
1

Monitoring Performance-Related QoS Properties in
Service-Oriented Systems: A Pattern-Based Architectural
Decision Model
ERNST OBERORTNER, Distributed Systems Group, Information Systems Institute, Vienna University of
Technology, Austria, e.oberortner@infosys.tuwien.ac.at
STEFAN SOBERNIG, Institute for Information Systems and New Media, Vienna University of Economics and
Business (WU Vienna), Austria, stefan.sobernig@wu.ac.at
UWE ZDUN, Software Architecture, Faculty of Computer Science, Vienna University, Austria,
uwe.zdun@univie.ac.at
SCHAHRAM DUSTDAR, Distributed Systems Group, Information Systems Institute, Vienna University of
Technology, Austria, dustdar@infosys.tuwien.ac.at

In service-oriented systems, service-level agreements (SLA) are specified as contracts between service providers and service
consumers. SLAs stipulate — among other things — the provided services’ performance. A service provider must fulfill the

agreements stated in SLAs, e.g., to avoid paying penalties. Service consumers must verify whether the service quality as
purchased is delivered. We present an architectural design decision model (ADDM) covering the design of a QoS monitoring
infrastructure. The ADDM collects design decisions about measuring, storing, and evaluating performance-related quality-of-

service (QoS) agreements. The model includes various requirements and puts forth design solutions by referring to established
architectural, remoting, and design patterns. We evaluate the ADDM to build the architecture of a QoS monitoring infrastructure
in a case study. The model guides through the decision-making process of designing a QoS monitoring infrastructure.

Categories and Subject Descriptors: D.2.11 [Software Architectures] Patterns

General Terms: Design

Additional Key Words and Phrases: Patterns, Architectural Design Decisions, Quality of Service, Service Oriented Architecture

1. INTRODUCTION
Service-oriented systems are utilized to perform intra- and inter-organizational activities mostly in an automated fash-
ion. Each business activity is aligned with a distributed IT service [Zdun and Dustdar 2006]. Service-oriented systems
must be extended to ensure compliance with negotiated service level agreements (SLA) [Daniel et al. 2009; Tran et al.
2010; Papazoglou 2008]. An SLA is a contract that contains — among other things — agreements on performance-
related for invoking the provider’s services over a network. If the service provider cannot meet the agreements, serious
consequences follow, e.g., financial consequences caused by non-fulfillment penalties payable to the service consumer
or a third party [Schulz 2010]. Likewise, the consumers want to observe and validate that the service provider does not
violate the guaranteed SLAs. Against the background of these requirements, creating and maintaining a monitoring
infrastructure for the performance clauses stipulated by SLAs is inevitable.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
EuroPLoP ’11, July 13-17, 2011, Irsee, Germany
Copyright 2012 ACM 978-1-4503-1302-5/11/07... $15.00

1:2 •

The architectural design process of an infrastructure for quality-of-service (QoS) monitoring is a challenging and
comprehensive task. To give some examples, performance monitoring can be realized at different network commu-
nication layers, at the client side, at the server side, and in intermediary components; or using any combination of
these. As a consequence, many architectural design decisions are to be taken about measuring performance-related
QoS properties, evaluating the measurements performed against negotiated SLAs, as well as storing the measurement
and the evaluation data.

In this paper, we present an architectural design decision model (ADDM) for guiding the decision-making process
when designing a QoS monitoring infrastructure. The model proposes pattern-based architectural solutions to detect
and to prevent SLA violations of performance-related QoS properties, such as round-trip time, network latency, or
processing time [Oberortner et al. 2010; O’Brien et al. 2007; Rosenberg et al. 2006; Ran 2003; Yu et al. 2007].
This model identifies relevant design decisions arising throughout the decision-making process and established design
solutions described in pattern form. These solutions are, in turn, based upon established software patterns in their
solution space. In our ADDM, we refer to design patterns [Gamma et al. 1995], remoting patterns [Voelter et al.
2004], and architectural patterns [Avgeriou and Zdun 2005]. The documented design decisions, requirements, and
solutions were harvested through a literature and systems review [Zeng et al. 2008; Keller and Ludwig 2003; Sahai
et al. 2002; Michlmayr et al. 2010; Rosenberg 2010; Leitner et al. 2010; Bianco et al. 2001; Hauck and Reiser 2000;
Aurrecoechea et al. 1998; Rosenberg et al. 2006], as well as through implementing research prototypes and through
conducting several industrial case studies.

The ADDM is an architectural design guide to adopt solutions according to the requirements imposed on your QoS
monitoring infrastructure. A guided walk through the decision-making process traces the architectural design decisions
taken and records why a particular solution was chosen, facilitating later maintenance and extension.

It is possible to apply the patterns to integrate various other compliance concerns into service-oriented systems,
such as security, licensing, or internal policies. However, in this work, we concentrate on applying patterns to monitor
performance-related QoS properties. Dealing with prevented and detected SLA violations, such as violation man-
agement, is out of the scope of this paper. However, the model’s solutions influence the architecture of a violation
management system and helps facilitate its architectural design. Furthermore, we do not consider reporting SLA vio-
lations to internal or to external stakeholders, e.g., the finance department, to the service engineers, or to the service
consumers [The Open Group 2004].

We organized the paper as follows: In Section 2 we comment on the importance of QoS monitoring, by giving an
example of an online book store. The features of a QoS monitoring infrastructure are explained in Section 3. Then, in
Section 4.1 we introduce common requirements on monitoring infrastructures. Then, we present the ADDM in Section
4. In Section 4.3, the relationships between the architectural design decisions covered by the model are discussed. We
evaluate the ADDM in Section 5 by reporting on a case study. This case study illustrates a walk through the decision-
making process leading to certain design solutions. We conclude the paper and hint at future work in Section 6.

2. MOTIVATING EXAMPLE
Consider an online book store built upon two processes (see Figure 1): a long-running business process for handling
online orders and a short-running technical process displaying product details on a Web page. In these scenarios three
parties exist: service consumers, service providers, and third party providers. A service provider offers services with
a specific functionality to its customers. In our example, the online book store offers services to order books online.
A service consumer accesses the offered services to request the services’ functionality. To order books online, a buyer
places an order by accessing the online store’s Web site, ordering the books in a desired quantity. Third-party providers
offer services to support the functionality of the service provider’s services. For example, to process the consumer’s
order, the online store has to reorder the requested books from a wholesaler in case the items are out of stock. The two
roles of service consumer and service provider alternate between the parties involved. For example, the online store
acts as a service provider towards its online buyers while the store itself consumes the wholesalers’ services.

• 1:3

place
retail order

. . .

check stock

receive
wholesale order

ship
orderreceive

order

place
wholesale reorder

receive
retail order

receive
wholesale order

. . .

ship
wholesale orderO

rd
er

 P
ro

ce
ss

in
g

<
5

w
or

ki
ng

 d
ay

s

Service Consumer:
Online Buyer

Service Provider:
Online Store

Third Party Provider:
Wholesaler

request product details

check wholesaler stock

check stock

show product details

get product data

assemble product details
page

Se
rv

ic
e

In
vo

ca
tio

n
Ti

m
e

<
1

se
c

Service Consumer:
Online Buyer

Service Provider:
Online Store

Third Party Provider:
Wholesaler

Sc
en

ar
io

 2
Sc

en
ar

io
 1

. . .

check stock

Fig. 1. Two motivating scenarios

In Scenario 1, the online buyer orders a book at the online store. This scenario illustrates an SLA in a long-running
process: Assume that there is a binding agreement between the online store (as the service provider) and its online
buyers regarding the maximum duration of order processing. This order processing time amounts to five working days
and represents the maximum time in which the online store commits itself to dispatch the orders. However, it does not
include the delivery time taken by the postal services or other intermediate shipment used. In case of non-fulfillment,
the customer receives the ordered product for free. Under such obligations, the online store must minimize the risk
of non-fulfillment. In particular, the online store must take precautionary measures to prevent SLA violations due

1:4 •

to a third party (i.e., the wholesaler) not delivering on time. This risk assessment requires some process monitoring
capabilities. Equally, the client wants to verify the actual order processing time regularly during or once after the actual
delivery, for instance, as part of a package tracking system provided by the online store.

In Scenario 2, an SLA for a short-running service invocation is illustrated. If the online store is out of stock, it must
query the stock of the wholesaler. If such information should be displayed on the online store’s Web site, it is important
that service invocations into the wholesaler’s system do not take too long, in order to avoid long delays in displaying
the requested Web site to the customer; or to provide timely updates. Here, the SLA requires any service invocation
to the wholesaler’s system to take less than 1 second. If the online store stipulates such a QoS guarantee, they would
want to monitor compliance with the guarantee themselves. If the wholesalers give such guarantees, they would show
interest in monitoring the service invocations as well, to be able to document compliance and react swiftly in case of
violations.

It is characteristic for QoS monitoring to face common and variable requirements. An exemplary commonality is
measuring the maximum time span between two measuring points. A point of variation is, for example, storing mea-
surement data either in a persistent storage for long-running transactions, or in memory for short-term observations.

Designing a monitoring infrastructure meeting the requirements is a particular challenge. This paper explains best
practices for the various design options and supports making informed design decisions based on the requirements and
the forces of each individual scenario.

3. FEATURES OF A QOS MONITORING INFRASTRUCTURE
Infrastructures for QoS monitoring can be described by a set of features and certain feature configurations. A feature
is a unit of functionality being of interest to the technical stakeholders of the QoS monitoring infrastructure. Figure 2
depicts our ADDM’s covered features of a QoS monitoring infrastructure, using the Extended Eisenecker-Czarnecki
Notation [Czarnecki and Eisenecker 2000]. As illustrated, the three main features of our ADDM are: Measuring,
Evaluation, and Storage.

Performance QoS
Monitoring

Evaluation

Location Time

centralized offline

online

Storage

localized

centralized
inlining

indirection

interceptor
remote
proxy

Measuring

Location Time

localized
permanent event-

triggered

invocation-
based

Fig. 2. Features of a QoS monitoring infrastructure

• 1:5

3.1 Measuring
Multiple variants exist in a service-oriented system to measure performance-related QoS properties. Most importantly,
different strategies of instrumenting techniques of the system components for runtime and execution monitoring at
various spots are available. In our ADDM, we assume that system components can either be instrumented (1) at the
service endpoints, such as the client and service applications, (2) at the level of the service middleware, such as the
utilized middleware framework (e.g., Apache CXF) or a process engine (e.g., Apache ODE), or (3) at the execution
platforms of both the service endpoints and the service middleware, such as language engines (e.g., a Java virtual
machine).

As for instrumentation techniques, we identified the following: inlining, indirection, and/or proxying.
While some of these techniques are entirely independent of the kind of instrumentation target, certain techniques
are only applied to specific targets. By inlining, we mean to implement measuring points by introducing dedi-
cated measuring code into the client or service applications directly. Alternatively, forms of indirection can be
adopted, such as by utilizing variants of the WRAPPER pattern [Gamma et al. 1995] at the service endpoints. For ex-
ample, the client or service applications redirect the instruction calls to some sort of measuring wrapper that measures
the performance-related QoS properties. At the level of the service middleware, variants of the INVOCATION INTER-
CEPTOR pattern [Voelter et al. 2004] can be adopted, making it possible to predefine measuring points along the
invocation path in order to measure performance-related QoS properties. Looking at the service interactions, measur-
ing can also be achieved by proxing, i.e., deploying service-level proxying within the service consumers’ or service
providers’ networks. In such a setting, a REMOTE PROXY service [Voelter et al. 2004], responsible for measuring the
QoS properties, trades service invocations on behalf of the actual service implementations.

As for the timing of measurement, measurements can either be piggybacked onto actual service invocations
(invocation-based) and/or probe service invocations. Probing is based on creating mock-up service invocations
to perform the measurements without interfering with actual invocations. Probes are either emitted periodically
(permanent) at regular intervals following a specified probing strategy, or can be triggered by system-wide events
(event-triggered), such as by user demands.

3.2 Evaluation
When designing a QoS monitoring infrastructure, it must be decided on when (Time) and on where (Location) to
evaluate performance-related QoS measurements . As for the timing, SLA performance evaluation can either happen
during the service (and therefore SLA) performance (online) or after an SLA’s duration of validity (offline).
While offline evaluation satisfies the requirements emerging from SLA accounting and reporting, online evaluation
enables scenarios of preventing SLA violations as part of the SLA management.

Another important variation in monitoring systems results from organizing the evaluation feature in a central-
ized or in a localized manner. A centralized evaluation is performed by a central evaluation component,
responsible for all clients and services in a service-oriented system. For instance, a business-process execution engine
may be extended to perform the role of the evaluation component. Localized evaluation shifts the responsibility of
performing evaluations to each of the service endpoints, i.e., both service clients and service providers.

3.3 Storage
In a QoS monitoring infrastructure the performance-related QoS measurements must be stored. For example, in case
of deciding in favor of a permanent measuring solution and an evaluation solution at the end of the SLA’s validity, the
measurements must be stored until the end of the SLA’s validity. In our ADDM, we differentiate between storing the
measurement data in a localized and/or centralized manner. Storing the measurements locally means that the
QoS measurements are stored locally at each client and service. For example, in case of deciding to utilize a proxying
measuring solution, the QoS measurements can be stored locally at the proxy, resulting in a centralized storing
solution too.

1:6 •

4. THE ARCHITECTURAL DESIGN DECISION MODEL (ADDM)
In this section, we describe our ADDM to guide the various involved stakeholders through the decision making pro-
cess. First, we explain the covered requirements within our ADDM. Then, we present several architectural decision
decisions, which requirements influence each of the design decision, and propose pattern-based solutions. Each so-
lution addresses the influencing requirements differently. We also discuss each design decision solution with respect
to the influencing requirements and the design solutions of related design decisions. We conclude our ADDM by
introducing relations between the design decisions..

4.1 The ADDM’s Requirements on a QoS Monitoring Infrastructure
In this section, we explain the criteria driving the decision-making process and the various requirements imposed
on a QoS monitoring infrastructure. Both, criteria and requirements, influence the architectural design decisions and
the selection of appropriate solutions. In our model, we differentiate between decision criteria, system-specific, and
implementation-specific requirements. Criteria are characteristics that must be known a priori, before making any
design decisions, such as whether freestanding services are provided; or whether the provided services invoke services
of third-party providers. System-specific requirements concentrate on the general requirements for the QoS monitoring
infrastructure and its architecture. At this level, technical details regarding the implementation of the QoS monitoring
infrastructure are omitted. For example, system-specific requirements are scalability or reusability. Implementation-
specific requirements focus on realizing the components forming the QoS monitoring infrastructure. For example,
implementing QoS monitoring could require accessing to the clients’ or to the services’ implementations.

Figure 3 shows the requirements relating to each other. For example, a minimal performance overhead is required
for realizing a scalable QoS monitoring infrastructure. Understanding the interrelatedness of requirements helps com-
prehend the relationships between the architectural design decisions.

4.1.1 Decision criteria

—C1 – Providing or consuming services, or both
This criterion considers whether the decision-taking party plans to provide or to consume services; or even both.
While in a service-oriented system, a provider and consumer roles can be strictly separated, a service provider can
also act as a consumer towards third-party services.
The criterion is related to the decision whether it becomes necessary to either detect or prevent SLA violations (C3).
For a service provider, it is desirable to prevent SLA violations during the SLA’s validity in order to avoid financial
consequences and a diminished reputation. In contrast, a service consumer wants to detect potential SLA violations
under a ruling SLA. Detecting and reporting violations is also a use case when the performance quality delivered by
a service provider is directly dependent on third-party providers. With this, the criteria on providing or consuming
services also is affected by the criterion C2.

—C2 – Dependency on the third parties’ quality
In service-oriented systems, service providers often invoke third-party services to accomplish their services’ func-
tionality. As a result and as illustrated in the motivating example (see Section 2), the services’ quality so become
dependent on the quality of some third parties’ services. In order to avoid SLA violations, an appropriate QoS
monitoring solution must be designed to take timed actions in case the performance of the third parties’ services
degrades.
Third-party dependencies bear the risk of SLA inversions and generally limit a service providers capacity to commit
to a high-performance SLA. Provided that there are no adequate monitoring facilities and the SLA details are not
carefully crafted (e.g., by excluding features directly coupled to third-party performance from the SLA), a provider’s
SLA can only pass on whatever the respective third-party SLAs offer, degraded by the provider’s non-fulfillment

• 1:7

C3
Prevention of SLA

violations

SR1
QoS properties

SR2
Scalability

C2
Dependency on the
third parties’ quality

IR2
Access to the
middleware

IR1
Access to the
applications

SR3
Minimal performance

overhead

SR5
Reusability

IR3
Separation of

concerns

Im
pl

em
en

ta
tio

n-
sp

ec
ifi

c
re

qu
ire

m
en

ts
Sy

st
em

-s
pe

ci
fic

re

qu
ire

m
en

ts
influences

Legend

C1
Providing or consuming

services, or both

SR4
Preciseness

C
rit

er
ia

Fig. 3. Influences between the criteria and requirements

probability. Regarding the risk of SLA inversion, a monitoring infrastructure assists at detecting the non-fulfillment
by third-party providers.
If relying on third-party services, a service provider takes the role of a service consumer. With this, this criterion
leads to C1 and, as a consequence, to C3.

—C3 – Prevention of SLA violations
Prior to entering the decision-making process, it must be decided if the QoS monitoring infrastructure should pre-
vent or just detect SLA violations. This criterion results from criteria C1 and C2. For a service consumer it is maybe
enough just to detect SLA violations. For example, in the motivating scenario, a detection of SLA violations for the
service consumer is sufficient. But for the service provider only a detection of SLA violations is not satisfactory.
For service providers it is desirable to prevent SLA violations in order to avoid financial consequences. This crite-
rion results from criteria C1. In contrast to detecting violations, preventing SLA violations has the benefit for the
service-providing parties to effectively avoid any SLA violations. However, developing a preventive QoS monitor-
ing solution is a complex design and development task. Note that, in our model, preventing SLA violations implies
the capacity to detect them.

1:8 •

4.1.2 System-specific Requirements.

System-specific requirements focus on the QoS monitoring infrastructure independent of its implementation. In our
model, we consider the following system-specific requirements:

—SR1 – QoS properties
To measure the performance-related QoS properties, it is necessary to know which of the service performance
indicators are negotiated in the underlying SLA. Typically, SLAs do not cover all measurable performance-related
QoS properties. For example, for a service consumer the service provider’s message processing time (at the level
of communication middleware) is not of interest. Rather, a service consumer is more concerned about the services’
round-trip time or time-to-response.
Nevertheless, from the perspective of the service provider, it is necessary to measure the network-specific
performance-related QoS properties as well in order to detect bottlenecks in long running service invocations.
After having decided whether to adopt a provider-side and/or consumer-side QoS monitoring solution (C1), the se-
lection of performance-related QoS properties to gather and to measure is next. Once the performance-related QoS
properties and the measure instruments are decided upon, it becomes clear if and which kind of implementation-level
access is required. Implementation-level access refers to either the provider- and/or client-side service implementa-
tions (IR1) or even the provider- and client-side middleware implementations (IR2); or even both.

—SR2 – Scalability
SLAs are contracts between one service provider and one service consumer. However, service providers can have
several SLAs negotiated with multiple service consumers. Likewise, service consumers can hold various SLAs
issued by different service providers. Hence, many SLAs must be monitored and tracked. Providing many SLA-
aware services to many consumers implies that the consumers can invoke the service in parallel, requiring to monitor
the performance-related QoS agreements of each service invocation. As a result, the QoS monitoring infrastructure
should scale to a variable number of service clients and services provided. Scalability involves both up- and down-
scaling. If the number of SLA-governed services and clients to monitor increases, the monitoring infrastructure must
adapt and must guarantee availability. A decreasing number, however, should result in freeing system resources
dedicated to monitoring tasks. The latter is particularly important when SLA monitoring is realized as a third-party
service.
The property of scalability, in particular up-scaling, is directly affected by the performance overhead incurred by
monitoring invocations (SR3). A highly scalable monitoring system implies a minimal performance overhead.

—SR3 – Minimal performance overhead
A further requirement is that the QoS monitoring solution does not introduce critical performance overhead into to
distributed system. The monitoring of service execution introduces an INDIRECTION LAYER [Avgeriou and Zdun
2005] into the distributed system because the implementations of the client and service applications must be instru-
mented to gather data related to executing remote invocations (e.g., by intercepting method invocations, message
delivery, marshaling, etc. to gather execution timings) and related to network I/O (e.g., latency). It is not desirable
that the execution performance of the overall system degrades due to monitoring the performance-related QoS prop-
erties. The requirement on minimal performance overhead is strong coupled with the scalability requirement (SR2):
the lower the performance overhead, the more scalable the QoS monitoring system.
The overhead affects the scalability of a monitoring system (SR2). The higher the overhead, the more unbiased are
the performance-related QoS measurements (IR4). This again results in imprecise evaluation results. High perfor-
mance overhead can itself cause SLA violations. For example, in case a centralized evaluation component becomes
overloaded it can influence the systems’ performance, resulting that the processing of some clients’ requests lasts
longer than contracted.

• 1:9

—SR4 – Preciseness
The preciseness criterion relates to the rigor and validity of the performance-related QoS measurements and the
evaluation results. Imprecise measurements cause imprecise evaluation results and, as a consequence, false posi-
tives and false negatives in detecting SLA violations. Monitoring tasks such as measuring, evaluating, and storing
should not distort the actual measurements. Most importantly, preciseness follows from minimizing the indirection
overhead (SR3).

—SR5 – Reusability
The QoS monitoring solution is required to be reusable in the heterogeneous software landscape which constitutes
a service-oriented system. By reusability, we refer to the ability to deploy QoS monitoring for potentially diverse
clients and services. This diversity results from the various implementation platforms and middleware frameworks
used. As a consequence, there is a major tension between reusability and the need to instrument the service and
the middleware implementations (IR1, IR2). A reusable monitoring system must respect a separation of con-
cerns (IR3), in particular by separating those monitoring concerns (storing, evaluation) from those which require
platform- and implementation-specific adaptation (sensing).

4.1.3 Implementation-specific Requirements.

Implementation-specific requirements focus on the implementation of the QoS monitoring infrastructure’s compo-
nents. We identified the following recurring implementation-specific requirements:

—IR1 – Access to the applications
Monitoring performance-related QoS properties of service invocations often requires access to the client’s or ser-
vice’s implementation, in particular to apply certain measurement strategies. For example, to measure the round-trip
time of a service invocation in the client, measuring points can be placed directly into the client’s implementation.
To measure the processing time, measuring points can be placed directly into the implementation of a service.
This requirement conflicts with a separation of concerns (IR3) and has the potential to decrease the reusability
(SR5) of a monitoring system.

—IR2 – Access to the middleware
For monitoring network-specific performance properties, such as the marshaling time, access to the middleware is
required. The middleware must be adapted to measure the required network-specific performance-related QoS prop-
erties. Middleware frameworks offer different strategies for extending and intercepting the processing of invocations
(e.g., INVOCATION INTERCEPTORS [Voelter et al. 2004]).
Before deciding on modifying the middleware framework, it must be clarified which kind of measurement probes are
required (SR1). Only then, it can be decided at which interception points certain processing steps are to be metered.
Measuring the performance-related QoS properties by accessing the middleware improves over the separation of
concerns (IR3) because the measuring logic is decoupled from the services’ or clients’ implementations.

—IR3 – Separation of concerns
A monitoring solution must exhibit an overall state of separation of concerns. Multiple criteria contribute to this ob-
jective. First, a monitoring system must not modify the clients’ or services’ implementations in order to monitor the
performance-related QoS agreements (IR1). With this, there is a certain level of transparency because the monitor-
ing solution is decoupled from the clients’ and services’ implementation. Monitoring solutions which realize their
measurement sensors at the level of the middleware contribute to concern separation (IR2). Separating concerns
directly affects the system’s reusability (SR5).

1:10 •

4.2 The ADDM’s Architectural Design Decisions
In this section, we present the core of the ADDM — the architectural design decisions. The in Section 4.1 described
requirements influence each design decision and the ADDM proposes solution that satisfy the influencing require-
ments. The covered architectural design decisions range from which SLA party wants to introduce a QoS monitoring
infrastructure to where and when the performance-related QoS properties should be measured, stored, and evaluated.

4.2.1 Architectural Design Decision:
WHICH SLA PARTY WANTS TO MONITOR PERFORMANCE-RELATED QOS PROPERTIES?.

One decision is to decide if a service provider or a service consumer wants to introduce a QoS monitoring solution.
In our model, this design decision is influenced, as illustrated in Figure 4, by the requirement C1. Our model proposes
three decision alternatives.

C1
Providing or

consuming services

Which SLA party
wants to monitor

performance-related QoS
properties?

SERVICE PROVIDER
QOS

MONITORING

SERVICE CONSUMER
QOS

MONITORING

COMBINED
 QOS

MONITORING

alternative alternative alternative

combines

influences

Fig. 4. WHICH SLA PARTY WANTS TO MONITOR PERFORMANCE-RELATED QOS PROPERTIES?

Solution: SERVICE PROVIDER QOS MONITORING.

Integrate a QoS monitoring infrastructure into the service provider’s network.

In case of providing services, our model proposes a SERVICE PROVIDER QOS MONITORING solution. A SERVICE
PROVIDER QOS MONITORING solution makes it possible to measure server-side performance-related QoS properties.
Client-side performance-related QoS properties cannot be traced.

Known Uses:

—Windows Performance Counters (WPC) [Microsoft d] of the the Windows Communication Foundation (WCF)
[Microsoft c] can serve for performing server-side QoS monitoring. WFC is part of the .NET framework [Microsoft
a].

—Rosenberg [Rosenberg 2010] has developed a SERVICE PROVIDER QOS MONITORING solution, called QUATSCH.

• 1:11

!! !

Solution: SERVICE CONSUMER QOS MONITORING.

Integrate a QoS monitoring infrastructure into the service consumer’s network.

In case of consuming services, our model proposes a SERVICE CONSUMER QOS MONITORING solution. A SERVICE
CONSUMER QOS MONITORING solution makes it possible to measure client-side performance-related QoS properties.
Server-side performance-related QoS properties cannot be measured.

Known Uses:

—Mani and Nagarajan [Mani and Nagarajan 2002] explain the measuring of performance-related QoS properties
within a client’s implementation.

!! !

Solution: COMBINED QOS MONITORING.

Integrate a common QoS monitoring infrastructure with the service consumer’s and service provider’s
network. Measure the performance-related QoS properties in both networks and combine both measurements
to evaluate the performance-related QoS agreements.

In case, service provider and service consumer agree on a common QoS monitoring infrastructure, a COMBINED
QOS MONITORING solution is proposed. As illustrated in Figure 4, a COMBINED QOS MONITORING solution in-
corporates the SERVICE PROVIDER QOS MONITORING and SERVICE CONSUMER QOS MONITORING solutions. This
solution makes it possible to measure client- and server-side performance-related QoS properties.

A variant of COMBINED QOS MONITORING is realized by some process or workflow engines (e.g., Apache ODE,
Riftsaw/JBOSS). A process engine implements service compositions according to process execution specifications.
Composing services involves acting both as a service consumer and as a service provider (e.g., for asynchronous
invocations with result callback). In addition, process engines contain native monitoring components, recording and
providing lifecycle data of the process instances executed. Through dedicated monitoring APIs and depending on the
granularity of lifecycle data stored (e.g., execution status), forms of COMBINED QOS MONITORING can be performed.
Examples include aggregated process execution times. Note that measurements at the granularity level of individual
process steps (i.e., service invocations) are usually not obtainable.

Known Uses:

—Michlmayr et al. [Michlmayr et al. 2009] present a combined monitoring solution, requiring access to the clients’
and services’ implementation.

—Sahai et al. [Sahai et al. 2002] introduce an SLA monitoring engine with two monitoring components. One in the
service provider’s network and one in the service consumer’s network.

—Apache ODE [The Apache Software Foundation b] provides access to monitoring data through its Process Instance
Management Interface. An event model describing process instance lifecycles and a corresponding event notification
mechanism allow for creating aggregated monitoring solutions for the scope of process instances and processes.

1:12 •

Discussion

A SERVER-SIDE QOS MONITORING infrastructure makes it possible to measure server-side performance-related
QoS properties, such as the processing time. In contrast, a CLIENT-SIDE QOS MONITORING solution allows for mea-
suring the client-side performance-related QoS properties, such as the round-trip time. A COMBINED QOS MONITOR-
ING SOLUTION results in a more accurate evaluation of the QoS agreements.

4.2.2 Architectural Design Decision:
WHERE SHOULD THE PERFORMANCE-RELATED QOS PROPERTIES BE MEASURED?.

To gather performance data of service invocations, the clients’ and the services’ implementations must be instru-
ment. This can be done at various layers of a distributed system, such as in the application layer, the network layer, or
by extending the communication middleware.

In Figure 5 we illustrate how the requirements influence this design decision and which design solutions our model
offers. The model’s solutions are patterns that extend and utilize existing well-established design patterns, such as the
WRAPPER pattern, the INTERCEPTOR pattern, the INVOCATION INTERCEPTOR pattern, or the PROXY pattern [Gamma
et al. 1995; Schmidt et al. 2000; Voelter et al. 2004].

SR3
Minimal performance

overhead
Where should the

performance-related QoS
properties be measured?

SR4
Preciseness

SR1
QoS properties

SR5
Reusability

IR1
Access to the
applications

IR3
Separation
of concerns

IR2
Acess to the
middleware

Pattern:
QOS INLINE

Pattern:
QOS WRAPPER

Pattern:
QOS INTERCEPTOR

Pattern:
QOS REMOTE PROXY

alternative alternative alternative alternative

can be implemented, using

influences

Fig. 5. WHERE SHOULD THE PERFORMANCE-RELATED QOS PROPERTIES BE MEASURED?

Measuring the performance-related QoS properties should deliver precise measurements (SR4) and have a minimal
performance overhead (SR3). The implementation of the measuring logic should provide separation of concerns (IR3)
in order to be reusable (SR5). Dependent on which performance-related QoS properties should be measured (SR1),
access to the clients’ or services’ application (IR1) or to the middleware is required (IR2).

Our model provides four different solutions to measure the performance-related QoS properties. The solutions are
patterns and we refer the reader to [Oberortner et al. 2010] for further information on the patterns.

• 1:13

Solution: QOS INLINE.

Instrument the client’s and the service’s implementation with local measuring points and place them directly
into their implementation.

Solution: QOS WRAPPER.

Instrument the client’s and service’s implementations with local QOS WRAPPERS that are responsible for mea-
suring the performance-related QoS properties. Let a client invoke a service using a client-side QOS WRAPPER.
Extend a service with a server-side QOS WRAPPER that receives the client’s requests.

Solution: QOS INTERCEPTOR.

Hook QOS INTERCEPTORS into the middleware that intercept the message flow between the client and the
service. Let the QOS INTERCEPTORS measure the performance-related QoS properties of service invocations.

Solution: QOS REMOTE PROXY.

Implement and setup a QOS REMOTE PROXY in the service consumer’s or service provider’s network. In the
service consumer’s network, let each client invoke the services via the QOS REMOTE PROXY. In the service
provider’s network, make each service only accessible via a QOS REMOTE PROXY.

Discussion.

The QOS INLINE pattern has a minimal performance overhead (SR3), is scalable (SR2) delivers precise results
(SR4), but, it requires access to the client’s or service’s applications (IR1). Also, few performance-related QoS prop-
erties can be measured (SR1), it is not reusable (SR5), and hence, does not provide separation of concerns (IR3).

The QOS WRAPPER pattern results in a minimal performance overhead (SR3), is scalable (SR2), reusable (SR5),
and does not affect the clients’ or services’ application (IR3). The performance-related QoS measurements delivered
by a QOS WRAPPER are slightly different to the measurements delivered by the QOS INLINE pattern.

Equivalent to the QOS WRAPPER pattern, the QOS INTERCEPTOR pattern has a minimal performance overhead
(SR3), is scalable (SR2), reusable (SR5), and provides separation of concerns (IR3). A QOS INTERCEPTOR can be
used to measure network-specific performance-related QoS properties, such as wrapping times or the network latency.
Traditional middleware frameworks, such as .NET Remoting [Microsoft b], Apache CXF [The Apache Software
Foundation a], or Apache Axis APACHEAXIS, provide features to hook QOS INTERCEPTORS into service invocations
dynamically (IR2).

Because a QOS REMOTE PROXY is a centralized node in the network and one extra hop is required, the QoS mea-
surements are different to the ones measured locally at each client or service (SR4). The implementation of the QOS
REMOTE PROXY can follow the QOS INLINE pattern, QOS WRAPPER pattern, or the QOS INTERCEPTOR pattern. How-
ever, the QOS REMOTE PROXY pattern is reusable (SR5) and provides separation of concerns (IR3) because it does not
modify the clients’ or services’ application (IR3). Using a QOS REMOTE PROXY for multiple clients or services can
decrease the system’s scalability (SR2) and can increase the performance overhead (SR3) because the QOS REMOTE
PROXY can be a bottle-neck.

1:14 •

4.2.3 Architectural Design Decision:
WHEN SHOULD THE PERFORMANCE-RELATED QOS PROPERTIES BE MEASURED?.

A service’s performance-related QoS properties are measured within the service invocation. This architectural de-
sign decision focuses on the time and frequency of the service invocations. In Figure 6 we illustrate the requirements’
influences of this design decision.

SR3
Minimal performance

overhead

When should the
performance-related QoS
properties be measured?

SR4
Preciseness

SR2
Scalability

PERMANENT
QOS

MEASURING

EVENT-TRIGGERED
QOS

MEASURING

INVOCATION-BASED
QOS

MEASURING

alternative alternative alternative

Fig. 6. WHEN SHOULD THE PERFORMANCE-RELATED QOS PROPERTIES BE MEASURED?

In our model we propose three different solutions for the architectural design decision about the measurement time.

Solution: PERMANENT QOS MEASURING.

Send periodically, in pre-defined time intervals, probe requests to the service to measure the performance-
related QoS properties permanently.

To get a permanent information about the performance-related QoS properties, the service consumer must adapt
the client’s measuring solution to send periodically probe requests to the services. During the probe requests, the
performance-related QoS measurements can be measured. The service provider must invoke the services internally in
periodic intervals to get a permanent information about the services’ performance-related QoS properties. The service
provider must develop a component that invokes the services and measure the performance-related QoS properties.

One possible solution is to develop a centralized component in the service consumers or service providers network
that invokes the services periodically. For example, a QOS REMOTE PROXY can be extended to invoke the services
periodically to measure the services’ performance-related QoS properties permanently.

Invoking the services frequently, i.e., setting a short time interval, a precise information about the services’
performance-related QoS properties can be gathered. A short time interval can produce performance overhead,
resulting in a low scalability. Setting a long time interval, the preciseness can be diminished, but, the performance
overhead is minimal and the scalability enhances.

Known Uses:

—The CISCO Response Time Reporter (RTR) Enhancement [CISCO b] measures the response times and availability
of network resources using probe requests. The RTR can be utilized as a PERMANENT QOS MEASURING solution.

• 1:15

—Summers et al. [Sommers et al. 2007] introduce the SLAM tool (SLA monitor), a framework to monitor SLA
compliance using a probe sender, i.e., a PERMANENT QOS MONITORING solution.

—Rosenberg’s QUATSCH toolkit [Rosenberg 2010] measures performance-related QoS properties during probe ser-
vice requests.

—Traverse’s SLA monitor, developed by Zyrion Inc. [Zyrion, Inc.], allows to measure performance-related QoS
properties in a specified time interval, i.e., the period of the SLA’s validity.

!! !

Solution: EVENT-TRIGGERED QOS MEASURING.

Take probes to measure the performance-related QoS properties in case selected events occur in the system.

If events occur rarely, the performance overhead is minimal and the scalability increases. But the preciseness of the
performance-related QoS properties decreases. Occur events frequently, the measurements of the performance-related
QoS properties becomes more precise. But the scalability decreases because of the performance overhead.

Known Uses:

—The CISCO Response Time Reporter (RTR) Enhancement [CISCO b] can be configured to measure the response
times and availability when a user-configured threshold is exceeded, a connection is lost and reestablished, or when
a timeout occurs.

—The QUATSCH toolkit [Rosenberg 2010] can be instantiated to send probe request in case of occurring events, such
user requests.

!! !

Solution: INVOCATION-BASED QOS MEASURING.

Measure the performance-related QoS properties every time a service invocation happens.

All performance-related QoS properties are measured within service invocations. In contrast, the previous solutions
(PERMANENT QOS MEASURING and EVENT-TRIGGERED QOS MEASURING) measure the performance-related QoS
properties in probe requests and are not triggered by invocations but by external events or timers. The INVOCATION-
BASED QOS MEASURING focuses on measuring the performance-related QoS properties at the time a service invoca-
tion occurs.

In case service invocations happen often, the performance overhead can increase, resulting in a lower scalability.
But the measurements of the performance-related QoS properties becomes more precise. Seldom service invocations
result in a minimal performance overhead, dependent on the selected solutions of the other design decisions’. The
scalability enhances, but, the preciseness can be diminished of seldom service invocations.

For selecting the INVOCATION-BASED QOS MEASURING solution, the service provider must not develop a compo-
nent that sends probe requests to the services in order to measure the services’ performance-related QoS properties.

1:16 •

Known Uses:

—Mani and Nagarajan [Mani and Nagarajan 2002] illustrate proxy-based measuring of performance-related QoS of
web services per invocation.

—Afek et al. [Afek et al. 1996] implemented a framework for QoS-aware remote object invocations using Java RMI
over an ATM network. QoS measuring works per invocation following the QOS WRAPPER pattern.

—The QoS CORBA Component Model (QOSCCM) [Object Management Group (OMG 2008] use the QOS
INTERCEPTOR pattern to realize a non-intrusive INVOCATION-BASED QOS MEASURING solution for measuring
performance-related QoS properties.

Discussion.

For a service consumer, choosing a PERMANENT QOS MEASURING or EVENT-TRIGGERED QOS MEASURING solu-
tions means to extend the clients to send probe requests to the service. Setting an appropriate time interval to send the
probe requests is of particular interest, otherwise the service provider can identify the probe requests as potential denial
of service (DoS) attacks. For a service provider an INVOCATION-BASED QOS MEASURING solution is a convenient
solution because no additional components must be developed in order to measure the services’ performance-related
QoS properties. Furthermore, sending probe requests to the services can impact the system’s performance overhead
(SR3), decrease the scalability (SR2), and can influence the preciseness of the measurements (SR4).

4.2.4 Architectural Design Decision:
WHERE SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE EVALUATED?.

This design decision concentrates on the location where the evaluation of the performance-related QoS measure-
ments should take place. In Figure 7 we show how requirements influence this design decision.

SR3
Minimal performance

overhead
Where should the

performance-related QoS
properties be evaluated?

SR5
Reusability

SR2
Scalability

LOCALIZED
QOS

OBSERVER

CENTRALIZED
QOS

OBSERVER

alternative alternative

influences

SR4
Preciseness

Fig. 7. WHERE SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE EVALUATED?

The evaluation solution should be reusable, making it possible that multiple performance-related QoS measurements
can be evaluated regarding the negotiated SLAs. It is required that the SLA evaluation solution has a minimal perfor-
mance overhead and that the system’s scalability does not decrease. The evaluation solution should provide precise
evaluation results and should not influence the measurements of other performance-related QoS properties.

• 1:17

In our model, we propose two architectural design solutions for evaluating the performance-related QoS measure-
ments. Both are strategies of the QOS OBSERVER pattern [Voelter et al. 2004].

Solution: LOCALIZED QOS OBSERVER.

Evaluate the performance-related QoS measurements locally at each client or service.

Client

Middleware

M
ac

hi
ne

 B
ou

nd
ar

y
afterInvocation(...)

LOCALIZED
QOS

OBSERVER

Middleware

beforeInvocation(...) afterInvocation(...)
3

5

1
7 Service4

beforeInvocation(...)

2

LOCALIZED
QOS

OBSERVER

6

Fig. 8. LOCALIZED QOS OBSERVER

In Figure 8 we sketch the LOCALIZED QOS OBSERVER solution that is based on the QOS OBSERVER pattern [Voelter
et al. 2004]. The LOCALIZED QOS OBSERVER resides within each client or service and is responsible for evaluating
the performance-related measurements. The measuring solution passes the QoS measurements to the LOCALIZED QOS
OBSERVER, making an immediate evaluation possible.

A LOCALIZED QOS OBSERVER is a scalable solution with a minimal performance overhead. Dependent on the
implementation, a LOCALIZED QOS OBSERVER is reusable. In case of implementing a WRAPPER, the LOCALIZED
QOS OBSERVER is reusable. In contrast, implementing the LOCALIZED QOS OBSERVER within the services’ or clients’
implementation is not reusable.

A LOCALIZED QOS OBSERVER can influence other performance-related QoS measurements in case the measure-
ments are evaluated or stored immediately. For example, a server-side LOCALIZED QOS OBSERVER that evaluates
immediately a service’s processing time can influence the measured round-trip time at the client-side.

Known Uses:

—CISCO’s QoS Device Manager (QDM) [CISCO a] is installed locally at routers or switches for observe the net-
work’s QoS properties.

—Ecklund et al. [Ecklund et al. 2001] use a LOCALIZED QOS OBSERVER by introducing reusable QoS managers
within a middleware.

—The Zyrion Traverse SLA Manager [Zyrion, Inc.] monitors SLAs in a decentralized fashion, i.e., a LOCALIZED
QOS OBSERVER.

!! !

1:18 •

Solution: CENTRALIZED QOS OBSERVER.

Submit the performance-related QoS measurements to a CENTRALIZED QOS OBSERVER that evaluates the
measurements regarding the negotiated SLAs.

Client

Client

CENTRALIZED
QOS

OBSERVER

CENTRALIZED
QOS

OBSERVER
Services

Services

Service Consumer’s
Network

LAN / WAN

Service Provider’s
Network

Fig. 9. CENTRALIZED QOS OBSERVER

In Figure 9 we illustrate the architecture of a CENTRALIZED QOS OBSERVER. The clients send the performance-
related QoS measurements to a CENTRALIZED QOS OBSERVER that is placed within the service consumer’s network.
At the server side, the services submit the performance-related QoS measurements to a server-side CENTRALIZED
QOS OBSERVER to evaluate the measurements.

A CENTRALIZED QOS OBSERVER is a reusable solution to evaluate the performance-related QoS measurements.
The clients’ and the services’ measuring solution must be configured or implemented to submit the measurements to
the CENTRALIZED QOS OBSERVER.

Sending the performance-related QoS measurements to the CENTRALIZED QOS OBSERVER over the network can
impact the systems’ performance. In a high scalable system, a CENTRALIZED QOS OBSERVER can be a bottle-neck
of the QoS monitoring infrastructure. At the server-side, the performance-related QoS properties are measured and
submitted to the CENTRALIZED QOS OBSERVER within the service provider’s network. The sending of the measure-
ments over the network can influence the client-side measurements, resulting in imprecise performance-related QoS
measurements and evaluation results.

Known Uses:

—Sahai et al. [Sahai et al. 2002] introduce an SLA violation engine, a CENTRALIZED QOS OBSERVER.
—Badidi et al. [Badidi et al. 2006] present a CENTRALIZED QOS OBSERVER within the WS-QoSM architecture.
—The CISCO IOS IP SLAs [Cisco 2011] provide a CENTRALIZED QOS OBSERVER to evaluate the performance-

related QoS measurements.
—Li et al. [Li et al. 2006] use a CENTRALIZED QOS OBSERVER for evaluation.
—Michlmayer et al. [Michlmayr et al. 2009] designed an event-driven CENTRALIZED QOS OBSERVER for detecting

SLA violations.
—The EVEREST+ framework [Lorenzoli and Spanoudakis 2010] includes a CENTRALIZED QOS OBSERVER to pre-

dict SLA violations.

• 1:19

Discussion.

To compare the two presented solutions, a LOCALIZED QOS OBSERVER evaluates the performance-related QoS
measurements at each client or service locally, whereas a CENTRALIZED QOS OBSERVER evaluates the measurements
for all clients or services uniformly. You have to inform both observers about the performance-related QoS agree-
ments. Because SLAs change or can get re-negotiated, dynamic interfaces are desirable. Having to evaluate multiple
performance-related QoS measurements, a CENTRALIZED QOS OBSERVER can influence the system’s performance
(SR3) and decrease the scalability (SR2). A CENTRALIZED QOS OBSERVER is a reusable solution (SR4) for all
clients or services within the network. Implementing a LOCALIZED QOS OBSERVER solution following the ADAPTER
or WRAPPER pattern [Gamma et al. 1995] results in a reusable (SR4) solution.

4.2.5 Architectural Design Decision:
WHEN SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE EVALUATED?.

The next architectural decision focuses on the evaluation of the performance-related QoS measurements. In our
terminology, evaluating means to check the performance-related QoS measurements regarding the SLAs in order to
detect or prevent SLA violations.

SR2
Scalability

When should the
performance-related QoS
properties be evaluated?

SR4
Preciseness

SR3
Minimal performance

overhead

C2
Dependency on the
third parties’ qualityC3

Prevention of SLA
violations

ONLINE
QOS

MONITOR

OFFLINE
QOS

MONITOR

alternative alternative

can be utilized as

influences

Fig. 10. WHEN SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE EVALUATED?

In Figure 10 we illustrate the design decisions requirements and the proposed solutions. The evaluation solution
should deliver precise results in order to detect or prevent SLA violations. In case the services’ performance depends
on some third parties’ services, the evaluation solution should alert performance drops well-timed. But, the evaluation
solution should have minimal performance overhead in a high scalable system. An ONLINE QOS MONITOR can be
used as an OFFLINE QOS MONITOR.

In the following, we present our model’s solutions for this architectural design decision. The presented solutions
are derivations of the QOS OBSERVER pattern [Voelter et al. 2004].We explain the solutions’ forces and consequences
regarding the requirements.

1:20 •

Solution: ONLINE QOS MONITOR.

Evaluate the performance-related QoS measurements with regard to the negotiated SLAs during the SLA’s
validity.

time

SLA
starts

SLA
ends

SLA’s
validity

periodicevent-triggered

permanent

Fig. 11. ONLINE QOS MONITOR

Typically SLAs are negotiated over a certain period of time. An ONLINE QOS MONITOR evaluates the performance-
related QoS measurements within the SLAs’ validity. In Figure 11 we sketch the the ONLINE QOS MONITOR solution
for a better understanding.

A permanent ONLINE QOS MONITOR evaluates the performance-related QoS properties after they have been mea-
sured immediately. Because of the permanent knowledge about the current compliance state, performance losses can
be detected, making it possible to detect SLA violations before they occurred. But, the permanent evaluation can
impact the systems performance.

An event-triggered ONLINE QOS MONITOR evaluates the performance-related QoS measurements in case certain
events occur, such as user requests or system events. Dependent on the events’ frequency, SLA violations can be
avoided to take appropriate actions. In case the events’ frequency is low, it is possible to violate SLAs. Between
the occurrence of two events, the performance-related QoS measurements have to be stored somewhere. After the
occurrence of an event, the stored measurements must be involved of the evaluation. Also dependent on the events’
frequency, an event-triggered ONLINE QOS MONITOR can imply a performance overhead.

A periodic ONLINE QOS MONITOR evaluates the measured performance-related QoS properties in pre-defined time
intervals. Dependent on the intervals’ length, SLA violations can occur or can be prevented. A periodic ONLINE
QOS MONITOR can impact the system’s performance if the time interval is set to low. Within the time interval, the
performance-related QoS measurements must be stored and after the elapsed time period included into the evaluation.

Known Uses:

—Ta and Mao [Ta and Mao 2008] use an ONLINE QOS MONITOR solution to monitor SLAs.
—Zyrion’s Traverse [Zyrion, Inc.] is an ONLINE QOS MONITOR using proactive reporting to avoid SLA violations.
—Sahai et al. [Sahai et al. 2002] describe an event-triggered ONLINE QOS MONITOR to evaluate the SLA when certain

events happen.
—Crossflow [Grefen and Hoffner 1999; Grefen et al. 2000] combines an OFFLINE QOS MONITOR and an ONLINE

QOS MONITOR. In the ONLINE QOS MONITOR, a QoS estimation component provides predictions of behavior of

• 1:21

the currently running workflow instances. These estimates are based on performance models given as continuous
time Markov models and produced by the OFFLINE QOS MONITOR. The ONLINE QOS MONITOR can compare the
predictions and the real execution times of running workflows.

!! !

Solution: OFFLINE QOS MONITOR.

Store the performance-related QoS measurements during the SLA’s validity. Evaluate the stored measurements
at the end of the SLA’s validity.

time
SLA
starts

SLA
ends

SLA’s
validity Time of

evaluation

Fig. 12. OFFLINE QOS MONITOR

In Figure 12 we illustrate on a time line when the OFFLINE QOS MONITOR evaluates the performance-related QoS
measurements. As shown, the evaluation takes place after the SLA’s validity.

The OFFLINE QOS MONITOR has a minimal performance overhead because the performance-related QoS mea-
surements just must be stored after they have been measured. After the SLA’s validity the stored measurements are
evaluated and possible SLA violations are detected. Because of a minimal performance overhead the scalability in-
creases. An OFFLINE QOS MONITOR can deliver precise results in case the performance-related QoS properties were
measured precisely.

As a consequence, the OFFLINE QOS MONITOR is not an adequate solution to prevent SLA violations. It is also
difficult the detect any performance drops in case the services’ quality depends on third-party services. Hence, an
OFFLINE QOS MONITOR is not advisable for service providers. But, it is a convenient solution for a service consumer
to detect SLA violations after the SLA’s validity.

In case of deciding for an OFFLINE QOS MONITOR the architectural design decision WHERE SHOULD THE
PERFORMANCE-RELATED QOS PROPERTIES? (see Section 4.2.6) must be answered because the performance-related
QoS measurements must be stored during the SLA’s validity.

Known Uses:

—The ProM framework, introduced by Dongen et al. [van Dongen et al. 2005], uses process mining techniques,
making it possible to detect a processes’ SLA violations offline.

—Jurca et al. [Jurca et al. 2007] introduce an offline client-side QoS monitor to periodically report feedback to a
trusted center in order to establish a reputation mechanism for client-side QoS monitoring.

1:22 •

—Crossflow [Grefen and Hoffner 1999; Grefen et al. 2000] combines OFFLINE QOS MONITOR and ONLINE QOS
MONITOR. In the OFFLINE QOS MONITOR, past workflow executions are collected in a log. A continuous-time
Markov chain is created using the log data. It is used to calculate the QoS values such as the time of workflow
executions. These values are then used for calculating predictions and comparing them to the data of actually
running workflows in the ONLINE QOS MONITOR.

Discussion.

The ONLINE QOS MONITOR is a convenient solution to prevent SLA violations, and, hence, desirable for service
providers. An ONLINE QOS MONITOR can also act as an OFFLINE QOS MONITOR. For example, at the end of an
SLA’s validity, an event can be triggered that the ONLINE QOS MONITOR evaluates the performance-related QoS mea-
surements. An ONLINE QOS MONITOR can produce more overhead because it evaluates the performance-related QoS
measurements permanently during the SLA’s validity, whereas an OFFLINE QOS MONITOR evaluates the measure-
ments once at the end of the SLA’s validity. For a service consumer, an OFFLINE QOS MONITOR is often a convenient
solution in order to detect SLA violations after the SLA’s validity. In case of deciding in favor of an OFFLINE QOS
MONITOR, architectural design decisions about storing the performance-related QoS measurements during the SLA’s
validity must be faced.

4.2.6 Architectural Design Decision:
WHERE SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE STORED?.

This architectural design decision focuses on where to store the performance-related QoS measurements and the
evaluation results. Storing the performance-related QoS measurements is necessary in case the evaluation is performed
at some later stage, such as at the end of an SLA’s validity.

SR3
Minimal performance

overhead

Where should the
performance-related QoS

properties be stored?

SR2
Scalability

LOCALIZED
QOS

STORAGE

CENTRALIZED
QOS

STORAGE

alternative alternative

influences

Fig. 13. WHERE SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE STORED?

In Figure 13 we present how the requirements influence this architectural design decision. Storing the performance-
related QoS measurements should have minimal performance overhead (SR3) and should not influence the system’s
scalability (SR2). In our model, we propose the two following solutions for storing.

• 1:23

Solution: LOCALIZED QOS STORAGE.

Store the performance-related QoS measurements and/or evaluation results locally at each client or service.

LAN / WAN

Client

Client
LOCALIZED

QOS
STORAGE

Service Consumer’s
Network

Service Provider’s
Network

Services

Services

LOCALIZED
QOS

STORAGE LOCALIZED
QOS

STORAGE

LOCALIZED
QOS

STORAGE

Fig. 14. LOCALIZED QOS STORAGE

In Figure 14 we illustrate the architecture of a LOCALIZED QOS STORAGE. A LOCALIZED QOS STORAGE stores the
performance-related QoS measurements locally at the client or the service, such as in a log file or in a local database.

The solution does not impact the performance, because the performance-related QoS measurements must not be
transmitted over the network to be stored. In addition, the scalability of a LOCALIZED QOS STORAGE increases.

In case the SLAs include multiple clients or services, the evaluation of the stored measurements can become more
time consuming and complex. A CENTRALIZED QOS OBSERVER has to collect from each client or service the mea-
surements for evaluation. In case of choosing a LOCALIZED QOS OBSERVER, the LOCALIZED QOS STORAGE is a fast
and simple storing solution.

Known Uses:

—Zhu et al. [Zhu et al. 2006] introduce the Localized Adaptive Data Collection and Aggregation Approach (LADCA),
i.e., a LOCALIZED QOS STORAGE solution.

—The ServiceStore, introduced by Jin et al. [Jin et al. 2010], uses a LOCALIZED QOS STORAGE for QoS-aware service
compositions.

—Shirazi et al. [Shirazi et al. 2004] designed a QoS-aware middleware. The middleware consists of a Profiler that
stores performance-related QoS characteristics locally.

—The PISA server [Muehlen and Rosemann 2000] to monitor workflow-based processes utilizes a LOCALIZED QOS
STORAGE.

!! !

1:24 •

Client

Client

Services

Services

Service Consumer’s
Network

LAN / WAN

Service Provider’s
Network

CENTRALIZED
QOS

STORAGE

CENTRALIZED
QOS

STORAGE

Fig. 15. CENTRALIZED QOS STORAGE

4.2.6.1 Solution: CENTRALIZED QOS STORAGE.

Transmit the performance-related QoS measurements and/or evaluation results from each client or service to
a centralized component that stores the data in a CENTRALIZED QOS STORAGE.

In Figure 15 we illustrate the CENTRALIZED QOS STORAGE solution. A CENTRALIZED QOS STORAGE stores
the performance-related QoS measurements in a centralized storage, such as in a database. In this case, the clients
and services have to submit the performance-related QoS properties over the network in order to store them in the
CENTRALIZED QOS STORAGE.

In case the SLAs include multiple clients or services, a CENTRALIZED QOS OBSERVER can evaluate the stored
measurements easily because they must not be collected from each client or service. If choosing a LOCALIZED QOS
OBSERVER, then the client or service have to query and fetch the stored measurements over the network in order to
evaluate them. A CENTRALIZED QOS OBSERVER is reusable for all clients or services within the network.

Sending the measurements over the network to the CENTRALIZED QOS STORAGE can result in a performance
overhead. Also, the scalability can decrease.

Known Uses:

—Sahai et al. [Sahai et al. 2002] build a high performance database that stores the QoS measurements.
—Li et al. [Li et al. 2006] store the performance-related QoS measurements following the CENTRALIZED QOS STOR-

AGE solution.
—Rosenberg et al. [Rosenberg et al. 2006] use a CENTRALIZED QOS STORAGE to store evaluation results.

Discussion.

Storing the performance-related QoS measurements following the LOCALIZED QOS STORAGE has the benefit that
the measurements must not be transmitted over the network to a CENTRALIZED QOS STORAGE. In case of deciding in
favor of a CENTRALIZED QOS OBSERVER to evaluate the measurements, the CENTRALIZED QOS OBSERVER can use a
polling mechanism to collect the performance-related QoS measurements from each client or service. This can result in
a longer evaluation process. Also, the clients and services must be equipped with an interface to gather to measurements
from the LOCALIZED QOS STORAGE. It is also possible that the clients or services push the performance-related QoS
measurements periodically to the CENTRALIZED QOS OBSERVER.

• 1:25

4.3 Relations between the Architectural Design Decisions
The ADDM provides pattern-based solutions for architectural design decisions, having forces and consequences
against various requirements. Architectural design decisions are inter-dependent because several requirements influ-
ence multiple architectural design decisions. In this section, we discuss the relations between the architectural design
decisions, stemming from common influencing requirements.

Which SLA party needs
QoS monitoring?

Where should the
performance-related QoS
properties be measured?

When should the
performance-related QoS
properties be evaluated?

Where should the
performance-related QoS
properties be evaluated?

Where should the
performance-related QoS

properties be stored?

Legend

obligatory decision
optional decision

When should the
performance-related QoS
properties be measured?

Fig. 16. Relations between the architectural design decisions

In Figure 16, we illustrate how the architectural design decisions depend on each other. Continuous lines between
two design decisions mean that both design decisions must be taken, whereas dotted lines depict optional links between
design decisions. After having clarified the requirements set, the model can be navigated for appropriate solutions.

Let us assume that the design decision WHICH SLA PARTY REQUIRES QOS MONITORING? is taken. Depending on
the defined requirements (C1), our model proposes a SERVICE PROVIDER QOS MONITORING, a SERVICE CONSUMER
QOS MONITORING, or a COMBINED QOS MONITORING solution. The model documents which performance-related
QoS properties can be measured, stored, and evaluated.

By following the model, one can keep track of defined requirements and the solutions adopted. For example, after
defining for an architectural design decision that scalability (SR3) is required, our model can propose for every sub-
sequent design decisions solution candidates. Defining the requirements step-by-step for each design decision renders
it possible to propose solutions for multiple subsequent design decisions. For example, if a scalable evaluation solu-
tion with a minimal performance overhead is required at any taken design decision, our model also proposes scalable
solutions with a minimal performance overhead for the subsequent decision.

A decision-making process by eliciting the requirements stepwise, facilitates an interactive design process. Using
the model allows for bookkeeping which design decisions which requirements were imposed. This improves the trace-
ability throughout the decision-making process, recording the decision order. With this, the designers can replay the
decision-making process, e.g., in order to adjust for changes in requirements.

5. EVALUATION — A CASE STUDY
In this section we present an industrial case study, dealing with multimedia web services that must comply to
performance-related QoS agreements. We explain the case study, its services, and the services’ performance-related
QoS properties. Then we list the case study’s requirements and exemplify the decision-making processes using the
ADDM.

1:26 •

Fig. 17. An example scenario of the MVNO case study

5.1 A Case Study Overview
The case study deals with advanced multimedia services offered by mobile virtual network operators (MVNO). Such
services combine value-added application capabilities with the Internet and Next Generation Mobile Telecommuni-
cation Network capabilities. All these capabilities are integrated by the MVNO services to provide controls for calls
and sessions, messaging features, location-aware features, multimedia content streaming, and parental monitoring.
An MVNO serves as an intermediary between customers and the audio/video (a/v) streaming providers. It processes
media search requests and streams a/v content according to customer-provided preferences, making it possible for the
customers to watch, for example, live soccer matches with a selected audio commentary language.

For a better understanding of the case study, we give an example in Figure 17. The MVNO is the service provider
and provides services with on-demand audio and video streaming content to its customer. First, a service customer
must login into the system to order to access the services that offer the MVNO’s audio and video streaming features.
After a successful authentication and authorization, service customers can search desired video streams in a favored
language by invoking the MVNO’s search web service. Then, the MVNO invokes the web services of its a/v providers
to fulfill the service customer’s request. The MVNO receives the responses from the a/v providers, assembles them,
and returns a list of possible streaming endpoints to the customer. The customer starts the multimedia streaming by
selecting one endpoint.

5.2 The Case Study’s Performance-related QoS Properties
The terms and conditions of the offered services are regulated by appropriate SLAs signed between the MVNO and
the customer as well as between the audio and video providers and the MVNO enterprise. In the case study, the SLAs
contain various agreements on the services’ performance. It is crucial for the MVNO to check and avoid any potential
violations with regard to the services offered to the service consumers as well as to detect any performance drops of
the providers’ services.

• 1:27

Table I. The case study’s QoS compliance concerns
Performance-related QoS Properties Description
Up-Time A service’s up-time is the probability that the service is operative and answering the service

consumers’ queries. In the case that an exception occurs during the services’ processing, the
service is considered as down. In the literature, a service’s up-time is often referred as the
service’s availability.

Processing Time The processing time is the elapsed time for processing the service consumers’ queries. It does
not take into account of processing the incoming requests and outgoing response in the under-
lying middleware.

In Table I, we list the case study’s performance-related QoS properties. For MVNOs, not only proper quality level
of connections, but also the quality of all the other services provided by MVNO must be assured, such as the streaming
service. It is a non-trivial task as the MVNO services’ quality usually depends on the third-party services’ quality. The
key properties in the case study are the up-time and the processing time. Up-time represents the degree of availability
of every service to the consumers, i.e., running and answering the consumers’ requests.Processing time constraints
stipulate that services must process the consumer requests in a negotiated period of time.

5.3 The Case Study’s Requirements
The MVNO provides services to service consumers (C1) to stream multimedia content. The service consumers and
the MVNO negotiate SLAs regarding the multimedia services’ performance-related QoS properties. The MVNO as a
service provider wants to introduce a QoS monitoring infrastructure, where the services’ performance quality depends
on the performance quality of the third parties’ services (C2). As a service provider, the MVNO should prevent SLA
violations (C3) in order to avoid financial consequences and a diminished reputation.

Currently the MVNO offers three services to its customers and it is highly possible that the MVNO will increase
the number of offered services. It is foreseeable that more and more new consumers will access the services in the
near future, making it inevitable to design a scalable (SR2) architecture with a minimal performance overhead (SR3).
Furthermore, reusability (SR5) is advisable.

Because the MVNO provides services to the service consumers, access to the services’ implementation was provided
(IR1). The selection of a web service framework was a decision left to us. We haven chosen in favor of a framework
that enables separation of concerns (IR3) to monitor the performance-related QoS properties without modifying the
services’ implementation (IR2).

5.4 The Case Study’s Solutions
In the case study, we have used the ADDM in order to design a QoS monitoring infrastructure that fulfills the afore-
mentioned requirements. We illustrate the proposed solutions in Figure 18.

Using our ADDM, we were able to propose a SERVICE PROVIDER QOS MONITORING solution because the MVNO
provides services to its consumers. To prevent SLA violations, the performance-related QoS properties must be eval-
uated during the SLAs’ validity. Our model proposed to develop an ONLINE QOS MONITORING solution to detect any
performance drops of the third parties’ services, making it possible to take counter-measures against SLA violations.

To provide the necessary instrumentation, the QOS INTERCEPTOR pattern and an INVOCATION-BASED QOS MEA-
SURING solution can be applied to meet the requirements IR2 and IR3. We adopted the Apache CXF web service
framework [The Apache Software Foundation a] because it provides convenient solutions to intercept the messages to
measure the services’ performance-related QoS properties without modifying the services’ implementation (IR1).

Using our ADDM, we have proposed to use a CENTRALIZED QOS OBSERVER solution to evaluate the performance-
related QoS measurements. The QOS INTERCEPTORS must be instrumented to submit the measurements to the CEN-
TRALIZED QOS OBSERVER over the network. As a trade-off, the performance overhead can increase in case the number
of services and clients increase. To store the QoS measurements, our model helped decide in favor of a CENTRALIZED

1:28 •

SERVICE
PROVIDER

Which SLA party
needs QoS monitoring?

QOS
INTERCEPTOR

Where should the
performance-related QoS
properties be measured?

Implementation-specific requirements:
- Access to the services’ implementation
- Access to the middleware’s implementation

ONLINE QOS
MONITORING

When should the
performance-related QoS

measurements be evaluated?

Criteria:
- Detect and prevent SLA violations
- Dependent on third parties’ quality

CENTRALIZED
QOS

OBSERVER

Where should the
performance-related QoS

measurements be evaluated?

System-specific requirements:
- Minimal performance overhead
- Scalability
- Separation of concerns
- Reusability

CENTRALIZED
QOS STORAGE

Where should the
performance-related QoS

measurements be stored?

start

Proposed solution

Legend

Criteria:
- Providing services

INVOCATION-
BASED QOS
MEASURING

When should the
performance-related QoS

measurements be measured?

Fig. 18. Proposed solutions of our ADDM

QOS OBSERVER that is deployed on the same node as the CENTRALIZED QOS STORAGE, resulting in a convenient
ONLINE QOS MONITORING solution.

6. CONCLUSION AND FUTURE WORK
The main contribution of this paper is an architectural design decision model (ADDM) for designing the architec-
ture of a QoS monitoring infrastructure for service-based systems. The model covers architectural design decisions
about the measuring performance-related QoS properties, their evaluation against negotiated SLAs, and the storing
of the measurements and evaluation results. Our model proposes architectural solutions by organizing existing archi-
tectural, remoting, and design patterns. We describe the forces and the consequences of each proposed solution of an
architectural design decision against criteria, system-specific, and implementation-specific requirements.

To evaluate the ADDM, we employed it in an industrial case study. The case study deals with advanced QoS-
aware multimedia services, making it possible to watch movies or live-streams in a favored language. We present the
case study’s proposed solutions for its QoS monitoring infrastructure in order to prevent SLA violations, incurring
a minimal performance overhead and being reusable and scalable. In the case study, we used the ADDM in order
to design the architecture of the case study’s QoS monitoring infrastructure from scratch. As future work, we want
to examine the dynamic behavior of the ADDM, i.e., to analyze an existing QoS monitoring infrastructure against
some requirements by using the ADDM. In such cases, we can research questions about how the architecture must be
changed regarding some requirements?

In this work, we limited ourselves to designing an internal QoS monitoring infrastructure that resides within the
service provider’s or service consumer’s network. As potential future work we think about external QoS monitoring,
governed by a third party outside the service consumer’s and service provider’s network. In this case, the service
provider and the service consumer have to transmit the SLAs and the performance-related QoS measurements to the
third party. An external QoS monitoring infrastructure raises questions about trust and security. For example, questions
arise regarding the vulnerability to forge the QoS measurements or the evaluation results.

• 1:29

Feature-complete and production-grade QoS monitoring systems offer a reporting feature for presenting QoS eval-
uation results to the stakeholders, for instance, to the finance department for billing, to the engineers for diagnosing
and planning, or directly to the service consumers [The Open Group 2004]. As future work we plan to cover issues
pertaining to QoS reporting. One possible solution to report the QoS monitoring results is a web-based dashboard, as
described in [Silveira et al. 2009]. We will review selected technical aspects, especially the choice of representation
(e.g., processable report formats, UI-based reporting, notification schemes) and coverage (i.e., the range of reported
details and the level of granularity).

Acknowledgments
This work was supported by the European Union FP7 projects COMPAS, grant no. 215175, and INDENICA, grant
no. 257483.

We thank our shepherd Eduardo Fernandez for his constructive and supporting help during the shepherding process.
Ed helped improve the quality of the patterns and the paper itself.

REFERENCES

AFEK, Y., MERRITT, M., AND STUPP, G. 1996. Remote Object Oriented Programming with Quality of Service or Java’s RMI over ATM.
AURRECOECHEA, C., CAMPBELL, A. T., AND HAUW, L. 1998. A survey of QoS architectures. Multimedia Systems 6, 138–151.
AVGERIOU, P. AND ZDUN, U. 2005. Architectural Patterns Revisited – A Pattern Language. In Proceedings of 10th European Conference on

Pattern Languages of Programs (EuroPlop 2005). Irsee, Germany, 1 – 39.
BADIDI, E., ESMAHI, L., SERHANI, M. A., AND ELKOUTBI, M. 2006. WS-QoSM: A Broker-based Architecture for Web Services QoS Manage-

ment. In Innovations in Information Technology, 2006. 1–5.
BIANCO, P., LEWIS, G. A., AND MERSON, P. 2001. Service Level Agreements in Service-Oriented Architecture Environments. Tech. rep.,

Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.
CISCO. QoS Device Manager (QDM). http://www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/qdm/index.htm.
CISCO. Response Time Reporter (RTR) Enhancements. http://www.cisco.com/en/US/docs/ios/12_0t/12_0t3/feature/

guide/RTRenh.html.
CISCO. 2011. Cisco IOS IP Service Level Agreements (SLAs). http://www.cisco.com/go/ipsla (last accessed: February 2011).
CZARNECKI, K. AND EISENECKER, U. W. 2000. Generative Programming — Methods, Tools, and Applications 6th Ed. Addison-Wesley Longman

Publishing Co., Inc.
DANIEL, F., CASATI, F., D’ANDREA, V., MULO, E., ZDUN, U., DUSTDAR, S., STRAUCH, S., SCHUMM, D., LEYMANN, F., SEBAHI, S.,

MARCHI, F. D., AND HACID, M.-S. 2009. Business Compliance Governance in Service-Oriented Architectures. In Proceedings of the 2009
International Conference on Advanced Information Networking and Applications. IEEE Computer Society, Washington, DC, USA, 113–120.

ECKLUND, D. J., GOEBEL, V., PLAGEMANN, T., ECKLUND, JR., E. F., GRIWODZ, C., AAGEDAL, J. O., LUND, K., AND BERRE, A.-J. 2001.
QoS Management Middleware: A Separable, Reusable Solution. In Proceedings of the 8th International Workshop on Interactive Distributed
Multimedia Systems. IDMS ’01. Springer-Verlag, London, UK, 124–137.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional.

GREFEN, P., ABERER, K., HOFFNER, Y., AND LUDWIG, H. 2000. Crossflow: Cross-organizational workflow management in dynamic virtual
enterprises.

GREFEN, P. AND HOFFNER, Y. 1999. Crossflow: Cross-organizational workflow support for virtual organizations. In Ninth International Workshop
on Research Issues on Data Engineering: Information Technology for Virtual Enterprises, RIDE-VE 1999, Sydney, Australia. IEEE, 90–91.

HAUCK, R. AND REISER, H. 2000. Monitoring Quality of Service across Organizational Boundaries. In Proceedings of the Third International
IFIP/GI Working Conference on Trends in Distributed Systems: Towards a Universal Service Market. Springer-Verlag, London, UK, 124–137.

JIN, J., ZHANG, Y., CAO, Y., PU, X., AND LI, J. 2010. ServiceStore: A Peer-to-Peer Framework for QoS-Aware Service Composition. In
Proceedings of the 2010 IFIP international conference on Network and parallel computing. NPC’10. Springer-Verlag, Berlin, Heidelberg, 190–
199.

JURCA, R., FALTINGS, B., AND BINDER, W. 2007. Reliable qos monitoring based on client feedback. In Proceedings of the 16th international
conference on World Wide Web. WWW ’07. ACM, New York, NY, USA, 1003–1012.

KELLER, A. AND LUDWIG, H. 2003. The WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services. Journal
of Network and Systems Management 11, 57–81. 10.1023/A:1022445108617.

1:30 •

LEITNER, P., MICHLMAYR, A., ROSENBERG, F., AND DUSTDAR, S. 2010. Monitoring, Prediction and Prevention of SLA Violations in Composite
Services. In ICWS. IEEE Computer Society, 369–376.

LI, Z., JIN, Y., AND HAN, J. 2006. A Runtime Monitoring and Validation Framework for Web Service Interactions. In Proceedings of the
Australian Software Engineering Conference. IEEE Computer Society, Washington, DC, USA, 70–79.

LORENZOLI, D. AND SPANOUDAKIS, G. 2010. EVEREST+: Run-time SLA violations prediction. In Proceedings of the 5th International
Workshop on Middleware for Service Oriented Computing. MW4SOC ’10. ACM, New York, NY, USA, 13–18.

MANI, A. AND NAGARAJAN, A. 2002. Understanding quality of service for Web services – Improving the performance of your Web services.
http://www.ibm.com/developerworks/library/ws-quality.html, last accessed: February 2011.

MICHLMAYR, A., ROSENBERG, F., LEITNER, P., AND DUSTDAR, S. 2009. Comprehensive QoS monitoring of Web services and event-based
SLA violation detection. In MWSOC ’09: Proceedings of the 4th International Workshop on Middleware for Service Oriented Computing. ACM,
New York, NY, USA, 1–6.

MICHLMAYR, A., ROSENBERG, F., LEITNER, P., AND DUSTDAR, S. 2010. End-to-End Support for QoS-Aware Service Selection, Binding, and
Mediation in VRESCo. IEEE Transactions on Services Computing 3, 193–205.

MICROSOFT. .NET. http://www.microsoft.com/net/.
MICROSOFT. .NET Remoting. http://msdn.microsoft.com/en-us/library/kwdt6w2k(v=vs.71).aspx.
MICROSOFT. Windows Communication Framework. http://msdn.microsoft.com/en-us/netframework/aa663324.aspx.
MICROSOFT. Windows Performance Counters. http://msdn.microsoft.com/en-us/library/ms735098.aspx.
MUEHLEN, M. Z. AND ROSEMANN, M. 2000. Workflow-based Process Monitoring and Controlling – Technical and Organizational Issues. In

Proceedings of the 33rd Hawaii International Conference on System Science (HICSS-33. IEEE Computer Society Press, 1–10.
OBERORTNER, E., ZDUN, U., AND DUSTDAR, S. 2010. Patterns for Measuring Performance-Related QoS Properties in Distributed Systems. In

Pattern Languages of Programming Conference (PLoP).
OBJECT MANAGEMENT GROUP (OMG. 2008. Quality Of Service For CCM (QOSCCM).
O’BRIEN, L., MERSON, P., AND BASS, L. 2007. Quality Attributes for Service-Oriented Architectures. In SDSOA ’07: Proceedings of the

International Workshop on Systems Development in SOA Environments. IEEE Computer Society, Washington, DC, USA, 3.
PAPAZOGLOU, M. 2008. Compliance Requirements for Business-process driven SOAs. In E-Government Ict Professionalism and Competences

Service Science, A. Mazzeo, R. Bellini, and G. Motta, Eds. IFIP International Federation for Information Processing Series, vol. 280. Springer
Boston, 183–194.

RAN, S. 2003. A Model for Web Services Discovery with QoS. SIGecom Exch. 4, 1, 1–10.
ROSENBERG, F. 2010. QoS-Aware Composition of Adaptive Service-Oriented Systems. Ph.D. thesis, Vienna University of Technology.
ROSENBERG, F., PLATZER, C., AND DUSTDAR, S. 2006. Bootstrapping Performance and Dependability Attributes of Web Services. In ICWS

’06: Proceedings of the IEEE International Conference on Web Services. IEEE Computer Society, Washington, DC, USA, 205–212.
SAHAI, A., MACHIRAJU, V., SAYAL, M., JIN, L. J., AND CASATI, F. 2002. Automated SLA Monitoring for Web Services. In IEEE/IFIP DSOM.

Springer-Verlag, 28–41.
SCHMIDT, D. C., ROHNERT, H., STAL, M., AND SCHULTZ, D. 2000. Pattern-Oriented Software Architecture: Patterns for Concurrent and

Networked Objects. John Wiley & Sons, Inc., New York, NY, USA.
SCHULZ, F. 2010. Towards Measuring the Degree of Fulfillment of Service Level Agreements. In Information and Computing (ICIC), 2010 Third

International Conference on. Vol. 3. 273–276.
SHIRAZI, B., KUMAR, M., AND SUNG, B. Y. 2004. QoS Middleware Support for Pervasive Computing Applications. In Proceedings of the

Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS’04) - Track 9 - Volume 9. HICSS ’04. IEEE
Computer Society, Washington, DC, USA.

SILVEIRA, P., RODRÍGUEZ, C., CASATI, F., DANIEL, F., D’ANDREA, V., WORLEDGE, C., AND TAHERI, Z. 2009. On the Design of Compliance
Governance Dashboards for Effective Compliance and Audit Management. In Proceedings of the 3rd Workshop on Non-Functional Properties
and SLA Management in Service-Oriented Computing (NFPSLAM-SOC’09).

SOMMERS, J., BARFORD, P., DUFFIELD, N., AND RON, A. 2007. A Framework for Multi-objective SLA Compliance Monitoring. In In Proceed-
ings of IEEE INFOCOM (minisymposium.

TA, X. AND MAO, G. 2008. Online End-to-End Quality of Service Monitoring for Service Level Agreement Management. Int. J. Commun.
Syst. 21, 383–404.

THE APACHE SOFTWARE FOUNDATION. Apache CXF. http://cxf.apache.org/.
THE APACHE SOFTWARE FOUNDATION. Apache ODE. http://ode.apache.org/.
THE OPEN GROUP. 2004. SLA Management Handbook – Volume 4: Enterprise Perspective.
TRAN, H., HOLMES, T., OBERORTNER, E., MULO, E., CAVALCANTE, A. B., SERAFINSKI, J., TLUCZEK, M., BIRUKOU, A., DANIEL, F., SIL-

VEIRA, P., ZDUN, U., AND DUSTDAR, S. 2010. An End-to-End Framework for Business Compliance in Process-Driven SOAs. In Proceedings
of SYNASC.

• 1:31

VAN DONGEN, B. F., DE MEDEIROS, A. K. A., VERBEEK, H. M. W., WEIJTERS, A. J. M. M., AND VAN DER AALST, W. M. P. 2005. The
ProM Framework: A New Era in Process Mining Tool Support. In Lecture Notes in Computer Science: Applications and Theory of Petri Nets
2005: 26th International Conference, ICATPN 2005, Miami, USA, June 20-25, 2005. / Gianfranco Ciardo, Philippe Darondeau (Eds.). Vol. 3536.
Springer Verlag, 444–454.

VOELTER, M., KIRCHER, M., AND ZDUN, U. 2004. Remoting Patterns – Foundations of Enterprise, Internet, and Realtime Distributed Object
Middleware. Wiley & Sons.

YU, W. D., RADHAKRISHNA, R. B., PINGALI, S., AND KOLLURI, V. 2007. Modeling the Measurements of QoS Requirements in Web Service
Systems. Simulation 83, 1, 75–91.

ZDUN, U. AND DUSTDAR, S. 2006. Model-Driven and Pattern-Based Integration of Process-Driven SOA Models. In The Role of Business
Processes in Service Oriented Architectures, F. Leymann, W. Reisig, S. R. Thatte, and W. M. P. van der Aalst, Eds. Dagstuhl Seminar Proceedings
Series, vol. 06291. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.

ZENG, L., LINGENFELDER, C., LEI, H., AND CHANG, H. 2008. Event-Driven Quality of Service Prediction. In Proceedings of the 6th Interna-
tional Conference on Service-Oriented Computing. ICSOC ’08. Springer-Verlag, Berlin, Heidelberg, 147–161.

ZHU, J., PAPAVASSILIOU, S., AND YANG, J. 2006. Adaptive Localized QoS-Constrained Data Aggregation and Processing in Distributed Sensor
Networks. IEEE Trans. Parallel Distrib. Syst. 17, 923–933.

ZYRION, INC. Traverse Service Level Management – Monitoring SLAs for Services and Infrastructure. http://www.zyrion.com/

company/whitepapers/Traverse_SLM.pdf.

1:32 •

A. ARCHITECTURAL DESIGN DECISIONS, REQUIREMENTS, AND SOLUTIONS
A.1 WHICH SLA PARTY NEEDS QOS MONITORING?

Table II. WHICH SLA PARTY NEEDS QOS MONITORING?
Requirements C1 – Providing or consuming services, or both
Solution SERVICE PROVIDER QOS MONITORING
Description: Integrate a QoS monitoring infrastructure into the service provider’s network.
Forces: measuring of server-side performance-related QoS properties is possible
Consequences: client-side performance-related QoS properties cannot be measured
Solution SERVICE CONSUMER QOS MONITORING
Description: Integrate a QoS monitoring infrastructure into the service consumer’s network.
Forces: measuring of client-side performance-related QoS properties is possible
Consequences: server-side performance-related QoS properties cannot be measured
Solution COMBINED QOS MONITORING
Description Integrate a common QoS monitoring infrastructure in the service consumers and service provider’s network. Measure

the performance-related QoS properties in both networks and combine both measurements to evaluate the performance-
related SLAs.

Forces: measuring of client- and server-side performance-related QoS properties is possible
Consequences: service provider and service consumer have to agree on a common QoS monitoring infrastructure

• 1:33

A.2 WHERE SHOULD THE PERFORMANCE-RELATED QOS PROPERTIES BE MEASURED?

Requirements SR1 – QoS properties
SR3 – Minimal performance overhead
SR4 – Preciseness
SR5 – Reusability
IR1 – Access to the applications
IR2 – Access to the middleware
IR3 – Separation of concerns

Solution Pattern: QOS INLINE
Description: Instrument the client’s and the service’s implementation with local measuring points and place them directly

into their implementation.
Forces: - a minimal performance overhead can be detected

- precise QoS measurements of round-trip and processing times
- no access to the middleware is required
- does not influence other QoS measurements

Consequences: - network-specific performance-related QoS properties cannot be measured
- access to the application is required
- no separation of concerns is provided
- not reusable

Solution Pattern: QOS WRAPPER
Description: Instrument the client’s and service’s implementations with local QOS WRAPPERS that are responsible for mea-

suring the performance-related QoS properties. Let a client invoke a service using a client-side QOS WRAPPER.
Extend a service with a server-side QOS WRAPPER that receives the client’s requests.

Forces: - no access to the clients’ or services’ application is required
- no access to the middleware is required
- a minimal performance overhead
- separation of concern
- reusable
- precise QoS measurements

Consequences: - cannot measure network-specific QoS properties
Solution Pattern: QOS INTERCEPTOR
Description: Hook QOS INTERCEPTORS into the middleware that intercept the message flow between the client and the

service. Let the QOS INTERCEPTORS measure the performance-related QoS properties of service invocations.
Forces: - no access to the application required

- minimal performance overhead
- separation of concerns
- reusable

Consequences: - access to middleware is required
- can influences other QoS measurements, leading to imprecise QoS measurements

Solution Pattern: QOS REMOTE PROXY
Description: Implement and setup a QOS REMOTE PROXY in the service consumer’s and/or service provider’s network. In

the service consumer’s network, let each client invoke the services via the QOS REMOTE PROXY. In the service
provider’s network, make each service only accessible via a QOS REMOTE PROXY.

Forces: - no access to the application required
- separation of concerns
- reusable
- no access to the clients’ and/or services’ middleware necessary

Consequences: - the performance overhead can increase
- can influence other measurements, hence
- can lead to imprecise QoS measurements

Table III. : HOW TO MEASURE PERFORMANCE-RELATED QOS PROPERTIES?

1:34 •

A.3 WHEN SHOULD THE PERFORMANCE-RELATED QOS PROPERTIES BE MEASURED?

Requirements SR2 – Scalability
SR3 – Minimal performance overhead
SR4 – Preciseness

Solution PERMANENT QOS MEASURING
Description: Send periodically, in pre-defined time intervals, probe requests to the service to measure the performance-

related QoS properties permanently.
Forces: - a high scalability in case of a long time interval

- a performance overhead increases in case of a short time interval
- precise measuring results if setting a short time interval

Consequences: - a low scalability in case of a short time interval
- a minimal performance overhead if setting a long time interval
- imprecise measuring results if setting a long time interval

Solution Pattern: EVENT-TRIGGERED QOS MEASURING
Description: Send probe requests to the service to measure the performance-related QoS properties in case certain events

occur in the system.
Forces: - the scalability increases in case of rare event occurrence

- a minimal performance overhead if events occur rarely
- precise measuring results if events occur frequently

Consequences: - low scalability if events occur frequently
- a performance overhead in case of high event frequency
- imprecise measuring results in occur rarely

Solution INVOCATION-BASED QOS MEASURING
Description: Measure the performance-related QoS properties every time a service invocation happens.
Forces: - highly scalable if services are invoked rarely

- a minimal performance overhead in case of rare service invocations
- precise measurements if services are invoked often

Consequences: - the scalability decreases in case of frequent service invocations
- the higher the service invocation frequency, the higher the performance overhead
- imprecise measuring results if services are invoked rarely

Table IV. : WHEN SHOULD THE PERFORMANCE-RELATED QOS PROPERTIES BE MEASURED?

• 1:35

A.4 WHERE SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE EVALUATED?

Table V. WHERE SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE EVALUATED?
Requirements SR2 – Scalability

SR3 – Minimal performance overhead
SR4 – Preciseness
SR5 – Reusability

Solution LOCALIZED QOS OBSERVER
Description: Evaluate the performance-related QoS measurements locally at each client or service.
Forces: - the scalability increases because all the measurements are evaluated locally

- a minimal performance overhead is possible
- reusable in case the evaluation is not implemented with the clients’ or services’ implementation

Consequences: - the evaluation can impact the measuring results, leading to imprecise evaluation results
Solution CENTRALIZED QOS OBSERVER
Description: Submit the performance-related QoS measurements to a CENTRALIZED QOS OBSERVER that evaluates the

measurements regarding the negotiated SLAs.
Forces: - reusable for all clients and services

- precise evaluation results
Consequences: - the scalability can decrease, because

- a performance overhead is possible because all clients and services must transmit the measurements to the CEN-
TRALIZED QOS OBSERVER

1:36 •

A.5 WHEN SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE EVALUATED?

Table VI. WHEN SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE EVALUATED?
Requirements C2 – Dependency on the third parties’ quality

C3 – Prevention of SLA violations
SR2 – Scalability
SR3 – Minimal performance overhead
SR4 – Preciseness

Solution ONLINE QOS OBSERVER
Description: Evaluate the performance-related QoS measurements with regard to the negotiated SLAs during the SLAs’

validity.
Forces: - SLA violations can be prevented

- performance drops of the third-party services’ quality can be recognized on time
Consequences: - the scalability decreases

- a performance overhead is possible
- evaluating the performance-related QoS measurements immediately can impact the measuring of other QoS proper-
ties

Solution OFFLINE QOS OBSERVER
Description: Store the performance-related QoS measurements during the SLA’s validity. Evaluate the stored measurements

at the end of the SLA’s validity.
Forces: - SLA violations can be detected

- a minimal performance overhead is provided
- the scalability increases
- the preciseness of the evaluation results depends on the storing solution

Consequences: - SLA violations cannot be prevented
- detecting performance drops of the third-party services’ quality is difficult

• 1:37

A.6 WHERE SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE STORED?

Table VII. WHERE SHOULD THE PERFORMANCE-RELATED QOS MEASUREMENTS BE STORED?
Requirements SR2 – Scalability

SR3 – Minimal performance overhead
Solution LOCALIZED QOS STORAGE
Description: Store the performance-related QoS measurements and/or evaluation results locally at each client or service.
Forces: - minimal performance overhead

- the scalability decreases
Consequences: - influences the evaluation solution regarding performance overhead and scalability
Solution CENTRALIZED QOS STORAGE
Description: Transmit the performance-related QoS measurements and/or evaluation results from each client or service to

a centralized component that stores the data in a CENTRALIZED QOS STORAGE.
Forces: - easier CENTRALIZED QOS EVALUATION because the measurements do not have to be collected together
Consequences: - the number of services and clients influence the scalability

- a minimal performance overhead can be detected

