
Int. J. Business Process Integration and Management, Vol. 5, No. 3, 2011 229

Copyright © 2011 Inderscience Enterprises Ltd.

Name-based view integration for enhancing the
reusability in process-driven SOAs

Huy Tran* and Uwe Zdun
Software Architecture Group,
Faculty of Computer Science,
University of Vienna,
Berggasse 11, 1090 Wien, Austria
Fax: +43-1-4277-39699
E-mail: huy.tran@univie.ac.at
E-mail: uwe.zdun@unvie.ac.at
*Corresponding author

Schahram Dustdar
Distributed Systems Group,
Institute of Information Systems,
Vienna University of Technology,
Argentinierstrasse 8/184-1, Wien 1040, Austria
Fax: +43-1-8801-18491
E-mail: dustdar@infosys.tuwien.ac.at

Abstract: Many companies opt for reusing existing software development artefacts due to the
benefits of the reuse such as increasing productivity, shortening time-to-market, and spending
less time for testing, debugging, to name but a few. Unfortunately, reusing artefacts in existing
process-driven SOA technologies is cumbersome and hard to achieve due to several inhibitors.
First, the languages used for business process development are not intentionally designed for
reuse. Second, numerous tangled process concerns embraced in a process description
significantly hinder the understanding and reusing of its concepts and elements. Third, there is a
lack of appropriate methods and techniques for integrating reusable artefacts. In our previous
work, we proposed a view-based, model-driven approach for addressing the two former
challenges. We present in this paper a named-based view integration approach aiming at solving
the third one. Preliminary qualitative and quantitative evaluations of four use cases extracted
from industrial processes show that this approach can enhance the flexibility and automation of
reusing process development artefacts.

Keywords: reuse; business process; SOAs; view-based; model-driven; name-based; tool support.

Reference to this paper should be made as follows: Tran, H., Zdun, U. and Dustdar, S. (2011)
‘Name-based view integration for enhancing the reusability in process-driven SOAs’, Int. J.
Business Process Integration and Management, Vol. 5, No. 3, pp.229–239.

Biographical notes: Huy Tran is a Postdoctoral Researcher working at the Software Architecture
Group, Faculty of Computer Science, University of Vienna, Austria. He received his Bachelor in
Computer Science and Engineering from Ho Chi Minh City University of Technology, Vietnam
in 2002 and PhD in Computer Science specialised in Software Engineering at Vienna University
of Technology, Austria in 2009. He has participated in a number of European projects.
His current research interests include: software architecture, model-driven engineering,
domain-specific modelling, business processes, compliance engineering and service-oriented
computing.

Uwe Zdun is a Full Professor for Software Architecture at the Faculty of Computer Science,
University of Vienna. He received his PhD from the University of Essen in 2002. His research
focuses on architectural decision, software patterns, modelling of complex software systems,
service-oriented systems, domain-specific languages, and model-driven development. He has
published more than 100 articles in journals, workshops, and conferences, and is a co-author of
the books Remoting Patterns – Foundations of Enterprise, Internet, and Real-Time Distributed
Object Middleware (J. Wiley and Sons) and Software-Architektur: Grundlagen, Konzepte, Praxis
(Elsevier/Spektrum). He has participated in numerous R&D projects and industrial projects. He is
the European Editor of the Journal Transactions on Pattern Languages of Programming
(TPLoP) published by Springer, and Associate Editor-in-Chief for design and architecture for the
IEEE Software Magazine.

230 H. Tran et al.

Schahram Dustdar is a Full Professor of Computer Science (Informatics) with a focus on internet
technologies heading the Distributed Systems Group, Institute of Information Systems, Vienna
University of Technology (TU Wien) where he is the Director of the Vita Lab. From 2004–2010,
he is the Honorary Professor of Information Systems at the Department of Computing Science at
the University of Groningen (RuG), The Netherlands. From 1999–2007, he worked as the
co-Founder and Chief Scientist of Caramba Labs Software AG (CarambaLabs.com) in Vienna
(acquired by Engineering NetWorld AG), a venture capital co-funded software company focused
on software for collaborative processes in teams. Caramba Labs was nominated for several
(international and national) awards: World Technology Award in the category of software
(2001); top-startup companies in Austria (Cap Gemini Ernst and Young) (2002), and MERCUR
Innovationspreis der Wirtschaftskammer (2002). Since 2009, he is an ACM Distinguished
Scientist.

This paper is a revised and expanded version of a paper entitled ‘Name-based view integration
for enhancing the reusability in process-driven SOAs’ presented at the 1st International
Workshop on Reuse in Business Process Management (rBPM’10) in conjunction with BPM 2010
(The 8th International Conference on Business Process Management), Hoboken, New Jersey,
USA, 13–16 September 2010.

1 Introduction

Process-driven, service-oriented architectures (SOAs)
advocate the notion of process in order to aggregates
various business functionality to accomplish a certain
business goal, such as fulfilling a purchase order, handling
customer complaints, booking a travel itinerary, and so on.
A typical business process consists of a number of activities
that are orchestrated by a control flow. Each activity is
either a communication task (e.g., invoking other services,
processes, or an interaction with a human) or a data
processing task. Business processes are often designed by
business and domain experts using high-level, notational
languages, such as business process modelling notation
(BPMN) and UML activity diagram. Process designs in the
aforementioned languages are mostly non-executable, and
therefore, have to be translated into or implemented
in low-level, executable languages such as business
process execution language (BPEL). After that, process
implementations can be deployed in a process engine for
executing and monitoring.

The IEEE (1990) Glossary of Software Engineering
Terminology defines reusability as “the degree to which a
software module or other work product can be used in more
than one computer programme or software system”. The
significant benefit of reuse is to improve software quality
and productivity (Gaffney and Durek, 1989; Fichman and
Kemerer, 2001). There are several types of reusable
aspects in software projects such as architectures, source
code, data, design, documentation, test cases, requirements,
etc. (Krueger, 1992; Frakes and Terry, 1996). The
state-of-the-art software reuse practice suffers from several
technical and non-technical inhibitors (Frakes and Kang,
2005; Morisio et al., 2002). Reuse in business process
development is not an exception. We identify the most
important factors that hinder the reuse of artefacts during
the process development life cycle as:

• Most of the languages widely used for modelling and
developing processes, such as BPMN, UML activity
diagram, EPC, WS-BPEL, etc., are not intentionally

designed for reuse. As a result, none of the plethora of
existing tools for business process design and
development offers adequate support for reusing
development artefacts.

• A process description based on the aforementioned
languages is often suffering from various tangled
concerns such as the control flow, collaborations, data
handling, transaction, and so on. As the number of
services or processes involved in a business process
grows, the complexity of the process increases along
with the number of invocations, data exchanges, and
therefore, multiplies the difficulty of analysing,
understanding, and reusing any artefacts.

• The lack of adequate method support for flexibly
integrating and composing reusable artefacts also
contributes to the difficulty of reusing process artefacts.

In our previous work, we proposed a novel approach for
addressing the complexity of business process development
(Tran et al., 2007, 2008a, 2008b, 2009b; Holmes et al.,
2008). Our approach explored the notion of views and the
model-driven paradigm in order to separate process
representations (e.g., process designs or implementations)
into different (semi-)formalised view models. As such,
stakeholders can be provided with tailored perspectives by
view integration mechanisms (Tran et al., 2008a, 2007) with
respect to their particular expertise and interests. View
models are also organised into appropriate levels of
abstraction: high-level, abstract views are suitable for
business experts whilst low-level, technology-specific views
are mostly used by technical specialists. In this paper, we
focus on providing a solution for the third issue mentioned
above, i.e., supporting methods for reusing and integrating
process artefacts in a flexible manner. In particular, we
introduce a name-based matching approach for view model
integration and show that this approach can enhance the
flexibility and automation of process artefacts (i.e., process
views and view elements) reuse via industrial case studies.

 Name-based view integration for enhancing the reusability in process-driven SOAs 231

This article is organised as follows. In Section 2, we
introduce the view-based modelling framework (VbMF)
(Tran et al., 2007, 2008a; Holmes et al., 2008) that realises
the view-based, model-driven approach. Next, Section 3
presents a name-based view integration approach which is
simple but efficient and flexible for enhancing the
reusability of business processes. Processes extracted from
four case studies are exemplified to illustrate our approach
in Section 4 along with a preliminary quantitative study to
evaluate this approach in industrial context. Then, Section 5
discusses the related work. Finally, Section 6 summarises
our main contributions.

2 View-based modelling framework

In this section, we introduce the VbMF, which is an
implementation of our view-based, model-driven approach
(Tran et al., 2007). A typical business process embodies
various tangled concerns, such as the control flow, data
processing, service and process invocations, fault handling,
event handling, human interactions, transactions, to name
but a few. The entanglement of those concerns increases the
complexity of process development and maintenance as the
number of involved services and processes grow. In order to
deal with this complexity, we use the notion of architectural
views (or views for short) to describe the various process
concerns. In particular, a view is a representation of one
particular concern of a process. We devise different view
models for formalising the concept of architectural view.

VbMF initially provides stakeholders with basic (semi-)-
formalisations, which are the FlowView, CollaborationView
(CV) and InformationView (IV) models, for describing a
business process. The FlowView model specifies the
orchestration of process activities, the CV model represents
the interactions with other processes or services, and the IV
model elicits data representations and processing.
Nonetheless, VbMF is not bound to these view models but
can be extended for capturing many other concerns, i.e.,
human interaction (Holmes et al., 2008), data access and
integration (Mayr et al., 2008), and traceability (Tran et al.,
2009b). View models of VbMF are derived from
fundamental concepts and elements of the core model (see
Figure 2). As a result, the core model plays an important
role in our approach because it provides the basis for
extending and integrating view models, and establishing and
maintaining the dependencies between view models (Tran
et al., 2007). In other words, thus, the concepts of the core
model are the extension points and integration points of
VbMF (Tran et al., 2007).

There are many stakeholders involved in process
development at different levels of abstraction. For instance,
business experts require high-level abstractions that offer
domain or business concepts concerning their distinct
knowledge, skills, and needs, while IT experts merely work
with low-level, technology-specific descriptions. The MDD
paradigm provides a potential solution to this problem by
separating the platform-independent and platform-specific
models. A platform-independent model is a model of a

software system that does not depend on the specific
technologies or platforms used to implement it while a
platform-specific model links to particular technologies
or platforms (OMG, 2003; Frankel, 2002). Leveraging
this advantage of the MDD paradigm, we devise a
model-driven stack that has two basic layers: abstract and
technology-specific. The abstract layer includes the views
without the technical details such that the business experts
can understand and manipulate. Then, the IT experts can
refine or map these abstract concepts into platform-
and technology-specific views. The technology-specific
layer contains the views that embody concrete information
of technologies or platforms. On the one hand, a
technology-specific view model can be directly derived
from the core model, such as the TransactionView model
shown in Figure 1. On the other hand, a technology-specific
view model can also be an extension of an abstract one, i.e.,
the BpelCollaborationView (BCV) model extends the CV
model, the BPEL4PeopleView model extends the
HumanView model (Holmes et al., 2008), etc., by using the
model refinement mechanism (see Figure 1). By refining an
abstract layer down to a technology-specific layer, our
view-based approach helps bridging the abstraction levels
along the vertical dimension, i.e., the dimension of
abstraction, which is orthogonal to the horizontal dimension
described in the previous paragraph (see Figure 1).

Based on the aforementioned view model specifications,
stakeholders can create different types of views for
describing specific business processes. These process
views can be instances of the concerns’ view models,
extension view models, or integrated view models
(see Figure 1). They can be manipulated by the stakeholders
to achieve a certain business goal, or adapt to new
requirements in business environment or changes in
technology and platform. Finally, we provide model-to-code
transformations (or so-called code generations) that take
these views as inputs and generate process implementations
and deployment configurations. The resulting code and
configurations, which may be augmented with hand-written
code, can be deployed in process engines for execution.

We implemented VbMF as eclipse plug-ins based on the
eclipse modelling framework (EMF). To illustrate how
VbMF works in reality, we exemplify parts of the billing
and provisioning system of a domain registrar and hosting
provider (Evenson and Schreder, 2007). The billing system
comprises a wide variety of services including: credit
bureau services (cash clearing, card validation and payment,
etc.), domain services (who is, domain registration and
transfer, etc.), hosting services (web and e-mail hosting,
provisioning, etc.), and retail services (customer service and
support, etc.). The company has developed a business
process, namely, billing renewal process, in order to
integrate and orchestrate core functionality and the services.

Figure 3 shows some VbMF views of the billing
renewal process. The VbMF FlowView model is devised to
capture essential control structures such as sequence and
parallel execution, exclusive decision, loop, and so on
(van der Aalst et al., 2003). The billing renewal FlowView

232 H. Tran et al.

[see Figure 3(a)], which is an instance of the FlowView
model, represents the execution order of the process’s
activities, i.e., the process’s control flow, in form of the
tree-based editors automatically generated by EMF. The
blue circles are atomic tasks standing for the process’s
activities orchestrated by the aforementioned control
structures to charge a customer’s billing and renew his/her
contract. Note that each atomic task will not contain any
details, i.e., data handling, service invocations, transactions,
etc. These details will be expressed in the corresponding
views such as the CV or IV. As such, the process’s
FlowView is equivalent to a high-level BPMN, EPC, or
UML Activity diagram abstracted away from the details of
all process activities. To this extent, business and domain
experts can better formulate business- and domain-oriented
concepts using the FlowView.

Besides the FlowView, the other high-level views also
provide high-level concepts of the corresponding process
concerns complementing the process tasks defined
in the FlowView. For instance, CV and IV [Figure 3(b)]
provide abstract services and process interactions, business

objects, respectively. Along with the FlowView, these
high-level views target the business and domain experts
who are rather familiar with business and domain concepts
than the technical details (Tran et al., 2007).

The abstract concepts provided by using the
aforementioned high-level VbMF views can be elaborated
with more technology-specific details using the low-level
views (Tran et al., 2007). That is, the IT experts will refine
or implement the abstract concepts of the high-level views
by adding more technology-specific information, i.e., web
service invocations, XML schema data types, etc. For
instance, Figure 3(c) depicts the low-level CV and IV of the
billing renewal process for the WS-BPEL and web service
technologies. Note that the relationship between FlowView
and other views as well as between the high-level and
low-level views can be (semi-)-automatically established
and maintained via the name-based view integration
approach presented in the next section. For further details of
VbMF, we would like to refer the readers to (Tran et al.,
2007, 2008a, 2008b, 2009b; Holmes et al., 2008).

Figure 1 Overview of the VbMF

Source: Tran et al. (2007) and Holmes et al. (2008)

Figure 2 Core model – the foundation for VbMF’s extension and integration

Source: Tran et al. (2007)

 Name-based view integration for enhancing the reusability in process-driven SOAs 233

Figure 3 Billing renewal process development using VbMF (see online version for colours)

3 Name-based view integration approach

In the view-based, model-driven approach, the FlowView –
as the most important concern in process-driven SOA – is
often used as the central view. There are many stakeholders
involved in process development at different levels of
abstraction. For instance, business experts require high-level
abstractions that offer domain or business concepts
concerning their distinct knowledge, skills, and needs, while
IT experts merely work with low-level, technology-specific
descriptions. According to the specific needs and knowledge
of the stakeholders, views can be combined to provide a
richer view or a more thorough view of a certain process.
For instance, IT experts may need to involve the process
control flow along with service interactions which is only
provided via an integration of the FlowView with either the
CV or BCV.

We propose a name-based matching algorithm for
realising the view integration mechanism (see Algorithm 1).
This algorithm is simple but can be effectively used at the
view level (or model level) because from a modeller’s point
of view in reality it makes sense, and is reasonable, to
assign the same name to the modelling entities that pose the
same functionality and semantics. Moreover, this can be
achieved in a (semi-)automatic fashion as we illustrate in
the following scenario to define the process activity
‘ReceiveExpiryNotification’ of the billing renewal process.
First of all, the business analysts sketch out the design of the
billing renewal process with various process atomic tasks

orchestrated by control flow structures [see Figure 3(a)].
After that, the business analysts, maybe together with the
domain experts or technical experts, can choose to define
this task as an interaction. As such, either a new abstract
interaction is created in the CV or a low-level, technology-
specific interaction is created in the BCV. As such, the
newly created element and the corresponding atomic task
have the same name. We can automatically achieve the
various VbMF views of the Billing Renewal process as
shown in Figure 3 in the same manner. Human intervention
might be necessary in some special situations, i.e., name
conflicts when existing views are refactored or merging.
Nonetheless, other existing view or model merging
approaches such as those using database schema matching,
class hierarchical structures, or ontology-based structures
can better enhance the accuracy of our name-based
matching approach with reasonable effort. In this article, we
mainly focus on the name-based view integration and
illustrate its promising advantages contributing to improve
the reusability of process artefacts.

Before discussing in detail the name-based view
integration, we introduce the definition of conformity of
model elements and integration points. Let m be an element
of a certain view model, the symbol m̂ denotes the
hierarchical tree of inheritance of m, i.e., all elements which
are ancestors of m, and m.x denotes the value of the attribute
x of the element m.

234 H. Tran et al.

Conformity: Let M1, M2 be two view models and m1 ∈ M1
and m2 ∈ M2. Two elements m1 and m2 are conformable if
and only if m1 and m2 have at least one common parent type
in their tree of inheritance or m1 is of type m2, or vice versa.

Using m1 ↑ m2 to denote m1 and m2 are conformable,
Definition 3.1 is given as:

() () ()1 2 1 2 1 2 2 1ˆ ˆ ˆ ˆm m m m m m m m↑ ⇔ ∨ ∨∩ ≠ ∅ ∈ ∈

Integration point: Let M1, M2 be two view models and two
views V1, V2 be instances of M1 and M2, respectively. A
couple of elements e1 and e2, where e1 ∈ V1 and e2 ∈ V2, e1
is an instance of m1, and e2 is an instance of m2, is an
integration point between V1 and V2 if and only if m1 and m2
are conformable and e1 and e2 have the same value of the
attribute ‘name’.

Using I(e1, e2) to denote the integration point between
two views V1 and V2 at the elements e1 and e2, and x y to
denote x is an instance of y, Definition 3.2 can be written as:

() () ()1 2 1 21 2, . .I e e e name e namem m⇔ ∧ =↑

where

1 1 2 2 1 1 2 2 1 1 2 2, , , , ,e V e V e m e m V M V M∈ ∈

Algorithm 1 View integration by name-based matching

Input: View V1 and view V2
Output: Integrated view V12
begin
 V12.initialise();
 E1 ← V1.getAllElements();
 E2 ← V2.getAllElements();
 V12:addElements(E1);
 V12:addElements(E2);
 foreach e1 ∈ E1 do
 found ← false;
 while not found do
 e2 ← E2:next();
 if (e1:name =
 e2:name) ∧ (e1:superType ← e2:superType) then
 found ← true;
 enew ← createNewElement();
 enew.attribute ← merge(e1.attribute,
 e2.attribute);
 enew.reference ← merge(e1.reference,
 e2.reference);
 V12:addElements(enew);
 V12:removeElements(e1, e2);

 return V12;
end

The main idea of the name-based matching for view
integration is to find all integration points I(e1, e2) between
two views V1 and V2 and merge these two views at those
integration points. The merging at a certain integration point
I(e1, e2) can be achieved by creating a new element which
aggregates the attributes and references of both e1 and e2
(see Algorithm 1).

The complexity of the name-based matching algorithm
is approximately O(k + l + k × l), where k = | V1 | and
l = | V2 |. This complexity can be significantly reduced by
using a configuration file that contains the integration points
of a certain pair of views. As we mentioned above, the
integration points can be (semi-)automatically derived from
the relationships between two views. Later on, the view
integration algorithm just retrieves the configuration file and
performs view merging straightforwardly. This way, the
complexity of the view integration algorithm can be reduced
to approximately O(P) where P is the number of integration
points between V1 and V2. We note that P ≤ k × l. In reality,
the numbers of elements which are used for view integration
are often much less the total number of elements of the
containing view, and therefore, P << k × l). Nonetheless,
this approach requires additional support, especially tool
support, for automatically deriving and maintaining the
integration points as well as keeping the configuration files
up-to-date. These tasks are among our ongoing endeavours
to complete the framework.

4 Case study

In this section, a typical process development scenario is
presented to demonstrate how the name-based view
integration in VbMF can support a flexible reuse of process
artefacts. After that, we present a preliminary quantitative
evaluation of our approach based on four use cases
extracted from industrial business processes.

4.1 Process artefacts reuse scenario

As shown in Section 2, the billing renewal process has been
developed so far using VbMF. Now, the company starts
develop an order handling process such that internet
customers can order the company’s products via the
website. Figure 4 shows the core functionality of the order
handling process in terms of a BPMN diagram. The
company opts to reuse existing artefacts as much as possible
to develop the order handling process rather than starting
from scratch. After analysing the business requirements, the
developers identify a number of fragments of process
models and services with similar functionality existing
across the enterprise. For instance, the order handling
process requires a task that charges customer payment by
invoking the services provided by the credit bureau partner.
This task is similar to the ChargePayment task of the billing
renewal process developed before. Therefore, this task and
its functionality should be reused in the order handling
process rather than being re-developed.

 Name-based view integration for enhancing the reusability in process-driven SOAs 235

Figure 4 Overview of the order handling process (see online version for colours)

Figure 5 Name-based view integration approach for reusing by referencing the charge payment element of the billing renewal process in
the order handling process (see online version for colours)

Figure 5 illustrates how the developers reuse
the existing ChargePayment activity for modelling
the order handling process. The scenario is presented in
terms of UML object diagrams. On the right-hand side,
we show the CV and BCV of the billing renewal
process where the ChargePayment activity is defined at
high-level and low-level of abstract, respectively. In the
billing renewal CV, ChargePayment:Interaction – an
instance of the interaction class – has relationships
with three other objects: CreditBureau:Partner,

CreditBureau:Interface, and charge:Operation. The
ChargePayment:Interaction object is refined in the
billing renewal BCV by the ChargePayment:Invoke
object – an instance of the invoke class. The
ChargePayment:Invoke object has two more associations
with the chargePaymentInput:VariableReference and
chargePaymentOutput:VariableReference objects.

In order to properly reuse the ChargePayment activity
of the billing renewal process, the developers perform two
steps:

236 H. Tran et al.

1 Create a corresponding ChargePayment:AtomicTask
in the order handling FlowView as shown in the
right-hand side of Figure 5.

2 Perform one of the following tasks (we note that
these tasks can be supported by the framework in a
(semi-)-automatic manner):
a Explicitly define either an integration point I1

between the ChargePayment:AtomicTask and
the ChargePayment:Interaction or I2 between
the ChargePayment:AtomicTask and the
ChargePayment:Invoke.

b Explicitly specifies the CV and BCV of the
billing renewal process are input views of
the order handling process. As VbMF supports
view integration by name-based matching (cf.
Section 3), the integration points I1 and I2 can be
implicitly resolved by VbMF tooling, i.e., the code
generators.A question might be raised at this point:
“How’s about the relationships between the reused
elements and other views or elements?”. For
instance, the ChargePayment:Invoke has
associations with
chargePaymentInput:VariableReference and
chargePaymentOutput:VariableReference objects
which are instances of the VariableReference class.
In the billing renewal process, the actual
definitions of these objects belong to the
BpelInformationView (BIV). Therefore, these
objects are part of the integration points I3 and I4,
respectively, between the BCV and BIV of the
billing renewal process. In this situation, the
stakeholders can take any one of two possible
approaches which can
be (semi-)automatically supported by our
modelling framework:

1 Reuse the existing integration points between the
BCV and BIV of the billing renewal process: The
stakeholders can gain more benefit of reusability
but they have to analyse the subsequent dependencies
of the reused objects in the BIV. In addition, these
subsequent dependencies also require extra effort to
perform appropriate synchronisation when making
any change in the reused views. This task can be
(semi-)-automatically supported by our traceability
approach in (Tran et al., 2009b).

2 Create new objects in the order handling BIV
bearing the corresponding names, then I3 and I4
can be automatically derived. Although no benefit of
reusability gained, there is also no binding to the billing
renewal BIV. That is, no extra effort for understanding
the subsequent dependencies or maintaining view
synchronisation is required.

In summary, the separation of concerns principle realised in
VbMF has isolated tangled process concerns by different

domain of interests – (semi-)formalised views. The concept
of integration point enables the flexibility of partially or
totally reusing existing artefacts to develop new processes.
As we explained during the development of the order
handling process, each element of a certain process view
might become a potential reusable artefact. This way,
VbMF enables the stakeholders to gain more reuse of
existing process development artefacts.

4.2 Quantitative evaluation

So far we presented a development scenario to illustrate
how our view-based, model-driven powered by the
name-based matching can improve the flexibility and
automation of reuse process development artefacts. To
explore the application and pragmatic usage of our
approach, appropriate experiments to quantitatively
evaluating it in industrial business process development
environment are definitely necessary. We note that the use
cases examined in our work are mostly in the preliminary
development phase. Thus, the reuse rate is an adequate
factor for the initial assessment of the value of the software
reuse technique (Gaffney and Cruickshank, 1992; Frakes
and Terry, 1996). We present in this section our quantitative
evaluations of the reuse rate according to the model
proposed by Gaffney and Cruickshank (1992) (which is
called the proportion of reuse) as well as by Frakes and
Terry (1996) (which is called reuse percent). Essentially,
the reuse rate RR of each view reflects how much of that
view can be attributed to reuse and be computed by the
following formula:

100R
R

E
R

E
= ×

where ER is the number of reusable/reused elements and E
is the total number of elements of the corresponding
view/model (Gaffney and Cruickshank, 1992; Frakes and
Terry, 1996).

We have conducted the quantitative evaluation based on
four processes extracted from industrial use cases. Two of
them are the billing renewal and the order handling
processes mentioned in the previous sections. Two other
processes are the customer relationship management (CRM)
fulfilment process (Evenson and Schreder, 2007) and the
travel booking process (IBM, 2006). The CRM fulfilment
process is part of the CRM, billing, and provisioning
systems of an Austrian internet service provider. The travel
booking process is based upon the procedure of making
itinerary arrangements. It comprises typical steps for
accomplishing a travel reservation: internet customers
submit data about the travel itineraries and receive a
confirmation number when the travel itineraries have been
booked successfully. These processes are mostly in the
modelling and implementation phases. In Table 1, we
present the reuse rate RR of VbMF views, such as CV, IV,
BCV, and BIV, of each case study.

 Name-based view integration for enhancing the reusability in process-driven SOAs 237

Table 1 The reuse rate of process view models in four use cases

CV IV BCV BIV
Process

ER E RR (%) ER E RR (%) ER E RR (%) ER E RR (%)

Billing renewal 49 63 77.78 59 85 69.41 63 132 47.73 407 494 82.39
CRM fulfilment 60 74 81.08 63 78 80.77 74 131 56.49 448 537 83.43
Order handling 29 36 80.56 36 44 81.82 36 65 55.38 238 286 83.22
Travel booking 27 33 81.82 33 43 76.74 33 56 58.93 219 260 84.23

As illustrated in the previous development and reuse
scenario, each element of VbMF process views is
potentially reusable artefact. A FlowView purely contains a
control flow that defines the business logic, i.e., the
execution order of process activities in order to achieve a
particular business goal. Note that detailed specification of
process activities, i.e., invoking a service, transforming data
objects, are not embraced in the FlowView but others such
as (Bpel)CollaborationView and (Bpel)InformationView.
Therefore, reusing an existing FlowView to develop a new
process is still possible but inefficient. Nonetheless, a
FlowView can be reused as the documentation of an ‘as-is’
process that can be referenced, or even used as a skeleton,
for developing new processes. For this reason, we omit the
reuse rate of the FlowView in Table 1.

Figure 6 The reuse rate of view models in the billing renewal
and order handling processes, (a) billing renewal
process (b) order handling process (see online version
for colours)

(a)

(b)

The ratio of reuse also reflects the tendency of integration of
VbMF views. That is, AtomicTasks of the FlowView are
often integrated with the corresponding elements of the CV
and InformationView such as interaction and data handling,
or elements of the BCV and BIV, such as receive, reply,
invoke, and assign. In addition, a number of elements of the

(Bpel)CollaborationView have references to corresponding
elements of (Bpel)InformationView while none of the
(Bpel)InformationView’s element depends on other
views’ elements. As a result, the ratio of reuse of the
(Bpel)InformationView is higher than that of the
(Bpel)CollaborationView.

The ratios of reuse of high-level views are higher than
that of low-level ones because the abstract concepts are
more reusable than the technology-specific counterparts.
The average degrees of reuse over four use cases are very
promising: approximately 80% for the CV, 70% for the IV,
50% for the BCV, and 80% for the BIV. Because the reuse
rates of view models of each use case is almost identical to
those of the others, we only show the visualisations of the
evaluation results of the billing renewal and order handling
processes (see Figure 6).

5 Related work

Software reuse has been an active field of study in software
engineering since last three decades that leads many
promising results for reusing existing software or software
knowledge to build new software (Morisio et al., 2002;
Krueger, 1992; Frakes and Kang, 2005). Several works in
this field have contributed success stories in various aspects
such as reuse libraries, domain engineering methods and
tools, reuse design, design patterns, domain specific
software architecture, components, generators, and so on
(Frakes and Kang, 2005). Yet, there have been very few
investigations of reuse in the area of business process
management, in particular, business process development.

As we mentioned above, most popular languages used
for modelling and developing business processes such as
BPMN, UML activity diagram, EPC, BPEL, etc., are not
intentionally designed for reuse. As a consequence,
developers find it hard to reuse a certain excerpt of a
process represented in any of these languages. Reuse merely
exists in form of ‘copy-and-paste’ if the same language is
used to model and develop business processes. Otherwise,
necessary interpretation and translation must be performed
in order to reuse existing processes. All these are however
cumbersome and error-prone tasks. There are a number of
recent studies aiming at addressing the aforementioned
challenges. Hallerbach et al. (2010) propose an approach for
dealing with the variability of process models that
configures and manages various variants along with
corresponding master process models. Similarly, another
approach, namely, ‘configurable process models’, presented

238 H. Tran et al.

by Gottschalk et al. (2008) can help identifying configurable
elements of a business process model and enable
stakeholders to choose an appropriate configuration in order
to come up with a working business process. Our approach
is different from these works as the stakeholders are able to
work with the process representation through various
perspective in terms of (semi-)formalised view models
rather than considering business processes in a whole.

To the best of our knowledge, most researches on
software reuse in the domain of business process
management focus on the control flow of the business
process. van der Aalst et al. (2003) proposed several
so-called workflow patterns that are reusable control flow
structures representing frequently occurring knowledge for
constructing workflows. Each pattern has a sound semantic
and example usage in various workflow products. These
patterns can be applied for specifying, analysing,
understanding the control flow of business processes.
Similarly, Schumm et al. (2010) present an approach based
on the notion of process fragment that enables a flexible
method for describing and integrating existing artefacts into
business processes. Weber and Reichert (2008) present an
approach they call process model refactoring that allows
stakeholders to prepare process representations in such a
way that reuse become easier afterwards. From our point of
view, the aforementioned approaches and our work in this
paper are nicely complementary. We believe that further
exploring and integrating can fully benefit the reuse of the
control flow. The distinctive point is that our approach does
not solely focus on the reuse of the control flow per se.
Facilitating VbMF’s extension mechanisms (Tran et al.,
2007, 2009a), we aim at supporting the flexible reuse of
business processes from different aspects such as
collaborations, data handling, etc., considering the control
flow as the central notion.

Markovic and Pereira (2008) present a preliminary
approach based on π-calculus and ontologies to provide
richer representations of business process aspects such as
function, information, organisation, etc. This approach aims
at using ontologies to explicitly specify business knowledge
for better manipulating and reusing. However, the authors
have not further mentioned or investigated the reuse of this
knowledge in the business process life cycle.

6 Conclusions

In the domain of process-driven SOAs, reusing existing
development artefacts is hindered by various factors. First,
the languages used for modelling and developing processes
are not intentionally designed for reuse. Second, business
process representations in these languages are often
complex and tangled by various concerns such that it is hard
for the stakeholders to analyse, understand, and reuse them.
Last but not least, there is still a lack of methods for flexibly
integrating reusable artefacts.

In our previous work, we presented a novel solution for
addressing the two former challenges. In this paper we
focused on a name-based view integration approach aiming

at solving the last challenge. Through a qualitative scenario-
driven and a quantitative evaluation, we show that
promising results on reusing process development artefacts
can be achieved using our approach. Nonetheless, further
endeavours such as industrial experiments and surveys over
several software projects are definitely necessary in order to
confirm the application and pragmatic usage of this
approach in reality. In addition, exploring other view
integration methods, such as those based on concept
hierarchies or ontologies, can help fully to exploit the
benefit of reuse and enhancing the automation in reusing
process development artefacts.

Acknowledgements

We are grateful to the anonymous reviewers for their
constructive and truly helpful comments. This work was
partially supported by the European Union FP7 project
COMPAS, grant no. 215175 and the European Union FP7
project INDENICA, grant no. 257483.

References
Evenson, M. and Schreder, B. (2007) ‘SemBiz Project: D4.1 use

case definition and functional requirements analysis’,
available at http://sembiz.org/attach/D4.1.pdf.

Fichman, R. and Kemerer, C. F. (2001) ‘Incentive compatibility
and systematic software reuse’, J. Systems and Software,
Vol. 57, No. 1, pp.45–60.

Frakes, W. and Kang, K. (2005) ‘Software reuse research: status
and future’, IEEE Trans. Software Eng., Vol. 31, No. 7,
pp.529–536.

Frakes, W. and Terry, C. (1996) ‘Software reuse: metrics and
models’, ACM Comp. Surv., Vol. 28, No. 2, pp.415–435.

Frankel, D. (2002) Model Driven Architecture: Applying MDA to
Enterprise Computing, John Wiley & Sons, Inc., New York,
NY, USA.

Gaffney, J. and Durek, T.A. (1989) ‘Software reuse: key to
enhanced productivity: some quantitative models’,
Information and Software Technology, Vol. 31, No. 5,
pp.258–267.

Gaffney, J.E. and Cruickshank, R.D. (1992) ‘A general economics
model of software reuse’, in 14th Int’l Conf. Software Eng.
(ICSE), ACM Press, pp.327–337.

Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H. and
Rosa, M.L. (2008) ‘Configurable workflow models’, Int. J.
Cooperative Inf. Syst., Vol. 17, No. 2, pp.177–221.

Hallerbach, A., Bauer, T. and Reichert, M. (2010) ‘Capturing
variability in business process models: the Provop approach’,
Journal of Software Maintenance, Vol. 22, Nos. 6–7,
pp.519–546.

Holmes, T., Tran, H., Zdun, U. and Dustdar, S. (2008) ‘Modeling
human aspects of business processes – a view-based,
model-driven approach’, in 4th European Conf. Model Driven
Architecture Foundations and Applications (ECMDA-FA),
Springer, pp.246–261.

IBM (2006) ‘Business process use cases’, available at
http://publib.boulder.ibm.com/bpcsamp (accessed on
2008/01/05).

IEEE (1990) Standard Glossary of Software Eng. Terminology.

 Name-based view integration for enhancing the reusability in process-driven SOAs 239

Krueger, C.W. (1992) ‘Software reuse’, ACM Comp. Surv.,
Vol. 24, No. 2, pp.131–183.

Markovic, I. and Pereira, A.C. (2008) ‘Towards a formal
framework for reuse in business process modeling’, in BPM
Workshops Advances in Semantics for Web Services 2007
(Semantics4ws‘07), Springer, pp.484–495.

Mayr, C., Zdun, U. and Dustdar, S. (2008) ‘Model-driven
integration and management of data access objects in
process-driven SOAs’, in ServiceWave, pp.62–73.

Morisio, M., Ezran, M. and Tully, C. (2002) ‘Success and failure
factors in software reuse’, IEEE Trans. Software Eng.,
Vol. 28, No. 4, pp.340–357.

OMG (2003) ‘Model-driven architecture’, available at
http://www.omg.org/mda (accessed on 2006/03/02).

Schumm, D., Leymann, F., Ma, Z., Scheibler, T. and
Strauch, S. (2010) ‘Integrating compliance into business
processes process fragments as reusable compliance
controls, in Multikonferenz Wirtschaftsinformatik (MKWI),
Universitätsverlag Göttingen, pp.2125–2137.

Tran, H., Holmes, T., Zdun, U. and Dustdar, S. (2009a) ‘Modeling
process-driven SOAs – a view-based approach’, Handbook of
Research on Business Process Modeling, IGI Global,
Chapter 2.

Tran, H., Zdun, U. and Dustdar, S. (2009b) ‘VbTrace: using
view-based and model-driven development to support
traceability in process-driven SOAs’, J. Softw. Syst. Model,
available at http://dx.doi.org/10.1007/s10270-009-0137-0.

Tran, H., Zdun, U. and Dustdar, S. (2007) ‘View-based and
model-driven approach for reducing the development
complexity in process-driven SOA’, in Int’l. Conf. Business
Process and Services Computing (BPSC), LNI, GI, Vol. 116,
pp.105–124.

Tran, H., Zdun, U. and Dustdar, S. (2008a) ‘View-based
integration of process-driven SOA models at various
abstraction levels’, in 1st Int’l. Workshop on Model-Based
Software and Data Integration, Springer, pp.55–66.

Tran, H., Zdun, U. and Dustdar, S. (2008b) ‘View-based reverse
engineering approach for enhancing model interoperability
and reusability in process-driven SOAs’, in 10th Int’l. Conf.
Software Reuse (ICSR), Springer, pp.233–244.

van der Aalst, W., ter Hofstede, A.H.M., Kiepuszewski, B. and
Barros, A.P. (2003) ‘Workflow patterns’, Distributed and
Parallel Databases, Vol. 14, No. 1, pp.5–51.

Weber, B. and Reichert, M. (2008) ‘Refactoring process models in
large process repositories’, in Proceedings of the 20th
International Conference on Advanced Information Systems
Engineering, CAiSE ‘08, pp.124–139, Springer-Verlag,
Berlin, Heidelberg.

