Using Model-Driven Views and Trace Links to
Relate Requirements and Architecture: A Case
Study

Huy Tran !, Ta'id Holmes ', Uwe Zdun %, and Schahram Dustdar !

' Distributed Systems Group, Information Systems Institute, Vienna University of
Technology, Austria, {htran, tholmes, dustdar}@infosys.tuwien.ac.at

% Software Architecture Group, Department of Distributed and Multimedia Systems,
University of Vienna, Austria, uwe.zdun@univie.ac.at

Abstract Compliance in service-oriented architectures (SOA) means in general
complying with laws and regulations applying to a distributed software system.
Unfortunately, many laws and regulations are hard to formulate. As a result, sev-
eral compliance concerns are realized on a per-case basis, leading to ad hoc, hand-
crafted solutions for each specific law, regulation, and standard that a system must
comply with. This, in turn, leads in the long run to problems regarding complexi-
ty, understandability, and maintainability of compliance concerns in a SOA. In
this book chapter, we present a case study in the field of compliance to regulatory
provisions, in which we applied our view-based, model-driven approach for ensur-
ing the compliance with ICT security issues in business processes of a large Euro-
pean company. The research question of this chapter is to investigate whether our
model-driven, view-based approach is appropriate in the context of the case. This
question is generally relevant, as the case is applicable to many other problem of
requirements that are hard to specify formally (like the compliance requirements)
in other business cases. To this end, we will present lessons learned as well as me-
trics for measuring the achieved degree of separation of concerns and reduced
complexity.

1 Introduction

As the number of elements involved in an architecture grows, the complexity of
design, development, and maintenance activities also extremely increases along
with the number of the elements' relationships, interactions, and data exchanges —
and becomes hardly manageable. We have studied this problem in the context of
process-driven, service-oriented architectures (but observed similar problems in
other kinds of architectures as well) (Tran et al., 2009a). Two important issues are

2

(among other issues) reasons for this problem: First, the process descriptions com-
prise various tangled concerns, such as the control flow, data dependencies, ser-
vice invocations, security, compliance, etc. This entanglement seriously reduces
many aspects of software quality such as the understandability, adaptability, and
maintainability. Second, the differences of language syntaxes and semantics, the
difference of granularity at different abstraction levels, and the lack of explicit
links between process design and implementation languages hinder the reusability,
understandability, and traceability of software components or systems being built
upon or relying on such languages.

In our previous work we introduced a novel approach for addressing the afore-
mentioned challenges. Our approach exploits a combination of the concept of arc-
hitectural views (IEEE, 2000) — a realization of the separation of concerns prin-
ciple (Ghezzi et al., 2002) — and the model-driven development paradigm (MDD)
(Stahl and Vélter, 2006) — a realization of the separation of abstraction levels.
This approach has been implemented in the View-based Modeling Framework —
an extensible development framework for process-driven, service-oriented archi-
tectures (SOAs) (Tran et al., 2009a). In this chapter, we present a case study in the
field of compliance to regulatory provisions in which we applied our approach for
complying to ICT security issues in a business process of a large European bank-
ing company. In particular, the case study illustrates how our approach helps
achieving the following major contributions: first, it captures different perspec-
tives of a business process model in separated (semi-)formalized view models in
order to adapt to various stakeholders' expertise; second, it links to the require-
ments of the system via a special requirements meta-data view formally modeling
the parts of the requirements information needed in the model-driven architecture;
third, it reduces the complexity of dependency management and enhances tracea-
bility in process development via explicit trace links between code, design, and
requirements artifacts in the model-driven architecture. We also present lessons
learned and preliminary quantitative evaluations on the case study to support the
assessment of our approach regarding some aspects of software quality such as the
understandability, adaptability, and maintainability.

The rest of the chapter is organized as follows. In Section 2 we introduce a
working application scenario extracted from the business processes of an Euro-
pean banking company. Next, an overview of compliance in service-oriented ar-
chitectures is provided in Section 3. Section 4 presents a qualitative analysis of our
approach applied in the application scenario that illustrates how the aforemen-
tioned contributions can be achieved. The lessons learned and quantitative evalua-
tions are provided in Section 5. We discuss the related work in Section 6 and con-
clude.

2 Case Study: A Loan Approval Process

Customer

P
I
Receive lee !
Loan Reuuesl Loa Fio ‘
(Yes SuspendedPrivilege
Amss CusmmevBank ’ Suspended? All conditions
Puna\ J satisfied?
Request
Bank Information No

Yes]

Receive
e Reques« | Loan Decision
Receive
"MESS LoanContract
Pml uan oni S\gnedcnmracl
Loanconlvact ’—v—’.

. -

CreditBroker

o
UnsatisfiedCondition
|
Perform
[7 days]
rocae > |Loansettement
@%))_> SignedContract
y Close Noty
Loan Approval Customer

Legal time-out [2M]

<t

Legal delay

Role=Supervisor

Dispatch
Task

Access DeclineDueTo
Portal Crodit Worthiness EaaCrem(’\Nor\hmness
Send

Low risk? LoanContract,

Evaluate Initalize

LoanRisk LoanContract

Access Sign officilly
pm‘ Hig gh e oo Approved? LoanContract

LoanProvider

Supervisor

DechneDueTo

Manager

Fig. 11.1 Overview of the loan approval process

Throughout this study, we use a loan approval process of a large European
banking company to illustrate the application of our approach in the domain of
process-driven SOAs. The banking domain must enforce security and must be in
conformity with the regulations in effect. Particular measures like separation of
duties, secure logging of events, non-repudiable action, digital signature, etc., need
to be considered and applied to fulfil the mandatory security requirements in order
to comply with norms and standards of the banking domain as well as European
laws and regulations. In particular, the company emphasizes the necessity of pre-
venting the frauds, preserving the integrity of data, insuring a secure communica-
tion between the customers and the process, and protecting customer privacy. Fig-
ure 11.1 depicts the core functionality of the loan approval process by using
BPMN ! — a notational language widely used in industry for designing business
processes.

At the beginning of the process, a credit broker is assigned to handle a new cus-
tomer's loan request. He then performs preliminary inspections to ensure that the
customer has provided valid credit information (e.g., saving or debit account). Due
to the segregation of duties policy of the bank, the inspection carried out by the
credit broker is not enough to provide the level of assurance required by the bank.
If the loan enquired by the customer is less than one million euros, a post-
processing clerk will take over the case. Otherwise, the case is escalated to a su-
pervisor. In this stage, the customer's credit worthiness is estimated through a

!http://www.omg.org/spec/BPMN/1.1

4

larger set of data including sums of liabilities, sums of assets, third-party loans,
etc. Finally, if no negative reports have been filed, the loan request is handed over
to a manager who judges the loan risk and officially signs the loan contract. The
customer shall receive either a loan declined notification or a successful loan ap-
proval.

3 Compliance in Process-Driven SOAs

Services are autonomous, platform-independent entities that can be described,
published, discovered, and loosely coupled by using standard protocols (Papazog-
lou et al., 2008). Service-oriented architecture (SOA) is the main architectural
style for service-oriented computing. In the scope of this chapter, we exemplify
our approach for process-driven SOAs — a particular kind of SOAs utilizing
processes to orchestrate services (Hentrich and Zdun, 2006) — because enterprizes
increasingly use process-centric information systems to automate their business
processes and services.

View-based, Model-driven Approach

Manual Specification/Modeling
Sonioie Business Process | [Compliance Metadata | |
Editors i

Model Editor

| Business :
| policies |

‘ Indust _% Norms/ H I I

Industry | orms/ c
- ontrols Reports Business

best practices | | standards Compliance
P! ! Process Views Metadata view

4 Y v

Code generation

Laws/ | *
Regulations |
' Code
Generator

l——— _——— Compliance Executable
Q Reports Processes/Services

WA
7=
Board of Directors/ Process Engines/

Risk Management Department Auditor Application Servers.

Fig. 11.2 Overview of the view-based, model-driven approach for supporting compliance in
SOAs

Generally speaking, IT compliance means conforming to laws and regulations
applying to an IT system such as the Basel II Accord 2, the Financial Security Law
of France 3, the Markets in Financial Instruments Directive (MiFID) 4, and the
Sarbanes-Oxley Act (SOX) 3. These laws and regulations are designed to cover is-
sues such as auditor independence, corporate governance, and enhanced financial
disclosure. Nevertheless, laws and regulations are just one example of compliance

2 http://www.bis.org/publ/bcbs107.htm

3 http://www.senat.fr/leg/pjl02-166.html

“ http://www.fsa.gov.uk/pages/About/What/International/mifid

5 http://frwebgate.access.gpo.gov/cgi-bin/getdoc.cgi
?dbname=107_cong_bills&docid=f:h3763enr.tst.pdf

5

concerns that might occur in process-driven SOAs. There are many other rules,
policies, and constraints in a SOA that have similar characteristics. Some exam-
ples are service composition and deployment policies, service execution order
constraints, information exchange policies, security policies, quality of service
(QoS) constraints, and so on.

Compliance concerns stemming from regulations or other compliance sources
can be realized using various controls. A control is any measure designed to as-
sure a compliance requirement is met. For instance, an intrusion detection system
or a business process implementing separation of duty requirements are all con-
trols for ensuring systems security. As regulations are not very concrete on how to
realize the controls, the regulations are usually mapped to established norms and
standards describing more concretely how to realize the controls for a regulation.
Controls can be realized in a number of different ways, including manual controls,
reports, or automated controls (see Figure 11.2). Table 11.1 depicts some relevant
compliance requirements that the company must implement in the loan approval
process in order to comply with the applicable laws and regulations.

Compliance Risks Control
Order Approval | R1: Sales to ficti- C2: Customer’s identifications are verified with
tious customers are | respect to identification types and information,
not prevented and customer’s shipping and billing addresses are
detected checked against some pre-defined constraints

(countries, post code, phone number, etc).

Segregation of | R2: Duties are not C3: The status of the account verification must
Duties (SoD) properly segregated | be checked by a Financial Department staff.
(SOX 404) The customer’s invoice must be checked and
signed by a Sales Department staff.

Table 11.1 Compliance requirements for the loan approval process

4 View-Based, Model-Driven Approach: Overview

4.1 View-Based Modeling Framework

Our view-based, model-driven approach has been proposed for addressing the
complexity and fostering the flexibility, extensibility, adaptability in process-
driven SOA modeling development (Tran et al., 2009a). A typical business
process in a SOA comprises various tangled concerns such as the control flow, da-
ta processing, service invocations, event handling, human interactions, transac-

6

tions, to name but a few. The entanglement of those concerns increases the com-
plexity of process-driven SOA development and maintenance as the number of in-
volved services and processes grow. Our approach has exploited the notion of arc-
hitectural views to describe the various SOA concerns. Each view model is a
(semi)-formalized representation of a particular SOA or compliance concern. In
other words, the view model specifies entities and their relationships that can ap-
pear in the corresponding view.

Core
= Model
A A A A A
% AE:;':,,C t extends extends extends extends extends
53
o) o o) High-level
2= FlowView CollaborationView InformationView HumanView
c o NewConcern
S5 Model Model Model Model Vi
= iew Model
33
=38 A A A A A
[extends extends extends extends extends
t E’ Technology- | (refines) (refines) (refines) (refines) (refines)
2 | specific Layer
5

BpelFlowView
Model

BpelCollaborationView
Model

BpelnformationView
Model

BPEL4PeopleView
Model

Low-level
NewConcern
View Model

¢

horizontal dimension
mastering the complexity of tangled process concerns

Fig. 11.3 Overview of the View-based Modeling Framework

Figure 11.3 depicts some process-driven SOA concerns formulated using
VbMF view models. All VbDMF view models are built upon the fundamental con-
cepts of the Core model shown in Figure 11.4. Using the view extension mechan-
isms described in (Tran et al., 2009a), the developers can add a new concern by
using a New-Concern-View model that extends the basic concepts of the Core
model (see Figure 11.4) and defines additional concepts of that concern. The new
requirements meta-data view, which is presented in Section 4.2, is derived using
VbMF extension mechanisms for representing parts of the requirements informa-
tion needed in process-driven SOAs and links them to the designs described using
view models. As a result, the Core model plays an important role in our approach
because it provides the basis for extending and integrating view models, and es-
tablishing and maintaining the dependencies between view models (Tran et al.,
2009a, Tran et al., 2009b).

——<> CoreModel K>——

* | service 1 | process
N

Process * View

*

<
Service requires

*

y

NamedElement

view

provides
<«

+ | element

name:String
nsURI:String

Fig. 11.4 Core model — the foundation for VbMF extension and integration

There are various stakeholders involved in process development at different le-
vels of abstraction. For instance, business experts require high-level abstractions
that offer domain or business concepts concerning their distinct knowledge and
expertise while IT experts merely work with low-level, technology-specific de-
scriptions. The MDD paradigm provides a potential solution to this problem by
separating the platform-independent and platform-specific models (Stahl and
Volter, 2006).

Leveraging this advantage of the MDD paradigm, VbMF has introduced a
model-driven stack that has two basic layers: abstract and technology-specific.
The abstract layer includes the views without the technical details such that the
business experts can understand and manipulate them. Then, the IT experts can re-
fine or map these abstract concepts into platform- and technology-specific views.
For specific technologies, such as BPEL and WSDL, VbMF provides extension
view models that enrich the abstract counterparts with the specifics of these tech-
nologies (Tran et al., 2009a). These extension views belong to the technology-
specific layer shown in Figure 11.3.

Some activities during the course of process development may require informa-
tion of multiple concerns, for instance, communications and collaborations be-
tween different experts, generation the whole process implementation, and so on.
VbMF offered view integration mechanisms for combining separate views to pro-
vide a richer or a more thorough view of a certain process (Tran et al., 2009a). Fi-
nally, VOMF code generation can be used to produce executable process imple-
mentation and deployment configurations out of these views.

 view-based Modeling Framework - req-arch-case-study,/view,LoanApproval.bpelinformation - Eclip i [m] 5

Fle Edt Navigsts Search Frojsct Run Bpellnformation Edtor Window Hslp

- J*;.Q.th&?@ngg--J - vm- - ﬁﬁ3 w-based M...
—[Z. Loanapproval.flow 52 \1/ B# Loaninprc Iageboration 52 (& Loan N Mot 25 = O
o 5L Flowiew 2 ||| 5-E# colsborationvisw (- Informationiew L
Elz 2 man #, ReceiveloanRequest B-(5! Business Objects

@ ReceiveloanRequest 1 ProcessedByBroksr =5 Data Handing
----- @ InitidizeNotification . ProcessedySupervisorOrCl = Initidlizehiotification
@ PreparsLoanFile % RecelveManagerDecision = PrepareLoanfile
----- @ CreateloanFie %, RexeiveManagerSignature = PrepareBankPriviege
® ProcessedByBroker iy CreateLoanFile = PrepareBankinformatior
----- @ PreparcBankPriviege %y ChecdBankPriviege = PrepareDispatchlask,
® CheckBankPriviege % RequestBankInformation = PreparaCrediworthine:
B4, TsPriviegehiotsuspended %4 DispatchTask = PreparaloarRisk
- 1F i CheckCreditworthiness £ PrepareLoanContract
B2 PriviegeotSuspended 4 EwsluateLoanRisk = PrepareSendinaloanCol
@ PrepareBanknfarmation #y IniializeloanContract = Prepareloansettlement —
@ RequestBankinformation # SendLaanContract = Preparesuccessfulliotii
-4, AreConditionsSatisfied %y PerfarmLoansettiement £ ContractCanceledsyCus
B % ClossLaanAppraval = PrepareLoanpprovalc]
B2 Conditionsatisfied = e lalmaau

PrepareDispatchTask
DispatchTask

@ ProcessedBysupervisorrClerk
Bl IssupervisororClerk,

Appro

B2 Information¥iew for BPEL 4|
(22 Yariables

=& Collaborationview for BPEL &
£1-65] ReceiveLoarReaquest

B -
e | ‘ 4 [set=loanid] iniiate=" Bl InitializeNotfication
g Pem\:esse Bysuzervlsur:\)rc 7 loamipprovallnput - Copy
@ Preparecredivianiines -] Processedgytroker Tt
(@ CheckCreditWorthiness - e ,
i 4 [sst=loanld] initiste=1} {x) To: callbackLoal
B, Creditwarthinessok [N
A staffidentity ' Copy
i E1-68] ProcessedBySupervisarOre 5 Copy
e 4 [set=loanid] iniiate=; B4 PrepareLoanFile
e P’ET“"ELW [staffIdentity F1-4" FrepareBankPriviegs
- Eval “:tefa B ReceiveManagerDecision - PrepareBankinformation
5 ‘;{“gf Ris 4 [set=loanid] intiate= [PrepareDispatchTask
by I, [Z" managerDecisian -4 PrepareCreditWorthine:
e [1-65] RecsiveManagerSignaturs [PrepareLoanRisk
bE B¢ CreateLoanFile -+ PrepareloanCantrack
‘{S{DE‘F”G’a”t 3-8 CheckBankPrivilege B399 Preparesendngloanco
G
BT | -8 ReaugstBankinformation d 541 Preparcloanettlement |
al | S o 20 el | }
i Selected Objsct: platform: fresourcer. . .udy/view/LoanAppraval.bpelformation | ERRE ==

Fig. 11.4 The loan approval process development in VbMF: (1) The FlowView, (2-3) The high-
level CollaborationView and InformationView, and (4-5) The low-level, technology-specific
BpelCollaborationView and BpellnformationView

Figure 11.5 shows the loan approval process implemented using VbMF. These
views are inter-related implicitly via the integration points from the Core model
(Tran et al., 2009a). The detail of these views as well as their aforementioned rela-
tionships shall be clarified in Section 4.3 on the trace dependencies between
VbMF views.

4.2 Linking to the Requirements: A Compliance Meta-data View

In this section, we present a Compliance Meta-data view for linking parts of the
requirements and the design views of a SOA system. On the one hand, this view
enables stakeholders such as business and compliance experts to represent com-
pliance requirements originating from some compliance sources. On the other
hand, it allows to annotate process-driven SOA elements described using VbMF
(e.g., the ones shown in Figure 11.5) with the elicited compliance requirements.
That is, we want to implement a compliance control for, e.g., a compliance regula-
tion, standard, or norm, using a process or service.

implementedBy * NamedElement <t ComplianceDocument
[from core]
title: string
abstract: string
Risk authors: string [0..*]

editors: string [0..*]
journal: string
series: string
volume: integer
number: integer

i description: string

I it
me emenvs impact: EnumRiskCategory
likelihood: EnumRiskCategory

| A booktitle: string
subControl | = * .| has publisher: string
. . pages: integer [0..*]
ComplianceRequirement H .
Control P q follows b !sbn: str{ng
0.1 description: string fulfilsp | section: string . 0.1 :js;ns}srtlzgg
objective: string - + | conflictResolutionPriority: integer o
uri: string
Q date: date
attributes location: string
ControlStandardAttributes = | attributeGroups
isPreventiveDirective: boolean ControlAttributeGroup

isAutomatedManual: boolean
isStandardKey: boolean
isEventbasedPeriodic: boolean

Standard

+ | member

reuccurencelnterval: integer ControlAttribute

reuccurencelntervalUnit: date

controlCriteria: string type: string

controlCriteriaToleranceLevel: string value: string) e .
controlViolationEscalationMeasure: string description: string | Regulation || Legislation || InternalPolicy |

inv: self.implementedBy->forAll(e | getTargetClasses->exists(v | e.ocllsKindOf(v))

context Control
static def: getTargetClasses : Set = Set { 'core::Service', 'core::Process', 'core::Element’ }

Fig. 11.6 The Compliance Meta-data view model

The Compliance Meta-data view provides domain-specific architectural know-
ledge (AK) for the domain of a process-driven SOA for compliance: It describes
which parts of the SOA, i.e., which services and processes, have which roles in the
compliance architecture (i.e., are they compliance controls?) and to which com-
pliance requirements they are linked. This knowledge describes important archi-
tectural decisions, e.g., why certain services and processes are assembled in a cer-
tain architectural configuration. In addition, the Compliance Meta-data view offers
other useful aspects to the case study project: From it, we can automatically gen-
erate compliance documentation for off-line use (i.e., PDF documents) and for on-
line use. Online compliance documentation is, for instance, used in monitoring
applications that can explain the architectural configuration and rationale behind
it, when a compliance violation occurs, making it easier for the operator to inspect
and understand the violation.

A compliance requirement may directly relate to a process, a service, a busi-
ness concern, or a business entity. Nonetheless compliance requirements not only
introduce new but also depict orthogonal concerns to these: although usually re-
lated to process-driven SOA elements, they are often pervasive throughout the
SOA and express independent concerns. In particular, compliance requirements
can be formulated independently until applied to a SOA. As a consequence, com-
pliance requirements can be reused, e.g., for different processes or process ele-
ments.

10

Figure 11.6 shows our proposed Compliance Meta-data view model. Annota-
tion of specific SOA elements with compliance meta-data is done using com-
pliance Controls that relate to concrete implementations such as a process or ser-
vice (these are defined in other VbMF views). A Control often realizes a number
of ComplianceRequirements that relate to ComplianceDocuments such as a Regu-
lation, Legislation, or InternalPolicy. Such RegulatoryDocuments can be mapped
to Standards that represent another types of ComplianceDocument. When a com-
pliance requirement exists, it usually comes with Risks that arise from a violation
of it. For documentation purposes, i.e., off-line uses, and for the implementation of
compliance controls the ControlStandardAttributes help to specify general meta-
data for compliance controls, e.g., if the control is automated or manual (is4uto-
matedManual). Besides these standard attributes, individual ControlAttributes can
be defined for a compliance control within a certain ControlAttributeGroup.

U-Directive-95/46/EC :
L Approval : implements » Legislation
Process title = ,EU Directive 95/46/EC
Individual Protection"
CreateloanFile ; i its " authors =, European
AtomicTask C1 - Control Parli t, Council*
description = ,Secure uri = ,http://eur-lex.europa.eu/
CreditBureau : implements p transmission of LexUriServ/
Service individual-related data LexUriServ.do?uri=CELEX:319
through secure 95L0046:EN:NOT*
CustomerDatabase : protocol connectors* date = 7995-10-24
Service implementsp
fulfills
AbuseRisk : Risk v
- CR1: follows »
description = ,Abuse of individual-related data“ =y
impact = HIGH <has SomplianceRequirement
likelihood = LOW

Fig. 11.7 Excerpt of the Compliance Meta-data view of the loan approval process

To provide for extensibility, we have realized a generic modeling solution: a
NamedElement from the Core model can implement a Control. This way not only
Services and Processes can realize a compliance control but as the View-based
Modeling Framework is extended also other NamedElements can be specified to
implement a Control. In order to restrict the arbitrary use, an OCL constraint is at-
tached to the Control that can be adapted if necessary (i.e., the set of the getTar-
getClasses operation is extended with a new concept that can implement a Con-
trol).

Figure 11.7 shows an excerpt of the Compliance Meta-data view of the loan
approval process that illustrates a directive from the European Union on the pro-
tection of individuals with regard to the processing of personal data. The com-
pliance control C/, which fulfills the requirements CR/, is implemented by the
elements of the loan approval process such as the process named LoanApproval,
the task named CreateLoanFile, and the services named CreditBureau and Cus-
tomerDatabase. Those elements are modeled in VbMF as presented in Figures
1.5. The compliance requirement CR/ follows the legislative document and is as-
sociated with an AbuseRisk.

11

In this way, the views in Figures 1.5 provide the architectural configuration of
the processes and services whilst Figure 11.7 provides the compliance-related ra-
tionale for the design of this configuration. Using the Compliance Meta-data view,
it is possible to specify compliance statements such as CRI is a compliance re-
quirement that follows the EU Directive 95/46/EC on Individual Protection ® and
is implemented by the loan approval process within VbMF.

The aforementioned information is useful for the project in terms of com-
pliance documentation, and hence likely to be maintained and kept up-to-date by
the developers and users of the system, because it can be used for generating the
compliance documentation that is required for auditing purposes. If this documen-
tation is the authoritative source for compliance stakeholders then it is also likely
that they have an interest in keeping this information up to date. In doing so they
may be further supported with, e.g., imports from other data sources. But in this
model also important AK is maintained: In particular the requirements for the
process and the services that implement the control are recorded. That is, this in-
formation can be used to explain the architectural configuration of the process and
the services connected via a secure protocols connector. Hence, in this particular
case this documented AK is likely to be kept consistent with implemented system
and, at the same time, the rationale of the architectural decision to use secure pro-
tocol connectors does not get lost.

4.3 Model-Driven Traceability: Linking Architecture, Code, and
Requirements

In the previous section we introduce the View-based Modeling Framework for
modeling and developing processes using various perspectives that can be tailored
for particular interests and expertise of the stakeholders at different levels of ab-
straction. We present in this section our view-based, model-driven traceability ap-
proach (VbTrace) realized as an additional dimension to the model-driven stack of
VbMF (Tran et al., 2009b). VbTrace aims at supporting stakeholders in (semi-
)automatically establishing and maintaining trace dependencies between the re-
quirements, architecture, and implementations (i.e., process code artifacts) in
VbMF (Tran et al., 2009b).

© http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML

12

T ili . TraceLink
Model link

name: string

-annotates——— . .
> * | id: string subLinks
b
| ViewElementTrace
*
b7 .

ViewToCode
ViewCodeTrace

CodeElementTrace

‘ ElementTrace <l

description: string sourceT 1 4 T&arge(CodeToCode
target[1.* 1..*|source

ArtifactReference ViewArtifact
o ElementReference
Role RelationType location: string
_nsURI. string CodeArtifact name: string ViewElement
id: string

xpath: string
uuid: string
I I I I
Extend

Satisfy Depend Conflict

Fig. 11.8 The traceability view model

‘ ArtifactTrace

ViewToView

|

CodeFragment

lineStart: integer
lineEnd: integer

Generate Formalize Use

i

As we mentioned in Section 4.2, the relationships between the requirements
and elements of a process represented in terms of VbMF views have been gradual-
ly established during the course of process development and stored in a Com-
pliance Meta-data view. Now we elaborate how our traceability approach helps
linking the various process views and code artifacts. The trace links between low-
level, technology-specific views and code artifacts can be (semi-)automatically de-
rived during the VbMF forward engineering process by using extended code gene-
rators or during the VbMF reverse engineering process by using extended view-
based interpreters (Tran et al., 2009b). The relationships between a view and its
elements are intrinsic while the relationships between different views are estab-
lished and maintained according to the name-based matching mechanism for inte-
grating and correlating views (cf. Tran et al., 2009a for more details).

Figure 11.8 presents the traceability view model — a (semi-)formalization of
trace dependencies between development artifacts. The traceability view model is
designed to be rich enough for representing trace relations from process design to
implementation and be extensible for further customizations and specializations.
There are two kinds of TraceLinks representing the dependencies at different le-
vels of granularity: ArtifactTraces describing the relationships between artifacts
such as view models, BPEL and WSDL files, and so on; ElementTraces describ-
ing the relationships between elements of the same or different artifacts such as
view elements, BPEL elements, WSDL messages, XML Schema elements, and so
forth. The source and target of an ArtifactTrace are ArtifactReferences that refers
to the corresponding artifacts. ElementTraces, which are often sub-links of an Ar-
tifactTrace, comprises several source and target ElementReferences pointing to the
actual elements inside those artifacts. Each TraceLink might adhere to some Tra-
ceRationales that comprehend the existence, semantics, causal relations, or addi-
tional functionality of the link. The TraceRationale is open for extension and must
be specialized later depending on specific usage purposes (Tran et al., 2009b).

13

In order to represent trace dependencies of the various view models at different
levels of granularity, VbTrace has introduced three concrete types of TraceLinks:
ViewToViews describe internal relationships of VbMF, i.e., relationships between
view models and view elements, ViewToCodes elicit the traceability from VbMF
to process implementations, and finally, CodeToCodes describe the relationships
between the generated schematic code and the associated individual code. Along
with these refined trace links between process development artifacts, we also ex-
tend the ElementTrace concept by fine-grained trace link types between elements
such as ViewElementTrace, ViewCodeTrace, and CodeElementTrace. Last but not
least, formal constraints in OCL have been defined in order to ensure the integrity
and support the verification of the views instantiated from the traceability view
model (Tran et al., 2009b). In the subsequent sections, we present a number of
working scenarios to demonstrate how VbTrace can help establishing and main-
taining trace dependencies.

€ View-based Modeling Framework - reg-arch-case-study/view/LoanApprovaktrace - Eclipse SDK _[oix]
Fle Edt Navigate Search Profect Rum TraceEdtor Window Help
9 - [35-0-Q- | BB @S| -0 [@ view-based M.

— [, Loanapprovalflow 7%](@ Loanapproval race 53 &% LoanApproval bpelcollaboration 52 . = O
(- o
i Za Flowwiew Al I‘;‘ Resource Set [BPEL Collaboration Yiew LoanApproval A

! | oo Sl shor o ew Lasnapee

= 'r%*[‘ 777777777 , Loanapproval,flow <> LoanApproval.bpelcallaboration] E‘w@':Ea"‘e'll“a"‘ema”“eq”aﬁ
1@ _RecetveloanRequest -+ ViewElementTrace Carrelstion !

#) 4> ViewElementTrace Lt verisbe boanapprovalimout
8 _PreparsLoanfile. 54> ViewElementTracs @ | Receive ProcessedayBroker
@ _Createloanfils - T g e T T e o — = — = — Bl @ Receive ProcessedBySupervisorOrClerk
@ ProcessedByBroker T | Receive ReceiveManagerDecision
(-0 | Receive RecsiveManagerSignaturs

@ InitializeMotification

@ PreparsBankPrivilege

i
o oo === - -
L2 st [L5 Fomini G oseioirFle ‘ |5 & Ik oot | -
Il tSuspenda ™! & boelallshorahorw: Createlonfie.| - ariable loanFileinput |
SR, | 1 fx) variable loarFileoutput |
i ‘ ~++ ViewElementTrace T S iiriciok i
! 2\,\ ager\mtsus.;[enf s ViomlormentTrace _,T ;:;D c;ch a.;P nv‘. s i
Prepareﬁankln— 5 TiowvinrCheckBar iPiviogs 1 e Vaname hankpnvl‘age]nput !
rn 4 o bpelcollsborationwiew: :CheckBankPrivilege! L -5 veriable bankPuiviegeQuiput
E-<F, AreConditionss - 48 Tnvoke RequestBankInformation
[SRaR ViewElementTrace & Tnwoke DispatchTask
58 ot <+ ViewElementTrace o h” et
% Conditc s ViowElomentTrace = Invoke CheckCreditiorthiness
H ~@ pre_ Il | 5 ¢ Invoke EvaluateLoanRisk
H H o B P = S A I P — -
ol | = T | | Selection | Parert | List | Tres | Table | Tree with Columns | | * : i 5 |_I
o= SR Bl e e s e e el e | ER==R=

Fig. 11.9 Illustration of trace links between the FlowView (left) and BpelCollaborationView
(right) of the loan approval process

4.3.1 Traceability between VbMF views

As we mentioned in Section 4, the stakeholders might either formulate an indi-
vidual view or communicate and collaborate with each other via combined views
that provide richer or more thorough perspectives of processes (Tran et al.,
2009a). For instance, a discussion between a business expert and an IT specialist
might require the orchestration of the loan approval process activities along with
the interactions between the process and other processes or services. The combina-
tion of the FlowView and either the CollaborationView or the BpelCollaboration-
View based on the name-based matching approach described in (Tran et al., 2007,
Tran et al., 2009a) can offer such a perspective. Figure 11.9 illustrates the trace re-

14

lationships of such combinations. The main purpose of view integration is to en-
hance the flexibility of VbMF in providing various tailored perspectives of the
process representation. Because those perspectives might be used by the stake-
holders for analyzing and manipulating the process model, we record the relation-
ships raised from the above-mentioned combinations in the traceability according
to specific stakeholders' actions and augment them with the Dependency type. For
the sake of readability, we only present a number of selected trace dependencies
and use the arrows to highlight the trace links stored in the traceability view.

| 5 Lomnapprovel.cobboration 1

Inberaction Processedrlrober

2 Inberaction ProcessedBySupervisor Or Jerk
L Inbes action ReceneManager Deciion
nber action ReceiveManagerSignature.
Inbesaction CreateLoanFie |
i Interaction CheckBariPriviege | B os vewklmantTesss Ml ™" & Receve ReceneRanager)
s Iner action RequestBankinformation 5 == ViewEl Tracs Bl F Invvoke Createloarfie !
i Inkeraction DepatchTask. T8 collsbor somier Eredoaiie | —u‘ 1) Varisble kearFlelnout |
U Inberaction CheckCreditWorthiness 15 bpekolaborstiomew: CresteloanFie | L %) Verisble boarFieCutput
& Inberaction Evaksteloanfsk Bes erbhaeiiae o Trvecks ChecBarkPriviege
i Interaction IntisiosloanContr st it WemmariTrecs 5 & Invoke RequestBarddnformation
. Inberaction SendLoanContract 1. UeaPlemaiTras 'ﬂ -4 Iwoke Dispatchask
£ nberaction Perfoend aanSettiement = K |+ 51 Troke CherredbWorthiness =
al | ||J Sebecton | Pareck |Lit | Tres | Table | Tree with Columnd | Lt " | .l_i

Fig. 11.10 Illustration of trace links between the high- (left) and low-level CollaborationView
(right) of the loan approval process

The refinements of high-level, abstract views to low-level, technology-specific
ones are also recorded by using trace links of the type ViewToView to support the
traceability between two view models as well as a number of ViewElementTraces
each of which holds references to the corresponding view elements. Figure 11.10
shows an excerpt of the traceability view that consists of a number of trace links
between the CollaborationView and BpelCollaborationView of the loan approval
process.

4.3.2 Traceability between VbMF views and process implementations

P Loandopeoval bpekeolaboration 12 e SL
i eLC
5 | Receres Riceed narfleg et

[E S| Rsceive Processadiyiroker

G| Racervs ProcessedSySupenvisorOrClerk
= @ Recerve ReceveManager Decision
8| Receive ReceiveManager Signature

S @ Trvka GesteloaFie |

2 Trace Moded
_F Loandpproval flow <--> Loandppeoval boed

VewToCodeTrace
VewToCodsTrace
e YawTotodeTrace
= e ViewTolodeTrace
,,,,,,,,,,,, 4+ VewToCodeTrace o -
FasvewlotodeToae _______________ e Pro -

. pjlm,ll.n.q-m.nnf.\.m.m e ewLowi m(";ﬁ:‘:ﬂg%ou

1 1@ Cods Frag { partiverL ink="LoanApproval *

41 Invoke CheciCredtwonhiness b e operat ion="processediyStal f*
- & voke EvalusteLoandisk 4 o napproval :Loan
) Irvecke Iratiskonl canCortract ':| &) |

»

g " I Selection | Pacent | Lst | Tree | Tabhe | Tres with Columns |

partnert inks="Loant i le
operations"update” =l
inputVar iable="loanl i leInput™
sutputvarisbles”loant i letut put "
b e

Fig. 11.11 Illustration of trace links between the views (left) and generated BPEL code (right) of
the loan approval process

15

The relationships between views and process implementation can be achieved
in two different ways. On the one hand, process implementation are generated
from the technology-specific views such as the BpelCollaborationView, Bpelln-
formationView, etc., (Tran et al., 2009a). On the other hand, the view-based re-
verse engineering approach can also automatically extract process views from ex-
isting (legacy) implementations (Tran et al., 2008b). We recorded the trace links
in both circumstances to maintain appropriate relationships between view models
and process implementations to fully accomplish the traceability path from
process designs to the implementation counterparts (see Figure 11.11).

4.3.3 An example of linking architectural views, code, and requirements

CreateloanFile:
Interaction

= AttifactTrace

- - ElementTrace

LoanApproval:
CollaborationView

LoanApproval:
ElowView
[

| CreateLoanFile: |
AtomicTask

EU-Directive-95/46/EC:
Legislation

AbuseRisk: | CR1:
Risk ComplianceRequirement

Ct:
Control

Invoke

input¥ar able="loant i lelnput
outputvarisble="loanF i leOutput™
e hp.lf:.«m

Fig. 11.12 Illustration of a traceability path from requirements through architectural views to
code

We present a sample traceability path based on the traceability view established
in the previous sections to illustrate how our traceability approach can support
linking the requirements, architecture, and code (see Figure 11.12). The traceabili-
ty path implies the trace links between the requirements and process elements —
derived from the Compliance Meta-data view — followed by the relationships
among VbMF views. The process implementation is explored at the end of the tra-
ceability path by using the trace dependencies between VbMF technology-specific
views and process code.

Let us assume that there is a compliance requirement changed according to new
regulations. Without our traceability approach, the stakeholders, such as business,
domain, and IT experts, have to dig into the BPEL and WSDL code, identify the
elements to be changed and manipulate them. This is time consuming and error-
prone because there is no explicit links between the requirements to and process
implementations. Moreover, the stakeholders have to go across numerous depen-
dencies between various tangled concerns, some of which might be not relevant to
the stakeholders expertise. Using our approach, the business and domain experts
can better analyze and manipulate business processes by using the VbMF abstract

16

views, such as the FlowView, CollaborationView, InformationView, Compliance
Meta-data View, etc. The IT experts, who mostly work on either technology-
specific views or process code, can better analyze and assess coarse-grained or
fine-grained effects of these changes based on the traceability path.

5 Evaluation and Lessons Learned

So far we have presented a case study based on the development life cycle of
an industrial business process that qualitatively illustrates the major contributions
achieved by using our approach. To summarize, these are in particular: First, a
business process model is (semi-)formally described from different perspectives
that can be tailored and adapted to particular expertise and interests of the involv-
ing stakeholders. Second, parts of the requirements are explicitly linked to the sys-
tem architecture and code by a special (semi-)formalized meta-data view. Third,
our view-based traceability approach can help reducing the complexity of depen-
dency management and improving traceability in process development. In addi-
tion, we also conducted a quantitative evaluation to support the assessment of our
approach. The degree of separation of concerns and the complexity of business
process models are measured because they are considered as the predictors of
many important software quality attributes such as the understandability, adapta-
bility, maintainability, and reusability (Fenton and Pfleeger, 1997). This evalua-
tion focuses on the view-based approach as the foundation of our approach and
provides evidence supporting our claims regarding the above-mentioned software
quality attributes.

5.1 Evaluation

5.1.1 Complexity

In practice, there are several efforts aiming at quantifying the complexity of
software such as Line of Code (Fenton and Pfleeger, 1997), McCabe complexity
metrics (McCabe, 1976), Chidamber-Kemerer metrics (Chidamber and Kemerer,
1994), etc. However, Lange, 2006 suggested that these metrics are not suitable for
measuring the complexity of MDD artifacts. Lange, 2006 proposed an approach
for measuring model size based on the four dimensions of (Fenton and Pfleeger,
1997). Lange's metric is of cognitive complexity that rather reflects the perception
and understanding of a certain model from a modeler's point of view (Fenton and
Pfleeger, 1997). That is, the higher the size complexity, the harder it is to analyze
and understand the system (Fenton and Pfleeger, 1997). The complexity used in

17

our study is a variant of Lange's model size metrics (Lange, 2006), which is ex-
tended to support specific concepts of process-driven SOAs and the MDD para-
digm. It measures the complexity based on the number of the model's elements
and the relationships between them.

Process VbMF(Hi) VbMF(Lo) IntegrationPoint Process impl.

FV.__ Cv__ IV BCV BIV 1Phigh 1Py, BPEL/WSDL
Travel Agency (TAP) 33 33 43 56 261 17 40 355
Order Handling (OHP) 29 36 44 65 285 17 46 383
Billing Renewal (BRP) 81 63 85 132 492 48 177 700
CRM Fulfilment (CFP) 49 74 78 131 535 31 88 730
Loan Approval (LAP) 68 44 48 104 651 34 85 871

Table 11.2 The complexity of process descriptions and VOMF views

In addition to the loan approval process (LAP) presented in Section 2, we per-
form the evaluation of complexity on four other use cases extracted from industri-
al process including a travel agency process (TAP) from the domain of tourism, an
order handling process (OHP) from the domain of online retailing, a billing re-
newal process (BRP) and a CRM fulfillment process (CFP) from the domain of
Internet service provisioning. We apply the above-mentioned model-based size
metric for each main VbMF view such as the FlowView (FV), high-level and low-
level CollaborationViews (CV/BCV), and high-level and low-level Information-
Views (IV/BIV). Even though the correlation of views are implicit performed via
the name-based matching mechanism (Tran et al., 2009a), the name-based integra-
tion points between high-level views (IPy;;) and low-level views (IP,,) are calcu-
lated because these indicates the cost of separation of concerns principle realized
in VbMF. Table 11.2 shows the comparison of these metrics of VbMF views to
those of process implementation in BPEL technology, which is widely used in
practice for describing business processes. Note that the concerns of process im-
plementation are not naturally separated but rather intrinsically scatted and tan-
gled. We apply the same method to calculate the size metric of the process imple-
mentation based on its elements and relationships with respect to the
corresponding concepts of VbMF views.

The results show that the complexity of each of VbDMF views is lower than that
of the process implementation. Those results prove that our approach has reduced
the complexity of business process model by the notion of (semi-)formalized
views. We also measure a high-level representation of process by using an integra-
tion of VbMF abstract views and a low-level representation of process by using an
integration of VbMF technology-specific views. The numbers say that the com-
plexity of the high-level (low-level) representation is much less than (comparable
to) that of the process implementation. The overhead of integration points occurs
in both aforementioned integrated representations.

18

5.1.2 Separation of Concerns

To assess the separation of concerns, we use the Process-driven Concern Diffu-
sion metric (PCD), which is derived from the metrics for assessing the separation
of concerns in aspect-oriented software development proposed in (Sant’Anna et
al., 2003). The PCD of a process concern is a metric that counts the number of
elements of other concerns which are either tangled in that concern or directly re-
ferenced by elements of that concern. The higher the PCD metric of a concern, the
more difficult it is for the stakeholders to understand and manipulate the concern.
The measurement of PCD metric in all processes mentioned in Section 5.1.1 are
presented in Table 11.3.

Flow Collaboration Information Flow

Process
(%) Without With Reduced|Without With Reduced|Without With Reduced

VbMF VbMF (%) | VbOMF VbMF (%) | VbBMF VbMF (%)

TAP 175 17 90.3 186 40 78.5 85 23 72.9
OHP 212 17 92.0 221 46 79.2 93 29 68.8
BRP 411 48 88.3 409 117 71.4 195 69 64.6
CFP 398 31 92.2 407 88 78.4 176 57 67.6
LAP 425 34 92.0 431 63 84.2 188 69 63.3

Table 11.3 Measures of Process-driven Concern Diffusion

A process description specified using BPEL technology often embodies several
tangled process concerns. VbMF, by contrast, enables the stakeholders to formu-
late the process through separate view models. For instance, a process control-
flow is described by a BPEL description that often includes many other concerns
such as service interactions, data processing, transactions, and so on. As a result,
the diffusion of the control-flow concern of the process description is higher than
that of the VbMF FlowView. The results show that the separation of concerns
principle exploited in our view-based, model-driven approach has significantly re-
duced the scatter and tanglement of process concerns. We have achieved a signifi-
cant decrement of the diffusion of the control-flow approximately of 90%, which
denotes a better understandability and maintainability of the core functionality of
processes. For other concerns, our approach is also shown to notably reduce con-
cern diffusions by roughly 80% for the collaboration concern and about 60% for
the information concern, and therefore, improve the understandability, reusability,
and maintainability of business process models.

5.2 Lessons Learned

The quickly increasing of the complexity of design, development, and mainten-
ance activities and maintenance due to the thriving of the number of elements in-

19

volved in an architecture is very challenging in the context of process-driven, ser-
vice-oriented architectures. We also observed similar problems in other kinds of
architectures that expose the following common issues. First, a system description,
e.g., an architectural specification, a model, etc., embodies various tangled con-
cerns. As a consequence, the entanglement seriously reduces many aspects of
software quality such as the understandability, adaptability, and maintainability.
Second, the differences of language syntaxes and semantics, the difference of gra-
nularity at different abstraction levels, and the lack of explicit links between these
languages hinder the understandability and traceability of software components or
systems being built upon or relying on such languages. Last but not least, parts of
the system's requirements are hard to specify formally, for instance, the com-
pliance requirements. These intrinsic issues (among other issues) are ones of rea-
sons which impede the correlating of requirements and the underlying architec-
tures.

Our study showed that it is feasible to facilitate a view-based, model-driven ap-
proach to overcome the aforementioned challenges. Our approach enables flexi-
ble, extensible (semi-)formalized methods to represent the software system using
separate architectural views. The flexibility and extensibility of our approach have
been confirmed including the devising and using an additional model-driven re-
quirement view for adding AK meta-data with reasonable effort and a traceability
view for supporting establishing and maintaining dependency relationships be-
tween the architecture and the corresponding implementations. In particular, this
study also provided evidences to confirm that it is possible in the context of a
project to record specific AK that is domain-specifically relevant for a project us-
ing such a view.

Moreover, the model-driven approach complemented by the traceability view
model can help to keep the data in the AK view up-to-date and consistent with the
project. As a result, the integrity and consistency of the links from requirements to
architecture and code can be maintained. To this end, it is reasonable to connect
the data recorded in the AK view with other meta-data that needs to be recorded in
the project anyway. This would be an additional incentive for developers to doc-
ument the AK. In our study, compliance in service-oriented systems is illustrated
as an area where this is feasible because a lacking or missing compliance docu-
mentation can lead to severe legal consequences. Nonetheless, our general ap-
proach can also be applied for custom AK without such additional incentives.

There is a limitation in our approach that only specific AK — linked to a domain
specific area like compliance — is recorded and other AK might get lost. It is the
responsibility of a project to make sure that all relevant AK for understanding an
architecture gets recorded. In addition, our view-based, model-driven exploits the
notion of architectural views — a realization of the separation of concern principle
— and the MDD paradigm — a realization of the separation of levels of abstraction.
In particular, the system description is managed and formulated through separate
view models that are integrated and correlated via the name-based matching me-
chanism (Tran et al., 2009a).

20

On the one hand, this supposes additional investments and training are required
at the beginning for instantiating view models, traceability models, and model
transformation rules. In case of legacy process-driven SOAs, the view-based re-
verse engineering might partially help stakeholders quickly coming up with view
models extracted from the existing business process descriptions. However, ma-
nual interventions of stakeholders are still needed to analyze and improved the ex-
tracted views, and sometimes, the corresponding the traceability models. On the
other hand, this also implies that, comparing to a non-view-based or non-model-
driven approach, additional efforts and tool supports are necessitated for managing
the consistency of views and traceability models as those can be manipulated by
different stakeholders as well as enabling change propagation among them. None-
theless, the maintenance of trace dependencies between views can be enhanced by
using hierarchical or ontology-based matching and advanced trace link recovery
techniques (Antoniol et al., 2002).

However, the project can benefit in the long term regarding the reducing main-
tenance cost due to the enhancement of understandability, adaptability, and tra-
ceability as well as the preserved consistent AK. Nonetheless, it is possible to in-
troduce our approach into a non-model-driven project (e.g., as a first step into
model-driven development). For doing this, at least a way to identify the existing
architectural elements, such as components and connectors, must be found. But
this would be considerably more work than adding the view to an existing model-
driven project.

6 Related Work

In our study, we applied our prior works that is the view-based, model-driven
approach for process-driven SOAs (Tran et al., 2007; Tran et al., 2008a; Tran et
al., 2008b; Tran et al., 2009a; Tran et al., 2009b) in the field of compliance to reg-
ulatory provisions. Therefore, more in-depth comparisons and discussions on the
related work of the view-based, model-driven approach can be found in (Tran et
al., 2007; Tran et al., 2008a; Tran et al., 2008b; Tran et al., 2009a) those of the
name-based view integration mechanism can be found in (Tran et al., 2010), and
those of the view-based traceability approach can be found in (Tran et al., 2009b).
To this end, we merely discuss the major related works in the area of bridging re-
quirements, architecture, and code.

A number of efforts provide modeling-level viewpoint models for software ar-
chitecture (Rozanski and Woods, 2005), 4+1 view model by Kruchten, 1995 and
the IEEE 1471 standard (IEEE, 2000) concentrating on various kinds of view-
points. While some viewpoints in these works and VbMF overlap, a general dif-
ference is, that VOMF operates at a more detailed abstraction level — from which
source code can be generated via MDD. Previous works on better support for co-
difying the AK have been done in the area of architectural decision modeling. Jan-
sen et al., 2007 see software architecture as being composed of a set of design de-

21

cisions. They introduce a generic meta-model to capture decisions, including ele-
ments such as problems, solutions, and attributes of the AK. Another generic me-
ta-model that is more detailed has been proposed by Zimmermann et al, 2007. Ty-
ree and Ackerman, 2005 proposed a highly detailed, generic template for
architectural decision capturing.

De Boer et al, 2007 propose a core model for software architectural knowledge
(AK). This core model is a high-level model of the elements and actions of AK
and their relationships. In contrast to that, our models operate at a lower-level —
from which code can be generated (the core model in VbMF is mainly defining in-
tegration points for MDD). Of course, the core model by de Boer et al.\ and VbOMF
could be integrated by providing the model by de Boer et al.\ as a special AK view
in VbMF that is linked to the lower-level VbOMF models via the matching mechan-
isms and trace links discussed in this paper.

Question, Options, and Criteria diagrams raise a design question, which points
to the available solution options, and decision criteria are associated with the op-
tions (MacLean et al., 1991). This way decisions can be modeled as such. Kruch-
ten et al., 2006 extend this research by defining an ontology that describes the in-
formation needed for a decision, the types of decisions to be made, how decisions
are being made, and their dependencies. Falessi et al., 2006 present the Decision,
Goal, and Alternatives framework to capture design decisions. Recently, Kruchten
et al., 2009 extended these ideas with the notion of an explicit decision view —
akin to the basic view-based concepts in our approach.

Wile, 2001 introduced a runtime approach that focuses on monitoring running
systems and validating their compliance with the requirements. Griinbacher et al.,
2003 proposed an approach that facilitates a set of architectural concepts to recon-
cile the mismatches between the concepts of requirements and those of the corres-
ponding architectures. Hall et al., 2002 proposed an extension to the problem-
frames approach to support the iteration between problem and solution structures
in which architectural concepts can be considered as parts of the problem domain
rather than the solution domain. Heckel and Engels, 2002 proposed an approach to
relate functional requirements and software architecture in order to arrive at a con-
sistent overall model in which a meta model is facilitated to provide separate
packages for the functional requirements and the architectural view and a third
package representing the relation between these views.

In contrast to our work, most of the related work on architectural decision
modeling focus on generic knowledge capturing. Our approach proposes to cap-
ture AK in a domain-specific fashion as needed by a project. Hence in our work
some AK is not as explicit as in the other approaches. For example, the collabora-
tions of components are shown in the CollaborationView whereas the other ap-
proaches rather use a typical component and connector view. The decision drivers
and consequences of the decisions are reported in the compliance sources and as
risks. That means, our domain-specific AK view adopts the terminology from the
compliance field, and it must be mapped to the AK terminology in order to under-
stand the overlaps. None of the related works provide detailed guidelines how to
support the AK models or views through MDD. On the contrary, this is a focus of

22

our work. Additionally, using the model-driven development paradigm in our ap-
proach gains a twofold advantage. On the one hand, stakeholders working at dif-
ferent abstraction levels are offered tailored perspectives according to their exper-
tise and interests. On the other hand, data in the AK view are preserved and
keeping up-to-date and consistent with other parts of the project.

7 Conclusion

In this book chapter we presented an approach for relating requirements and ar-
chitecture using model-driven views and automatically generated trace links. We
demonstrated the applicability of this approach in the context of a case study in the
field of ICT security compliance. The results suggest that using our approach it is
possible to describe a business process in (semi-)formal way from different pers-
pectives that can be tailored and adapted to particular expertise and interests of the
involved stakeholders. Our quantitative evaluation gives evidence that this ap-
proach also has benefits in terms of reduced complexity and concern diffusion.
Using a special (semi-)formalized meta-data view, we were able to link parts of
the requirements to the system architecture described by these views and the code
generated from them. In this context, our view-based traceability approach sup-
ports the automated dependency management and hence improves the traceability
in process development. Our ongoing work is to complement this framework with
an integrated development environment that facilitates collaborative model-driven
design with different stakeholders as well as a runtime governance infrastructure
that enacts the detection of compliance violations and compliance enforcement ac-
cording to the monitoring directives generated from compliance DSLs and the
Compliance Meta-data view model.

Acknowledgments The authors would like to thank the anonymous reviewers for providing
constructive, insightful comments that greatly help to improve this chapter. This work was sup-
ported by the European Union FP7 project COMPAS, grant no. 215175.

References

Antoniol, Giuliano, Canfora, Gerardo, Casazza, Gerardo, Lucia, Andrea De,
and Merlo, Ettore (2002). Recovering traceability links between code and docu-
mentation. IEEE Trans. Softw. Eng., 28(10):970-983.

Boer, Remco C. De, Farenhorst, Rik, Lago, Patricia, van Vliet, Hans, Clerc,
Viktor, and Jansen, Anton (2007). Architectural knowledge: getting to the core. In
Quality of software architectures (QoSA), pages 197-214.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented
design. IEEE Trans. Softw. Eng., 20(6):476-493.

23

Falessi, D., Becker, M., and Cantone, G. (2006). Design decision rationale: Ex-
periences and steps towards a more systematic approach. SIG-SOFT Software
Eng. Notes 31 — Workshop on Sharing and Reusing Architectural Knowledge,
31(5).

Fenton, Norman and Pfleeger, Shari L. (1997). Software metrics (2nd ed.): a ri-
gorous and practical approach. PWS Publishing Co., Boston, MA, USA.

Ghezzi, Carlo, Jazayeri, Mehdi, and Mandrioli, Dino (2002). Fundamentals of
Software Engineering, 2nd Edition. Prentice Hall.

Griinbacher, Paul, Egyed, Alexander, and Medvidovic, Nenad (2003). Reconu-
ciling software requirements and architectures with intermediate models. J. Softw.
& Syst. Model., 3(3):235-253.

Hall, J. G., Jackson, M., Laney, R. C., Nuseibeh, B., and Rapanotti, L. (2002).
Relating software requirements and architectures using problem frames. In IEEE
Int’l Conf. Requirements Engineering, pages 137—144. IEEE Comp. Soc.

Heckel, R. and Engels, G. (2002). Relating functional requirements and soft-
ware architecture: separation and consistency of concerns. J. Software Mainten-
ance and Evolution: Research and Practice, 14(5):371-388.

Hentrich, Carsten and Zdun, Uwe (2006). Patterns for Process-Oriented Inte-
gration in Service-Oriented Architectures. In 11th European Conf. Pattern Lan-
guages of Programs (EuroPLoP 2006), pages 145, Irsee, Germany.

IEEE (2000). Recommended Practice for Architectural Description of Software
Intensive Systems. Technical Report IEEE-Std-1471-2000.

Jansen, A. G. J,, van der Ven, J., Avgeriou, P., and Hammer, D. K. (2007).
Tool support for architectural decisions. In 6th IEEE/IFIP Working Conf. Soft-
ware Architecture (WICSA), Mumbai, India.

Kruchten, P., Lago, P., and Vliet, H. van (2006). Building up and reasoning
about architectural knowledge. In QoSA 2006 (Vol. LNCS 4214), pages 43-58.

Kruchten, Philippe (1995). The 4+1 view model of architecture. IEEE Softw.,
12(6):42-50.

Kruchten, Philippe, Capilla, Rafael, and Duenas, Juan Carlos (2009). The deci-
sion view’s role in software architecture practice. IEEE Software, 26:36—42.

Lange, Christian F. J. (2006). Model size matters. In Models in Software Engi-
neering, Workshops and Symposia at MoDELS 2006, LNCS, pages 211-216.
Springer-Verlag.

MacLean, A., Young, R. M., Bellotti, V., and Moran, T. (1991). Questions, op-
tions, and criteria: Elements of design space analysis. Human-Computer Interac-
tion, 6(3—4):201-250.

McCabe, Thomas J. (1976). A complexity measure. IEEE Trans. Softw. Eng.,
2(4):308-320.

Papazoglou, Mike P., Traverso, Paolo, Dustdar, Schahram, and Leymann,
Frank (2008). Service-oriented computing: a research roadmap. Int’l J. Coopera-
tive Inf. Syst., 17(2):223-255.

Rozanski, Nick and Woods, Eoin (2005). Software Systems Architecture:
Working With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley.

24

Sant’Anna, Claudio, Garcia, Alessandro, Chavez, Christina, Lucena, Carlos,
and v. von Staa, Arndt (2003). On the reuse and maintenance of aspect-oriented
software: An assessment framework. In XVII Brazilian Symposium on Softw.
Eng.

Stahl, Thomas and Volter, Markus (2006). Model-Driven Software Developo-
ment. John Wiley & Sons.

Tran, Huy, Holmes, Ta’id, Zdun, Uwe, and Dustdar, Schahram (2009a). Mod-
eling Process-Driven SOAs — a View-Based Approach, chapter 2. IGI Global,
Handbook of Research on Business Process Modeling edition.

Tran, Huy, Zdun, Uwe, and Dustdar, Schahram (2007). View-based and Mod-
el-driven Approach for Reducing the Development Complexity in Process-Driven
SOA. In Int’l Conf. Business Process and ServicesComputing (BPSC), volume
116 of LNI, pages 105-124. GI.

Tran, Huy, Zdun, Uwe, and Dustdar, Schahram (2008a). View-based Integra-
tion of Process-driven SOA Models At Various Abstraction Levels. In First

Int’l Workshop on Model-Based Software and Data Integration MBSDI 2008,
pages 55—66. Springer.

Tran, Huy, Zdun, Uwe, and Dustdar, Schahram (2008b). View-Based Reverse
Engineering Approach for Enhancing Model Interoperability and Reusability in
Process-Driven SOAs. In 10th Int’l Conf.Software Reuse, ICSR, pages 233-244.
Springer.

Tran, Huy, Zdun, Uwe, and Dustdar, Schahram (2009b). VbTrace: Using
View-based and Model-driven Development to Support Traceability in Process-
driven SOAs. J. Soft. & Syst. Model. doi:10.1007/s10270-009-0137-0.

Tran, Huy, Zdun, Uwe, and Dustdar, Schahram (2010). Name-based view inte-
gration for enhancing the reusability in process-driven SOAs. In 1st Int’l

Workshop on Reuse in Business Process Management (rBPM) at BPM 2010,
pages 1-12. Springer-Verlag.

Tyree, J. and Ackerman, A. (2005). Architecture decisions: Demystifying ar-
chitecture. IEEE Software, 22(19-27).

Wile, D. S. (2001). Residual requirements and architectural residues. In Fifth
IEEE Int’l Symposium on Requirements Engineering, pages 194-201. IEEE
Comput. Soc.

Zimmermann, O., Gschwind, T., Kuester, J., Leymann, F., and Schuster, N.
(2007). Reusable architectural decision models for enterprise application devel-
opment. In Quality of Software Architecture (QoSA) 2007.

25

Biographies

Huy Tran is a post-doctoral researcher working at the Distributed Systems
Group, Institute of Information Systems, Vienna University of Technology, Aus-
tria. He received his bachelor degree in Computer Science and Engineering from
Ho Chi Minh City University of Technology, Vietnam in 2002 and his doctoral
degree in Computer Science specialized in Software Engineering at Vienna Uni-
versity of Technology, Austria in December 2009. His current research interests
include: software architecture, model-driven engineering, domain-specific model-
ing, business processes, compliance engineering and service-oriented computing.

Ta'id Holmes studied Computer Science at the Vienna University of Technol-
ogy and Organic Chemistry at the Vienna University of Technology, CPE Lyon
and Université Claude Bernard Lyon 1. He received a Dipl.-Ing. from the Vienna
University of Technology in Software Engineering/Internet Computing and a
DEA (Dipléome d’Etudes Approfondies) in Chimie Organique Fine from the Un-
iversité¢ Claude Bernard Lyon 1. Since March 2007 he is a guest lecturer at the
Vienna University of Economics and Business Administration. In May 2007 he
joined the Distributed Systems Group of the Institute of Information Systems at
the Vienna University of Technology as a research assistant.

Uwe Zdun is a full professor for software architecture at the Faculty of Com-
puter Science, University of Vienna. He received his doctoral degree from the
University of Essen in 2002. His research focuses on architectural decision, soft-
ware patterns, modelling of complex software systems, service-oriented systems,
domain-specific languages, and model-driven development. Uwe has published
more than 100 articles in journals, workshops, and conferences, and is co-author
of the books "Remoting Patterns — Foundations of Enterprise, Internet, and Real-
time Distributed Object Middleware" (J. Wiley & Sons) and "Software-
Architektur: Grundlagen, Konzepte, Praxis" (Elsevier/Spektrum). He is European
Editor of the journal Transactions on Pattern Languages of Programming (TPLoP)
published by Springer, and Associate Editor-in-Chief for design and architecture
for the IEEE Software magazine.

Schahram Dustdar is a Full Professor for Internet Technologies at the Distri-
buted Systems Group, Institute of Information Systems, Vienna University of
Technology (TU Wien) where he is director of the Vita Lab and Honorary Profes-
sor of Information Systems at the Department of Computing Science at the Uni-
versity of Groningen (RuG), The Netherlands. He received his M.Sc. (1990) and
PhD. degrees (1992) in Business Informatics (Wirtschaftsinformatik) from the
University of Linz, Austria. In April 2003 he received his habilitation degree (ve-
nia docendi).

