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Abstract

We study a new model of computation, called best-order stream, on graph
problems. Roughly, it is a proof system where a space-limited verifier has to
verify a proof sequentially (i.e., it reads the proof as a stream). Moreover,
the proof itself is just a specific ordering of the input data. This model is
closely related to many models of computation in other areas such as data
streams, communication complexity, and proof checking, and could be used
in applications such as cloud computing.

In this paper we focus on graph problems where the input is a sequence
of edges. We show that even under this model, checking some basic graph
properties deterministically requires linear space in the number of nodes. To
contrast this, we show that randomized verifiers are powerful enough to check
many graph properties in poly-logarithmic space.

Key words: Data Stream, Model of Computation, Communication
Complexity

1. Introduction

This paper is motivated by three fundamental questions that arise in
three widely studied areas in theoretical computer science - streaming algo-
rithms, communication complexity, and proof checking. The first question
is how efficient can space restricted streaming algorithms be. The second
question, is whether the lower bound of a communication problem holds for
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every partition of the input. Finally, in proof checking, the question is how
many (extra) bits are needed for the verifier to establish a proof in a re-
stricted manner. Before elaborating on these questions, we first describe an
application that motivates our model.

Many big companies such as Amazon [1] and salesforce.com are cur-
rently offering cloud computing services. These services allow their users to
use the companies’ powerful resources for a short period of time, over the
Internet. They also provide some softwares that help the users who may not
have knowledge of, expertise in, or control over the technology infrastructure
(“in the cloud”) that supports them.4 These services are very helpful, for
example, when a user wants a massive computation over a short period of
time.

Now, let’s say that you want the cloud computer to do a simple task such
as checking if a massive graph is strongly connected. Suppose that the cloud
computer gets back to you with an answer “Yes” suggesting that the graph
is strongly connected. What do you make of this? What if there is a bug in
the code, or what if there was some communication error? Ideally one would
like a way for the cloud to prove to you that the answer is correct. This proof
might be long due to the massive input data; hence, it is impossible to keep
everything in your laptop’s main memory. Therefore, it is more practical to
read the proof as a stream with a small working memory. Moreover, the proof
should not be too long – one ideal case is when the proof is the input itself
(in a specific order). This is the model considered in this paper. Related
models motivated by similar applications have also been studied by Li et
al. [2, 3], Papadopoulos et al. [4], Goldwasser et al. [5], Chakrabarti et al. [6],
and Cormode et al. [7].

We describe previous models studied specifically in the stream, computa-
tional complexity, and proof checking domains and contrast them with our
model.

Data Streams: The basic premise of streaming algorithms is that one is
dealing with a humongous data set, too large to process in main memory. The
algorithm has only sequential access to the input data; this is called a stream.
In certain settings, it is acceptable to allow the algorithm to perform multiple

4http://www.ebizq.net/blogs/saasweek/2008/03/distinguishing_cloud_
computing/.
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passes over the stream. The general streaming algorithms framework has
been studied extensively since the seminal work of Alon, Matias, Szegedy [8].

Models diverge in the assumptions made about what order the algorithm
can access the input elements in. In the classic Finite State Automata
model [9], the order of the data is set by the definition of the problem.
Streaming models allow a richer class of order types. The most stringent re-
striction on the algorithm is to assume that the input sequence is presented
to the algorithm in an adversarial order. A slightly more relaxed setting, that
has also been widely studied is where the input is assumed to be presented in
randomized order [10, 11, 12]. However, even a simple problem like finding
median (which was considered in the earliest paper in the area by Munro
and Patterson [13]) was shown recently [10] to require Ω(log log n) passes
in both input orders if the space is bounded by O(polylog n). In [14], one
of the earliest paper in this area, it was shown that many graph problems
require prohibitively large amount of space to solve. It is confirmed by the
more recent result [15] that a huge class of graph problems cannot be solved
efficiently in a few passes. Since then, new models have been proposed to
overcome this obstruction. Feigenbaum et. al. [16] proposed a relaxation of
the memory restriction in what is called the semi-stream model. Another
input order suggested by Aggarwal et. al. [17] is that of receiving the input
in some sorted order. In the classic Binary Decision Diagram [18] the order
used is of best oblivious; i.e., the input is presented in the best manner for
the problem but not necessarily for the problem instance.

Another model that has been considered is the W-Stream (write-stream)
model [19, 20]. While the algorithm processes the input, it may also write a
new stream to be read in the next pass.

We ask the following fundamental question:

If the input is presented in the best order possible, can we solve
problems efficiently?

A precise explanation is reserved for the models in Section 2; however, intu-
itively, this means that the algorithm processing the stream can decide on
a rule on the order in which the stream is presented. We call this the best-
order stream model. For an example, if the rule adopted by the algorithm
is to read the input in sorted order, then this is equivalent to the single pass
sort stream model. Another example of a rule, for graphs presented as edge
streams could be that the algorithm requires all edges incident on a vertex
to be presented together. This is again equivalent to a graph stream model
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studied earlier called the incidence model (and corresponds to reading the
rows of the adjacency matrix one after the other). A stronger rule could be
that the algorithm asks for edges in some perfect matching followed by other
edges. As we show in this paper, this rule leads to checking if the graph has
a perfect matching and as a consequence shows the difference between our
model and the sort-stream model.

Communication Complexity: Another closely related model is the com-
munication complexity model [21, 22]. In the basic form of this model, two
players, Alice and Bob, receive some input data and they want to compute
some function together. The question is how much communication they have
to make to accomplish the task. There are many variations of how the input
is partitioned. The worst-case [23] and the best-case [24] partition models
are two extreme cases that are widely studied over decades. The worst case
asks for the partition that makes Alice and Bob communicate the most while
the best case asks for the partition that makes the communication smallest.
Moreover, even very recently, another variation where the input is parti-
tioned according to some known distribution (see, e.g., [25]) was proposed.
The main question is whether the lower bound of a communication prob-
lem holds for almost every partition of the input, as opposed to holding for
perhaps just a few atypical partitions.

The communication complexity version of our model (described in Sec-
tion 2) asks the following similar question: Does the lower bound of a com-
munication problem hold for every partition of the input? Moreover, our
model can be thought of as a more extreme version of the best-case parti-
tion communication complexity. We explain this in more details in Section 2.

Proof Checking: From a complexity theoretic standpoint, our model can
be thought of as the case of proof checking where a polylog-space verifier is
allowed to read the proof as a stream; additionally, the proof must be the
input itself in a different order.

The field of probabilistically checkable proofs (PCPs) [26, 27, 28] deals
with a verifier querying the proof at very few points (even if the data set is
large and thus the proof) and using this to guarantee the proof with high
probability. While several variants of proof checking have been considered,
we only state the most relevant ones. A result most related to our setting
is by Lipton [29] where it was shown that membership proofs for np can be
checked by probabilistic logspace verifiers that have one-way access to the
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proof and use O(log n) random bits. This result almost answers our question
except that the proof is not the reordered input and, more importantly, its
size is not linear (but polynomial) in the size of the input which might be
too large for many applications.

Another related result that compares streaming model with other models
is by Feigenbaum et. al. [30] where the problem of testing and spot-checking
on data streams is considered. They define sampling-tester and streaming-
tester. A sampling-tester is allowed to sample some (but not all) of the input
points, looking at them in any order. A streaming-tester, on the other hand
is allowed to look at the entire input but only in a specific order. They show
that some problems can be solved in a streaming-tester but not by a sampling-
tester, while the reverse holds for other problems. Finally, we note that our
model (when we focus on massive graphs) might remind some readers of
the problem of property testing in massive graphs [31]. Chakrabarti et al. [6]
consider an annotation model for streaming proofs, again motivated by cloud
computing services. Their model allows a helper to add additional bits to
the stream to generate a proof to be presented to the verifier. In this model,
the helper observes the stream concurrently with the algorithm. In follow up
work to Chakrabarti et al. [6] and this paper, Cormode et al. [7] consider a
similar annotation model where the cloud and the verifier look at the stream
input. Subsequently, the cloud service needs to provide a proof to the verifier
about the specific problem, which may include the reordered stream and may
include additional helper bits as well. The verifier still needs to work with
small space though since the proof itself may be long.

Notice that in all of the work above, there are two common themes. The
first is verification using small space. The second is some form of limited
access to the input. The limited access is either in the form of sampling from
the input, limited communication, or some restricted streaming approach.
Our model captures both these aspects.

Our Results

In this paper, we partially answer whether there are efficient streaming
algorithms when the input is in the best order possible. We give a negative
answer to this question for the deterministic case and show evidence of a
positive answer for the randomized case. Our positive results are similar in
spirit to those for the W-stream and Sort-stream models [17, 20, 19].

For the negative answer, we show that the space requirement is too large
even for the simple problem of checking if a given graph has a perfect match-

5



ing deterministically. In contrast, this problem, as well as the connectivity
problem, can be solved efficiently by randomized algorithms. We show simi-
lar results for other graph properties.

Organization: The rest of the paper is organized as follow. In Section 2 we
describe our best-order streaming model formally and also define some of the
other communication complexity models that are well-studied. The problem
of checking for distinctness in a stream of elements is discussed in Section 3.
This is a building block for most of our algorithms. The following section,
Section 4, talks about how perfect matchings can be checked in our model.
We discuss the problem of stream checking graph connectivity in Section 5.
Our techniques can be extended to a wide class of graph problems such
as checking for regular bipartiteness, non-bipartiteness, Hamiltonian cycles
etc. We describe the key ideas for these problems in Section 6. Finally,
we conclude in Section 7 by stating some insights drawn from this paper,
mention open problems and describe possible future directions.

2. Models

In this section we explain our main model and other related models that
will be useful in the subsequent sections.

2.1. Best-Order Streaming Model

Recall the following classical streaming model which will be called the
worst-order stream in this paper, to contrast with the proposed best-order
stream. In this model, an input is in some order e1, e2, ..., em, where m is the
size of the input. The input e1, e2, . . . , em could be numbers, edges, or any
other items. In this paper, we are interested in the case where they are edges.
We will assume this implicitly throughout. Moreover, we assume that the
input element is indivisible (e.g., vertices in ei must appear consecutively).
In the case of graph problems considered in this paper, we also assume that
the number of vertices is known to the algorithm before reading the stream.
(We note that the algorithms presented in this paper also work even when
we assume that the number of vertices are known only approximately.)

Consider any function f that maps the input stream to {0, 1}. The
goal of the typical one-pass streaming model is to develop an algorithm
that uses small space to read the input in order e1, e2, . . . , em and calculate
f(e1, e2, . . . , em).
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In the best-order streaming model, we consider any function f that is
order-independent. That is, for any permutation π,

f(e1, e2, . . . , em) = f(eπ(1), eπ(2), . . . , eπ(m)) .

Note that many graph properties (including those considered in this paper)
satisfy the above property. Our main question is how much space a one-pass
streaming algorithm needs in order to compute f if the input is provided in
the best order possible. Formally, for any function s(m) and any function f ,
we say that a language L determined by f is in the Stream-Proof(s(m))
class if there exists a streaming algorithm A with space s(m) such that

• if f(e1, e2, ..., em) = 1 then there exists a permutation π such that
A(eπ(1), eπ(2), . . . , eπ(m)) answers 1;

• otherwise, A(eπ(1), eπ(2), ..., eπ(m)) answers 0 for every permutation π.

The other way to interpret this model is to consider the situation where
there are two players in the setting, the prover and the verifier. The job
of the prover is to provide the stream in some order so that the verifier can
compute f using the smallest amount of memory possible. We assume that
the prover has unlimited power but restrict the verifier to read the input in
a streaming manner (with a limited memory).

The model above can be generalized to the following models.

• Stream(p, s): A class of problems that, when presented in the best-
order, can be checked by a deterministic streaming algorithm A using
p passes and O(s) space.

• RStream(p, s): A class of problems that, when presented in the best-
order, can be checked by a randomized streaming algorithm A using p
passes and O(s) space. The output is correct with probability at least
2/3.

It is important to point out that when the input is presented in a specified
order, we still need to check that the oracle is not cheating. That is, we indeed
need a way to verify that we receive the input based on the rule we asked
for. This often turns out to be the difficult step.

To contrast this model with the well-studied communication complexity
models, we first define a new communication complexity model called magic-
partition communication complexity. We later show a relationship between
this model and the best-order streaming model.
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2.2. Magic-Partition Communication Complexity

Recall the following standard 2-player communication complexity which
we call worst-partition communication complexity. In this model, an input S,
which is the set of elements, is partitioned into two sets X and Y , which are
given to Alice and Bob, respectively. Alice and Bob want to together compute
f(S), for some order-independent function f . In the worst-partition case, we
consider the case when the input is partitioned in an adversarial way, i.e., we
partition the input into X and Y in such a way that Alice and Bob have to
communicate as many bits as possible.

For the magic-partition communication complexity, we instead consider
the case when the input is partitioned in the best way possible. Formally, the
magic-partition communication complexity consists of three players, the ora-
cle, and Alice and Bob. An algorithm on this model consists of a function O
(owned by the oracle) that partitions the input set S = {e1, e2, . . . , em} to two
setsX = {eπ(1), eπ(2), . . . , eπ(bm/2c)} and Y = {eπ(bm/2c+1), eπ(bm/2c+2), . . . , eπ(m)}
for some permutation π and a protocol P used to communicate between Alice
and Bob. We say that an algorithm consisting ofO and P has communication
complexity c(m), for some function c, if

• for an input S such that f(S) = 1, the protocol P uses c(m) bits of
communication and outputs 1 when it is run on the sets X and Y
partitioned according to O, and

• for an input S such that f(S) = 0, the protocol P uses c(m) bits of
communication and outputs 0 when it is run on any sets X and Y
coming from any partition.

One way to think of this protocol is to imagine that there is an oracle who
looks at the input and then decides how to divide the data between Alice and
Bob so that they can compute f using the smallest number of communicated
bits and Alice and Bob have to also check if the oracle is lying. We restrict
that the input data must be divided equally between Alice and Bob.

Example. Suppose that the input is a graph G. Alice and Bob might decide
that the graph be broken down in a topological order, i.e., they traverse the
vertices in topological order and order the edges by the time they first visit
vertices incident to them. It is important to note the distinction that Alice
and Bob actually have not seen the input; but they specify a rule by which
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to partition the input, when actually presented.

Note that this type of communication complexity should not be confused
with the best-partition communication complexity (defined in the next sec-
tion).

The magic-partition communication complexity will be the main tool to
prove the lower bounds of the best-order streaming model. The following
lemma is the key to prove our lower bound results.

Lemma 2.1. For any function f , if the deterministic magic-partition com-
munication complexity of f is at least s, for some s, then for any p and t
such that (2p− 1)t < s, f /∈ Stream(p, t).

Proof. Suppose that the lemma is not true; i.e., f has a magic-partition
communication complexity at least s, for some s, but there is a best-order
streaming algorithm A that computes f using p passes and t space such that
(2p− 1)t < s. Consider any input e1, e2, ..., en. Let π be a permutation such
that eπ(1), eπ(2), ..., eπ(n) is the best ordering of the input for A. Then, define
the partition of the magic-partition communication complexity by allocating
eπ(1), eπ(2), ..., eπ(bn/2c) to Alice and the rest to Bob.

Alice and Bob can simulate A as follows. First, Alice simulates A on
eπ(1), eπ(2), ..., eπ(bn/2c). Then, she sends the data on her memory to Bob.
Then, Bob continues simulating A using the data given by Alice (as if he
simulates A on eπ(1), eπ(2), ..., eπ(bn/2c) by himself). He then sends the data
back to Alice and the simulation of the second pass of A begins. Observe
that this simulations needs 2p− 1 rounds of communication and each round
requires at most t bits. Therefore, Alice and Bob can compute f using
(2p− 1)t < s bits, contradicting the original assumption. �

Similarly, if the randomized magic-partition communication complexity
of f is at least s, for some s, then for any p and t such that (2p − 1)t < s,
f /∈ RStream(p, t). Note also that the converse of the above lemma clearly
does not hold.

2.3. Related models

We now describe some previously studied communication complexity mod-
els that resemble ours.
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2.3.1. Best-Partition Communication Complexity

The best-partition communication complexity model was introduced by
Papadimitriou and Sipser [24] and heavily used for proving the lower bounds
for many applications including VLSI (see [32, 33, 22] and references therein).
(In fact, many early communication complexity results are in this model.)

In this model, Alice and Bob can pick how to divide the data into two
parts of roughly equal size among them before they see the input. This means
that they can decide that if an element e appears in the stream, who will get
this element. After this decision, the adversary, knowing this partitioning
rule, gives an input that makes them communicate the most.

We note the following distinction between this model and the magic-
partition model. In this model the players have to pick how data will be
divided before they see the input data. For example, if the data is the graph
of n vertices then, for any edge (i, j), Alice and Bob have to decide who will
get this edge if (i, j) is actually in the input data. However, in the magic-
partition model, Alice and Bob can make a more complicated partitioning
rule such as giving (1, 2) to Alice if the graph is connected. (In other words,
in the magic-partition model, Alice and Bob have an oracle that helps them
decide how to divide an input after he sees it).

Similar to the magic-partition communication complexity, this model
makes many problems easier to solve than the traditional worst-partition
model where the worst partitioning is assumed. However, the magic-partition
model adds more power to the algorithms. In fact, the best-partition makes
some problems strictly easier than the worst-partition model and the magic-
partition model makes some problems strictly easier than the best-partition
model, as shown in the following two examples.

Example. Consider the set disjointness problem. In this problem, two n-bit
vectors x and y that are characteristic vectors of two sets X and Y are given.
Alice and Bob have to determine if X ∩Y = ∅. In other words, they want to
know if there is a position i such that the i-th bits of x and y are both one.

In the randomized worst case communication complexity, it has been
proved that Alice has to send roughly n bits to Bob when x is given to Alice
and y is given to Bob. However, for the best-partition case, they can divide
the input in the following way: Alice receives the first n/2 bits of x and y
and Bob receives the rest. This way, each of them can check the disjointness
separately and Alice only has to send one bit to Bob (to indicate whether
her strings are disjoint or not). Therefore, this problem in the best-partition
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model is strictly easier than in the worst-partition model.

Example. Consider the connectivity problem. Hajnal et al. [34] show that
the best-partition communication complexity of connectivity is Θ(n log n).
In contrast, we show that O((log n)2) is possible in our model in this paper.
Therefore, this problem in the magic-partition model is strictly easier than
in the best-partition model.

2.3.2. Nondeterministic Communication Complexity

In this model, Alice and Bob receive x and y respectively. An oracle,
who sees x and y, wants to convince them that “f(x, y) = 1”. He does so
by giving them a proof. Alice and Bob should be able to verify the proof
with a small amount of communication. This model is different from the
magic-partition model in that additional information (the proof) is provided
by the oracle.

Example. Let x and y be n-bit strings. Consider the function f(x, y) which
is 1 if and only if x 6= y. If a proof is allowed, it can simply be the number i
where xi 6= yi. Then, Alice and Bob can check the proof by exchanging one
bit (xi and yi). If x = y then there is no proof and Alice and Bob can always
detect the fake proof.

3. Detecting a Duplicate and Checking for Distinctness

In this section, we consider the following problem which is denoted by
Distinct. Given a stream of n numbers a1, a2, ..., an where ai ∈ {1, 2, ..., n},
we want to check if every number appears exactly once (i.e., no duplicate).
We are interested in solving this problem in the worst-order streaming model.
This problem (in the worst-order model) appears to be a crucial component
in solving all the problems we consider in the best-order streaming model
and we believe that it will be useful in every problem.

Our goal in this section is to find a one-pass worst-order streaming algo-
rithm for this problem. The algorithm for this problem will be an important
ingredient of all algorithms we consider in this paper. In this section, we
show that

1. any deterministic algorithm for this problem needs Ω(n) space, and

2. there is a randomized algorithm that solves this problem in O(log n)
space with an error probability at most 1

n
.
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3.1. Space lower bound of the deterministic algorithms

Since checking for distinctness is equivalent to checking if there is a dupli-
cate, a natural problem to consider as a lower bound is the set disjointness
problem. We define a variation of this problem called full set disjointness
problem, denoted by f-disj.

In this problem, a set X ⊆ [n] is given to Alice and a set Y ⊆ [n] is given
to Bob where [n] = {1, 2, 3, ..., n} and |X|+ |Y | = n. Alice and Bob want to
together check whether X ∩ Y = ∅.

Note that this problem is different from the well-known set disjointness
problem in that we require |X| + |Y | = n. Although the two problems are
very similar, they are different in that the set disjointness problem has an
Ω(n) lower bound for the randomized protocol in the worst-partition commu-
nication complexity model while the f-disj has a O(log n)-communication
randomized protocol (shown in the next section). We also note that the
lower bound of another related problem called k-disjointness problem (see,
e.g., [22, example 2.12] and [35]) does not imply the lower bound of f-disj
shown here.

Now we show that f-disj is hard in the deterministic case. The proof is
essentially the same as the proof of the lower bound of the set disjointness
problem.

Theorem 3.1. The communication complexity of f-disj is Ω(n).

Proof. We use a standard technique called the fooling set technique. A
fooling set is a set F{(A1, B1), (A2, B2), . . . , (Ak, Bk)} of size k such that
f(Ai, Bi) = 1 for all i and f(Ai, Bj) = 0 for all i 6= j. Once this is shown, it
will follow that the deterministic communication complexity is Ω(log(|F |)).
(See the proof in, e.g., [22]).

Now, consider the fooling set F = {(A,N \ A) : ∀A ⊆ N}. It is easy
to check that the property above holds. Since |F | = 2n, the number of bits
needed to sent between Alice and Bob is at least log(|F |) = Ω(n). �

We note that the theorem also follows from the lower bound of the vari-
ation of equality (checking whether X = Y ) where we let Y = [n]. The
theorem implies the space lower bound of Distinct.

Corollary 3.2. Any deterministic worst-order streaming algorithm for Dis-
tinct needs Ω(n) space.
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This lower bound is for the worst-order input. The reason we mention
this here is because this seems to be an inherent difficulty in the algorithms
in the best-order streaming model. As shown later, all algorithms developed
in this paper need to solve Distinct as a subroutine. In fact, for all these
algorithms, solving Distinct is the only part that needs the randomness.

3.2. Randomized algorithm

In this subsection we present a randomized one-pass worst-order stream-
ing algorithm that solves Distinct using O(log n) space. This algorithm is
based on the Fingerprinting Sets technique introduced by Lipton [36, 29].
Roughly speaking, given a multi-set {x1, x2, ..., xk}, its fingerprint is defined
to be

Πk
i=1(xi + r) mod p

where p is a random prime and r ∈ {0, 1, ..., p − 1}. We use the following
property of the fingerprints.

Theorem 3.3. [29] Let {x1, x2, ..., xk} and {y1, y2, ..., yl} be two multi-sets.
If the two sets are equal then their fingerprints are always the same. More-
over, if they are unequal, the probability that they get the same fingerprints
is at most

O(
log b+ logm

bm
+

1

b2m
)

where all numbers are b-bit numbers and m = max(k, l) provided that the
prime p is selected randomly from interval

[(bm)2, 2(bm)2].

Now, to check if a1, a2, ..., an are all distinct, we simply check if the fin-
gerprints of {a1, a2, ..., an} and {1, 2, ..., n} are the same. Here, b = log n and
m = n. Therefore, the error probability is at most 1/n.

Remark. We note that the fingerprinting sets technique can also be used
in our motivating application of cloud computing above. That is, when the
cloud sends back a graph as a proof, we have to check whether this “proof”
graph is the same as the input graph we sent. This can be done by checking if
the fingerprints of both graphs are the same. This enables us to concentrate
on checking the stream without worrying about this issue in the rest of this
paper.
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We also note that the recent result by Gopalan et al. [37] can be modified
to solve Distinct as well. Finally, note that we need to know n, or its upper
bound, before we run the algorithm.

4. Perfect Matching

We exhibit the ideas of developing algorithms and lower bounds in the
best-order streaming model through the perfect matching problem.

Problem. Let G be an input graph of n vertices where the vertices are
labeled 1, 2, . . . , n. Given the edges of G in a streaming manner e1, e2, ..., em,
we want to compute f(e1, ..., em) which is 1 if and only if G has a perfect
matching. Let n be the number of vertices.

4.1. Upper Bound

Theorem 4.1. The problem of determining if there exists a perfect matching
can be solved by a randomized best-order streaming algorithm using O(log n)
space with a success probability at least 1− 1/n.

Proof. Consider the following algorithm.

Algorithm. The prover sends n/2 edges of a perfect matching to the ver-
ifier first and then send the rest of the edges. The verifier then check the
followings.

1. Check if the first n/2 edges form a perfect matching. This can be

done by checking whether the fingerprint of the set
⋃n/2
i=1 ei (where

e1, e2, . . . , en/2 are the first n/2 edges in the stream) is equal to the
fingerprint of the set {1, 2, . . . , n}.

2. Check if there are at most n vertices. This is done by checking that
the maximum vertex label is at most n.

Finally, the verifier outputs 1 if the input passes all the above tests.

The correctness of this algorithm is quite straightforward, as follows.
First, if the edges e1, e2, . . . en/2 form a perfect matching then e1, e2, . . . en/2
have no vertex in common and, therefore,

⋃n/2
i=1 ei = {1, 2, . . . , n}. This means

that the fingerprints of
⋃n/2
i=1 ei and {1, 2, . . . , n} are always the same. Thus,
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the first condition holds. The second condition can be also easily checked.
Therefore, the algorithm will output 1 in this case.

For the case that the edges e1, e2, . . . en/2 do not form a perfect matching,

observe that
⋃n/2
i=1 6= {1, 2, . . . , n} and therefore the fingerprints of the two

sets will be different with probability at least 1 − 1/n. Consequently, the
algorithm will successfully output 0 with probability at least 1− 1/n. �

4.2. Lower Bound

We show that the deterministic best-order streaming algorithms for the
perfect matching problem have Ω(n) lower bound if the input is ordered in an
explicit way; i.e., each edge cannot be split. This means that an edge is either
represented in the form (a, b) or (b, a). The proof follows from a reduction
from the magic-partition communication complexity (cf. Section 2) of the
same problem by using Lemma 2.1.

Theorem 4.2. If the input can be reordered only in an explicit way then
any deterministic algorithm solving the perfect matching problem needs Ω(n)
space, where n is the number of vertices.

Proof. Let n be any even integer divisible by four. We show that the
above theorem is true even when the input always contains exactly n/2 edges.
In this case, checking whether these n/2 edges form a perfect matching is
equivalent to checking whether every vertex appears as an end vertex of
exactly one edge. We note that the input is allowed to contain multiple
edges. (However, such inputs clearly do not form perfect matchings over n
vertices.)

We now show that the magic-partition communication complexity of the
perfect matching problem is Ω(n). Once this is done, the theorem follows
immediately by Lemma 2.1.

Consider any magic-partition communication complexity protocol which
consists of a partition function O owned by an oracle and a communication
protocol P between Alice and Bob. That is, a function O partitions the
input into two sets of edges, A and B where |A| = n/4 and |B| = n/4.
Then, A and B are sent to Alice and Bob, respectively. Alice and Bob, upon
receiving A and B, communicate to each other using a protocol P and one
of them outputs whether the input edges form a perfect matching or not
(“YES” or “NO”). The main goal is to show that for any partition function
O, there is some input that forces P to incur Ω(n) bits of communication.
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Recall that P has to deal with the following cases: 1) If the input is a perfect
matching, P has to output YES when the input is partitioned according to
O. 2) Otherwise, P has to output NO for any partition of the input. We
now show the communication complexity of P .

First, let us consider the inputs that are perfect matchings. Let g(n)
denote the number of distinct perfect matchings in the complete graph Kn.
Observe that

g(n) =
n!

(n/2)!2n/2
.

Denote these matchings by M1,M2, . . . ,Mg(n). For any integer i, let Ai and
Bi be the partition of Mi according to O. We now partition M1, . . . ,Mg(n)

into clusters in such a way that the matchings whose vertices are partitioned
in the same way are in the same cluster. That is, any two inputs Mi and Mj

are in the same cluster if and only if
⋃
e∈Mi

e =
⋃
e∈Mj

e.

We claim that there are at least
(
n/2
n/4

)
clusters. To see this, observe that

for any matching Mi, there are at most g(n/2)2 matchings that vertices could
be partitioned the same way as Mi. (I.e., if we define V (Ai) = {v ∈ V :
∃e ∈ Ai s.t. v ∈ e} then for any i, |{j : V (Ai) = V (Aj)}| ≤ g(n/2)2.)
This is because n/2 vertices on each side of the partition can make g(n/2)
different matchings. This implies that the size of each cluster is at most
g(n/2)2. Therefore, the number of matchings such that the vertices are
divided differently is at least

g(n)

g(n/2)2
=

n!

(n/2)!2n/2

(
(n/4)!2n/4

(n/2)!

)2

=

(
n

n/2

)
/

(
n/2

n/4

)
≥
(
n/2

n/4

)
where the last inequality follows from the fact that

(
n
n/2

)
is the number of

subsets of {1, 2, ..., n} of size n/2 and
(
n/2
n/4

)2
is the number of parts of these

subsets.
Let t be the number of clusters (so t ≥

(
n/2
n/4

)
) and let Mi1 ,Mi2 , . . . ,Mit

be the inputs from different clusters and let (Ai1 , Bi1) . . . , (Ait , Bit) be the
corresponding partitions according to O. Observe that for any t′ 6= t′′, an
input consisting of edges in Mit′

and Mit′′
is not a perfect matching. More-

over, observe that for any t′ and t′′, any pair (Ait′ , Bit′′
) could be an input

to the protocol P (since the oracle can partition the input in anyway when
the input is not a perfect matching). In other words, the communication
complexity of P is the worst case (in term of communication bits) among all
pairs (Ait′ , Bit′′

).
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For readers who are familiar with the standard fooling set argument,
it follows almost immediately that the communication complexity of P is
Ω(log t) = Ω(n) and the theorem is thus proved. For those who are not
familiar with this argument, we offer the following alternative argument.

Let t′ = blog tc. (Note that t′ = Ω(n).) Consider the problem eqt′ where
Alice and Bob each gets a t′-bit vector x and y, respectively. They have
to output YES if x = y and NO otherwise. It is well known (see, e.g.,
[22, Example 1.21]) that the deterministic worst-partition communication
complexity of eqt′ is at least t′ + 1 = Ω(n).

Now we reduce eqt′ to our problem using the following protocol P ′: Upon
receiving x and y, Alice and Bob locally map x to Aix and y to Biy , respec-
tively and then simulate P . Since x = y if and only if Aix ∪ Biy is a perfect
matching, P ′ outputs YES if and only if x = y. Therefore, Alice and Bob
can use the protocol P ′ to solve eqt′ . Since, the deterministic worst-partition
communication complexity of eqt′ is Ω(n), so is the communication complex-
ity of P . This shows that the deterministic magic-partition communication
complexity of the matching problem is Ω(n). �

Note that the above lower bound is asymptotically tight since we can
check if there is a perfect matching using O(n) space in the best-order
streams: The oracle simply puts edges in the perfect matching first in the
stream. Then, the algorithm checks whether the first n/2 edges in the stream
form a matching by checking whether all vertices appear (using an array of
n bits).

Also note that the following argument might lead to a wrong conclu-
sion that the magic-partition communication complexity of Distinct is also
Ω(n): If Distinct can be done in o(n) bits by a magic-partition proto-
col, then we can put it in the protocol in Theorem 4.1 to solve the perfect
matching problem using o(n) bits. This will contradict Theorem 4.2.

However, the problem of the above argument is that the protocol in The-
orem 4.1 needs the worst-partition communication complexity of Distinct.
In fact, Distinct can be easily solved in 1 bit using the following magic-
partition communication complexity protocol: The oracle sends the first n/2
smallest numbers to Alice and sends the rest to Bob. Alice sends 1 to Bob
if her numbers are 1, 2, ..., n/2 and Bob outputs YES if he receives 1 from
Alice and his numbers are n/2 + 1, n/2 + 2..., n.
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5. Graph Connectivity

Graph connectivity is perhaps the most basic property that one would like
to check. However, even graph connectivity does not admit space-efficient
algorithms in the traditional worst-order streaming model as there is an
Ω(n) lower bound for randomized algorithms. To contrast this, we show
that allowing the algorithm the additional power of requesting the input in
a specific order allows for a very efficient, O((log n)2)-space algorithm for
testing connectivity.

Problem. We consider a function where the input is a set of edges and
f(e1, e2, ..., em) = 1 if and only if G is connected. As usual, let n be the
number of vertices of G. As before, we assume that vertices are labeled
1, 2, 3, ..., n.

5.1. Upper Bound

We will prove the following theorem.

Theorem 5.1. Graph connectivity can be solved by a randomized algorithm
using O((log n)2) space in the best-order streaming model.

Proof. We use the following lemma constructively.

Lemma 5.2. For any graph G of n− 1 edges, where n ≥ 3, G is connected
if and only if there exists a vertex v and trees T1, T2, ..., Tq such that for all i,

•
⋃q
i=1 V (Ti) = V (G) and for any i 6= j, V (Ti) ∩ V (Tj) = {v}, and

• there exists a unique vertex ui ∈ V (Ti) such that uiv ∈ E(Ti), and

• |V (Ti)| ≤ d2n/3e for all i.

Proof. To see this proof, notice that G is a spanning tree since it is con-
nected and has exactly n − 1 edges. Consider any vertex in the spanning
tree, which on deleting, disconnects the graph in to two or more pieces such
that each piece has at most 2n/3 vertices. The existence of such a vertex can
be proven by induction. The base case where n = 3 can be proved simply by
picking a vertex in the middle of the path of length 3. Suppose such a vertex
exists for all n′ < n. Consider a tree on n vertices. Now, remove a leaf node,
say z, and, by induction, such a vertex v exists on the tree on remaining
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n vertices. Now add z back and let C be the component (on deleting v)
that contains z. If C has size at most d2n/3e − 1, the same v works on the
larger tree. If C has size at least d2n/3e then consider the unique vertex
in this component that connects to v, say u. Observed that u serves as the
new vertex for the lemma. This is because the complement of C together
with u has size at most n − (d2n/3e) + 1 ≤ 2n/3. Since this can be done,
u can be chosen as a vertex for the lemma. Whenever a vertex in a tree is
disconnected, the new components also form trees. Call these T1, T2, . . . Tq.
Notice that there can be at most one vertex adjacent to v in each component
Ti, since G has no cycles. Call this vertex in Ti by ui. Therefore each ui ∈ Ti
is adjacent to u and each Ti has at most d2n/3e nodes. �

It is sufficient to consider graphs of n− 1 edges, as these n− 1 edges that
form a connected spanning component are sufficient to verify connectivity.
Suppose that G is connected, i.e., G is a tree. Let v and T1, T2, ..., Tq be as
in the lemma. Define the order of G to be

Order(G) = vu1, Order(T
′
1), vu2, Order(T

′
2), ..., vuq, Order(T

′
q)

where T ′i = Ti \ {vui}. Note that T ′i is a connected tree and so we present
edges of T ′i recursively. The recursion step ends when the eventual subtree
is a star, i.e., edges presented are vu1, vu2, . . .. At this point, the verifier just
checks that all consecutive edges are adjacent to the same vertex and form a
star. This depth of recursion can be checked directly.

Now, when edges are presented in this order, the checker can check if
the graph is connected as follows. First, the checker reads vu1. The checker
remembers the vertex v, which takes O(log n) bits. Then the edges in T ′1 are
presented. He checks if T ′1 is connected by running the algorithm recursively.
Note that he stops checking T ′1 once he sees vu2. Notice that this step is
consistent since the vertex v does not appear in any T ′i . Once an edge with a
vertex v is received, the checker knows that the tree has been verified and the
next tree is to be presented. So the checker repeats with vu2 and T ′2 and so
on. Here again, v does not appear in T ′2 but u2 does. Therefore, the checker
now again needs to check that T ′2 is connected. Further, it is automatically
checked that T ′2 connects to v due to the edge vu2. The checker proceeds
in this manner checking the connectivity of each T ′i up to i = q. If each
tree is connected (which is checked recursively), and all the edges vui appear
separating the trees, then all the trees are connected to v. Therefore, the
entire set of edges presented is connected. However, this does not guarantee
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that n distinct vertices, or n distinct edges have been received. Therefore, it
only remains to be checked that n distinct edges have been presented.

He does so by applying the result in Section 3 once to each vertex v used
as a root (as in above) and all leaf nodes of the tree. If all n distinct vertices
have appeared at least once, and the set of first n edges form a connected
component, then G is a connected graph. Also note that if G is not connected
then such ordering cannot be made and the algorithm above will detect this
fact.

The space needed is for vui and for checking T ′i . I.e., space(|G|) =
space(maxi |Ti|) + O(log n). That is, space(n) ≤ space(d2n/3e) + O(log n).
This gives the claimed space bound. �

5.2. Lower Bound

Recall that we say that the input is ordered in an explicit way if each
edge is presented in the form (a, b) where a and b are the labels of its end
vertices.

Theorem 5.3. If the input can be ordered only in an explicit way, any deter-
ministic algorithm solving the connectivity problem on the best-order stream
needs Ω(n log n) space, where n is the number of vertices.

Proof. Let n be an odd number. We show that the theorem holds even
when the input always consists of exactly n − 1 edges. (Therefore, the task
is only to check whether the input edges form a spanning tree over n nodes.)
We show this via the magic-partition communication complexity. Since the
argument is essentially the same as that in the the proof of Theorem 4.2, we
only give the essential parts here.

Assume that n is an odd number more than two. Let g(n) be the number
of spanning trees of the complete graph Kn. By Cayley’s formula (see, e.g.,
[38]),

g(n) = nn−2.

Let T1, T2, . . . , Tg(n) denote such trees. Consider any best-partition com-
munication complexity protocol which consists of a partition function O
owned by the oracle and a protocol P used by Alice and Bob. For i =
1, 2, . . . , g(n), let (Ai, Bi) be the partition of the input edges of Ti to Alice
and Bob, respectively, according to O.

Now, draw a graph H consisting of g(n) vertices, v1, v2, . . . , vg(n). Draw
an edge between vertices vi and vj if Ai ∪Bj or Aj ∪Bi is a spanning tree.
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We claim that each vertex in H has degree at most 2g((n + 1)/2). To
see this, observe that for any set A of (n − 1)/2 edges, there are at most
g((n + 1)/2) sets B of (n − 1)/2 edges such that A ∪ B is a spanning tree.
This is because when we contract edges in A, there are (n+ 1)/2 vertices left
and these vertices must form a spanning tree on the contracted graph. This
observation is also true when we look at the set B. The claim thus follows.

Now pick an independent set from H using the following algorithm: Pick
any vertex, delete such vertex and its neighbors and then repeat. Observe
that this algorithm gives an independent set of size at least g(n)

2g((n+1)/2)+1
since

there are g(n) vertices in H and each vertex has degree at most 2g((n+1)/2).

Let t be the size of the independent set. Note that t = g(n)
2g((n+1)/2)+1

= nΩ(n).
Let vi1 , vi2 , . . . , vit be the vertices in the independent set.

Consider the trees Ti1 , Ti2 , . . . , Tit corresponding to the independent set
picked by the above algorithm. Since there is no edge between any vit′ and
vit′′ , (Ait′ , Bit′′

) and (Ait′′ , Bit′
) do not form a spanning tree. As argued

in the proof of Theorem 4.2, the protocol P must be able to receive any
pair of the form (Ait′ , Bit′′

) and answer YES if and only if t′ = t′′. By the
fooling set argument or the reduction from eqlog t, it follows that P needs
Ω(log t) = Ω(n log n) bits, as desired. �

We note that the lower bound above is asymptotically tight since we can
solve connectivity problem using the following O(n log n)-space deterministic
algorithm: The oracle present edges in a spanning tree first in the stream.
Then the algorithm reads and checks whether these edges form a spanning
tree using O(n log n) space.

6. Further Results

The previous sections give us a flavor of the results that can be obtained
in the best-order streaming model. We describe a few more and mention the
intuition behind the protocol without going into details since the techniques
are essentially the same.

6.1. Bipartite k-Regular graph

The problem is to check if the graph is bipartite k-regular. First, note that
since this problem is the generalization of the perfect matching problem (cf.
Section 4), the Ω(n) lower bound of the deterministic algorithms holds here.
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Now we show that this problem can be solved by a randomized algorithm
with O(log n) space.

The point of the algorithm is that a k-regular bipartite graph can be
decomposed into k disjoint perfect matchings. So the oracle can do this and
present each of the perfect matchings one after the other. However, as it will
be clear soon, the oracle has to send each edge in the form (a, b) where a is
the “left” vertex and b is the “right” one. This forces the algorithm to find
another way to find out the value of n (instead of looking for a “flip” edge
as used by the perfect matching algorithm).

The algorithm can find out n in the following way: While reading the
first perfect matching, it remembers the maximum vertex label it saw so far,
denoted by n′. Once the number of edges it read so far equals n′/2 (for the
current value of n′), it looks one more edge further. If this edge consists of
vertices with labels at most n′ then it concludes that this value of n′ is the
value of n. The correctness of this method can be seen by observing that if
n′ < n and no vertex appears twice in the first n′/2 edges then the labels of
vertices in the next edge must be both more than n′.

Now, we describe the last part of the algorithm. It has to verify the
following.

1. Each set of n/2 edges form a perfect matching. This can be verified
separately for each set of n/2 edges.

2. In each matching, it sees the same set of “left” vertices and “right”
vertices. This can be done by computing the finger prints of the sets
of left and right vertices.

Note that the reason that the oracle has to present the edges in the form of
left and right vertices is to allow the algorithm to check the second condition.

6.2. Hamiltonian Cycle

The problem is to check whether the input graph has a Hamiltonian cycle.
We claim that this problem is in RStream(1, log n). The intuition is for the
oracle to provide the Hamiltonian cycle first (everything else is ignored). The
algorithm then checks if the first n edges indeed form a cycle; this requires
two main facts. First that every two consecutive edges share a vertex, and
the n-th edge shares a specific vertex with the first. This fact can be easily
checked. The second key step is to check that these edges indeed span all n
vertices (and not go through same vertex more than once). This can be done
by the fingerprinting technique.
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We also claim that there is an Ω(n) lower bound for the determinis-
tic algorithms if the edges can be ordered only in an explicit way. The
proof is essentially similar to the proof of other lower bounds shown ear-
lier and we only sketch it here. We consider the inputs that have exactly
n edges. Let g(n) be the number of the Hamiltonian cycles covering n
vertices. Clearly g(n) = (n − 1)!. Let C1, . . . Cg(n) be these cycles and
(A1, B1), . . . , (Ag(n), Bg(n)) be the corresponding partitions. Since after we
see n/2 edges, there could be only g(n/2) possible Hamiltonian cycles con-

taining these edges, we can pick g(n)
2g(n/2)+1

that are “independent” in the same
sense as in Theorem 5.3. The communication complexity is thus

Ω

(
log
( g(n)

2g(n/2) + 1

))
= Ω(n) .

6.3. Non-Bipartiteness

The problem is to check if the graph is not bipartite. This problem can be
solved by a deterministic algorithm with O(log n) space by having an oracle
present an odd length (not necessarily simple) cycle. Verifying that this is
indeed a cycle and that it is of odd length can be done easily.

In contrast to the Non-bipartiteness problem, we do not have an al-
gorithm for checking the bipartiteness of graphs. We conjecture that this
problem has a super-logarithmic randomized lower bound. We note, how-
ever, that if we relax the model by allowing the input to be presented twice
then there is an efficient randomized algorithm: Let U = {u1, u2, . . . , un′}
and V = {v1, v2, . . . , vn′′ be the two partitions. In the first rounds, present
edges incident to u1 first then present edges incident to u2, and so on (i.e.,
edges are presented in the form (u1, vi1), (u1, vi2), . . ., (u2, vi′1), (u2, vi′2), . . .,
(un′ , vi′′1 ), . . ..) Similarly, in the next round present edges incident to v1,
v2, ..., vn′′ , respectively, with vertices in V appearing first (i.e., in the form
(v1, ui1), (v1, ui2), . . .). We can use the fingerprinting technique to check if
u1, . . . , un′ , v1, . . . , vn′′ are all distinct.

7. Conclusions

This paper describes a new model of stream checking that lies at the
intersection of several extremely well-studied and foundational fields of com-
puter science. Specifically, the model connects several settings related to
proof checking, communication complexity, and streaming algorithms. The
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motivation of this paper, however, arises from the recent growth in the data
sizes and the advent of the powerful cloud computing architectures and ser-
vices. The question we ask is, can the verification of certain properties (on
any input) be accompanied with a streaming proof of the fact? The checker
should be able to verify that the prover is not cheating. We show that if
the checker (or the algorithm in the best-order streaming setting) is given
the power of choosing a specific rule for the prover to send the input, then
many problems can be solved much more efficiently in this model than in the
previous models.

While non-obvious, our algorithms and proofs are fairly simple. However,
the nice aspect is that it uses several interesting techniques from many areas
such as fingerprinting and covert channels. Fingerprinting is used in a crucial
way to randomly test for the distinctness of a set of elements presented as
a stream. The protocol between the prover and the checker also allows for
a covert communication (which gives the covert channels a positive spin as
opposed to the previous studies in security and cryptography). While the
prover is only allowed to send the re-ordered input, the prover is able to
encode some extra bits of information with the special ordering requested
by the checker. The difficulty in most of our proof techniques is in how the
checker or algorithm verifies that the prover or oracle is sending the input
order as requested.

We have given randomized O(polylog n)-space algorithms for problems
that previously, in the streaming model, had no sub-linear space algorithms.
We note that in all protocols presented in this paper, the prover can construct
the best-order proofs in polynomial time. There are still a lot of problems
in graph theory that remain to be investigated. A nice direction is to con-
sider testing for graph minors, which could in turn yield efficient methods for
testing planarity and other properties that exclude specific minors. It is also
interesting to see whether all graph problems in the complexity class P can be
solved in our model with O(polylog n) space. Such a result would be a huge
improvement over the result in [29] (which needs a proof of size near-linear in
the number of steps for the computation) in terms of the proof size for graph
problems. (One good starting point are problems of checking bipartiteness,
non-connectivity, and non-existence of perfect matching.) Moreover, it is
interesting to see whether additional passes would be of much help. Addi-
tionally, is the “flipping trick” necessary? That is, if we present each edge
as a set {u, v} instead of an ordered pair (u, v), do efficient protocols for the
problems presented here still exist?
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Apart from the study of our specific model, we believe that the results
and ideas presented in this paper could lead to improved algorithms in the
previously studied settings as well as yield new insights to the complexity of
the problems.

Acknowledgment: We would like to thank Justin Thaler and anonymous
reviewers for useful comments.
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