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Abstract   Compliance in service-oriented architectures (SOA) means in general 
complying with laws and regulations applying to a distributed software system. 
Unfortunately, many laws and regulations are hard to formulate. As a result, sev-
eral compliance concerns are realized on a per-case basis, leading to ad hoc, hand-
crafted solutions for each specific law, regulation, and standard that a system must 
comply with. This, in turn, leads in the long run to problems regarding complexi-
ty, understandability, and maintainability of compliance concerns in a SOA. In 
this book chapter, we present a case study in the field of compliance to regulatory 
provisions, in which we applied our view-based, model-driven approach for ensur-
ing the compliance with ICT security issues in business processes of a large Euro-
pean company. The research question of this chapter is to investigate whether our 
model-driven, view-based approach is appropriate in the context of the case. This 
question is generally relevant, as the case is applicable to many other problem of 
requirements that are hard to specify formally (like the compliance requirements) 
in other business cases. To this end, we will present lessons learned as well as me-
trics for measuring the achieved degree of separation of concerns and reduced 
complexity. 

1 Introduction 

As the number of elements involved in an architecture grows, the complexity of 
design, development, and maintenance activities also extremely increases along 
with the number of the elements' relationships, interactions, and data exchanges – 
and becomes hardly manageable. We have studied this problem in the context of 
process-driven, service-oriented architectures (but observed similar problems in 
other kinds of architectures as well) (Tran et al., 2009a). Two important issues are 
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(among other issues) reasons for this problem: First, the process descriptions com-
prise various tangled concerns, such as the control flow, data dependencies, ser-
vice invocations, security, compliance, etc. This entanglement seriously reduces 
many aspects of software quality such as the understandability, adaptability, and 
maintainability. Second, the differences of language syntaxes and semantics, the 
difference of granularity at different abstraction levels, and the lack of explicit 
links between process design and implementation languages hinder the reusability, 
understandability, and traceability of software components or systems being built 
upon or relying on such languages. 

In our previous work we introduced a novel approach for addressing the afore-
mentioned challenges. Our approach exploits a combination of the concept of arc-
hitectural views (IEEE, 2000) – a realization of the separation of concerns prin-
ciple (Ghezzi et al., 2002) – and the model-driven development paradigm (MDD) 
(Stahl and Völter, 2006) – a realization of the separation of abstraction levels. 
This approach has been implemented in the View-based Modeling Framework – 
an extensible development framework for process-driven, service-oriented archi-
tectures (SOAs) (Tran et al., 2009a). In this chapter, we present a case study in the 
field of compliance to regulatory provisions in which we applied our approach for 
complying to ICT security issues in a business process of a large European bank-
ing company. In particular, the case study illustrates how our approach helps 
achieving the following major contributions: first, it captures different perspec-
tives of a business process model in separated (semi-)formalized view models in 
order to adapt to various stakeholders' expertise; second, it links to the require-
ments of the system via a special requirements meta-data view formally modeling 
the parts of the requirements information needed in the model-driven architecture; 
third, it reduces the complexity of dependency management and enhances tracea-
bility in process development via explicit trace links between code, design, and 
requirements artifacts in the model-driven architecture. We also present lessons 
learned and preliminary quantitative evaluations on the case study to support the 
assessment of our approach regarding some aspects of software quality such as the 
understandability, adaptability, and maintainability. 

The rest of the chapter is organized as follows. In Section 2 we introduce a 
working application scenario extracted from the business processes of an Euro-
pean banking company. Next, an overview of compliance in service-oriented ar-
chitectures is provided in Section 3. Section 4 presents a qualitative analysis of our 
approach applied in the application scenario that illustrates how the aforemen-
tioned contributions can be achieved. The lessons learned and quantitative evalua-
tions are provided in Section 5. We discuss the related work in Section 6 and con-
clude. 
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2 Case Study: A Loan Approval Process 
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Fig. 11.1 Overview of the loan approval process 

Throughout this study, we use a loan approval process of a large European 
banking company to illustrate the application of our approach in the domain of 
process-driven SOAs. The banking domain must enforce security and must be in 
conformity with the regulations in effect. Particular measures like separation of 
duties, secure logging of events, non-repudiable action, digital signature, etc., need 
to be considered and applied to fulfil the mandatory security requirements in order 
to comply with norms and standards of the banking domain as well as European 
laws and regulations.  In particular, the company emphasizes the necessity of pre-
venting the frauds, preserving the integrity of data, insuring a secure communica-
tion between the customers and the process, and protecting customer privacy. Fig-
ure 11.1 depicts the core functionality of the loan approval process by using 
BPMN 1 – a notational language widely used in industry for designing business 
processes. 

At the beginning of the process, a credit broker is assigned to handle a new cus-
tomer's loan request. He then performs preliminary inspections to ensure that the 
customer has provided valid credit information (e.g., saving or debit account). Due 
to the segregation of duties policy of the bank, the inspection carried out by the 
credit broker is not enough to provide the level of assurance required by the bank. 
If the loan enquired by the customer is less than one million euros, a post-
processing clerk will take over the case. Otherwise, the case is escalated to a su-
pervisor. In this stage, the customer's credit worthiness is estimated through a 

                                                           
1 http://www.omg.org/spec/BPMN/1.1 
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larger set of data including sums of liabilities, sums of assets, third-party loans, 
etc. Finally, if no negative reports have been filed, the loan request is handed over 
to a manager who judges the loan risk and officially signs the loan contract. The 
customer shall receive either a loan declined notification or a successful loan ap-
proval. 

3 Compliance in Process-Driven SOAs 

Services are autonomous, platform-independent entities that can be described, 
published, discovered, and loosely coupled by using standard protocols (Papazog-
lou et al., 2008). Service-oriented architecture (SOA) is the main architectural 
style for service-oriented computing. In the scope of this chapter, we exemplify 
our approach for process-driven SOAs – a particular kind of SOAs utilizing 
processes to orchestrate services (Hentrich and Zdun, 2006) – because enterprizes 
increasingly use process-centric information systems to automate their business 
processes and services. 

 

 

Fig. 11.2 Overview of the view-based, model-driven approach for supporting compliance in 
SOAs 

Generally speaking, IT compliance means conforming to laws and regulations 
applying to an IT system such as the Basel II Accord 2, the Financial Security Law 
of France 3, the Markets in Financial Instruments Directive (MiFID) 4, and the 
Sarbanes-Oxley Act (SOX) 5. These laws and regulations are designed to cover is-
sues such as auditor independence, corporate governance, and enhanced financial 
disclosure. Nevertheless, laws and regulations are just one example of compliance 
                                                           

2 http://www.bis.org/publ/bcbs107.htm 
3 http://www.senat.fr/leg/pjl02-166.html 
4 http://www.fsa.gov.uk/pages/About/What/International/mifid 
5 http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi 

?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf 
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concerns that might occur in process-driven SOAs. There are many other rules, 
policies, and constraints in a SOA that have similar characteristics. Some exam-
ples are service composition and deployment policies, service execution order 
constraints, information exchange policies, security policies, quality of service 
(QoS) constraints, and so on. 

Compliance concerns stemming from regulations or other compliance sources 
can be realized using various controls. A control is any measure designed to as-
sure a compliance requirement is met. For instance, an intrusion detection system 
or a business process implementing separation of duty requirements are all con-
trols for ensuring systems security. As regulations are not very concrete on how to 
realize the controls, the regulations are usually mapped to established norms and 
standards describing more concretely how to realize the controls for a regulation. 
Controls can be realized in a number of different ways, including manual controls, 
reports, or automated controls (see Figure 11.2). Table 11.1 depicts some relevant 
compliance requirements that the company must implement in the loan approval 
process in order to comply with the applicable laws and regulations. 

 
Compliance Risks Control 

Order Approval R1: Sales to ficti-
tious customers are 
not prevented and 
detected 

C2: Customer’s identifications are verified with 
respect to identification types and information, 
customer’s shipping and billing addresses are 
checked against some pre-defined constraints 
(countries, post code, phone number, etc). 

Segregation of 
Duties (SoD) 

R2: Duties are not 
properly segregated 
(SOX 404) 

C3: The status of the account verification must 
be checked by a Financial Department staff. 
The customer’s invoice must be checked and 
signed by a Sales Department staff. 

Table 11.1 Compliance requirements for the loan approval process 

4 View-Based, Model-Driven Approach: Overview 

4.1 View-Based Modeling Framework 

Our view-based, model-driven approach has been proposed for addressing the 
complexity and fostering the flexibility, extensibility, adaptability in process-
driven SOA modeling development (Tran et al., 2009a). A typical business 
process in a SOA comprises various tangled concerns such as the control flow, da-
ta processing, service invocations, event handling, human interactions, transac-
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tions, to name but a few. The entanglement of those concerns increases the com-
plexity of process-driven SOA development and maintenance as the number of in-
volved services and processes grow. Our approach has exploited the notion of arc-
hitectural views to describe the various SOA concerns. Each view model is a 
(semi)-formalized representation of a particular SOA or compliance concern. In 
other words, the view model specifies entities and their relationships that can ap-
pear in the corresponding view. 

 

ve
rt

ic
al

 d
im

en
si

o
n

br
id

gi
ng

 a
bs

tr
ac

tio
n 

le
ve

ls

 

Fig. 11.3 Overview of the View-based Modeling Framework 

Figure 11.3 depicts some process-driven SOA concerns formulated using 
VbMF view models. All VbMF view models are built upon the fundamental con-
cepts of the Core model shown in Figure 11.4. Using the view extension mechan-
isms described in (Tran et al., 2009a), the developers can add a new concern by 
using a New-Concern-View model that extends the basic concepts of the Core 
model (see Figure 11.4) and defines additional concepts of that concern. The new 
requirements meta-data view, which is presented in Section 4.2, is derived using 
VbMF extension mechanisms for representing parts of the requirements informa-
tion needed in process-driven SOAs and links them to the designs described using 
view models. As a result, the Core model plays an important role in our approach 
because it provides the basis for extending and integrating view models, and es-
tablishing and maintaining the dependencies between view models (Tran et al., 
2009a, Tran et al., 2009b). 
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Fig. 11.4 Core model – the foundation for VbMF extension and integration 

There are various stakeholders involved in process development at different le-
vels of abstraction. For instance, business experts require high-level abstractions 
that offer domain or business concepts concerning their distinct knowledge and 
expertise while IT experts merely work with low-level, technology-specific de-
scriptions. The MDD paradigm provides a potential solution to this problem by 
separating the platform-independent and platform-specific models (Stahl and 
Völter, 2006). 

Leveraging this advantage of the MDD paradigm, VbMF has introduced a 
model-driven stack that has two basic layers: abstract and technology-specific. 
The abstract layer includes the views without the technical details such that the 
business experts can understand and manipulate them. Then, the IT experts can re-
fine or map these abstract concepts into platform- and technology-specific views. 
For specific technologies, such as BPEL and WSDL, VbMF provides extension 
view models that enrich the abstract counterparts with the specifics of these tech-
nologies (Tran et al., 2009a). These extension views belong to the technology-
specific layer shown in Figure 11.3. 

Some activities during the course of process development may require informa-
tion of multiple concerns, for instance, communications and collaborations be-
tween different experts, generation the whole process implementation, and so on. 
VbMF offered view integration mechanisms for combining separate views to pro-
vide a richer or a more thorough view of a certain process (Tran et al., 2009a). Fi-
nally, VbMF code generation can be used to produce executable process imple-
mentation and deployment configurations out of these views. 
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Fig. 11.4 The loan approval process development in VbMF: (1) The FlowView, (2-3) The high-
level CollaborationView and InformationView, and (4-5) The low-level, technology-specific 
BpelCollaborationView and BpelInformationView 

Figure 11.5 shows the loan approval process implemented using VbMF. These 
views are inter-related implicitly via the integration points from the Core model 
(Tran et al., 2009a). The detail of these views as well as their aforementioned rela-
tionships shall be clarified in Section 4.3 on the trace dependencies between 
VbMF views. 

4.2 Linking to the Requirements: A Compliance Meta-data View 

In this section, we present a Compliance Meta-data view for linking parts of the 
requirements and the design views of a SOA system. On the one hand, this view 
enables stakeholders such as business and compliance experts to represent com-
pliance requirements originating from some compliance sources. On the other 
hand, it allows to annotate process-driven SOA elements described using VbMF 
(e.g., the ones shown in Figure 11.5) with the elicited compliance requirements. 
That is, we want to implement a compliance control for, e.g., a compliance regula-
tion, standard, or norm, using a process or service. 
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Fig. 11.6 The Compliance Meta-data view model 

The Compliance Meta-data view provides domain-specific architectural know-
ledge (AK) for the domain of a process-driven SOA for compliance: It describes 
which parts of the SOA, i.e., which services and processes, have which roles in the 
compliance architecture (i.e., are they compliance controls?) and to which com-
pliance requirements they are linked. This knowledge describes important archi-
tectural decisions, e.g., why certain services and processes are assembled in a cer-
tain architectural configuration. In addition, the Compliance Meta-data view offers 
other useful aspects to the case study project: From it, we can automatically gen-
erate compliance documentation for off-line use (i.e., PDF documents) and for on-
line use. Online compliance documentation is, for instance, used in monitoring 
applications that can explain the architectural configuration and rationale behind 
it, when a compliance violation occurs, making it easier for the operator to inspect 
and understand the violation. 

A compliance requirement may directly relate to a process, a service, a busi-
ness concern, or a business entity. Nonetheless compliance requirements not only 
introduce new but also depict orthogonal concerns to these: although usually re-
lated to process-driven SOA elements, they are often pervasive throughout the 
SOA and express independent concerns. In particular, compliance requirements 
can be formulated independently until applied to a SOA. As a consequence, com-
pliance requirements can be reused, e.g., for different processes or process ele-
ments. 
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Figure 11.6 shows our proposed Compliance Meta-data view model. Annota-
tion of specific SOA elements with compliance meta-data is done using com-
pliance Controls that relate to concrete implementations such as a process or ser-
vice (these are defined in other VbMF views). A Control often realizes a number 
of ComplianceRequirements that relate to ComplianceDocuments such as a Regu-
lation, Legislation, or InternalPolicy. Such RegulatoryDocuments can be mapped 
to Standards that represent another types of ComplianceDocument. When a com-
pliance requirement exists, it usually comes with Risks that arise from a violation 
of it. For documentation purposes, i.e., off-line uses, and for the implementation of 
compliance controls the ControlStandardAttributes help to specify general meta-
data for compliance controls, e.g., if the control is automated or manual (isAuto-
matedManual). Besides these standard attributes, individual ControlAttributes can 
be defined for a compliance control within a certain ControlAttributeGroup. 

 

 

Fig. 11.7 Excerpt of the Compliance Meta-data view of the loan approval process 

To provide for extensibility, we have realized a generic modeling solution: a 
NamedElement from the Core model can implement a Control. This way not only 
Services and Processes can realize a compliance control but as the View-based 
Modeling Framework is extended also other NamedElements can be specified to 
implement a Control. In order to restrict the arbitrary use, an OCL constraint is at-
tached to the Control that can be adapted if necessary (i.e., the set of the getTar-
getClasses operation is extended with a new concept that can implement a Con-
trol). 

Figure 11.7 shows an excerpt of the Compliance Meta-data view of the loan 
approval process that illustrates a directive from the European Union on the pro-
tection of individuals with regard to the processing of personal data. The com-
pliance control C1, which fulfills the requirements CR1, is implemented by the 
elements of the loan approval process such as the process named LoanApproval, 
the task named CreateLoanFile, and the services named CreditBureau and Cus-
tomerDatabase. Those elements are modeled in VbMF as presented in Figures 
1.5. The compliance requirement CR1 follows the legislative document and is as-
sociated with an AbuseRisk. 
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In this way, the views in Figures 1.5 provide the architectural configuration of 
the processes and services whilst Figure 11.7 provides the compliance-related ra-
tionale for the design of this configuration. Using the Compliance Meta-data view, 
it is possible to specify compliance statements such as CR1 is a compliance re-
quirement that follows the EU Directive 95/46/EC on Individual Protection 6 and 
is implemented by the loan approval process within VbMF. 

The aforementioned information is useful for the project in terms of com-
pliance documentation, and hence likely to be maintained and kept up-to-date by 
the developers and users of the system, because it can be used for generating the 
compliance documentation that is required for auditing purposes. If this documen-
tation is the authoritative source for compliance stakeholders then it is also likely 
that they have an interest in keeping this information up to date. In doing so they 
may be further supported with, e.g., imports from other data sources. But in this 
model also important AK is maintained: In particular the requirements for the 
process and the services that implement the control are recorded. That is, this in-
formation can be used to explain the architectural configuration of the process and 
the services connected via a secure protocols connector. Hence, in this particular 
case this documented AK is likely to be kept consistent with implemented system 
and, at the same time, the rationale of the architectural decision to use secure pro-
tocol connectors does not get lost. 

4.3 Model-Driven Traceability: Linking Architecture, Code, and 
Requirements 

In the previous section we introduce the View-based Modeling Framework for 
modeling and developing processes using various perspectives that can be tailored 
for particular interests and expertise of the stakeholders at different levels of ab-
straction. We present in this section our view-based, model-driven traceability ap-
proach (VbTrace) realized as an additional dimension to the model-driven stack of 
VbMF (Tran et al., 2009b). VbTrace aims at supporting stakeholders in (semi-
)automatically establishing and maintaining trace dependencies between the re-
quirements, architecture, and implementations (i.e., process code artifacts) in 
VbMF (Tran et al., 2009b). 

 

                                                           
6 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML 



12  

 

Fig. 11.8 The traceability view model 

As we mentioned in Section 4.2, the relationships between the requirements 
and elements of a process represented in terms of VbMF views have been gradual-
ly established during the course of process development and stored in a Com-
pliance Meta-data view. Now we elaborate how our traceability approach helps 
linking the various process views and code artifacts. The trace links between low-
level, technology-specific views and code artifacts can be (semi-)automatically de-
rived during the VbMF forward engineering process by using extended code gene-
rators or during the VbMF reverse engineering process by using extended view-
based interpreters (Tran et al., 2009b). The relationships between a view and its 
elements are intrinsic while the relationships between different views are estab-
lished and maintained according to the name-based matching mechanism for inte-
grating and correlating views (cf. Tran et al., 2009a for more details). 

Figure 11.8 presents the traceability view model – a (semi-)formalization of 
trace dependencies between development artifacts. The traceability view model is 
designed to be rich enough for representing trace relations from process design to 
implementation and be extensible for further customizations and specializations. 
There are two kinds of TraceLinks representing the dependencies at different le-
vels of granularity: ArtifactTraces describing the relationships between artifacts 
such as view models, BPEL and WSDL files, and so on; ElementTraces describ-
ing the relationships between elements of the same or different artifacts such as 
view elements, BPEL elements, WSDL messages, XML Schema elements, and so 
forth. The source and target of an ArtifactTrace are ArtifactReferences that refers 
to the corresponding artifacts. ElementTraces, which are often sub-links of an Ar-
tifactTrace, comprises several source and target ElementReferences pointing to the 
actual elements inside those artifacts. Each TraceLink might adhere to some Tra-
ceRationales that comprehend the existence, semantics, causal relations, or addi-
tional functionality of the link. The TraceRationale is open for extension and must 
be specialized later depending on specific usage purposes (Tran et al., 2009b). 
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In order to represent trace dependencies of the various view models at different 
levels of granularity, VbTrace has introduced three concrete types of TraceLinks: 
ViewToViews describe internal relationships of VbMF, i.e., relationships between 
view models and view elements, ViewToCodes elicit the traceability from VbMF 
to process implementations, and finally, CodeToCodes describe the relationships 
between the generated schematic code and the associated individual code. Along 
with these refined trace links between process development artifacts, we also ex-
tend the ElementTrace concept by fine-grained trace link types between elements 
such as ViewElementTrace, ViewCodeTrace, and CodeElementTrace. Last but not 
least, formal constraints in OCL have been defined in order to ensure the integrity 
and support the verification of the views instantiated from the traceability view 
model (Tran et al., 2009b). In the subsequent sections, we present a number of 
working scenarios to demonstrate how VbTrace can help establishing and main-
taining trace dependencies. 

 

 

Fig. 11.9 Illustration of trace links between the FlowView (left) and BpelCollaborationView 
(right) of the loan approval process 

4.3.1 Traceability between VbMF views 

As we mentioned in Section 4, the stakeholders might either formulate an indi-
vidual view or communicate and collaborate with each other via combined views 
that provide richer or more thorough perspectives of processes (Tran et al., 
2009a). For instance, a discussion between a business expert and an IT specialist 
might require the orchestration of the loan approval process activities along with 
the interactions between the process and other processes or services. The combina-
tion of the FlowView and either the CollaborationView or the BpelCollaboration-
View based on the name-based matching approach described in (Tran et al., 2007; 
Tran et al., 2009a) can offer such a perspective. Figure 11.9 illustrates the trace re-
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lationships of such combinations. The main purpose of view integration is to en-
hance the flexibility of VbMF in providing various tailored perspectives of the 
process representation. Because those perspectives might be used by the stake-
holders for analyzing and manipulating the process model, we record the relation-
ships raised from the above-mentioned combinations in the traceability according 
to specific stakeholders' actions and augment them with the Dependency type. For 
the sake of readability, we only present a number of selected trace dependencies 
and use the arrows to highlight the trace links stored in the traceability view. 

 

 

Fig. 11.10 Illustration of trace links between the high- (left) and low-level CollaborationView 
(right) of the loan approval process 

The refinements of high-level, abstract views to low-level, technology-specific 
ones are also recorded by using trace links of the type ViewToView to support the 
traceability between two view models as well as a number of ViewElementTraces 
each of which holds references to the corresponding view elements. Figure 11.10 
shows an excerpt of the traceability view that consists of a number of trace links 
between the CollaborationView and BpelCollaborationView of the loan approval 
process. 

4.3.2 Traceability between VbMF views and process implementations 

 

Fig. 11.11 Illustration of trace links between the views (left) and generated BPEL code (right) of 
the loan approval process 



15 

The relationships between views and process implementation can be achieved 
in two different ways. On the one hand, process implementation are generated 
from the technology-specific views such as the BpelCollaborationView, BpelIn-
formationView, etc., (Tran et al., 2009a). On the other hand, the view-based re-
verse engineering approach can also automatically extract process views from ex-
isting (legacy) implementations (Tran et al., 2008b). We recorded the trace links 
in both circumstances to maintain appropriate relationships between view models 
and process implementations to fully accomplish the traceability path from 
process designs to the implementation counterparts (see Figure 11.11). 

4.3.3 An example of linking architectural views, code, and requirements 

 

Fig. 11.12 Illustration of a traceability path from requirements through architectural views to 
code 

We present a sample traceability path based on the traceability view established 
in the previous sections to illustrate how our traceability approach can support 
linking the requirements, architecture, and code (see Figure 11.12). The traceabili-
ty path implies the trace links between the requirements and process elements – 
derived from the Compliance Meta-data view – followed by the relationships 
among VbMF views. The process implementation is explored at the end of the tra-
ceability path by using the trace dependencies between VbMF technology-specific 
views and process code. 

Let us assume that there is a compliance requirement changed according to new 
regulations. Without our traceability approach, the stakeholders, such as business, 
domain, and IT experts, have to dig into the BPEL and WSDL code, identify the 
elements to be changed and manipulate them. This is time consuming and error-
prone because there is no explicit links between the requirements to and process 
implementations. Moreover, the stakeholders have to go across numerous depen-
dencies between various tangled concerns, some of which might be not relevant to 
the stakeholders expertise. Using our approach, the business and domain experts 
can better analyze and manipulate business processes by using the VbMF abstract 
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views, such as the FlowView, CollaborationView, InformationView, Compliance 
Meta-data View, etc. The IT experts, who mostly work on either technology-
specific views or process code, can better analyze and assess coarse-grained or 
fine-grained effects of these changes based on the traceability path. 

5 Evaluation and Lessons Learned 

So far we have presented a case study based on the development life cycle of 
an industrial business process that qualitatively illustrates the major contributions 
achieved by using our approach. To summarize, these are in particular: First, a 
business process model is (semi-)formally described from different perspectives 
that can be tailored and adapted to particular expertise and interests of the involv-
ing stakeholders. Second, parts of the requirements are explicitly linked to the sys-
tem architecture and code by a special (semi-)formalized meta-data view. Third, 
our view-based traceability approach can help reducing the complexity of depen-
dency management and improving traceability in process development. In addi-
tion, we also conducted a quantitative evaluation to support the assessment of our 
approach.  The degree of separation of concerns and the complexity of business 
process models are measured because they are considered as the predictors of 
many important software quality attributes such as the understandability, adapta-
bility, maintainability, and reusability (Fenton and Pfleeger, 1997). This evalua-
tion focuses on the view-based approach as the foundation of our approach and 
provides evidence supporting our claims regarding the above-mentioned software 
quality attributes. 

5.1 Evaluation 

5.1.1 Complexity 

In practice, there are several efforts aiming at quantifying the complexity of 
software such as Line of Code (Fenton and Pfleeger, 1997), McCabe complexity 
metrics (McCabe, 1976), Chidamber-Kemerer metrics (Chidamber and Kemerer, 
1994), etc. However, Lange, 2006 suggested that these metrics are not suitable for 
measuring the complexity of MDD artifacts. Lange, 2006 proposed an approach 
for measuring model size based on the four dimensions of (Fenton and Pfleeger, 
1997). Lange's metric is of cognitive complexity that rather reflects the perception 
and understanding of a certain model from a modeler's point of view (Fenton and 
Pfleeger, 1997). That is, the higher the size complexity, the harder it is to analyze 
and understand the system (Fenton and Pfleeger, 1997). The complexity used in 
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our study is a variant of Lange's model size metrics (Lange, 2006), which is ex-
tended to support specific concepts of process-driven SOAs and the MDD para-
digm. It measures the complexity based on the number of the model's elements 
and the relationships between them. 

 

Process VbMF(Hi) VbMF(Lo) IntegrationPoint Process impl. 

FV CV IV BCV BIV IPhigh IPlow BPEL/WSDL 

Travel Agency (TAP) 33 33 43 56 261 17 40 355 

Order Handling (OHP) 29 36 44 65 285 17 46 383 

Billing Renewal (BRP) 81 63 85 132 492 48 177 700 

CRM Fulfilment (CFP) 49 74 78 131 535 31 88 730 

Loan Approval (LAP) 68 44 48 104 651 34 85 871 

 

Table 11.2 The complexity of process descriptions and VbMF views 

In addition to the loan approval process (LAP) presented in Section 2, we per-
form the evaluation of complexity on four other use cases extracted from industri-
al process including a travel agency process (TAP) from the domain of tourism, an 
order handling process (OHP) from the domain of online retailing, a billing re-
newal process (BRP) and a CRM fulfillment process (CFP) from the domain of 
Internet service provisioning. We apply the above-mentioned model-based size 
metric for each main VbMF view such as the FlowView (FV), high-level and low-
level CollaborationViews (CV/BCV), and high-level and low-level Information-
Views (IV/BIV). Even though the correlation of views are implicit performed via 
the name-based matching mechanism (Tran et al., 2009a), the name-based integra-
tion points between high-level views (IPhigh) and low-level views (IPlow) are calcu-
lated because these indicates the cost of separation of concerns principle realized 
in VbMF. Table 11.2 shows the comparison of these metrics of VbMF views to 
those of process implementation in BPEL technology, which is widely used in 
practice for describing business processes. Note that the concerns of process im-
plementation are not naturally separated but rather intrinsically scatted and tan-
gled. We apply the same method to calculate the size metric of the process imple-
mentation based on its elements and relationships with respect to the 
corresponding concepts of VbMF views. 

The results show that the complexity of each of VbMF views is lower than that 
of the process implementation. Those results prove that our approach has reduced 
the complexity of business process model by the notion of (semi-)formalized 
views. We also measure a high-level representation of process by using an integra-
tion of VbMF abstract views and a low-level representation of process by using an 
integration of VbMF technology-specific views. The numbers say that the com-
plexity of the high-level (low-level) representation is much less than (comparable 
to) that of the process implementation. The overhead of integration points occurs 
in both aforementioned integrated representations. 
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5.1.2 Separation of Concerns 

To assess the separation of concerns, we use the Process-driven Concern Diffu-
sion metric (PCD), which is derived from the metrics for assessing the separation 
of concerns in aspect-oriented software development proposed in (Sant’Anna et 
al., 2003). The PCD of a process concern is a metric that counts the number of 
elements of other concerns which are either tangled in that concern or directly re-
ferenced by elements of that concern. The higher the PCD metric of a concern, the 
more difficult it is for the stakeholders to understand and manipulate the concern. 
The measurement of PCD metric in all processes mentioned in Section 5.1.1 are 
presented in Table 11.3. 

 

Process 
(%) 

Flow Collaboration Information Flow 

Without 

VbMF 

With 

VbMF 

Reduced

(%) 

Without

VbMF 

With 

VbMF

Reduced

(%) 

Without

VbMF 

With 

VbMF

Reduced 

(%) 

TAP 175 17 90.3 186 40 78.5 85 23 72.9 

OHP 212 17 92.0 221 46 79.2 93 29 68.8 

BRP 411 48 88.3 409 117 71.4 195 69 64.6 

CFP 398 31 92.2 407 88 78.4 176 57 67.6 

LAP 425 34 92.0 431 68 84.2 188 69 63.3 

Table 11.3 Measures of Process-driven Concern Diffusion 

A process description specified using BPEL technology often embodies several 
tangled process concerns. VbMF, by contrast, enables the stakeholders to formu-
late the process through separate view models. For instance, a process control-
flow is described by a BPEL description that often includes many other concerns 
such as service interactions, data processing, transactions, and so on. As a result, 
the diffusion of the control-flow concern of the process description is higher than 
that of the VbMF FlowView. The results show that the separation of concerns 
principle exploited in our view-based, model-driven approach has significantly re-
duced the scatter and tanglement of process concerns. We have achieved a signifi-
cant decrement of the diffusion of the control-flow approximately of 90%, which 
denotes a better understandability and maintainability of the core functionality of 
processes. For other concerns, our approach is also shown to notably reduce con-
cern diffusions by roughly 80% for the collaboration concern and about 60% for 
the information concern, and therefore, improve the understandability, reusability, 
and maintainability of business process models. 

5.2 Lessons Learned 

The quickly increasing of the complexity of design, development, and mainten-
ance activities and maintenance due to the thriving of the number of elements in-
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volved in an architecture is very challenging in the context of process-driven, ser-
vice-oriented architectures. We also observed similar problems in other kinds of 
architectures that expose the following common issues. First, a system description, 
e.g., an architectural specification, a model, etc., embodies various tangled con-
cerns. As a consequence, the entanglement seriously reduces many aspects of 
software quality such as the understandability, adaptability, and maintainability. 
Second, the differences of language syntaxes and semantics, the difference of gra-
nularity at different abstraction levels, and the lack of explicit links between these 
languages hinder the understandability and traceability of software components or 
systems being built upon or relying on such languages. Last but not least, parts of 
the system's requirements are hard to specify formally, for instance, the com-
pliance requirements. These intrinsic issues (among other issues) are ones of rea-
sons which impede the correlating of requirements and the underlying architec-
tures. 

Our study showed that it is feasible to facilitate a view-based, model-driven ap-
proach to overcome the aforementioned challenges. Our approach enables flexi-
ble, extensible (semi-)formalized methods to represent the software system using 
separate architectural views. The flexibility and extensibility of our approach have 
been confirmed including the devising and using an additional model-driven re-
quirement view for adding AK meta-data with reasonable effort and a traceability 
view for supporting establishing and maintaining dependency relationships be-
tween the architecture and the corresponding implementations. In particular, this 
study also provided evidences to confirm that it is possible in the context of a 
project to record specific AK that is domain-specifically relevant for a project us-
ing such a view. 

Moreover, the model-driven approach complemented by the traceability view 
model can help to keep the data in the AK view up-to-date and consistent with the 
project. As a result, the integrity and consistency of the links from requirements to 
architecture and code can be maintained. To this end, it is reasonable to connect 
the data recorded in the AK view with other meta-data that needs to be recorded in 
the project anyway. This would be an additional incentive for developers to doc-
ument the AK. In our study, compliance in service-oriented systems is illustrated 
as an area where this is feasible because a lacking or missing compliance docu-
mentation can lead to severe legal consequences. Nonetheless, our general ap-
proach can also be applied for custom AK without such additional incentives. 

There is a limitation in our approach that only specific AK – linked to a domain 
specific area like compliance – is recorded and other AK might get lost. It is the 
responsibility of a project to make sure that all relevant AK for understanding an 
architecture gets recorded. In addition, our view-based, model-driven exploits the 
notion of architectural views – a realization of the separation of concern principle 
– and the MDD paradigm – a realization of the separation of levels of abstraction. 
In particular, the system description is managed and formulated through separate 
view models that are integrated and correlated via the name-based matching me-
chanism (Tran et al., 2009a). 
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On the one hand, this supposes additional investments and training are required 
at the beginning for instantiating view models, traceability models, and model 
transformation rules. In case of legacy process-driven SOAs, the view-based re-
verse engineering might partially help stakeholders quickly coming up with view 
models extracted from the existing business process descriptions. However, ma-
nual interventions of stakeholders are still needed to analyze and improved the ex-
tracted views, and sometimes, the corresponding the traceability models. On the 
other hand, this also implies that, comparing to a non-view-based or non-model-
driven approach, additional efforts and tool supports are necessitated for managing 
the consistency of views and traceability models as those can be manipulated by 
different stakeholders as well as enabling change propagation among them. None-
theless, the maintenance of trace dependencies between views can be enhanced by 
using hierarchical or ontology-based matching and advanced trace link recovery 
techniques (Antoniol et al., 2002). 

However, the project can benefit in the long term regarding the reducing main-
tenance cost due to the enhancement of understandability, adaptability, and tra-
ceability as well as the preserved consistent AK. Nonetheless, it is possible to in-
troduce our approach into a non-model-driven project (e.g., as a first step into 
model-driven development). For doing this, at least a way to identify the existing 
architectural elements, such as components and connectors, must be found. But 
this would be considerably more work than adding the view to an existing model-
driven project. 

6 Related Work 

In our study, we applied our prior works that is the view-based, model-driven 
approach for process-driven SOAs (Tran et al., 2007; Tran et al., 2008a; Tran et 
al., 2008b; Tran et al., 2009a; Tran et al., 2009b) in the field of compliance to reg-
ulatory provisions. Therefore, more in-depth comparisons and discussions on the 
related work of the view-based, model-driven approach can be found in (Tran et 
al., 2007; Tran et al., 2008a; Tran et al., 2008b; Tran et al., 2009a) those of the 
name-based view integration mechanism can be found in (Tran et al., 2010), and 
those of the view-based traceability approach can be found in (Tran et al., 2009b). 
To this end, we merely discuss the major related works in the area of bridging re-
quirements, architecture, and code. 

A number of efforts provide modeling-level viewpoint models for software ar-
chitecture (Rozanski and Woods, 2005), 4+1 view model by Kruchten, 1995 and 
the IEEE 1471 standard (IEEE, 2000) concentrating on various kinds of view-
points. While some viewpoints in these works and VbMF overlap, a general dif-
ference is, that VbMF operates at a more detailed abstraction level – from which 
source code can be generated via MDD. Previous works on better support for co-
difying the AK have been done in the area of architectural decision modeling. Jan-
sen et al., 2007 see software architecture as being composed of a set of design de-
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cisions. They introduce a generic meta-model to capture decisions, including ele-
ments such as problems, solutions, and attributes of the AK. Another generic me-
ta-model that is more detailed has been proposed by Zimmermann et al, 2007. Ty-
ree and Ackerman, 2005 proposed a highly detailed, generic template for 
architectural decision capturing. 

De Boer et al, 2007 propose a core model for software architectural knowledge 
(AK). This core model is a high-level model of the elements and actions of AK 
and their relationships. In contrast to that, our models operate at a lower-level – 
from which code can be generated (the core model in VbMF is mainly defining in-
tegration points for MDD). Of course, the core model by de Boer et al.\ and VbMF 
could be integrated by providing the model by de Boer et al.\ as a special AK view 
in VbMF that is linked to the lower-level VbMF models via the matching mechan-
isms and trace links discussed in this paper. 

Question, Options, and Criteria diagrams raise a design question, which points 
to the available solution options, and decision criteria are associated with the op-
tions (MacLean et al., 1991). This way decisions can be modeled as such. Kruch-
ten et al., 2006 extend this research by defining an ontology that describes the in-
formation needed for a decision, the types of decisions to be made, how decisions 
are being made, and their dependencies. Falessi et al., 2006 present the Decision, 
Goal, and Alternatives framework to capture design decisions. Recently, Kruchten 
et al., 2009 extended these ideas with the notion of an explicit decision view – 
akin to the basic view-based concepts in our approach. 

Wile, 2001 introduced a runtime approach that focuses on monitoring running 
systems and validating their compliance with the requirements. Grünbacher et al., 
2003 proposed an approach that facilitates a set of architectural concepts to recon-
cile the mismatches between the concepts of requirements and those of the corres-
ponding architectures. Hall et al., 2002 proposed an extension to the problem-
frames approach to support the iteration between problem and solution structures 
in which architectural concepts can be considered as parts of the problem domain 
rather than the solution domain. Heckel and Engels, 2002 proposed an approach to 
relate functional requirements and software architecture in order to arrive at a con-
sistent overall model in which a meta model is facilitated to provide separate 
packages for the functional requirements and the architectural view and a third 
package representing the relation between these views. 

In contrast to our work, most of the related work on architectural decision 
modeling focus on generic knowledge capturing. Our approach proposes to cap-
ture AK in a domain-specific fashion as needed by a project. Hence in our work 
some AK is not as explicit as in the other approaches. For example, the collabora-
tions of components are shown in the CollaborationView whereas the other ap-
proaches rather use a typical component and connector view. The decision drivers 
and consequences of the decisions are reported in the compliance sources and as 
risks. That means, our domain-specific AK view adopts the terminology from the 
compliance field, and it must be mapped to the AK terminology in order to under-
stand the overlaps. None of the related works provide detailed guidelines how to 
support the AK models or views through MDD. On the contrary, this is a focus of 
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our work. Additionally, using the model-driven development paradigm in our ap-
proach gains a twofold advantage. On the one hand, stakeholders working at dif-
ferent abstraction levels are offered tailored perspectives according to their exper-
tise and interests. On the other hand, data in the AK view are preserved and 
keeping up-to-date and consistent with other parts of the project. 

7 Conclusion 

In this book chapter we presented an approach for relating requirements and ar-
chitecture using model-driven views and automatically generated trace links. We 
demonstrated the applicability of this approach in the context of a case study in the 
field of ICT security compliance. The results suggest that using our approach it is 
possible to describe a business process in (semi-)formal way from different pers-
pectives that can be tailored and adapted to particular expertise and interests of the 
involved stakeholders. Our quantitative evaluation gives evidence that this ap-
proach also has benefits in terms of reduced complexity and concern diffusion. 
Using a special (semi-)formalized meta-data view, we were able to link parts of 
the requirements to the system architecture described by these views and the code 
generated from them. In this context, our view-based traceability approach sup-
ports the automated dependency management and hence improves the traceability 
in process development. Our ongoing work is to complement this framework with 
an integrated development environment that facilitates collaborative model-driven 
design with different stakeholders as well as a runtime governance infrastructure 
that enacts the detection of compliance violations and compliance enforcement ac-
cording to the monitoring directives generated from compliance DSLs and the 
Compliance Meta-data view model. 
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