of the graph G is smaller than the least fix-point of G.
Since ρ∗new = (LiftG)i(ρ∗), for some i, we have ρ∗new =
(LiftG)i(ρ∗) ≤ (LiftG)i(ρ∗) = ρ∗, where the first inequality
is a consequence of Lemma 5.1 that (LiftG)i is monotonic,
and the last inequality is a consequence of the fact that ρ∗ is
a fix-point. Hence the desired result follows.

The correctness follows from Lemma 5.2 and
Lemma 5.3 (that ρ∗new = ρ∗) and the fact that the al-
gorithm implements the iteration of the lift operator on
vertices one by one to compute the fix-point that is obtained
by repeatedly applying the lift operator on the least fix-point
of the previous game graph.
Running time. The deletions of player-1 edges only de-
creases the winning set, and once a set is removed from the
winning set (i.e., assigned value > in the progress measure
algorithm), then they are never worked upon. Upon termina-
tion, let W be the winning set, and let ρ be the least fix-point
in the end. The computation of the initial least fix-point is
done in time O(n2).

In the decremental algorithm we check for each de-
queued player-1 vertex u whether its progress measure in-
creases in constant time. If it does not increase no further
work is done for u. The constant amount of work is charged
to the edge deletion if an outedge of u was deleted. If no out-
edge of u was deleted then the progress measure of a vertex
w with (u, w) ∈ E must have increased and we charge the
work to w. If the progress measure of u increases we spend
time O(|In(u)| + |Out(u)|) to determine the new progress
measure of u, compute its new list, and process all its in-
edges, and the work is charged to u. A player-2 vertex u
is only enqueued when its progress measure has increased.
When it is dequeued we spend time O(|In(u)|) to process
all its inedges, and charge it to u. The number of times the
progress measure can increase for a vertex is at most n + 1
(as once it is n + 1 it is assigned >). For a vertex v, let
Num(v) = ρ(v), if ρ(v) 6= >, and n + 1 otherwise. Hence
the total work done by the algorithm is

O(
∑
v∈V

Num(v) · |In(v)|) + O(
∑
v∈V

Num(v) · |Out(v)|),

which is O(n ·m).

THEOREM 5.2. Given an initial game graph with n vertices
and m edges, the winning set partitions can be maintained

under the deletion of O(m) edges (u, v) with u ∈ V1 in total
time O(n ·m).

5.2 Incremental algorithm for Büchi games We now
present the details of the incremental algorithm for Büchi
games, where we consider insertion of player-1 edges. The
algorithm is almost identical to the decremental algorithm
and based on the dual progress measure for player 2. We start
with the definition of a valid progress measure for player 2.
Valid progress measure for player 2. Given a game graph
with a set B of Büchi vertices, let C = V \ B be the set of
coBüchi vertices. A progress measure ρ is a valid progress
measure for player 2 if the following conditions hold for all
v ∈ V :

ρ(v) ≥

min(v,w)∈E ρ(w) v ∈ V2 ∩ C;
min(v,w)∈E ρ(w) + 1 v ∈ V2 ∩B;
max(v,w)∈E ρ(w) v ∈ V1 ∩ C;
max(v,w)∈E ρ(w) + 1 v ∈ V1 ∩B.

We define the comparison operators ≤,≥ on progress mea-
sures with the pointwise comparison.
Lift operation on progress measure. Given a game graph G,
the function coLiftG, like the LiftG function, takes as input
a progress measure and returns a progress measure. For
all input progress measures ρ, the output progress measure
ρ′ = coLiftG(ρ) is defined as follows: for all v ∈ V ,

ρ′(v) =

min(v,w)∈E ρ(w) v ∈ V2 ∩ C;
min(v,w)∈E ρ(w) + 1 v ∈ V2 ∩B;
max(v,w)∈E ρ(w) v ∈ V1 ∩ C;
max(v,w)∈E ρ(w) + 1 v ∈ V1 ∩B.

LEMMA 5.4. For all game graphs G, the function coLiftG

is monotonic.

Proof. Consider progress measures ρ1, ρ2 such that ρ1 ≤ ρ2.
For a vertex v we have the following four cases: (i) for
v ∈ V2 ∩ C

coLiftG(ρ1)(v) = min
(v,w)∈E

ρ1(w)

≤ min
(v,w)∈E

ρ2(w) = coLiftG(ρ2)(v);

(ii) for v ∈ V2 ∩B

coLiftG(ρ1)(v) = min
(v,w)∈E

ρ1(w) + 1

≤ min
(v,w)∈E

ρ2(w) + 1 = coLiftG(ρ2)(v);

(iii) for v ∈ V1 ∩ C

coLiftG(ρ1)(v) = max
(v,w)∈E

ρ1(w)

≤ max(v,w)∈E ρ2(w) = coLiftG(ρ2)(v);

and (iv) for v ∈ V1 ∩B

coLiftG(ρ1)(v) = max
(v,w)∈E

ρ1(w) + 1

≤ max
(v,w)∈E

ρ2(w) + 1 = coLiftG(ρ2)(v);

where E is the set of edges in G. It follows that
coLiftG(ρ1) ≤ coLiftG(ρ2). The desired result follows.

Since coLiftG is a monotonic function on a finite lattice,
by Tarski-Knaster Theorem [22] it has a least fix-point. Be-
fore we proceed to the characterization, we present a defini-
tion: for a vertex v ∈ W2(Ψ), where Ψ is the coBüchi objec-
tive coBuchi(C), let maxvisit(v) = minπ∈Π maxσ∈Σ |{i |
ω(v, σ, π) = 〈v0, v1, v2, . . .〉, vi ∈ B}| denote the maximum
number of visits to Büchi vertices. Since v ∈ W2(Ψ), once a
winning strategy for player-2 is fixed, there cannot be a cycle
with a Büchi vertex, and hence maxvisit(v) ≤ n. The result
of [20] established that for all game graphs G, (i) there is
a unique least fix-point of coLiftG, (ii) the least fix-point is
a valid progress measure, (iii) for vertices v in the winning
set for player 2 the progress measure equals maxvisit(v), and
(iv) all vertices in the winning set for player 1 are assigned
the top element >. The result of [20] is for the more general
case of parity objectives, and the specialization to coBüchi
objectives yields the above properties.

THEOREM 5.3. ([20]) For all game graphs G, let ρ∗ be the
least fix-point of coLiftG, and let ||ρ∗|| = {v ∈ V | ρ(v) ∈
[n]} denote the set of vertices that are not assigned the top
element. Then ||ρ∗|| = W2(Ψ), where Ψ is the coBüchi
objective.

Incremental algorithm. Our algorithm initially computes
the least fix-point progress measure ρ∗ of coLift of the graph
and then maintains it after each edge insertion by repeatedly
applying the lift operator coLift to the fix-point ρ∗ stored
from before the edge insertion. To prove the correctness we
will show that the fix-point obtained by repeatedly applying
the lift operator on the previous least fix-point converges to
the least fix-point of the new game graph. The algorithm
maintains the following data structure: (i) For each vertex
x ∈ V2 ∩C it keeps a list of vertices w such that (x,w) ∈ E
and ρ∗(x) = ρ∗(w) and (ii) for each vertex x ∈ V2 ∩B a list
of vertices w such that (x,w) ∈ E and ρ∗(x) = ρ∗(w) + 1.
(iii) Every edge (x,w) has a pointer to its location in the
list of x if it is stored in such a list. We next describe the
algorithm in detail. We first describe the insertion of an edge
as the initial fix-point computation is similar.
Insertion of the edge (u, v). Maintain a queue of vertices to
be processed to update the progress measure until the least
fix-point is reached such that a vertex of V1 is only added to
the queue when its progress measure has increased. Initially,
enqueue u. Then iteratively process and dequeue the vertices
from the queue.

Case 1: A vertex x of V2 is dequeued. Check whether
given the current progress measure, the progress measure of
x needs to be increased to satisfy the lift operation for x. To
do this we first check whether the list of x is empty. If it
is not empty, nothing needs to be done. If it is empty, all
remaining outedges of x are checked to compute the new
progress measure value of x and the new list of x. Then
all inedges (u, x) of x are processed as follows: If u is
a player-2 vertex it is enqueued (if it is not already in the
queue) and x is removed from the list of u if it was there.
If u is a player-1 vertex then check whether the change in
the progress measure value of x also increases the progress
measure value of u. If it does, then u is enqueued (if it is not
already in the queue), otherwise u is not enqueued.

Case 2: A vertex x of V1 is dequeued. In this case the
progress measure of x has increased and it has already been
updated. Thus all what remains is to process all inedges
(u, x) of x as follows: If u is a player-2 vertex it is enqueued
(if it is not already in the queue) and x is removed from the
list of u if it was there. If u is a player-1 vertex then check
whether the change in the progress measure value of x also
increases the progress measure value of u. If it does, then u
is enqueued (if it is not already in the queue), otherwise u is
not enqueued.
Computation of the initial ρ∗. The computation of the initial
ρ∗ is similar to the incremental algorithm. We initialize the
initial progress measure as 0 for all vertices, then enqueue
the set of Büchi vertices, and proceed as the incremental
algorithm until a fix-point is reached. As we start with the all
0 progress measure and repeatedly apply the lift operator we
are guaranteed to reach the least fix-point. Then we compute
for each vertex v ∈ V2 its list.
Correctness. Let G be a game graph, and let ρ∗ be the least
fix-point of coLiftG. Let G = G∪{e}, where e ∈ E∩V1×V ,
be the game graph obtained by inserting a player-1 edge e.
Let ρ∗ be the least fix-point of G. Let ρ∗new be the new fix-
point obtained by iterating coLiftG on ρ∗. We will show that
ρ∗ = ρ∗new.

LEMMA 5.5. We have ρ∗ ≤ ρ∗new.

Proof. Let ρ0 be the progress measure that assings 0 to all
vertices, i.e., the least progress measure. Clearly, ρ0 ≤ ρ∗.
Let us denote by (coLiftG)i the result of applying the lift op-
erator i-times on G, for some i ∈ N. From a simple applica-
tion of Lemma 5.4 it follows that (coLiftG)i is monotonic.
Hence we have (coLiftG)i(ρ0) ≤ (coLiftG)i(ρ∗). Since
ρ∗ = (coLiftG)j(ρ0) for some j, and ρ∗new ≥ (coLiftG)i(ρ∗)
for all i (in particular for the j for which the least fix-point is
obtained from ρ0), it follows that ρ∗ ≤ ρ∗new.

LEMMA 5.6. We have ρ∗new ≤ ρ∗.

Proof. Observe that the graph G is obtained by inserting an
edge for player-1, and hence the winning set for player 2 can

only decrease and maxvisit(v) can only increase for vertices
in the winning set for player 2. In other words, we have
ρ∗ ≤ ρ∗, i.e., the least fix-point of the graph G is smaller
than the least fix-point of G. Since ρ∗new = (coLiftG)i(ρ∗),
for some i, we have

ρ∗new = (coLiftG)i(ρ∗) ≤ (coLiftG)i(ρ∗) = ρ∗,

where the first inequality is a consequence of Lemma 5.4
that (coLiftG)i is monotonic, and the last inequality is a
consequence of the fact that ρ∗ is a fix-point. Hence the
desired result follows.

LEMMA 5.7. We have ρ∗new = ρ∗.

Correctness. The correctness follows from Lemma 5.7 and
the fact that the algorithm implements the iteration of the lift
operator on vertices one by one to compute the fix-point that
is obtained by repeatedly applying the lift operator on the
least fix-point of the previous game graph.
Running time. The insertions of player-1 edges only de-
creases the winning set for player 2, and once a set is re-
moved from the winning set (i.e., assigned value > in the
progress measure algorithm), then they are never worked
upon. Upon termination, let W be the winning set, and
let ρ be the least fix-point in the end. In the incremen-
tal algorithm we check for each dequeued player-2 vertex
u whether its progress measure increases in constant time. If
it does not increase no further work is done for u. Since
u is processed, the progress measure of a vertex w with
(u, w) ∈ E must have increased and we charge the work
to w. If the progress measure of u increases, then we spend
time O(|In(u)| + |Out(u)|) to determine the new progress
measure of u, compute its new list, and process all its in-
edges, and charge the work to u. A player-1 vertex u is
only enqueued when its progress measure has increased, or
an edge is inserted at u. If an edge was inserted, the work is
charged to the inserted edge. When it is dequeued we spend
time O(|In(u)|) to process all its inedges, and charge it to u.
The number of times the progress measure can increase for a
vertex is at most n + 1 (as once it is n + 1 it is assigned >).
For a vertex v, let Num(v) = ρ(v), if ρ(v) 6= >, and n + 1
otherwise. Hence the total work done by the algorithm is

O(
∑
v∈V

Num(v) · |In(v)|) + O(
∑
v∈V

Num(v) · |Out(v)|),

which is O(n · m). An argument similar to the above also
establishes that the initial least fix-point is computed in time
O(n ·m).

THEOREM 5.4. Given an initial game graph with n vertices
and m edges, the winning set partitions can be maintained
under the insertion of O(m) edges (u, v) with u ∈ V1 in total
time O(n ·m).

Acknowledgements. The research was supported by Aus-
trian Science Fund (FWF) Grant No P 23499-N23 on
Modern Graph Algorithmic Techniques in Formal Verifica-
tion, Vienna Science and Technology Fund (WWTF) Grant
ICT10-002, FWF NFN Grant No S11407-N23 (RiSE), ERC
Start grant (279307: Graph Games), and Microsoft faculty
fellows award.

References

[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-
time temporal logic. Journal of the ACM, 49:672–713, 2002.

[2] C. Beeri. On the membership problem for functional and
multivalued dependencies in relational databases. ACM
Trans. on Database Systems, 5:241–259, 1980.

[3] J.R. Büchi. Weak second-order arithmetic and finite au-
tomata. Zeitschrift für mathematische Logik und Grundlagen
der Mathematik, 6:66–92, 1960.

[4] J.R. Büchi. On a decision method in restricted second-order
arithmetic. In E. Nagel, P. Suppes, and A. Tarski, editors,
Proceedings of the First International Congress on Logic,
Methodology, and Philosophy of Science 1960, pages 1–11.
Stanford University Press, 1962.

[5] J.R. Büchi and L.H. Landweber. Solving sequential con-
ditions by finite-state strategies. Transactions of the AMS,
138:295–311, 1969.

[6] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation.
J. ACM, 28(1):114–133, 1981.

[7] K. Chatterjee and M. Henzinger. Faster and dynamic al-
gorithms for maximal end-component decomposition and
related graph problems in probabilistic verification. In
SODA’11. SIAM, 2011.

[8] K. Chatterjee, T.A. Henzinger, and N. Piterman. Algorithms
for Büchi games. In Games in Design and Verification
(GDV), 2006.

[9] K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Simple
stochastic parity games. In CSL’03, volume 2803 of LNCS,
pages 100–113. Springer, 2003.

[10] K. Chatterjee, M. Jurdziński, and T.A. Henzinger. Quanti-
tative stochastic parity games. In SODA’04, pages 121–130.
SIAM, 2004.

[11] A. Church. Logic, arithmetic, and automata. In Proceedings
of the International Congress of Mathematicians, pages 23–
35. Institut Mittag-Leffler, 1962.

[12] A. Condon. The complexity of stochastic games. Information
and Computation, 96(2):203–224, 1992.

[13] C. Courcoubetis and M. Yannakakis. The complexity of
probabilistic verification. Journal of the ACM, 42(4):857–
907, 1995.

[14] L. de Alfaro and T.A. Henzinger. Interface automata. In
FSE’01, pages 109–120. ACM Press, 2001.

[15] D.L. Dill. Trace Theory for Automatic Hierarchical Verifica-
tion of Speed-independent Circuits. The MIT Press, 1989.

[16] E.A. Emerson and C. Jutla. Tree automata, mu-calculus and
determinacy. In FOCS’91, pages 368–377. IEEE, 1991.

[17] S. Even and Y. Shiloach. An on-line edge-deletion problem.
J. ACM, 28(1):1–4, 1981.

[18] M. R. Henzinger, V. King, and T. Warnow. Constructing
a tree from homeomorphic subtrees, with applications to
computational evolutionary biology. Algorithmica, 24(1):1–
13, 1999.

[19] N. Immerman. Number of quantifiers is better than number
of tape cells. Journal of Computer and System Sciences,
22:384–406, 1981.

[20] M. Jurdziński. Small progress measures for solving parity
games. In STACS’00, pages 290–301. LNCS 1770, Springer,
2000.

[21] M. Jurdziński, O. Kupferman, and T. A. Henzinger. Trading
probability for fairness. In CSL: Computer Science Logic,
Lecture Notes in Computer Science 2471, pages 292–305.
Springer, 2002.

[22] A. Kechris. Classical Descriptive Set Theory. Springer,
1995.

[23] O. Kupferman and M.Y. Vardi. From linear time to branching
time. ACM Transactions on Computational Logic, 6(2):273–
294, 2005.

[24] A. Mahanti and A. Bagchi. AND/OR graph heuristic search
methods. JACM, 32(1):28–51, 1985.

[25] R. McNaughton. Infinite games played on finite graphs.
Annals of Pure and Applied Logic, 65:149–184, 1993.

[26] A. Pnueli and R. Rosner. On the synthesis of a reactive
module. In POPL’89, pages 179–190. ACM Press, 1989.

[27] P.J. Ramadge and W.M. Wonham. Supervisory control of a
class of discrete-event processes. SIAM Journal of Control
and Optimization, 25(1):206–230, 1987.

[28] W. Thomas. Languages, automata, and logic. In G. Rozen-
berg and A. Salomaa, editors, Handbook of Formal Lan-
guages, volume 3, Beyond Words, chapter 7, pages 389–455.
Springer, 1997.

[29] M.Y. Vardi. Automata-theoretic model checking revisited. In
Proc. of Verification, Model Checking, and Abstract Interpre-
tation, volume LNCS 4349, pages 137–150. Springer, 2007.

[30] M.Y. Vardi. The Büchi complementation saga. In Proc. of
Symp. on Theoretical Aspects of Computer Science, volume
LNCS 4393, pages 12–22. Springer, 2007.

[31] W. Zielonka. Infinite games on finitely coloured graphs with
applications to automata on infinite trees. In Theoretical
Computer Science, volume 200(1-2), pages 135–183, 1998.

