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Abstract— The study of skylines and their variants has received
considerable attention in recent years. Skylines are essentially
sets of most interesting (undominated) tuples in a database.
However, since the skyline is often very large, much research
effort has been devoted to identifying a smaller subset of (say
k) “representative skyline” points. Several different definitions
of representative skylines have been considered. Most of these
formulations are intuitive in that they try to achieve some kind
of clustering “spread” over the entire skyline, with k points. In
this work, we take a more principled approach in defining the
representative skyline objective. One of our main contributions
is to formulate the problem of displaying k representative skyline
points such that the probability that a random user would click
on one of them is maximized.

Two major research questions arise naturally from this formu-
lation. First, how does one mathematically model the likelihood
with which a user is interested in and will “click” on a certain
tuple? Second, how does one negotiate the absence of the
knowledge of an explicit set of target users; in particular what
do we mean by “a random user”? To answer the first question,
we model users based on a novel formulation of threshold
preferences which we will motivate further in the paper. To
answer the second question, we assume a probability distribution
of users instead of a fixed set of users. While this makes the
problem harder, it lends more mathematical structures that can
be exploited as well, as one can now work with probabilities of
thresholds and handle cumulative density functions.

On the theoretical front, our objective is NP-hard. For the
case of a finite set of users with known thresholds, we present
a simple greedy algorithm that attains an approximation ratio
of (1 − 1/e) of the optimal. For the case of user distributions,
we show that a careful yet similar greedy algorithm achieves the
same approximation ratio. Unfortunately, it turns out that this
algorithm is rather involved and computationally expensive. So
we present a threshold sampling based algorithm that is more
computationally affordable and, for any fixed ǫ > 0, has an
approximation ratio of (1 − 1/e − ǫ). We perform experiments
on both real and synthetic data to show that our algorithm
significantly outperforms previously proposed approaches.

I. INTRODUCTION

Extracting a few tuples from the database to support multi-

criteria decision making is an important functionality for

database systems. This is required in many application do-

mains where the end-users are more interested in the most

important query answers in the potentially huge answer space.

Skyline queries [1], [2] are well-studied tools in such settings.

The study of computing skylines and related quantities has

received considerable attention in recent years.

Consider the following example. A tourist is searching for

hotels that are both cheap and of high quality, on a hotel

reservation system. Although hotels that have higher quality

tend to be more expensive, there could be instances where

a hotel A is more expensive and of inferior quality than a

hotel B. Clearly, in this scenario, hotel A is dominated by

hotel B, and A should not be shown to the tourist. The set

of undominated tuples forms the skyline set, and clearly only

this set of hotels is of interest to the tourist.

In many real-life examples (e.g., cars, laptops, hotels etc.),

however, all items tend towards the skyline because they would

otherwise not be “economically viable”. However, the size of

the skyline is usually too large. Theoretically, the size of the

skyline could be arbitrarily large even when there are only

two criteria involved (such as price and quality in this case).

Moreover, when there are many criteria involved, the skyline

size grows exponentially in the number of criteria even when

the values are randomly generated [3], [4].

Due to the often gigantic size of a skyline, significant

research effort has been devoted to identifying a much smaller

subset of (say k) most interesting skyline points, known as a

representative skyline. This is motivated by examples such as

E-commerce websites, where the number of skyline merchan-

dises may be large, but one can display only a small number

of them to the user. Specifically, in the hotel reservation

system example, displaying all the skyline hotels to the tourist

would be impractical, and overwhelming. What subset of these

skyline tuples should the hotel reservation system display,

in the absence of much information about the tourist user?

In particular, the website wishes to display results such that

the user (or equivalently a random user) is most likely to be

interested in (and thereby click on) at least one of them.

Several approaches have been suggested for displaying a

subset of size k of all the skyline tuples. In each of these

works, a different definition of what is the best subset of size

k has been adopted. One [5] defines a notion of clustering

on the skyline points and displays the cluster centers, while



another assigns the quality of a subset based on the number of

points they dominate [6]. Some other approaches [7], [8] relax

the notion of domination so that the number of relaxed skylines

is reduced, while another [9] assumes users have linear utility

functions and displays results to minimize the minimum utility

over all users. We will discuss more about these approaches,

their merits and drawbacks, and a few other approaches in

the related work section. While all of these approaches (and

formulations/definitions of representatives skylines therein)

seem intuitively reasonable, which of these should one adopt?

They all define the objective to attain some kind of a spread

over all skyline tuples. Is there one canonical objective?

In this paper, we undertake a more principled approach in

defining the quality of a subset of k tuples. Our goal is to

display k skyline points such that the probability that a random

user would click on (i.e. like) one of the displayed k results

is maximized. To achieve this goal, we define the quality of

a subset of k tuples, our objective function to be maximized,

to be exactly the probability with which a random user, from

among a set of users (or a distribution over types of users),

will click on one of the tuples. This definition and formulation

is indeed one of the main contributions of this paper.

Two questions arise to fully describe the definition based

on maximizing probability of a random user liking one of the

displayed k results. First, how does one model the probability

with which a user click on a result tuple? Second, how does

one negotiate the absence of the knowledge of an explicit

set of users; in particular what do we mean by a random

user? We model users based on threshold preferences. This

is a very simplistic assumption, yet perhaps not far from

reality. It also turns out that threshold preference functions

fully characterize skylines in the sense that there is a direct

correspondence between threshold functions and skylines. A

specific user exploring hotels may look at any hotel that is

at least 4 stars and costs at most 150 dollars a night, and

not look at anything that does not satisfy these thresholds.

To answer the second question, we assume a distribution of

users instead of a fixed set of them. While this makes the

problem harder, it lends more structure as well, as one can now

work with probabilities of thresholds and handle cumulative

density functions. Furthermore, distributions become crucial

in the absence of explicit knowledge of a fixed set of users.

The threshold based model, while simplistic, may be learned

from a variety of sources such as market surveys or user polls

even in the absence of rich query logs. Compared to previous

approaches, our approach assumes preference distributions and

obtains better representative skylines.

On the theoretical front, this problem is NP-hard (for ≥ 3
dimensions). For a finite set of users, there is a simple greedy

algorithm that attains an approximation ratio of (1−1/e) of the

optimal solution. For the case of user distributions, we show

how to perform a similar greedy algorithm carefully to achieve

the same approximation ratio. Unfortunately, this algorithm is

rather involved and computationally expensive. We therefore

present a threshold sampling based algorithm that, for any

fixed ǫ > 0, the approximation ratio guaranteed is (1−1/e−ǫ);

here the sampling complexity depends on ǫ.

Additionally, we perform experiments with the sampling

based algorithm on both real and synthetic data. For syn-

thetic data, we generate skyline points in an anti-correlated

manner (as is standard in literature), and generate thresholds

as Gaussians, i.e. Normal distributions, independently along

each attribute. We compare the performance of our algorithm

with previous approaches for varying number of dimensions,

points, and parameters of the distribution. Our algorithm

outperforms other approaches on our metric, which is arguably

expected since other techniques are oblivious to the threshold

distributions. However, this does suggest that if one can access

or learn user preferences, they should be exploited for higher

throughput in terms of user clicks. Similar results are seen on

the real data where the threshold distributions are specified

by the data sets. We also measure the distribution of values

of each attribute and find that they indeed behave close to

Gaussians. Here we summarize our results.

Our Contributions.

• We define a representative skyline objective based on

maximizing the probability of a random user clicking

on one of the displayed results. In addition to this

definition, the novelty lies in (i) modeling users based

on threshold preferences, and (ii) defining a random

user using preference distributions. Our objective has all

the desirable properties of representative skylines, such

as scale invariance and stability. We also show how to

generalize beyond threshold preference distributions.

• We prove that optimizing this objective is NP-hard even

for three dimensions. However, for a finite set of specified

users, a simple greedy algorithm obtains a (1 − 1/e)-
approximation. For the more interesting case of unknown

users modeled as preference distributions, we show how

a greedy algorithm can be simulated to achieve the same

(1− 1/e)-approximation. This algorithm being computa-

tionally expensive, we present an efficient sampling-based

algorithm that guarantees a (1− 1/e− ǫ)-approximation

ratio for any 0 < ǫ < 1.

• We perform experiments on real and synthetic data on

the efficient sampling-based algorithm. Our sampling

algorithm outperforms all previous representative skyline

algorithms. For the real data, we further verify that

the distributions measured from the attribute values are

unimodal and bell-shaped (providing credence to our

assumption of Gaussians).

Overview. We introduce notation and the problem definition

in Section II. The theoretical results for the easier finite user

base is presented in Section III. The theoretical results for the

more interesting case of continuous user distributions are then

presented in Section IV. Our experimental results are detailed

in Section V. We mention related work in Section VI. Finally

we mention a few directions for future research in Section VII.



II. PROBLEM FORMULATION

A. Definitions and Axioms

We begin by defining skylines precisely. Given a set D of d-

dimensional points, a point x ∈ D is said to dominate a point

y ∈ D, if x(i) (the i-th coordinate of x) is no smaller than

y(i) for every 1 ≤ i ≤ d; further x(i) > y(i) for at least some

i. A point is said to be in the skyline if it is not dominated by

any other point in the database. The set of all points that are

not dominated by any other point is said to be the skyline set.

In this sense, the hotel example is somewhat misleading as a

smaller price is better than a larger price. Such “semantics”

problems, however, can easily be fixed by inverting the values.

Therefore, throughout this paper we assume that users prefer

larger values on any attribute.

Various different definitions have been considered in the

literature, each having its own merits. However, all of them

are ad hoc in the sense that they all define an objective that

is intuitive but not necessarily principled. In this paper, we

would like to define an objective that captures the goal of

database representation, which we believe is to induce a click,

by whichever user that views the representative set. So we

would like to define an objective that maximizes the probably

that a user (or a randomly sampled user - in the absence

of additional information) would click on at least one of the

displayed results. This event would occur only when (at least)

one of the tuples displayed satisfies the users requirements or

threshold for quality. In order to define such an objective, we

first introduce some notation followed by necessary axioms.

Let qu(s) denote the quality of a tuple s for a user u. We

want this to be the probability with which the user would click

on the corresponding tuple. Let qU (S) denote the quality of

a set of tuples S for a set of users U . The problem we are

considering is representing the best possible set of k tuples,

among the skyline tuples to maximize average quality. We

formalize the notion of quality with the following axioms (we

call these “axioms” as these are constraints we want satisfied):

Axiom 0. qu(s) ∈ [0, 1], and qu(s) is the probability of user

u clicking on s when s is shown.

Axiom 1. qu({s1, s2}) = max{qu(s1), qu(s2)} - The intuition

is that a user clicks on only one hotel, the one that look best

to the user, after looking at all results displayed. Note that, by

this axiom, the quality value of a set is not affected by the

order in which the elements in the set are displayed.

Axiom 1 states that the probability the user clicks on one

of the items is equal to the probability that the user clicks

on the better of the two items. An alternate definition is

qu({s1, s2}) = 1−(1−qu(s1))(1−qu(s2)), i.e., the probability

that the user clicks on one of them. The intuition for the former

is that the user first finds the best hotel/result, and then decides

to either click on it, or not. The intuition for the latter is that the

user looks at the hotels/results one by one, and decides whether

or not to click on each of them independently. However, since

we will only consider the case when qu(s) is either 0 or 1
later on, these two definitions are equivalent.

Axiom 2. qU (S) =
1
|U |

∑

u∈U qu(S) - Average quality of the

displayed set S, averaged over all users.

Towards a problem definition. Suppose the set of users U
is finite and their quality vectors are fully specified. Then we

have the following problem.

Problem definition for finite case. Given D, and a set of

users U , find S ⊆ D, |S| = k, such that maxS qU (S).

Notice that if qu(s) ∈ {0, 1}, then qU (S) is exactly the

fraction of all |U | users that would click on at least one of S.

Now consider the case when there is no knowledge of a

finite set of users. In such a situation, one could assume, or

perhaps have knowledge of, a distribution over quality vectors

qu(). For example, one could assume that the quality vectors

qu() are drawn from random [0, 1] vectors (the dimension of

the vectors being |D|). Suppose that such a distribution over

quality vectors is specified. Then one can define the problem

as maximizing E(qU (S)) where U is the user distribution (i.e.

distribution of quality vectors) and E() is the expectation taken

over this distribution.

To fully specify the problem formulation, we need to

understand how users interpret qualities of displayed results. In

particular, given a database entry s with attribute values, how

does a user u determine qu(s). We now specify this aspect

of our formulation before returning to formalize the problem

definition for user distributions.

B. Modeling Users

Consider a hotel website that displays ten results. How does

a user looking at a set of result hotels decide to click on a hotel

or not? Does the user try to evaluate the exact quality of each

displayed result? Does the user look for one hotel that meets

his requirements, and then click on it for more statistics? We

believe that a user decides to click on a hotel link if it meets

the user’s hard constraints. For example, a user may be willing

to pay up to $150 a night and want something that is rated at

least 4 stars. Assuming these constraints are met, the user is

likely to click on the hotel and look for additional details (such

as proximity to downtown, breakfast options etc.). Similarly, a

user looking to buy a car may be interested in all cars that have

a fuel efficiency of at least 20 miles per gallon, and the engine

of which delivers at least 6 horse powers. In other words, users

set mental thresholds and if these minimum thresholds are not

met, the user does not even bother to explore the item. We

model users based on such thresholds.

Fixed Thresholds. Any user ui is modeled as a set of thresh-

olds along each dimension. If each threshold is met for a tuple

s, then the user is satisfied enough to click on s. Therefore, ui

is represented by a set of thresholds (u1
i , u

2
i , . . . , u

d
i ). Further,

a user is either satisfied with a tuple enough to click on it,

or not. Therefore, qu(s) is either 0 or 1, for every u and

every s = {s1, s2, . . . , sd}. qu(s) = 1 if uj ≤ sj for each

j ∈ {1, 2, . . . , d}, and qu(s) = 0 otherwise. Intuitively, for a

user, results below the threshold are not explored further and

other results are good enough to elicit a click. An example of

such a discrete choice model in literature is [10].



While already interesting, the threshold assumption can in

fact be generalized. Specifically, one can model situations

where each user operates on a set of thresholds: If the highest

threshold for u is met by s, then the user is certainly interested,

i.e., qu(s) = 1. If the lowest threshold is not met, then

qu(s) = 0. If one of the intermediate thresholds is met, then

qu(s) ∈ (0, 1), depending on which threshold is met. Notice

that this can be reduced to a setting where the number of users

is increased (some repeated, to obtain the weights) and each

user has just one threshold. We omit the precise reduction for

brevity. Therefore, without loss of generality, for the rest of

the paper we assume that each user has one fixed threshold

leading to 0−1 preferences (that is, q value is 1 if threshold is

met and 0 otherwise). We begin with an interesting observation

that characterizes skylines in terms of threshold functions. We

omit the proof since it is straightforward.

Observation. Threshold functions captures skylines precisely.

That is, for every skyline point x, there is a threshold function

fx such that fx is satisfied (or 1) for x and unsatisfied (or 0)

for every other skyline point.

Threshold Distributions. Since one is not usually aware of

an explicit set of n users, we study the case when only

a distribution over the users’ thresholds is known. Let the

distribution of thresholds be given by the probability density

function f(), and the cumulative density function F (). So

F (t1, t2, . . . , td) denotes the probability that any user u has

thresholds uj ≤ tj for 1 ≤ j ≤ d. Further, F (x, x, . . . , x) → 1
as x → ∞. We assume that all users are independent and

identically distributed according to F (). Notice that given

a set of points, computing F over thresholds satisfied by

these points may be difficult. We assume that F can take as

input d intervals such as [tli, t
u
i ] for 1 ≤ i ≤ d, and easily

compute F ([tl1, t
u
1 ], [t

l
2, t

u
2 ]. . . . , [t

l
d, t

u
d ]), the probability that a

random user has thresholds in these intervals. This is the only

assumption we make. Our results hold regardless of whether

the distributions along different dimensions are dependent or

independent.

We now define qF (S) as the probability that qu(S) = 1
when u (or u’s thresholds) are sampled from the distribution

f(). Notice that qF (S) is like the expected fraction of users

that will click on one of S when the users’ thresholds are

from the distribution specified by f(). In particular, qF (S) =
E(qf (S)) where this expectation is taken over a sample from

the distribution with probability density function f .

C. Problem Definition - Maximizing Clicks

Problem Definition for Threshold Distributions. Given D, k
and the cumulative density function for threshold distributions

denoted as F , find S to maximize qF (S) = Ef (qf (S)), where

f is a sample from this distribution, and |S| = k. Recall,

qf (S) = 1 if (at least) one point in S satisfies f .

Notice that qF (S) is like qU (S) in the limit where U tends

to ∞ and each user is I.I.D. An example of F could be given

by independent Normal distributions along each dimension.

For example, in the case of hotels, maybe only 10 percent of

the user base is willing to pay more than 250 dollars a night

and only 10 percent of them can pay only 50 dollars a night. A

large fraction of the people have a threshold for the hotel price

between 100 and 150 dollars. Similarly for star ratings, one

might know that 80% of all users have a threshold on hotel

rating between 3-stars and 5-stars, and 10% each below and

above 3-stars and 5-stars respectively. These thresholds may

be correlated (as probably is the case for hotels’ star ratings

and prices) or may be independent (perhaps for cars’ sporty

looks and miles per gallon).

Properties. Two desirable properties that have been inves-

tigated in the past for representative skyline definitions are

stability, and scale invariance. The notion of stability asks

that adding non-skyline points should not change the objective

or the optimal solution. This is important as otherwise hotels

could manipulate their probability of being in the representa-

tive skyline set by just adding non-skyline (fake) hotels to the

database. Therefore it is desirable that a representative skyline

objective definition be oblivious to such perturbations.

Another important consideration for a good definition is that

it be scale invariant. This means that rescaling the attribute

values along any dimension should not alter the representative

skyline set (as long as the rescaling factors are positive).

Notice that the skyline set itself is never altered by such

rescaling. For example, if one rescales the star values of hotels

such that the stars are now in the range of one star to ten

stars, instead of one star to five stars, this should not alter the

solution. In our case, this of course means also rescaling the

thresholds. It is fairly straightforward to see that our definitions

of qF (S) and qU (S) are both scale invariant and stable.

Additional Notation. The number of dimensions/attributes in

the database is denoted by d. The total number of points in

the database is denoted by M and the number of skyline

points is given by m. n denotes interchangeably the number of

thresholds, or the number of users. For threshold distributions,

we later on use µ and σ to denote the mean and the standard

deviation, and F to denote the cumulative density function

over d attributes.

III. n EXPLICIT THRESHOLD FUNCTIONS

In this section we consider the simple case when there

are exactly n users U . Each user in U is represented by

ui (for 1 ≤ i ≤ n), where ui is a threshold vector. Recall

that a skyline point p satisfies the threshold vector ui if p is

at least as much as ui in each of the d dimensions. Recall

that qU (p) is the fraction of all thresholds in U that are

satisfied by p. The goal is to find a subset of size k of all

the skylines points in D so that the number of thresholds

satisfied is maximized. Throughout this section, we assume

that the input itself contains only the skyline points (since we

focus on the problem of isolating representative sets from the

skylines, rather than of computing skylines from the entire

database). This section states two main results. First that

maximizing qU (S) for S ⊆ D, |S| = k is NP-hard even for

d = 3, and second that there is a simple greedy algorithm that

approximates the optimal qU (S) to within a constant factor.



Theorem 1 ( [6]): Finding S ⊆ D, |S| = k to maximize

qU (S) is NP-hard even for d = 3 dimensions.

NP-hardness for large d follows easily by reduction from

the Max Coverage problem; d = 3 requires a bit more work.

For brevity we omit the proof here; [6] prove this in a slightly

different context. We now present SIMPLE-GREEDY to attain

a constant approximation for qU (S). A similar algorithm was

suggested in [6] in a different context.

Algorithm 1 SIMPLE-GREEDY(D, k, ǫ)

Input: A set D of tuples, a desired output size k and a set of

input thresholds U = {u1, u2, . . . , un}
Output: A set ALG ⊆ D of k tuples such that qU (ALG) ≥
(1− 1/e)qU (OPT) (for all OPT ⊆ D, |OPT| = k).

1: Let ALG = ∅.

2: for i = 1 to k do

3: Let p be a tuple in D such that qU (p) is maximum.

4: Add p to ALG.

5: Delete every threshold ui in U such that ui is satisfied

by p.

6: end for

Theorem 2: Algorithm SIMPLE-GREEDY achieves a (1 −
1/e)-approximation to the optimal.

This can be proved via a reduction to the Max-Coverage

problem. However, we present a different proof here for

completeness and as we need these definitions in the next

section. The proof uses work of Nemhauser, Wolsey and

Fisher [11], [12] who show that such a greedy algorithm

guarantees a (1 − 1/e)-approximation for any monotonically

non-decreasing sub-modular maximization objective.

Monontonically non-decreasing function g. Function g is

said to be monotonically non-decreasing if for any sets S and

T such that S ⊆ T , g(S) ≤ g(T ).
Submodular function g. Function g is said to be submodular

if for any sets S and T and any element p such that S ⊆ T
and p /∈ T , g(S ∪ {p})− g(S) ≥ g(T ∪ {p})− g(T ).

In words, non-decreasing means that the function value only

improves when a larger superset is considered; submodularity

essentially refers to decreasing marginal utility; i.e. adding one

more point to a smaller set helps more (increases the function

value more) than it would on adding to a larger (super)set.

Proof: [of Theorem 2]

The proof follows now using [11], [12] and making the

simple observations that our objective function g = qU (.) is

monotonically non-decreasing, and submodular.

The non-decreasing property of qU (S) follows immediately

as adding more points to S can only increase the number of

thresholds satisfied in U .

To observe that qU () is sub-modular, consider two sets of

points S and T such that S ⊆ T and point p /∈ T . Now,

qU (S∪{p})−qU (S) is 1
n times the number of thresholds that

are satisfied by p but not satisfied by S. Similarly, qU (T ∪
{p}) − qU (T ) is 1

n times the number of thresholds that are

satisfied by p but not satisfied by T . Since T is a superset

Algorithm 2 GREEDY-ON-DISTRIBUTION(D, k, F )

Input: A set of d-dimensional (skyline) points D =
{p1, p2, ..., pm}, an integer k (the desired output size), and

the distribution of threshold functions specified by the CDF

F .

Output: A subset of D of size k, denoted by S.

1: Set S = {}
2: for i=1 to k do

3: p∗ = argmaxp∈DDENSITY-INCREMENT-COVERED(p,

S, F )

4: S = S ∪ p∗.

5: end for

6: return S

of S, all thresholds satisfied by S are also satisfied by T . It

follows that qU (S ∪ {p}) − qU (S) ≥ qU (T ∪ {p}) − qU (T ).

IV. DISTRIBUTION ON THRESHOLD FUNCTIONS

We now consider the more interesting case where there is

no explicit set of fixed n users. Rather, users are unknown and

modeled as distributions over threshold preference functions.

A. Greedy Algorithm directly on Threshold Distribution

Recall the setting that we have a distribution on threshold

functions. This means that given x1, x2, . . . , xd, we know

the fraction of all users whose thresholds are less than this.

Specifically, we have easy access to the cumulative density

function (CDF). Further, we assume that the cumulative den-

sity function is easy to compute given ranges along each

dimension: Given ranges [a1, b1], [a2, b2], . . . [ad, bd], we can

compute the fraction of thresholds (or fractions of users with

thresholds) such that the thresholds (t1, t2, . . . , td) satisfy

ai ≤ ti ≤ bi for all 1 ≤ i ≤ d. This is a reasonable

assumption. For example for thresholds independent along

each dimension: Even if only the probability density function

along each attribute is known, the density would just be the

product of d independent definite integrals.

Notice, this does not assume that given any region bounded

by points, it is immediate how to compute the density under

this region. This is in fact the difficult aspect of performing a

greedy algorithm. How do we know the fraction of thresholds

that are already covered by a chosen set of points? It is not

easy to compute the CDF of the threshold distribution of the

region dominated by these points.

We present GREEDY-ON-DISTRIBUTION, a greedy ap-

proach on such threshold distributions. We introduce some

notation for convenience. We use F (I1, I2, . . . , Id) where Ii
are intervals (such as [ai, bi]) and F is the cumulative density

of the thresholds that satisfy these intervals (analogous to

fraction of thresholds if they were finite).

The main intuition of Algorithm GREEDY-ON-

DISTRIBUTION is as follows. In the first step we pick

the skyline point that satisfies the maximum density of

thresholds. In the second step, we pick the skyline point



Algorithm 3 DENSITY-INCREMENT-COVERED(l, S, F )

1: return DENSITY-COVERED(|S|+ 1, S ∪ {p}, F , 0, {})

- DENSITY-COVERED(|S|, S , F , 0, {})

Algorithm 4 DENSITY-COVERED(k′, R, F , d′(0 ≤ d′ ≤ d),
I = {I1, I2, . . . , Id′})

Input: A set R of k′ d-dimensional (skyline) points R =
{p1, p2, ..., pk

′

} (here pj = (pj1, p
j
2, ..., p

j
d)), the distribution of

threshold functions specified by the CDF F , and a set of d′

intervals I = {I1, I2, . . . , Id′}, where each Ii is an interval of

the form (−∞, b] or [a, b].
Output: Density F in the region that contains all points

t = (t1, t2, . . . , td) such that for all j ≤ d′, tj is in

the interval Ij , and for j > d′ tj is such that, we

have the points (0, 0, ..., 0, td′+1, td′+2, . . . , td) dominated by

(∞,∞, ...,∞, pjd′+1, ..., p
j
d) for at least one j.

1: if d′ = d then

2: return INTERVAL-DENSITY-COVERED(I, F )

3: end if

4: Lexicographically sort the k′ points in in-

creasing order, and compute the skyline set of

(∞,∞, ...,∞, pjd′+1, ..., p
j
d).

5: Let the points in increasing lexicographical order be

p1, p2, . . . , pk
′

, without loss of generality.

6: sum = 0.

7: d′ = d′ + 1.

8: Append interval Id′ = (−∞, p1d′ ] to I, and denote this set

of intervals by J.

9: sum = sum+ DENSITY-COVERED(k′, R, F , d′, J)

10: for s = 2 to s = k′ do

11: Append interval Id′ = [ps−1, ps] to I, and denote this

set of intervals by J.

12: sum = sum+DENSITY-COVERED(k′, R, F , d′, J)

13: end for

14: return sum

that satisfies the maximum density of thresholds, among

thresholds that have not already been satisfied by the first

point. So on at each step, the point picked satisfies the largest

density of thresholds in the range(s) of thresholds that have

not already been covered.

The difficulty arises in computing this quantity for any

point. Specifically, it reduces to being able to compute the

density of thresholds covered by a set of points - one can

then take the difference of two sets of points to compute

the marginal density covered by a point in consideration.

This reduction is straightforward, as specified in Algorithm

DENSITY-INCREMENT-COVERED. The Algorithm DENSITY-

COVERED is a recursive algorithm carefully crafted to com-

pute the density covered by a set of points. For the sake of

recursion, the algorithm actually computes the density covered

by a set of points R as well as a set of intervals I. If I is

empty, this algorithm returns the density of thresholds satisfied

by points in R (by recursive calls to itself). Otherwise, I

Algorithm 5 INTERVAL-DENSITY-COVERED(I, F )

Input: A set of d intervals, I1, I2, . . . , Id, and the distribution

of threshold functions specified by the CDF F .

Output: F (I1, I2, . . . , Id).

1: return F (I1, I2, . . . , Id)
{F}or Example, in case of independent, this is product of

d different CDFs over these d intervals.

may contain up to d intervals, one corresponding to each

dimension. If in fact I does contain d intervals, then DENSITY-

COVERED ignores R and returns the density of thresholds that

satisfy these d intervals along the corresponding dimensions.

Notice that this is easy as in Algorithm INTERVAL-DENSITY-

COVERED and does not require recursive calls.

Algorithm DENSITY-COVERED starts with |R| points and

zero intervals in I, and slowly translates this to contain sets

of d intervals that reflect ranges determined by points in

R. The region covered by R may however correspond to

several different sets of intervals (since it may not be just a

d-dimensional cuboid). Therefore, the algorithm is designed

to slowly break this region into simple cuboids, and then

compute the density in each of these. The points in R are

sorted lexicographically. This allows us to know the lowest (or

highest) along say the first dimension. This, then allows us to

compute the cuboid that stretches to this lowest value along the

first dimension (by essentially projecting other points to this

lowest value). The algorithm queries itself for such projected

points (and this interval). Once this density is computed

(recursively), this quantity is set aside to be added to the final

solution. To compute the remaining density, the points are

then projected on to the second lowest value along the first

dimension, and the process is repeated. The formal algorithm

specifies exactly how this is done. We now proceed to prove

the approximation for GREEDY-ON-DISTRIBUTION.

Theorem 3: For S given by GREEDY-ON-DISTRIBUTION,

qF (S) ≥ (1−1/e)qF (OPT). (OPT = argmaxT,|T |=k qF (T ))

Proof: The difficulty lies in performing the greedy

algorithm carefully; since F is difficult to compute over

arbitrary regions, the greedy step had to be done by computing

F by systematically and recursively reducing the covered

regions to intervals. There are three main claims to proving

the approximation ratio. Each is simple. The first states that

we are indeed performing the greedy algorithm and the next

two state that qF (S) is a monotonically non-decreasing, and

submodular objective function.

GREEDY-ON-DISTRIBUTION performs the greedy choice at

every step: The algorithm invokes DENSITY-INCREMENT-

COVERED for each of the skyline points on each of the k
rounds. Consider any of the k rounds. DENSITY-INCREMENT-

COVERED computes the incremental benefit of adding a point

to the solution set, where the benefit is measured as the

density of the thresholds satisfied (that were not already

satisfied so far). The maximal point is then picked. Further,



DENSITY-INCREMENT-COVERED computes the incremental

benefits exactly by invoking DENSITY-COVERED which

recursively computes the area covered by a set of points. This

is done by breaking the region covered into sets of intervals

and then the density F is easily computed by querying

INTERVAL-DENSITY-COVERED. Therefore, the choice made

at each of the k steps is the best possible for that specific

step (i.e. optimal choice assuming this was the last point to

be picked). Therefore GREEDY-ON-DISTRIBUTION achieves

the greedy choice at every step.

The objective qF (S) is monotonically non-decreasing: Notice

that qF (S) is the density sum of F over the region satisfied

(or covered) by points in S. Adding a point to S only

increases the overall region satisfied by points; therefore

qF (S) ≤ qF (T ) if S ⊆ T .

The objective qF (S) is submodular: Observing that qF (S) is

again straightforward. Notice that qF (S) is exactly the density

under the region satisfied by S in the d-dimensional space; so

we only need to prove that the volume/region satisfied by a

set of points S is submodular. Consider sets of points S ⊆ T ;

the region satisfied by T is a superset of the region satisfied

by S. Now look at a point p and the region satisfied by it.

If p is added to T , the region satisfied by T ∪ {p} increases

by the volume that got additionally satisfied by p (but was

not satisfied by any point in T ). Similarly the volume in the

region satisfied by S∪{p} minus region satisfied by S contains

exactly all points in the space that are dominated by p but not

dominated by any point in S. Since S ⊆ T , it follows that

qF (S ∪ {p})− qF (S) ≥ qF (T ∪ {p})− qF (T ).
The proof now follows using [11], [12] which gives a (1−

1/e)-approximation for the greedy algorithm for an objective

that is non-decreasing and sub-modular.

1) Time Complexity: The algorithm GREEDY-ON-

DISTRIBUTION turns out to be very expensive due to the

recursive calls. While performing the i-th greedy choice (for

i ≤ k), we need to compare O(m) skyline points. For each

of them, we need to compute the marginal benefit of adding

it to the set, as done by DENSITY-INCREMENT-COVERED.

Therefore, DENSITY-INCREMENT-COVERED is invoked mk
times. This in turn calls DENSITY-COVERED which makes

recursive calls to itself up to depth d before terminating with

INTERVAL-DENSITY-COVERED. The key trick now is that

in INTERVAL-DENSITY-COVERED, all the points are already

sorted in increasing lexicographic order (and so this does not

have to be done in each call). However, DENSITY-COVERED

still needs to call itself k′ − 1 number of times where k′ was

the number of points - this can be as large as m; one call for

projecting the points down to the t-th highest value along the

corresponding dimension (for t ≤ k′). This therefore yields

a time complexity of roughly (km) ∗ (m − 1)d which is

O(kmd). The good thing is that d is in the exponent and not

k - so this is still manageable for small d (while k typically

can be around 10 or 20). However, even for d ≥ 4 (which

is often the case), this becomes hugely expensive. In the

following subsection, we consider a more efficient approach.

B. Greedy Algorithm by Sampling from Threshold Distribution

We have show that given explicit n users, there is a very

efficient simple algorithm. Further, if users are not specified,

and we can only assume a distribution over users, then the

greedy algorithm becomes nontrivial to simulate and compu-

tationally very expensive. This suggests a natural and more

efficient approach - sample users (threshold preferences) from

the distribution, and pretend that the samples represent a set

of explicit users. Then perform the simple greedy algorithm.

With sufficient samples, this seems like a reasonable algorithm

that should do well in practice. Here we actually formalize this

algorithm and prove a concrete bound.

More generally, on can consider the case when the distribu-

tion F is unknown but some samples of threshold functions

drawn from F are available. Let F ′ = {f1, f2, . . . , fn} be

these samples. We show that one can obtain an approximate

to qF () that is arbitrarily close to (1− 1/e), depending on n.

To state the result formally, we need some more notation.

Let OPT be the optimal solution. Recall that for any set

S, qF (S) denotes the quality of S on distribution F , i.e.,

the probability that a threshold function drawn from the

distribution with CDF F will be satisfied by a tuple in S.

Also recall that for any set U of threshold functions, qU (S)
denotes the quality of S on U , i.e., the number of functions in

U that are satisfied by some tuples in S. We are particularly

interested in qF ′ . Also recall that m is the number of skyline

tuples in D and k is the number of desired output tuples.

Our result is that for any 0 < ǫ < 1, one can get a (1−ǫ)(1−
1/e) approximation guarantee with high probability using the

number of sampled threshold functions proportional to k, lnm,

1/ǫ, and 1/qF (OPT), as in the following theorem.

Theorem 4: For any 0 < ǫ < 1, there is an algorithm

that uses n =
⌈

3(k+1) lnm

ǫ(1−1/e)qF (OPT)

⌉

+ 1 sample points and,

with probability at least 1 − 1/m, outputs a set of tuples of

size k, denoted by ALG, such that qF (ALG) > (1 − ǫ)(1 −
1/e)qF (OPT).

We now present algorithm SAMPLING-GREEDY and prove

this theorem. The algorithm runs as follows: First, sample a set

of n threshold functions, denoted by F ′ = {f1, f2, . . . , fn}.

Next, run the greedy algorithm on F ′, i.e., in each step, pick

a tuple that satisfies the most number of unsatisfied thresholds

in F ′.

We now analyze SAMPLING-GREEDY. The key to prove

Theorem 4 is the following lemma which says that any set that

does not approximate OPT well on distribution F is unlikely

to approximate OPT well on set F ′ of samples.

Lemma 5: For any set T of size k such that qF (T ) ≤ (1−
ǫ)(1 − 1/e)qF (OPT), Pr[qF ′(T ) ≥ (1 − 1/e)qF ′(OPT)] ≤
1/mk+1 where the probability is over all choices of F ′.

Proof: For i = 1, 2, ..., n, let Xi be a 0/1 random variable

which is 1 if and only if fi is satisfied by a tuple in T .

Similarly, let X∗
i be a 0/1 random variable which is 1 if and



Algorithm 6 SAMPLING-GREEDY(D, k, ǫ)

Input: A set D of tuples, a desired output size k and a desired

approximation accuracy 0 < ǫ < 1.

Output: A set ALG ⊆ D of k tuples such that qF (ALG) ≥
(1− ǫ)(1− 1/e)qF (OPT) with probability at least 1− 1/m.

1: Sample n points from F . Let F ′ = {f1, f2, . . . , fn} be

the set of such points.

2: Let ALG = ∅.

3: for i = 1 to k do

4: Let p be a tuple in D such that qF ′(p) is maximum.

5: Add p to ALG.

6: Delete every function fi in F ′ such that fi is satisfied

by p.

7: end for

only if fi is satisfied by a tuple in OPT. expectation.

E[

n
∑

i=1

((1− 1/e)X∗
i −Xi)]

=

n
∑

i=1

((1− 1/e)E[X∗
i ]− E[Xi])

=

n
∑

i=1

((1− 1/e)qF (OPT)− qF (T ))

≥ ǫn(1− 1/e)qF (OPT)

where the last inequality comes from the fact that qF (T ) ≤
(1− ǫ)(1− 1/e)qF (OPT). Therefore,

Pr[qF ′(T ) ≥ (1− 1/e)qF ′(OPT)]

= Pr[

n
∑

i=1

((1− 1/e)X∗
i −Xi) ≤ 0]

≤ Pr[

n
∑

i=1

((1− 1/e)X∗
i −Xi)

≤ (1− δ)ǫn(1− 1/e)qF (OPT)]

≤ e−ǫn(1−1/e)qF (OPT)δ2/3, (1)

for any 0 < δ < 1, where the last inequality is by

Chernoff bound (see, e.g., Mitzenmacher-Upfal [13, The-

orem 4.5]). We chose δ to be close enough to one so

that n ≥ 3(k+1) lnm

ǫ(1−1/e)qF (OPT)δ2
. (Such δ exists since n >

3(k+1) lnm

ǫ(1−1/e)qF (OPT)
.) Plugging in the value of n to (1), we have

Pr[qF ′(T ) ≥ (1− 1/e)qF ′(OPT)] ≤ 1/mk+1 as desired.

Proof: [Proof of Theorem 4] By union bound over all sets

of size k, it follows that with probability at least 1−1/n, every

set T of size k such that qF (T ) ≤ (1− ǫ)(1− 1/e)qF (OPT)
has qF ′(T ) < (1− 1/e)qF ′(OPT). Let ALG be the output of

the algorithm. Since qF ′(ALG) ≥ (1 − 1/e)qF ′(OPT), ALG

cannot be one of those sets T and thus qF (ALG) > (1−ǫ)(1−
1/e)qF (OPT) as desired.

Notice that we have shown qF (ALG) > (1 − ǫ)(1 −
1/e)qF (OPT). For a different ǫ, rearranging gives qF (ALG) >

(1−1/e−ǫ)qF (OPT). We now analyze the computational cost

of SAMPLING-GREEDY.

1) Time Complexity: We now sketch an O(|F ′||D|) =
O(mn) ≈ O(mǫ ) time implementation of Algorithm IV-B. We

construct an m × n array A where A[i][j] equals 1 if tuple

pi ∈ D satisfies function fj ∈ F ′, and 0 otherwise. This array

can be constructed in O(|F ′||D|) time. We also keep an array

N of size m where N [i] is the number of functions currently

in F ′ that tuple pi in D satisfies.

As the algorithm proceeds, we pick some tuple pi and we

have to delete from F ′ all functions satisfied by pi. This is

done by “scanning” all elements in row A[i][∗] and for any j
such that A[i][j] = 1, we “nullify” elements in column A[∗][j]
to 0 and update the numbers in N accordingly. Observe that

each cell A[i][j] is “scanned” only once (only when pi is

picked). Also, each cell A[i][j] is “nullified” only once (since

nullification of column A[∗][j] is done when A[i][j] = 1 for

some i and after that every element in column A[∗][j] will be

0). Therefore, the total running time is O(|F ′||D|). We also

note that the implementation could be slightly more efficient

(but asymptotically the same) by using link lists.

Since this approach of SAMPLING-GREEDY is much faster,

and its approximation tends to that of the exact greedy

algorithm GREEDY-ON-DISTRIBUTION (as the sampling is

increased), we use this for experiments.

V. EXPERIMENTAL EVALUATION

In this section we show that the SAMPLING-GREEDY (in

short Greedy) algorithm consistently covers a large fraction

of thresholds, outperforming other representative skyline def-

initions due to its knowledge of the distribution. All our

implementation was done in C and run on a 1.7GHz Intel

Xeon machine running Linux 2.6.9.

In all cases, we generated anti-correlated points using the

data set generator presented in [2]. This generates points in

the range [0, 1] along each dimension. Anti-correlated data is

most interesting to us because it leads to a large skyline set

that needs a good representation. We averaged the performance

of all the experiments by repeating each experiment 10 times

with independent sets of points (and training thresholds for

our Greedy algorithm). Unless otherwise specified, we used

default values of one hundred thousand input points (M =
100000), four dimensions (d = 4), and k = 10 representative

points. For the experiments on synthetic data, thresholds were

generated according to the Normal distribution independently

along each dimension, with parameters µ as mean and σ as

standard deviation. For default values, µ and σ are 0.5 and

0.25 respectively so that the majority of the points are in the

same range as the anti-correlated data points.1 We evaluated

the performance of each algorithm (measured as the fraction of

random points drawn from the distribution that were covered)

1A subtle point here is that some points may have negative coordinates
(since we sample from Gaussians) and the thresholds are then automatically
satisfied. Similarly, some thresholds could be greater than 1 and then they can
never be satisfied. However, this comparison is uniform across all algorithms
and we vary µ and σ as well in our experiments.



n 2D 4D 6D
100 0.748574 0.473685 0.249502

1000 0.766047 0.538480 0.313911
10000 0.769406 0.544203 0.326666

100000 0.769732 0.544632 0.328671

TABLE I

COVERAGE OF OUR GREEDY ALGORITHM USING DIFFERENT TRAINING

SET SIZES (M = 100000, k = 10, AND µ = 0.5, σ = 0.25 IN ALL

DIMENSIONS)

 0%

10%

20%

30%

40%

50%

60%

70%

80%

 2  3  4  5  6

C
o
v
e
ra

g
e

d

Greedy
Naive-Greedy

Min-Regret
Ext-Two-Scan

Fig. 1. Coverage percentage with varying dimensions (M = 100000, n =

1000, k = 10, and µ = 0.5, σ = 0.25 in all dimensions)

by generating one million thresholds. For the experiments on

the real data, the data set presented values along different

attribuets. We used the values themselves as thresholds, and

generated points separately for the evaluation.

We compared the following algorithms:

1) Our Greedy algorithm based on sampling (Algorithm IV-

B) presented in Section IV.

2) The Naive-Greedy algorithm proposed in [14] for com-

puting a distance-based representative skyline.

3) The Min-Regret algorithm [9] for approximating the

skyline with minimal regret with linear utility functions.

4) The Ext-Two-Scan algorithm proposed in [8].

A. Experiments with synthetic data

We begin by presenting our experiments on synthetic data.

Table I shows the performance of our Greedy algorithm as the

size of the training set (n), i.e. number of thresholds sampled,

is increased. We see from the table that beyond n = 1000
samples there is not much further improvement in performance

(at most 1 − 2%) and so we fix this value for the remaining

experiments. Note that it is good that such a relatively small

value of n suffices since this affects the running time of the

Greedy algorithm and, in the case where the training points

are inferred from real data, not many are needed to make our

algorithm perform well.

In Figure 1 we compare the coverage of all the algorithms

with default values and the number of dimensions (d) varied.

As would be expected, the coverage of all the algorithms

declines with additional dimensions. Intuitively, this is because
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Fig. 4. Coverage percentage with varying µ (M = 100000, n = 1000,
d = 4, k = 10, and σ = 0.25 in all dimensions)

more dimensions need more attributes to be satisfied by the

representative points. The coverage of our Greedy algorithm

decreases gracefully in a near-linear fashion, in contrast with

the other algorithms that drop off much more rapidly.

Figures 2[a-c] shows how the algorithms compare when the

number of points (M ) is varied for the case of d = 2, 4, and

6 dimensions, respectively. We observe that all the algorithms

except Ext-Two-Scan perform well for the case of d = 2.

For higher dimensions, all the other algorithms deteriorate in

quality with respect to our Greedy algorithm, with a stark

difference observed for the case of d = 6. Note that the

coverage of our algorithm increases with M because having an

increased number of choices increases the quality of the final

solution. We vary the size of the reprentation (k) in Figure 3,

again for the cases of 2, 4, and 6 dimensions. The coverage

of all the algorithms are monotonically non-decreasing with

k, as is to be expected. Once again we see a widening gap

between the performance of our algorithm and the others as

the number of dimensions increase.

Next, we varied the mean of the distribution used in the ex-

periment, as seen in Figure 4. The purpose of this experiment

is to show that, as the thresholds get higher, it is increasingly

hard to cover most of the points. Similarly, we varied the

standard deviation of the distribution in Figures 5[a-c]. Note

that in these figures the axis for σ (x-axis) is in the decreasing

direction. What these figures show is that, as the standard

deviation is decreased (i.e., the target thresholds are more

tightly clustered), our algorithm performs increasingly better

versus the others. This is, once again, due to the advantage of

distribution knowledge that our algorithm possesses.

B. Experiments with real data

We experimented on two real data sets of real thresholds,

called House and NBA. The House data consists of 127, 931
points with six dimensions collected from statistics of expen-

ditures of families in the US on various utilities. The NBA

data has 17, 264 five-dimensional points collected from the

statistics of NBA players. For the database set of points, we

used anti-correlated points as before, except we re-scaled them

to be in the interval [H − 2σ,H] in each interval, where H



 0%

10%

20%

30%

40%

50%

60%

70%

80%

 1000  10000  100000  1e+06

C
o

v
e

ra
g

e

M

Greedy
Naive-Greedy

Min-Regret
Ext-Two-Scan

(a) 2D

 0%

10%

20%

30%

40%

50%

60%

 1000  10000  100000  1e+06

C
o

v
e

ra
g

e

M

Greedy
Naive-Greedy

Min-Regret
Ext-Two-Scan

(b) 4D
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Fig. 2. Coverage percentage with varying M (k = 10, n = 1000, and µ = 0.5, σ = 0.25 in all dimensions)
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(c) 6D

Fig. 3. Coverage percentage with varying k (M = 100000, n = 1000, and µ = 0.5, σ = 0.25 in all dimensions)
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Fig. 5. Coverage percentage with varying σ (M = 100000, n = 1000, k = 10, and µ = 0.5 in all dimensions)

is the maximum value the thresholds attained and σ is the

average of the standard deviation of each attribute. (In the

case of House this was [6391.95, 10000.00] and for NBA it

was [9036.59, 10000].)
We show the performance of the algorithms in Figure 6 in

which we vary the size of the reprentation (k). Our Greedy

algorithms outstrips the other algorithms in both cases. In fact,

for small values of k (e.g., near k = 5), it covers over twice

the fraction of thresholds as the next best algorithm.

We also tested the attribute values on each of the attributes

to see if they actually follow something like a Normal distribu-

tion. We plotted the attribute values for each of the dimensions

on both the real data sets, House and NBA. Some dimensions

exhibit cleaner Gaussians than others but all of them are indeed

unimodal and nearly bell-shaped. We present the plots for the

first dimensions of House as well as NBA. These plots could

vary depending on scaling etc. so have to be taken with a grain

Fig. 7. Plots of attribute values of first dimension for House data

of salt. However, it is nice that they are close to Gaussian in

nature. These are shown in Figures 7 and 8.
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Fig. 6. Coverage percentage with varying k for real data sets

Fig. 8. Plots of attribute values of first dimension for NBA data
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Fig. 9. Running time with varying d (n = 1000, M = 100000, k = 10,
and µ = 0.5 in all dimensions)

C. Running Times

We compared the running times of the different algorithms

based on our C implementations. As stated earlier, these times

were averaged over 10 runs. In Figures 9 and 10 we vary the

number of dimensions and the number of data points. We see

that in both cases the Greedy algorithm completes within 1-2

seconds. Some of the other algorithms took in the order of 10s

to 100s of seconds, though we did not try to optimize them.

VI. RELATED WORK

Skyline computation, previously known as Pareto sets, ad-

missible points, and maximal vectors, has been extensively

studied in the theory and mathematics community since 1960s
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Fig. 10. Running time with varying M (n = 1000, d = 4, k = 10, and
µ = 0.5 in all dimensions)

(see, e.g., [15]–[17]). The problem, and the name skyline,

were introduced to the database community by Börzsönyi et

al. [2]. Owing to the vast body of work on skylines, we restrict

ourselves to mentioning only those most relevant to the context

of representative skylines.

Motivated by the possibly large size of skylines, many vari-

ants of skylines have been considered. Lin et al. [6] and Tao et

al. [5] consider finding k skyline tuples that best represent the

contour of the entire skyline, called k representative skyline.

[6] propose finding a set of k skyline tuples that dominate the

most number of tuples. This approach is scale invariant but

not stable. [5] illustrates that the approach of [6] could lead

to an undesirable solution. This is essentially because of the

fact that it is unstable. They propose an alternative distance-

based solution which is to solve the k-center problem on the

skyline tuples. This approach is stable but not scale invariant

since their definition is based on distances. Also, in recent

work, we [9] considered another approach to representative

skylines, based on linear utility functions. One drawback of

this work is that it tries to maximize the minimum happiness

over all users; this may not be optimal for maximizing click

probabilities averaged over all users. While we study user-

based thresholds, there has been orthogonal interesting work

on constrained subspace skyline computation [18] where range

constrains on the skyline queries are specified.

Several other approaches have also been suggested; some



control the size of the output without explicitly specifying

a bound. Xia et al. [7] propose ǫ-skyline queries where

users specify weights on attributes, and use the parameter

ǫ to control the size of the output. Mindolin et al. [19]

propose p-skyline queries which is a framework that allows

attributes to have different importance. To avoid asking users

for weights explicitly, they offer an alternative approach to

discover importance from user feedback. Lee et al. [20] avoid

asking users for utility functions by requesting only partial

ranking over attributes. Chan et al. [21] introduce the concept

of skyline frequency as a way to measure the importance of a

point based on the number of subsets of dimensions for which

it is in the skyline. A related concept of k-dominance proposed

by Chan et al. [8] relaxes the definition of dominance to a point

dominating another if it dominates on at least k dimensions.

All these approaches are used to reduce the size of the output.

An orthogonal approach to skylines, also used to displayed

only k interesting tuples from the database is the top-k
operator (see [22] for a recent survey). This approach is based

on a widely-accepted assumption that utility functions exist.

See for example PREFER [23], ONION [24], Ranked Join

Indices [25]. The main benefit of representative skylines over

such techniques is that it avoids asking users explicitly for

inputs; users may be unnecessarily burdened to input weights

on all attributes (sometimes weights are not even known). Yiu

and Mamoulis [26], and Papadopoulos et. al. [27] propose the

top-k dominating query to leverage the benefits of top-k as

well as skylines; it is scale invariance but not stable. Goncalves

and Vidal [28] propose two operators combining top-k and

skylines, but require users to specify utility functions. There

is a lot more work on both top-k as well as skylines that we

do not mention here. Further references on top-k and variants

of skylines can be found in [9] and [29] respectively.

VII. FUTURE DIRECTIONS

An open question raised by this work is to understand

users’ joint preferences along different attributes. For e.g.,

a user with a high threshold on hotel cost probably has

a high threshold on hotel rating as well. The knowledge

of such correlations (or the absence of it) can perhaps be

exploited for better solutions. Perhaps the most interesting

follow-up is to investigate whether user preferences can be

learned over time in this context of databases (such as a hotel

reservation system). This is a research direction in itself that

has received attention in other domains. For instance, search

engines are constantly trying to learn about users’ preferences

for contexts of keywords, or categories of URLs. This direction

is reminiscent of multi-armed bandit type problems where a

standard solution approach is to explore and exploit. When a

system starts off, it may not have a good idea about users’

preferences; over time, it understands the preferences better.

As a steady state solution, the system exploits the current

knowledge of user preferences by serving results based on it,

while continuing to explore and learn the preferences better.

It would be interesting to investigate such approaches here.
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