
D I S S E R T A T I O N

Titel der Dissertation

A Web-based Mapping Technique
for Establishing Metadata Interoperability

Verfasser

DI. Mag. Bernhard Haslhofer

angestrebter akademischer Grad

Doktor der technischen Wissenschaften (Dr. techn.)

Wien, im Oktober 2008

Studienkennzahl lt. Studienblatt: A 084 881
Dissertationsgebiet lt. Studienblatt: Informatik
Betreuer: Prof. Dr. Wolfgang Klas
Zweitbetreuer: Prof. Dr. A Min Tjoa

Abstract

The integration of metadata from distinct, heterogeneous data sources requires metadata interoperability,
which is a qualitative property of metadata information objects that is not given by default. The technique
of metadata mapping allows domain experts to establish metadata interoperability in a certain integration
scenario. Mapping solutions, as a technical manifestation of this technique, are already available for the
intensively studied domain of database system interoperability, but they rarely exist for the Web.

If we consider the amount of steadily increasing structured metadata and corresponding metadata schemes
on the Web, we can observe a clear need for a mapping solution that can operate in a Web-based environment.
To achieve that, we first need to build its technical core, which is a mapping model that provides the language
primitives to define mapping relationships. Existing Semantic Web languages such as RDFS and OWL define
some basic mapping elements (e.g., owl:equivalentProperty, owl:sameAs), but do not address the full
spectrum of semantic and structural heterogeneities that can occur among distinct, incompatible metadata
information objects. Furthermore, it is still unclear how to process defined mapping relationships during
run-time in order to deliver metadata to the client in a uniform way.

As the main contribution of this thesis, we present an abstract mapping model, which reflects the map-
ping problem on a generic level and provides the means for reconciling incompatible metadata. Instance
transformation functions and URIs take a central role in that model. The former cover a broad spectrum of
possible structural and semantic heterogeneities, while the latter bind the complete mapping model to the
architecture of the Word Wide Web. On the concrete, language-specific level we present a binding of the
abstract mapping model for the RDF Vocabulary Description Language (RDFS), which allows us to create
mapping specifications among incompatible metadata schemes expressed in RDFS.

The mapping model is embedded in a cyclic process that categorises the requirements a mapping solution
should fulfil into four subsequent phases: mapping discovery, mapping representation, mapping execution,
and mapping maintenance. In this thesis, we mainly focus on mapping representation and on the transforma-
tion of mapping specifications into executable SPARQL queries. For mapping discovery support, the model
provides an interface for plugging-in schema and ontology matching algorithms. For mapping maintenance
we introduce the concept of a simple, but effective mapping registry.

Based on the mapping model, we propose a Web-based mediator wrapper-architecture that allows domain
experts to set up mediation endpoints that provide a uniform SPARQL query interface to a set of distributed
metadata sources. The involved data sources are encapsulated by wrapper components that expose the con-
tained metadata and the schema definitions on the Web and provide a SPARQL query interface to these
metadata. In this thesis, we present the OAI2LOD Server, a wrapper component for integrating metadata that
are accessible via the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH).

In a case study, we demonstrate how mappings can be created in a Web environment and how our mediator
wrapper architecture can easily be configured in order to integrate metadata from various heterogeneous data
sources without the need to install any mapping solution or metadata integration solution in a local system
environment.

i

Zusammenfassung

Die Integration von Metadaten aus unterschiedlichen, heterogenen Datenquellen erfordert Metadaten-Inter-
operabilität, eine Eigenschaft die nicht standardmäßig gegeben ist. Metadaten Mapping Verfahren ermö-
glichen es Domänenexperten Metadaten-Interoperabilität in einem bestimmten Integrationskontext herzuste-
llen. Mapping Lösungen sollen dabei die notwendige Unterstützung bieten. Während diese für den etablierten
Bereich interoperabler Datenbanken bereits existieren, ist dies für Web-Umgebungen nicht der Fall.

Betrachtet man das Ausmaß ständig wachsender strukturierter Metadaten und Metadatenschemata im
Web, so zeichnet sich ein Bedarf nach Web-basierten Mapping Lösungen ab. Den Kern einer solchen
Lösung bildet ein Mappingmodell, das die zur Spezifikation von Mappings notwendigen Sprachkonstrukte
definiert. Existierende Semantic Web Sprachen wie beispielsweise RDFS oder OWL bieten zwar grundle-
gende Mappingelemente (z.B.: owl:equivalentProperty, owl:sameAs), adressieren jedoch nicht das
gesamte Sprektrum möglicher semantischer und struktureller Heterogenitäten, die zwischen unterschiedlich-
en, inkompatiblen Metadatenobjekten auftreten können. Außerdem fehlen technische Lösungsansätze zur
Überführung zuvor definierter Mappings in ausführbare Abfragen.

Als zentraler wissenschaftlicher Beitrag dieser Dissertation, wird ein abstraktes Mappingmodell prä-
sentiert, welches das Mappingproblem auf generischer Ebene reflektiert und Lösungsansätze zum Abgleich
inkompatibler Schemata bietet. Instanztransformationsfunktionen und URIs nehmen in diesem Modell eine
zentrale Rolle ein. Erstere überbrücken ein breites Spektrum möglicher semantischer und struktureller Het-
erogenitäten, während letztere das Mappingmodell in die Architektur des World Wide Webs einbinden. Auf
einer konkreten, sprachspezifischen Ebene wird die Anbindung des abstrakten Modells an die RDF Vocabu-
lary Description Language (RDFS) präsentiert, wodurch ein Mapping zwischen unterschiedlichen, in RDFS
ausgedrückten Metadatenschemata ermöglicht wird.

Das Mappingmodell ist in einen zyklischen Mappingprozess eingebunden, der die Anforderungen an
Mappinglösungen in vier aufeinanderfolgende Phasen kategorisiert: mapping discovery, mapping represen-
tation, mapping execution und mapping maintenance. Im Rahmen dieser Dissertation beschäftigen wir uns
hauptsächlich mit der Representation-Phase sowie mit der Transformation von Mappingspezifikationen in
ausführbare SPARQL-Abfragen. Zur Unterstützung der Discovery-Phase bietet das Mappingmodell eine
Schnittstelle zur Einbindung von Schema- oder Ontologymatching-Algorithmen. Für die Maintenance-Phase
präsentieren wir ein einfaches, aber seinen Zweck erfüllendes Mapping-Registry Konzept.

Auf Basis des Mappingmodells stellen wir eine Web-basierte Mediator-Wrapper Architektur vor, die
Domänenexperten die Möglichkeit bietet, SPARQL-Mediationsschnittstellen zu definieren. Die zu integri-
erenden Datenquellen müssen dafür durch Wrapper-Komponenen gekapselt werden, welche die enthaltenen
Metadaten im Web exponieren und SPARQL-Zugriff ermöglichen. Als beipielhafte Wrapper Komponente
präsentieren wir den OAI2LOD Server, mit dessen Hilfe Datenquellen eingebunden werden können, die ihre
Metadaten über das Open Archives Initative Protocol for Metadata Harvesting (OAI-PMH) exponieren.

Im Rahmen einer Fallstudie zeigen wir, wie Mappings in Web-Umgebungen erstellt werden können
und wie unsere Mediator-Wrapper Architektur nach wenigen, einfachen Konfigurationsschritten Metadaten
aus unterschiedlichen, heterogenen Datenquellen integrieren kann, ohne dass dadurch die Notwendigkeit
entsteht, eine Mapping Lösung in einer lokalen Systemumgebung zu installieren.

iii

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Prof. Dr. Wolfgang Klas, whose expertise
and stimulating suggestions helped me during all the time of writing this thesis. I also very much appreciate
his guidance through the one or other organisational turmoil, which, at the end, made it possible for me to
finish my work. I would also like to thank Prof. Dr. A Min Tjoa for being my secondary advisor and for the
time and effort he has invested in judging on the contents of this thesis. Furthermore, I would like to thank
Prof. DDr. Gerald Quirchmayr for being a member of my thesis commitee.

A very special thanks goes out to my colleagues, Niko Poptisch, Wolfgang Jochum, Ross King, Stefan
Leitich, Bernhard Schandl, and Stefan Zander. They have supported me throughout the past years, were
always available for any kind of discussion, gave valuable comments on my work, and helped me in shaping
the approach and bringing the text of this thesis into the present form. And most importantly, they have
provided a working environment where doing research is not just work, but also great fun.

Things would not run so smoothly without our administrative and technical colleagues. I would like to
thank Manu for keeping a large portion of the administrative stuff away from me, and Jan and Peter for taking
care that my prototypes keep running.

Bringing up the motivation for a long-term project, such as doing a PhD, is hardly possible without strong
support from friends and family. Special thanks to the Verein for the long-term friendship we have, and to
my parents for the support they have provided me through my entire life.

Last but not least, my profound gratitude and love goes to Silvia. She closely experienced the effects of
being together with a PhD Student during the past years and always gave me the perspective of a life after
PhD. Without her love, understanding, and support, finishing this thesis would have been much more difficult.

v

Table of Contents

1 Introduction 1
1.1 Contributions . 2

1.2 Organisation . 4

I Background and Related Work 5

2 Background 7
2.1 Illustrative Example . 7

2.2 Unveiling the Notion of Metadata . 11

2.3 Metadata Interoperability . 17

2.4 Techniques for Achieving Metadata Interoperability . 21

2.5 On the Quality of Interoperability Techniques . 28

2.6 Summary . 31

3 Metadata Mapping 33
3.1 What is Metadata Mapping? . 33

3.2 Requirements Framework . 37

3.3 Mapping Solutions . 44

3.4 Analysis of Mapping Solutions . 50

3.5 Summary . 58

II Methodology and Concepts 61

4 Towards A Web-based Metadata Integration Architecture 63
4.1 Goals . 63

4.2 Architecture Overview . 64

4.3 Metadata Integration Workflow . 70

4.4 Functional Requirements . 71

4.5 Summary . 74

vii

viii TABLE OF CONTENTS

5 Abstract Mapping Model 75
5.1 A Generic Mapping Approach . 75
5.2 Representing Source and Target Metadata . 76
5.3 Generic Graph Model Specification . 78
5.4 Abstract Mapping Model Specification . 80
5.5 The Dynamic Aspects of the Generic Mapping Model . 82
5.6 Summary . 83

III Implementation and Proof of Concept 85

6 An RDFS Binding of the Mapping Model 87
6.1 RDFS Overview . 87
6.2 Lifting and Normalising Metadata Schemes to RDFS . 88
6.3 RDFS Mapping Model Specification . 90
6.4 Executing RDFS Mappings . 97
6.5 Maintaining RDFS Mappings . 109
6.6 Implementation Considerations . 112
6.7 Summary . 116

7 The OAI2LOD Server — Wrapping OAI-PMH Data Sources 117
7.1 What is OAI-PMH? . 117
7.2 Design Considerations . 121
7.3 Implementation . 123
7.4 The Future of OAI-PMH . 125
7.5 Summary . 125

8 Qualitative Evaluation and Case Study 127
8.1 Comparison with Existing Mapping Solutions . 127
8.2 Example Metadata Integration Scenario . 134
8.3 Summary and Lessons Learned . 139

9 Conclusions 141
9.1 Summary . 141
9.2 Future Work . 143

Bibliography 144

Appendices 157

A Implementation Resources 159

List of Figures

2.1 TV-Anytime metadata describing a video . 8
2.2 Proprietary metadata describing a JPEG image . 9
2.3 Dublin Core metadata describing a JPEG image . 10
2.4 Overview of the three metadata building blocks . 12
2.5 Metadata building blocks from a model perspective . 15
2.6 Structural and semantic metadata heterogeneities on the model and the instance level 19
2.7 Example for achieving interoperability via a global conceptual model 30

3.1 The main elements of a metadata mapping specification . 35
3.2 Achieving metadata interoperability through instance transformation 35
3.3 The four major phases in the metadata mapping cycle . 36

4.1 A taxonomy of known architectures for querying heterogeneous data [DD99] 65
4.2 Components of a mediator-wrapper architecture . 68
4.3 Metadata integration workflow . 70

5.1 The generic mapping model with language-specific extensions 76
5.2 XML metadata represented as three layered, directed labelled-graph 77
5.3 The generic data model from a static perspective . 78
5.4 The abstract mapping model from a static perspective . 81
5.5 Reflecting the four mapping phases in the abstract mapping model 83

6.1 An RDFS binding of the abstract mapping model . 95
6.2 Extending and redefining the RDFS binding of the abstract mapping model with mapping

execution behaviour . 101
6.3 Run-time execution of SPARQL templates — Overview . 105
6.4 SPARQL query template selection . 107
6.5 Mapping registry architecture . 110
6.6 Mapping registry model . 112
6.7 Serving schemes and mapping using HTTP Content Negotiation (adapted from [BP08]) . . . 114

7.1 Sample OAI-PMH communication . 118

ix

x LIST OF FIGURES

7.2 Size of OAI-PMH repositories . 119
7.3 Top 10 metadata formats . 120
7.4 Sample OAI2LOD Server response . 122
7.5 The OAI2LOD Server architecture . 123
7.6 Comparison of OAI2LOD and corresponding OAI-PMH requests 124

8.1 Example metadata integration scenario . 135

List of Tables

2.1 A selection of schema definition languages and their characteristics 16
2.2 A categorisation of metadata interoperability techniques 22
2.3 A representative selection of metadata standards . 23
2.4 The quality of various interoperability techniques . 29

3.1 Requirements framework for the evaluation of metadata mapping solutions 45
3.2 Metadata mapping solutions — categorisation and overview 51
3.3 Metadata mapping solutions evaluation summary . 59

8.1 Qualitative evaluation against existing mapping solutions 133

xi

Chapter 1

Introduction

Metadata are machine-processable data that describe digital or non-digital resources. A resource can be any-
thing: an image, an audio file, a video, artefacts in a museum’s collection, or any other physical or conceptual
object. From a technical perspective, metadata are information objects that are processed by various systems
and applications. The heterogeneities of these systems, the divergent semantic and structural properties of
the metadata, and also the distinct interpretation contexts of their designers result in incompatible metadata.

In order to exchange metadata among systems or to provide uniform access to metadata objects in a mul-
titude of autonomous and distributed systems, metadata interoperability must be established. One possible,
well-known, and in practice accepted technique is the definition of mappings between incompatible metadata
objects. This technique has widely been studied in the database domain proliferating a multitude of map-
ping solutions that operate for data models of closed-world data management systems, such as the relational
model in relational databases or the semi-structured XML data model. For data models that were designed
for open, uncontrolled environments, such as RDF/S, effective mapping solutions, which can operate in such
an environment, are still an open issue.

We believe that the trend of exposing structured metadata on the Web will continue and even increase
in the near future. Especially institutions that host metadata of public-interest, such as libraries, museums
or archives, have a strong incentive to share and integrate their metadata sets with those of other institutions
(e.g., see [HH05]), be it due to public obligations or because they want to achieve higher visibility. The World
Wide Web with its few, simple-to-use standards (URI, HTTP) gives them a stable and proven infrastructure
to share and exchange their metadata. With the RDF data model we have a suitable mechanism to represent
metadata in a way that allows other machines and applications to process and interpret them.

In such a scenario, where institutions use the Web infrastructure for making their metadata accessible,
besides the metadata themselves, the corresponding metadata schemes must be published on the Web too, in
order to guarantee that the metadata can be interpreted correctly by other machines. Since these metadata
schemes can follow different metadata standards (e.g., Dublin Core, MODS, MARC, TV-Anytime, etc.) or
even reflect proprietary needs, one must define mappings or crosswalks between these schemes in order to
reconcile the semantic and structural heterogeneities among metadata from different sources. If we consider
the digital library domain, we can observe (see [KHS08]) that even within a restricted, to a certain extent
controlled domain, institutions use a variety of standards or in-house solutions.

The technologies provided by the Semantic Web to represent schema information, such as RDFS and
OWL, only provide limited abilities to express mappings between elements of distinct schemes. One can de-
fine subsumption hierarchies for classes and properties (rdfs:subClassOf, rdfs:subPropertyOf), define
property equality (owl:equivalentProperty), or define individuals as being the same (owl:sameAs), but
one cannot represent more complex mappings that occur in real-word systems: schema A could, for instance,
define a single property name and assign metadata instances as a comma-separated sequence of lastname and

1

2 Chapter 1. Introduction

firstname (e.g., Doe, John); schema B could represent the same metadata instances using two properties
lastname = Doe and firstname = John. With the currently available mapping primitives provided by
RDFS and OWL, one cannot define adequate mapping relationships between these properties. Also the issue
of instance transformation, i.e., how to deal with the comma separated name sequence from the perspective
of schema B, is still an open issue in the Semantic Web community.

Furthermore, it is still unclear how to process the mappings between two RDFS or OWL metadata
schemes at application run-time. At the end, applications must be able to transform metadata information
objects from one representation into another in order to enable the exchange of, or the uniform access to
metadata. This can be achieved by a transformation engine or directly by a query language that gives struc-
tured access to metadata. SPARQL is the query language for the family of Semantic Web technologies. How
this language can be used to provide uniform access to data sources in a view-like manner, as it is common
in the database domain, is also an open issue. Especially, how to obtain executable SPARQL queries from
mapping declarations, which can transparently handle metadata heterogeneities.

Finally, a mapping mechanism also requires some kind of registry where metadata schema and mapping
information can be deposited. Such a registry must be accessible for both humans and machines and provide
the required information.

In fact, we need to lift the mapping methodologies and concepts that are already established in the
database domain and implemented in various commercial mapping solutions to the level of the open, un-
controlled environment of the Web, which uses novel (Semantic Web) technologies to handle metadata and
schema definitions. The goal of this thesis is to provide concepts, methodologies, and a prototypical solution
to reduce the insufficiencies existing technologies suffer from in the context of establishing interoperability
among metadata information objects on the Web.

1.1 Contributions
In this thesis, we propose a Web-based mapping technique for establishing interoperability among metadata
on the Web. Opposed to existing commercial solutions and academic prototypes, our approach contributes
the following features, which are perceivable for domain experts that utilise our solution:

• Seamless integration with the Web architecture: metadata and metadata schemes are exposed on the
Web using existing Web standards. Mapping services, which process these mappings and provide
uniform access to metadata in distinct sources, are part of the Web too. They are Web-applications
accessible via certain URLs.

• Light-weight solution: for domain experts, who need to establish interoperability among metadata
originating from a set of distinct sources, there is no need to install any heavy-weight mapping suite or
enterprise information integration suite. They can integrate our proposed mapping solution as a Web
service into their system architecture.

• An easy-to-use interface: with a few clicks a domain expert can set up a productive SPARQL access
point, which integrates metadata from a set of data sources.

A central approach of this thesis is to consider metadata mapping not as a single task but as a cyclic
process consisting of four subsequent phases that lead to the goal of providing uniform access to a set
of distributed, heterogeneous, and autonomous data sources: first, one must determine mapping relation-
ships among incompatible metadata schemes. Second, one must find a way to represent them in a machine-
interpretable way, which requires a mapping model that goes beyond the expressiveness of existing Semantic
Web standards. Third, one must translate mappings into executable queries and provide query processors that
can deliver the requested metadata. Forth, one requires the means for organising metadata schema definitions
and the mappings created among them, which enables the reuse of previously created mapping specifications.

1.1. Contributions 3

To summarise, the main scientific contributions, which are beyond user-perceivable features, are:

• An extensive elaboration on the subject of metadata interoperability and a comparative study of known
interoperability techniques, published in [HK08]. We have further analysed and evaluated existing
commercial and prototypical mapping solutions, described in [Has08].

• A general methodology for providing uniform access to a set of heterogeneous, distributed, and au-
tonomous metadata sources, published in [Has06]. The practical relevance of that methodology in the
digital libraries domain has been presented in [Has07].

• An abstract mapping model, which reflects the mapping problem on a generic level and provides the
means for reconciling structural and semantic heterogeneities among metadata information objects
expressed in graph-based data models. It is independent of any concrete schema definition language
and binds the metadata mapping process to the architecture of the World Wide Web by introducing the
concept of globally unique URI identifiers.

• A binding of the abstract mapping model to the RDFS schema definition language that allows for the
expression of mappings between RDFS schema declarations. Those mappings can then be translated
into executable SPARQL queries, which is a necessary requirement in order to achieve uniform query
access to metadata in a set of distributed and heterogeneous data sources.

• The OAI2LOD Server, which is a wrapper component that encapsulates data sources that expose meta-
data via the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH). It publishes the
contained metadata on the Web and provides SPARQL query access to these metadata. The design and
implementation details have been published in [HS08].

Therefore, the focus of this thesis is clearly on building the core components of a Web-based mapping
solution. These are the mapping model, which provides the primitives to define mapping specifications for
incompatible RDFS metadata schemes, and algorithms for the conversion of mapping specifications into
executable SPARQL code. Both are part of a broader metadata integration architecture and a methodology
that provide the means and guidelines to set up uniform query interfaces to distinct data sources.

The following areas are out of the scope of this thesis:

• Schema matching algorithms: the determination of mapping relationships can be supported by match-
ing mechanisms, which is a separate research area and has been studied intensively throughout the
past years. Although in the academia many schema matching approaches and solutions have been de-
veloped so far, they have, as we see in this thesis, not yet found widespread adoption in productive
environments. Our strategy has been to factor out the schema matching research field and concentrate
on other phases in the mapping process. However, we do provide interfaces to integrate such algorithms
into our solution.

• Mapping GUI: we provide a Web-based user interface, which allows domain experts to set up and
configure integrated query endpoints to multiple metadata sources. Developing a GUI for specifying
mapping relationships in an interactive way has been out of the scope of this thesis, but is subject of
our future work.

• Fully-Fledged Registry Solution: we discuss the concept of a Web-based registry for metadata schemes
and mappings and also provide a basic but functional implementation. However, since registries are
not the main focus of this thesis, we do not elaborate further on that topic.

4 Chapter 1. Introduction

1.2 Organisation
This thesis is structured as follows:

Chapter 1 provides the basic motivation or the problems addressed in this thesis, identifies the essential
contributions, and introduces the outline of this thesis.

Part I, consisting of Chapters 2 and 3, introduces the technical background of this thesis and analyses
existing, related work:

In Chapter 2, we present an illustrative example to which we will refer throughout this thesis. Then we
analyse the various notions of metadata one can currently find in literature and identify and characterise the
main technical building blocks of metadata information objects. Based on that, we define our conception
of the term metadata interoperability and analyse the various types of heterogeneities that impede meta-
data information objects from being interoperable. Finally, we analyse and compare existing techniques for
establishing metadata interoperability.

Metadata mapping is such a technique and is discussed in Chapter 3. After describing our perception
of that technique, we analyse in detail how mapping solutions can support domain experts in reconciling
heterogeneities. Based on an extensive literature study, we set up a requirements framework, against which
we compare a representative selection of existing mapping solutions.

Part II, consisting of Chapters 4 and 5, describes our overall methodology for establishing uniform access
to heterogeneous metadata sources and presents the conceptual design of our mapping approach:

In Chapter 4, we describe our Web-based metadata integration architecture and present a methodology
that makes heterogeneous data sources accessible via single, uniform query interface. We present the work-
flow between the domain expert who wants to create an integrated metadata access point and outline the
major components in our architecture and briefly describe the technologies they are based on. Finally, we
derive the requirements for the mapping part of such a Web-based metadata integration architecture.

The general mapping problem and also the previously derived requirements are reflected in the abstract
mapping model, presented in Chapter 5. Independent of any metadata schema definition language, we for-
mally describe a model that can represent mappings between metadata schemes. The behavioural aspects of
the model also reflect the previously mentioned mapping process.

Part III, consisting of Chapters 6, 7, and 8, describes the implementation of our mapping approach and
provides the proof of concept in terms of a qualitative evaluation and an exemplary case study:

In Chapter 6, we bind the abstract mapping model to the RDF Vocabulary Description Language, which is
a specific schema definition language. We describe how existing schema definitions can be lifted to the level
of RDFS and how metadata mappings can be defined among them. Further, we describe how such RDFS
mapping specifications can be processed in the subsequent mapping phases. This includes the transformation
of mapping specifications into SPARQL query templates and their execution. We also present a Web-based
metadata registry approach for maintaining mappings and thus for supporting the fourth phase. Finally, we
provide the implementation details of our RDFS-enabled, Web-based mapping solution.

In Chapter 7, we present a wrapper component for the OAI-PMH protocol that follows the Linked Data
design principles [BL06] and can expose OAI-PMH metadata and schema information as resources on the
Web.

In Chapter 8, we compare our Web-based metadata mapping solution with other existing mapping solu-
tions. Additionally, as a proof of concept and to demonstrate the feasibility of our approach, we describe
a sample case study, which provides uniform SPARQL access to three autonomous metadata repositories,
whereas each of them employs a different metadata schema.

Finally, we conclude this thesis in Chapter 9, discuss existing limitations of our approach and possible
areas of future work.

Appendix A gives details about the source code and build instructions for the various components that
form the mapping architecture presented in this thesis.

Part I

Background and Related Work

5

Chapter 2

Background

Metadata are machine processable data that describe resources, digital or non-digital. While the availabil-
ity of metadata, as a key for efficient management of such resources in institutional media repositories
(e.g., [SK98]), has been widely recognised and supported in highly standardised ways, metadata interop-
erability, as a prerequisite for uniform access to media objects in multiple autonomous and heterogeneous
information systems, calls for further investigation. Since this is not given per default, it must first be estab-
lished by domain experts before uniform access can be achieved.

Regarding the literature from various domains, we can observe that the term metadata interoperability has
a very broad meaning and entails a variety of problems to be resolved: on a lower technical level, machines
must be able to communicate with each other in order to access and exchange metadata. On a higher technical
level, one machine must be able to process the metadata information objects received from another. And on
a yet higher, semantic level, one must ensure that machines and humans correctly interpret the intended
meanings of metadata. Since there exists a wide assortment of possible techniques that aim at establishing
metadata interoperability, we believe that it is necessary to analyse the interoperability problem in the context
of multimedia metadata and to critically assess available techniques.

In the following sections, we first introduce three illustrative examples we will use throughout this work
(Section 2.1). Then, in Section 2.2, we deeply analyse the various notions of metadata one can find in the
literature and identify and characterise the main technical building blocks of metadata information objects.
Thereafter, in Section 2.3, we focus on metadata interoperability and systematically, for each building block,
elaborate on the factors that impede interoperability among metadata. In Section 2.4, we give an outline of
currently available techniques for achieving metadata interoperability and compare their quality according to
their capabilities to resolve certain types of heterogeneities in Section 2.5.

2.1 Illustrative Example
This example involves three autonomous institutions1: the BBC, the Austrian National Library, and the Na-
tional Library of Australia. Each institution offers different types of contents (audio, video, images, doc-
uments) about the Olympic Games and uses its own technical infrastructure to maintain the contents and
the adjacent metadata. A journalist, for instance, who is preparing a documentary about the history of the
Olympic Games might want to electronically access these repositories to obtain historical as well as up-
to-date multimedia material about this topic. Even if all the repositories were reachable through a single
technical infrastructure, uniform access would still be impossible because, as we will see in the following
examples, their metadata are not interoperable.

1Although these institutions exist in the real world, the samples have been adapted to the needs of this work.

7

8 Chapter 2. Background

2.1.1 Institution 1: BBC TV-Anytime Service
The BBC offers an online program information service2 for its TV and radio channels. Via a SOAP Web
Service, clients can request various details about the content including basic program information such as the
title or synopsis of a broadcast. The TV-Anytime [ETS06] standard has been chosen for representing program
information. Its principal idea is to describe the multimedia content of broadcasts such that a user, or an agent
on behalf of the user, can understand what content is available and thus be able to acquire it [McP02]. For
representing audio-visual metadata, TV-Anytime encompasses a large number of elements defined by the
MPEG-7 [ISO07b] standard.

Figure 2.1 depicts a sample TV-Anytime metadata description about a video showing Ingmar Stenmark’s
victory in the 1980 Olympic Winter Games in Lake Placid. The video has been created by John Doe, belongs
to the genre Sports, and has been annotated with several terms that further describe the video’s contents.

Page 1 of 1tva_video_descr.xml

Printed: Monday, January 7, 2008 10:06:29 AM Printed For: Bernhard Haslhofer

<TVAMain "...">

 <ProgramDescription>

 <ProgramInformationTable>

 <ProgramInformation programId="crid://bbc.co.uk/123456789">

 <BasicDescription>

 <Title>Lake Placid 1980, Alpine Skiing, I. Stenmark</Title>

 <Synopsis>Ingmar Stenmark's (SWE-Alpine skiing) victory in

 ! the Giant Slalom in Lake Placid</Synopsis>

 <Genre href="urn:tva:metadata:cs:ContentCS:2004:3.1.1.9">

 <Name>Sports</Name>

 </Genre>

 <CreditsList>

 <CreditsItem role="urn:mpeg:mpeg7:cs:RoleCS:2001:AUTHOR">

 <PersonName>

 <mpeg7:GivenName>John</mpeg7:GivenName>

 <mpeg7:FamilyName>Doe</mpeg7:FamilyName>

 </PersonName>

 </CreditsItem>

 </CreditsList>

 <CreationCoordinates>

 <CreationLocation>us</CreationLocation>

 </CreationCoordinates>

 </BasicDescription>

 </ProgramInformation>

 </ProgramInformationTable>

 </ProgramDescription>

</TVAMain>

Figure 2.1: TV-Anytime metadata describing a video

2BBC TV-Anytime service: http://backstage.bbc.co.uk/feeds/tvradio/doc.html

2.1. Illustrative Example 9

2.1.2 Institution 2: Austrian National Library

The Austrian National Library’s image archive3 is the most important source of digitised historical images in
Austria and also includes well-catalogued images from past Olympic Games. All the images in the archive
are described using a proprietary metadata schema and as many other institutions, the Austrian National
Library stores their metadata in a relational database that is accessible via a non-public SQL interface.

Figure 2.2 shows an example description about an image of Willy Bogner who led in the first run of
the slalom during the Olympic Games in Squaw Valley back in 1960. In July 2003, the Austrian National
Library has digitised the image, originally taken by Lothar Rübelt. Details about the person Willy Bogner
are maintained in a so-called authority record that unambiguously identifies him as an entity in order to avoid
naming conflicts. Also technical features, such as the MIME-type or the dimension of the image are part of
the metadata description.

PERSON

Bogner

01

LASTNAME

Willy

23BIRTHDAY

FIRSTNAME

1942BIRTHYEAR

BIRTHMONTH

120ID

IMAGEDATA

Willy Bogner in the slalom; minimum
time in the first run

03-JUL-03

INFO

Olympic Wintergames 1960 in
Squaw Valley

Rübelt, LotharAUTHOR

TITLE

1960DATE

CREATION DATE

330976ID

120FK_PERSON

IMAGEOBJECT

MIMETYPE

INFO

image/jpeg

2333

3147IMAGEHEIGHT

IMAGEWIDTH

http://www.bildarchivaustria.at/Bildarchiv//
302/B1117424T4299954.jpg

ID 517849

330976FK_IMG_DATA

Figure 2.2: Proprietary metadata describing a JPEG image

3The Austrian National Library’s image archive portal: http://www.bildarchiv.at

10 Chapter 2. Background

2.1.3 Institution 3: National Library of Australia

As a result of the Olympics in Sidney in the year 2000, the National Library of Australia4 now maintains a
huge image collection from this event. The Dublin Core Element Set [DC06] has been chosen for representing
metadata for these images and all images have been digitised and are now available online. The metadata
are exposed via the Open Archives Protocol for Metadata Harvesting (OAI-PMH)5, an HTTP-based protocol
that allows the retrieval of XML metadata descriptions.

Figure 2.3 shows a picture of marathon runners cross the Sydney Harbour Bridge during the Olympics
2000. The adjacent metadata description gives further details about the photographer, the format of the image
and the date when it was taken. Keywords such as Runners (Sports) or Sportsmen and sportswomen
further describe the contents.

Page 1 of 1dc_sample_oai.xml

Printed: Monday, January 7, 2008 11:35:10 AM Printed For: Bernhard Haslhofer

<OAI-PMH "...">

! ...

! <metadata>

! ! <oai_dc:dc "...">

! ! ! <dc:title>Sydney Olympics 2000, marathon runners cross Sydney

! ! ! ! Harbour Bridge [picture] /</dc:title>

! ! ! <dc:creator>Mahony, David (David James)</dc:creator>

! ! ! <dc:format>1 photograph : gelatin silver ; image 26.9 x 38.4 cm.

! ! ! ! on sheet 30.5 x 40.3 cm.</dc:format>

! ! ! <dc:coverage>New South Wales</dc:coverage>

! ! ! <dc:date>2000</dc:date>

! ! ! <dc:description>Photograph by David Mahony -- On reverse in pencil.;

! ! ! ! Condition: Good. Group of [marathon] runners feature

! ! ! ! eventual Gold Medal Winner Gezahgne Abero of Ethiopia (No.

! ! ! ! 1651) [Sydney, N.S.W., September 2000]</dc:description>

! ! ! <dc:subject>Runners (Sports) -- Australia -- Portraits.</dc:subject>

! ! ! <dc:subject>Sydney Harbour Bridge (Sydney, N.S.W.)</dc:subject>

! ! ! <dc:subject>Olympic Games (27th :, 2000 : Sydney, N.S.W.)</dc:subject>

! ! ! <dc:subject>Marathon running -- Australia -- Photographs.</dc:subject>

! ! ! <dc:subject>Sportsmen and sportswomen.</dc:subject>

! ! ! <dc:type>Image</dc:type>

! ! ! <dc:identifier>nla.pic-an22842546</dc:identifier>

! ! ! <dc:source>Item held by National Library of Australia</dc:source>

! ! ! <dc:rights>You may save or print this image for research and study.</dc:rights>

! ! ! <dc:identifier>http://nla.gov.au/nla.pic-an22842546</dc:identifier>

! ! </oai_dc:dc>

! </metadata>

! ...

</OAI-PMH>

Figure 2.3: Dublin Core metadata describing a JPEG image

4The Australian National Library’s Web site: http://www.nla.gov.au/
5The Australian National Library’s OAI-PMH service: http://www.openarchives.org/OAI/openarchivesprotocol.html

2.2. Unveiling the Notion of Metadata 11

2.2 Unveiling the Notion of Metadata
In this section we briefly introduce the notion of metadata, which is essential in order to fully understand the
metadata interoperability problem. Then, in Section 2.2.1, we identify the main building blocks of metadata
descriptions. Since metadata interoperability must be established not only on the conceptual but also on the
technical level, in Section 2.2.2 we examine how metadata reside or appear in actual information systems.

2.2.1 Metadata Building Blocks
Following Gilliand’s definition [Gil05], we conceive metadata as the sum total of what one can say about any
information object at any level of aggregation, in a machine understandable representation. An information
object is anything that can be addressed and manipulated by a human or a system as a discrete entity. Defin-
ing metadata more abstractly as any formal schema of resource description, applying to any type of object,
digital or non-digital [NIS04] is also appropriate especially for application scenarios that apply metadata for
describing non-digital resources (e.g., persons).

Metadata can be classified according to the functions they are intended to support (descriptive, structural,
administrative, rights management, preservation metadata) [NIS04, Joh04], or to its level of semantic abstrac-
tion (low-level vs. high-level metadata) (e.g., [WK03]). Low-level technical metadata have less value for end
users than high level, semantically rich metadata that describe semantic entities in a narrative world such as
objects, agent objects, events, concepts, semantic states, semantic places, and semantic times, together with
their attributes and relationships [BZCS01]. Hence, the semantic quality and expressiveness of metadata is
essential for effectively retrieving digital objects.

To put it simply, metadata are data that describe some resource. In the examples presented in the previous
section, the resources are digital images and videos, hence information objects. The adjacent metadata de-
scriptions mainly consist of high-level, semantically rich descriptive information, such as the name of persons
(e.g., Ingmar Stenmark, Willy Bogner) or events (e.g., Sydney Olympics 2000). Only the Austrian National
Library provides some low-level technical metadata (mime-type, imagewidth, imageheight).

We can identify the following common characteristics: each description is made up of a set of elements
(e.g., title, author, subject) and content values (e.g., Lake Placid,..., Rübelt Lothar, Runners);
the elements are defined as part of a metadata schema, which can be standardised, as it is the case with
Dublin Core or TV-Anytime, or proprietary; from the fact that two metadata descriptions are expressed in
XML and one in terms of relations in a relational database, we can derive that the metadata elements have
previously been specified using a certain language. For the case of XML, the language is usually XML
Schema [W3C06], for the case of a relational database a schema is expressed in terms of tables using SQL-
DDL [ISO03b].

Based on this observation, we can identify three main metadata building blocks: we denote the set of
content values in a metadata description as metadata instance, the element definitions as metadata schema,
and the language for defining metadata schemes as schema definition language. Figure 2.4 illustrates these
three building blocks and their dependencies. In the following we will further focus on each of these building
blocks in a reverse order.

Schema Definition Language

An application and domain-specific metadata schema is expressed in a certain schema definition language,
whereas each language provides a set of language primitives (e.g., class, attribute, relationship). Because ma-
chines must understand a language, the primitives are not only syntactic constructs but also have a semantic
definition.

The semantic definition of the term language already implies6 that, in order to communicate with each

6Language: the system of communication used by a particular community or country (The New Oxford American Dictionary)

12 Chapter 2. Background

Metadata Instance

Metadata Schema

Schema Definition
Language

Title

Creator

Subject

Sydney Olympics....

Mahony, David (David James)

Sportsmen and sportswomen

Content
Values

(Digital / Non-Digital)
Information Object

class

attribute

relationship

Title SubjectCreator

Figure 2.4: Overview of the three metadata building blocks

other, there must exist an agreement on the meaning of a language’s primitives. This is also the case for
schema definition languages: usually there exist language standards or at least some kind of consensus7.
Sample schema definition languages are XML Schema, SQL-DDL, the RDF Vocabulary Description Lan-
guage (RDFS) [W3C04a], the Web Ontology Language (OWL) [W3C04c], or the Unified Modeling Lan-
guage (UML) [OMG07].

Metadata Schema

Another metadata building block are the element definitions, which we denote as metadata schema. A meta-
data schema is simply a set of elements with a precise semantic definition, optionally connected by some
structure [RB01]. The semantics of a schema is defined by the meanings of its elements. A schema usu-
ally defines the names of elements together with their semantics and optionally content rules that define how
content values must be formulated (e.g., capitalisation, allowable content values). For the encoding of the
elements and their values, a schema can define syntax rules. If no such rules are defined, a schema is called
syntax independent [NIS04].

At this point we must mention that the notion metadata schema, which originates from the database do-
main, is often named differently in other contexts or communities. For instance, knowledge workers, librar-
ians or others working in the field of knowledge and information organisation tend to use the term metadata
vocabulary for what we call metadata schema. These communities tend to regard metadata more from a lin-
guistic rather than a technical point of view. Another very common notion is the term ontology, which has its
origin8 in the Artificial Intelligence domain and is defined as a specification of a conceptualisation [Gru93].

7The W3C consortium for instance does not publish standards but recommendations.
8The term ontology actually originates from Philosophy; in the AI domain it has its technical origin.

2.2. Unveiling the Notion of Metadata 13

In its core, an ontology is the same as a schema: a set of elements connected by some structure. Apart from
that, Noy and Klein [NK04] have identified several features that distinguish ontologies from schemes in a
database sense: the first and probably the most important one is that ontologies are logical systems that de-
fine a set of axioms that enable automated reasoning over a set of given facts. Second, ontologies usually have
richer data models involving representation primitives such as inverse properties. And third, ontology devel-
opment is a much more decentralised and collaborative approach than schema development, which opens
the potential for reusing existing ontology definitions. As a consequence of these different perceptions, we
can also find different names for the languages used for defining metadata elements: vocabulary definition
language and ontology definition language are examples for that.

Despite these different perceptions, we believe that the term metadata schema is appropriate for the pur-
pose of this work because it regards metadata interoperability mainly from a technical perspective. Stronger
than the term vocabulary, it emphasises that metadata elements have a technical grounding in information
systems, which is a significant aspect when metadata interoperability should be achieved also on a technical
level. Weaker then the term ontology it sets the limits for the underlying technical system. It encompasses
logical system in the AI sense (e.g., First Order Logic, Description Logics) but also other, in practice more
widespread, systems such as relational database schemes or XML schemes. However, in this work the term
metadata schema does not refer to traditional database schemes only. We rather regard it is a common de-
nominator for all the previously mentioned terms.

Metadata Instance

Continuing with the metadata building blocks, we can identify a third one — the metadata instance. A
metadata instance holds a set of metadata elements drawn from a metadata schema, and adjacent content
values. These element-value combinations form a metadata description about a certain information object.
As already mentioned, the rules for creating such metadata instances are imposed by the metadata schema it
is related to. If there exists such a relationship, we say that a metadata instance corresponds to a schema.

2.2.2 The Appearance of Metadata in Information Systems
Metadata are information objects that are designed for, persistent in, retrieved from, and exchanged between
information systems. The form of appearance of metadata in information systems is defined through informa-
tion models on various levels. In a typical information system we can identify four such levels: the physical,
the logical, the programming/representation, and the conceptual level.

On the lowest level — the physical level — metadata are bits and bytes that are represented in memory,
written to disks, and transmitted over wires. The system components that are working on this level are
mainly concerned with optimising heap allocation, assigning records to file partitions and building indices
for efficient retrieval. Thus, the information model on this level comprises concepts like format, files, records,
or indices.

The physical level is usually hidden from application developers through the logical level. This is the
level where database management systems are located. Information models such as the Relational Data
Model [Cod70] provide the basis for creating technically precise and complete information models for a
certain target domain. A metadata schema is defined using a data definition language and represented through
a set of relation schemes. The metadata instances are described as sets of tuples contained in tables. Besides
providing the necessary transparency from the underlying physical model, the logical level organises metadata
efficiently (e.g., through normalisation) and introduces important features for application developers, such as
data consistency, concurrency control, and transactions. However, metadata are scattered in tables that do not
directly reflect the application domain9 and must be aggregated into higher level, conceptual entities when
being processed by applications.

9Also called domain of discourse or universe of discourse.

14 Chapter 2. Background

On the programming/representation level, the constituents of conceptual schema models are manifested
or presented in various forms: metadata schemes can be transformed into code of a certain (object-oriented)
programming language and reflect the application domain in terms of classes or types while metadata de-
scriptions become run-time objects. Metadata elements and their contents can also be encoded using a cer-
tain mark-up language such as XML or be represented on the Web using HTML. This requires metadata
descriptions to be adapted to certain programming and document models (e.g., W3C DOM), and metadata
schemes to be modelled using the modelling language (e.g., Java syntax, XML Schema, DTD) imposed by
the programming/representation technology.

A metadata schema on the conceptual level resembles real-world entities with their properties and rela-
tionships among entities. The TV-Anytime standard for instance, which is used in the illustrative example
in Section 2.1, defines real-world entities such as Video or Creator and properties such as GivenName or
FirstName. Common languages for creating conceptual models are the Entity-Relationship Model [Che76]
or the Unified Modelling Language [OMG07].

Metadata — A Model Perspective

All these levels have in common that the information elements of a metadata schema, i.e., its elements and
their relationships, are implemented in terms of a data model. Such a data model for metadata — further
called metadata model — encapsulates the defined elements of a metadata schema, represents their semantics
(their meaning) in a formal way, and provides a syntax for serialising metadata descriptions. The semantic
interpretation of a metadata model is given through the mapping of the model elements to the corresponding
entities in a certain application domain. The syntax of a metadata schema, i.e., the legal elements and rules
how and what values can be assigned to elements, is defined using a certain notation, which can be symbolic
(e.g., words, formulas), textual (e.g., natural language sentences), or graphical (e.g., diagram).

Schema definition languages occur on each information level and are used for expressing information
models. The core of such a language is its meta-model — we call it metadata meta-model — which is
the machine-internal representation of the language. It reflects the language primitives (abstract syntax)
together with a concrete notation (concrete syntax) and semantics. Further it defines and constrains the
allowable structure of models. The semantics or interpretation of a language is the mapping of the meta-
model’s (abstract syntax) elements to the language’s primitives. Semantic definitions of models may feature
varying degrees of formality, ranging from natural language descriptions to formal languages or mathematics.
Especially from an interoperability point of view, rigid and semantic precise definitions enable consistent
interpretation across system boundaries [Sei03].

Metadata models and meta-models are arranged on different levels that are orthogonal to the previously
mentioned levels of information. On the lowest level we can find metadata (descriptions) that are (valid)
instances of a metadata model (e.g., Java classes, UML model, database relations) that reflects the elements
of a certain metadata schema. The metadata model itself is a valid instance of a metadata meta-model being
part of a certain schema definition language. Due to this abstraction, it is possible to create meta-model
representations of metadata (e.g., metadata instances of an UML model can also be represented as instances
of the UML meta-model).

The MOF specification [OMG06a] offers a definition for these different levels: M0 is the lowest level, the
level of metadata instances (e.g., Title=Lake Placid 1980, Alpine Skiing, I. Stenmark). M1 holds
the models for a particular application; i.e., metadata schemes (e.g., definition of the field Title) are M1
models. Modelling languages reside on level M2 — their abstract syntax or meta-model can be considered as
model of a particular modelling system (e.g., definition of the language primitive attribute). On the topmost-
level, at M3, we can find universal modelling languages in which modelling systems are specified (e.g., core
constructs, primitive types). Figure 2.5 illustrates the four levels, their constituents and dependencies.

Regarding these abstraction levels, the remaining question is how the abstract syntax (meta-meta-model)
of an M3 modelling language is expressed. In general, there are two options for defining a meta-model: either

2.2. Unveiling the Notion of Metadata 15

Schema
Definition
Language

Metadata
Schema

A
bs

tra
ct

io
n

Le
ve

ls

Model

Meta
data

instance of

Meta-Model

instance of

M2

M1

M0

Universal
Modelling
Language

Meta-
Meta-Model

instance of

M3

Figure 2.5: Metadata building blocks from a model perspective

by using a different modelling mechanism (e.g., context-free grammars for programming languages, formal
semantics or an explicit set of axioms and deduction rules for logic-based languages) or by using its own
modelling language. In the latter case, the elements of a metamodel are expressed in the same language the
metamodel is describing. This is called a reflexive metamodel [Sei03] because the elements of a modelling
language can be expressed using a (minimal) set of modelling elements. An example for such an approach
is the UML metamodel, which is based on the UML Infrastructure Library [OMG06c], which in turn is the
minimal reflexive metamodel for UML.

A Selection of Schema Definition Languages

Table 2.1 gives an overview of a selected set of schema definition languages, which can be assigned to the M2
level. For each each language we describe its concrete syntax, i.e., how language elements are represented.
Further we outline how the semantics is defined for each language, assuming that the available options are:
natural language, formal semantics (i.e., precise mathematical definitions), reference implementations, and
test suites. Finally, we describe the machine-internal representation of a modelling language: its meta-model
or abstract syntax. We outline the meta-model’s type (e.g., object-oriented, semantic network-based) and
which model construct categories (structural, behavioural) it supports. Further we give an overview of its
main model elements, and sketch out if the model is defined reflexively.

The Unified Modeling Language (UML) [OMG07] and the Entity Relationship Model (ER) [Che76]
are used for the conceptual modelling of software systems and therefore employ a graphical syntactic no-
tation. Topic Maps [ISO06c], RDFS [W3C04a], and OWL [W3C04c] are conceptual languages that allow
the modelling of metadata schemes in terms of semantic networks, which requires that their machine-internal

16 Chapter 2. Background

UML ER Topic Maps RDF/S OWL Java SE 6 XML Schema SQL-DDL DL CL

Model Type
Object

Oriented

ER-

dedicated

graph

Semantic

Network

based /

labelled

graph

Semantic

Network

based /

labelled

graph

Semantic

Network

based /

labelled

graph

Object-

Oriented
Hierarchical

Relational

Model
Logics Logics

Model

Constructs

Categories

Structural &

Behavioural
Structural Structural Structural Structural

Structural &

Behavioural
Structural

Structural

(Behav-

ioural)

Structural Structural

Main Model

Elements

Class,

Composite

Structure,

Component,

Deployment,

Activity,

Interaction,

State

Machine,

Use Case

Entity Sets,

Attributes,

Relation-

ships

Topic, Asso-

ciation,

Occurrence,

TopicMap

Statement,

BlankNode,

Graph,

Property,

Literal,

Resource,

Class,

Datatype,

Bag, Seq,

Alt, List

Ontology,

Class,

Datatype- &

Object-

Property,

Individual,

Restriction

Class,

Interface,

Field,

Method,

Annotation,

Enum,

Package

Data types,

Simple Type,

Complex

Type,

Element,

Attribute

Relation,

Attribute,

Schema,

Tuple,

Domain

Facts,

Axioms

Phrases,

Terms,

Atoms,

Sentences,

Reflexive

Definition

Yes (via M3

level)
No No Yes Yes No Yes No No No

Graphical

Notation

Graphical

Notation
XML, HyTime

RDF/XML,

N3, N-Triple

RDF/XML,

N3, N-Triple
Java Syntax XML SQL Syntax DL Syntax

CLIF, CGIF,

XCL

Natural

language
Formal Formal Formal Formal

Natural

language,

Reference

Implemen-

tation

Natural

language
Formal Formal Formal

LogicalConceptual

Concrete Syntax

Semantics

A
b

s
tr

a
c

t
S

y
n

ta
x

 (
M

e
ta

-M
o

d
e

l)
Programming /

Representation

Table 2.1: A selection of schema definition languages and their characteristics

representation is graph-based. Other common features are the fact that their semantics is formally defined and
that their syntax is XML based, while RDF also provides other syntaxes such as N3 [BL98] or Triple [SD02].

Java is a representative for the programming part of the programming/representation level. Its syntax and
semantics are defined in [GJSB05]; since Java version 6, the Java API also comprises a metamodel [Jav06,
BU04] that reflects the structural and behavioral primitives of the Java language. Another modeling language
for defining metadata schemes on the presentation level is XML Schema. Its semantics in natural language,
as well as its hierarchical meta-model (abstract syntax) are defined in [W3C06].

A prominent representative of languages on the logical level is SQL [ISO03b], or more precisely, the
SQL Data Definition Language (SQL DDL). Its meta-model is the relational model10, which is semantically
defined through the relational algebra.

For creating knowledge bases, logical languages such as Description Logics (DL) [BCM+03] or Common
Logics (CL) [ISO05] can be applied for defining schemes in terms of knowledge graphs. Naturally, their
semantics is defined formally; while the syntax of DL is simply symbolic, CL defines the Common Logic
Interchange Format (CLIF), the Conceptual Graph Interchange Format (CGIF), and the Extended Common
Logic Markup Language (XCL) for the syntactic representation and exchange of CL schema definitions.

10In fact, vendors of database management systems employ their own, system-specific, meta-models. But usually they are still based
on the relational model.

2.3. Metadata Interoperability 17

2.2.3 Basic Observations
Previously, we have identified three main metadata building blocks: metadata instances, metadata schemes,
and schema definition languages. When applying a technical view on these blocks, we note that a metadata
description is in fact an instance of a metadata model, which in turn is an instance of a metadata meta-model.
We can conceive metadata as information objects with three abstraction levels: metadata instances reside on
the M0 level, metadata models on the M1 level, and metadata meta-models on the M2 level.

We can summarise this section with two main observations: first, the choice of the schema definition
language directly affects the appearance of metadata information objects in an information system. This is
because there is a direct technical (instance-of) dependency between metadata instances, metadata schemes,
and schema definition languages. Second, although some languages overlap in certain aspects (e.g., graph-
based meta-model, support for behavioural modelling constructs), there are exist discrepancies between their
abstract and concrete syntax, and in the way their semantics is defined. This implies that an automatic
translation between metadata schemes expressed in different modelling languages is a problematic task. For
instance, it will require human intervention to find a work-around for translating graph-based to hierarchical
tree-like models; a tree is a special kind of a graph, but not vice versa.

2.3 Metadata Interoperability
We have claimed that metadata interoperability is the prerequisite for uniform access to digital media in
multiple heterogeneous information systems. Hence, for solutions that aim at establishing uniform access,
achieving metadata interoperability is the necessary prerequisite. Before discussing various techniques for
achieving interoperability, we first investigate the notion of metadata interoperability in literature and come
up with an appropriate definition in Section 2.3.1. Thereafter, in Section 2.3.2, we analyse in detail the various
forms of heterogeneities that impede metadata interoperability.

2.3.1 Uniform Access To Digital Media
In the context of information systems, interoperability literally denotes the ability of a system to work with
or use parts of other systems11. Also in literature we can find similar definitions: for the digital libraries
domain Baker et al. [BBB+02] summarise various interoperability viewpoints as the potential for metadata
to cross boundaries between different information contexts. Other authors from the same domain define
interoperability as being able to exchange metadata between two or more systems without or with minimal
loss of information and without any special effort on either system [NIS04, ALC00] or as the ability to apply
a single query syntax over descriptions expressed in multiple descriptive formats [HL01].

The notion of interoperability can further be subdivided: for Baker et al. [BBB+02], achieving interoper-
ability is a problem to be resolved on three main levels: the transport and exchange level (e.g., protocols),
the metadata representation level (e.g., syntactic binding, encoding language), and the level of metadata with
their attribute space (e.g., schema elements) and value space (e.g., controlled vocabularies). Based on the
perspective of heterogeneities in information systems, Sheth and Larson [SL90] and Ouksel and Sheth [OS99]
present four main classes of interoperability concerns: system interoperability dealing with system hetero-
geneities such as incompatible platforms, syntactic interoperability dealing with machine-readable aspects
of data representation, structural interoperability dealing with data structures and data models, and seman-
tic interoperability. Tolk [Tol06] proposes another view consisting of six levels: no interoperability on the
lowest level, technical interoperability (communication infrastructure established) on level one, syntactic in-
teroperability (common structure to exchange information) on level two, semantic interoperability (common
information model) on level three, pragmatic interoperability (context awareness) on level four, dynamic

11According to the Merriam-Webster Online Dictionary (http://www.m-w.com/) and the Oxford Online Reference (http://www.
oxfordreference.com/)

18 Chapter 2. Background

interoperability (ability to comprehend state changes) on level five, and conceptual interoperability (fully
specified, but implementation independent model) on level six. Miller [Mil00] detaches interoperability from
the technical level and introduces, alongside technical and semantic interoperability, several flavours of inter-
operability: political/human, inter-community, legal, and international interoperability.

Based on its literal meaning, the definitions in literature, and considering the technical characteristics of
metadata information objects described in Section 2.2.2, we define metadata interoperability as follows:

Definition 2.1 Metadata interoperability is a qualitative property of metadata information objects that en-
ables systems and applications to work with or use these objects across system boundaries.

With this definition we clearly distinguish our conception of metadata interoperability, which is settled
on the information level, from system level interoperability issues such as communication infrastructures,
hardware or software platform incompatibilities.

2.3.2 Heterogeneities impeding Interoperability

The heterogeneities to be eliminated in order to provide interoperability have already been identified in the
early ages of database research. A first in-depth analysis has been provided by Sheth and Larson [SL90].
Throughout the years they have been investigated more deeply (e.g., [OS99]), and also regained attention
in related domains, such as Artificial Intelligence (e.g., [Wac03, VJBCS97]). In Figure 2.6, we provide
a classification of the predominant heterogeneities mentioned in literature from a model-centric perspective.
We recall that there is an instance-of relationship between metadata instances, metadata schemes, and schema
definition languages, i.e., metadata are instances of metadata models, and metadata models are instances of
metadata meta-models. Generalising these relationships, we can distinguish between model level and instance
level heterogeneities as a first dimension for our classification. For the second dimension we differentiate
between two classes of heterogeneities: structural heterogeneity caused by the distinct structural properties of
models and semantic heterogeneity occuring because of conflicts in the intended meaning of model elements
or content values in distinct interpretation contexts.

Structural Heterogeneities

Structural heterogeneities on the model level occur because of model incompatibilities. A model mainly
consists of its atomic elements (e.g., entities, attributes, relationships) and the combination or arrangement
of these elements forming a certain structure for representing a particular domain of interest. That being
the case, we can group structural heterogeneities occurring between distinct models into element definition
conflicts, which are conflicts rooted in the definitions of a model (naming, identification, constraints), and
domain representation conflicts, which occur because domain experts arrange model elements that reflect the
constituents of a certain domain in various ways and detail. In the following we will further analyse these
two groups of structural heterogeneities.

Naming Conflicts We denote conflicts that occur because model elements representing the same real-world
entity are given different names as naming conflicts. On the level of schema definition languages (M2),
distinct meta-models assign different names to language primitives that are used to model the same real-
world facts. UML for instance defines the primitive Class, while ER uses EntitySets to capture the same
kind of real-world concepts. Also on the level of metadata schemes (M1), distinct metadata models might
assign different names to elements representing the same real world concepts. In the examples presented in
Section 2.1, the model elements that represent the image’s descriptions are labelled Synopsis in the TV-
Anytime, Description in the Dublin Core, and Info in the proprietary schema.

2.3. Metadata Interoperability 19

Metadata Heterogeneities

Structural

Heterogeneities

Domain Conflicts

Terminological

Mismatches

Abstraction Level

Incompatibility

Mulitlateral

Correspondences

Semantic

Heterogeneities

M
o

d
e

l L
e

ve
l H

e
te

ro
ge

n
e

it
ie

s

(M
1

 +
 M

2
)

In
st

an
ce

 L
e

ve
l

H
e

te
ro

ge
n

e
it

ie
s

(M
0

)

Scaling/Unit Conflicts

Representation

Conflicts

Naming Conflicts

Identification Conflicts

Constraints Conflicts

Domain Representation

Conflicts

Element Definition

Conflicts

Meta-Level

Discrepancy

Domain Coverage

Figure 2.6: Structural and semantic metadata heterogeneities on the model and the instance level

Identification Conflicts A special case of naming conflicts are those dealing with unique identification
of model elements. On the M2 level, depending on the language used for defining a model, elements are
identifiable either by their name only (e.g., ER, SQL-DDL) or by some (fully) qualified identifier (e.g.,
XMLS, OWL). Identification conflicts can also arise on the M1 level of metadata schemes. In our example,
the TV-Anytime schema comprises model elements that are fully qualified via their namespace. The elements
in the proprietary model, i.e., the tables and columns, are identified by their names only.

Constraints Conflicts Element definition conflicts that occur because distinct models provide different
possibilities of defining constraints are denoted as constraints conflicts. An example for an M2 constraint is
the ability of a schema to import other schema definitions. This is possible in languages such as XML Schema
or OWL but not in ER. Incompatible primary keys, conflicting references or domain constraints could lead to
the same type of conflict on the M1 level of metadata schemes.

Abstraction Level Incompatibilities Abstraction level incompatibilities belong to the group of domain
representation conflicts and turn up when the same real world entities are arranged in different generalisation
hierarchies or aggregated differently into model elements. An example for this type of conflict on the M2
level is the ability to define attributes and relationships in various languages: while ER (attribute and
relationship) and OWL (datatypeProperty and objectProperty) define primitives for both language
features, XML Schema (attribute) and Java (field) subsume these features under a single primitive.
Abstraction level incompatibilities at the M1 level, the level of metadata models, occur for instance when one
metadata model aggregates the creator of a digital resource into single entity creator as it is the case with

20 Chapter 2. Background

Dublin Core, while other models such as TV-Anytime and also MPEG-7 distinguish between Persons and
Organisations, both being a specialisation of the concept Agent.

Multilateral Correspondences Another domain representation conflict, which is a direct result of the pre-
viously mentioned abstraction level incompatibilities, are multilateral correspondences. On each level, an
element in one model can correspond to multiple elements in another model and vice versa. In our example
there is such a correspondence between the Dublin Core creator element and the TV-Anytime elements
GivenName and FamilyName. This is because in the TV-Anytime metadata description, these elements are
used in the context of a CreditsItem element that is taking the role of an author.

Meta-Level Discrepancy Domain representation conflicts that occur because certain model elements do
not have any direct correspondences in another model are subsumed under meta-level discrepancy. This,
however, does not necessarily mean that the other model cannot capture the same information about a certain
domain. Real-world concepts represented as elements in one model (e.g., author as attribute) could be
modelled differently in another model (e.g., author as entity) or even being captured as contents of a model
element on the instance level. In our example, the Dublin Core and the proprietary schema store the location
of the Olympic Games as content value with the field Title while TV-Anytime defines a model element
CreationLocation, which captures this kind of information. We can distinguish the following kinds of
meta-level discrepancies: content-value / attribute, entity / attribute, and content value / entity discrepancy.

Domain Coverage When there exist no correspondences between model elements, we speak of domain
coverage conflicts. This happens when real-world concepts reflected in one model are left out in the other
model, although both models were designed for the same semantic domain. In our example, the TV-Anytime
description does not give any evidence about the image’s size while the proprietary one does.

Semantic Heterogeneities

Semantic heterogeneities on the model level are conflicts occurring because of the differences in the semantics
of models. We recall that a model’s semantics is defined by its semantic domain and the semantic mappings
(interpretations) from the domain entities to the model elements. The semantic domain provides the meaning
for each model element and can contain language expressions, in the case of schema definition languages, or
real-world entities, in the case of metadata models.

Domain Conflicts When domains overlap, subsume, or aggregate others, or when domains are incompati-
ble, we speak of domain conflicts. An example for such a conflicts on the M2 level is the expressiveness of
languages; with languages that have a rich domain, i.e., an expressive set of language primitives, we are able
to model things that are not expressible with other languages having less powerful primitives. With OWL,
for instance, it is possible to express that two classes are equivalent or that one class is the union of two other
classes. Other languages such as XML Schema or Java do not have built-in language constructs to indicate
such relationships. Obviously, domain conflicts can also occur among metadata models on the M1 level. If
one model reflects the domain of electronic billing and another one the domain of multimedia contents, it is
unlikely that there are any meaningful correspondences among these models.

Terminological Mismatches Terminological mismatches are another kind of semantic heterogeneity oc-
curring on both model levels: synonym conflicts occur if the same domain concept is mapped to model
elements with different names, homonym conflicts exist if different domain concepts are mapped to model
elements with the same names.

2.4. Techniques for Achieving Metadata Interoperability 21

An example of a homonym conflict on the language level is the polymorphic concept of overloading
that appears in object-oriented languages like Java. These languages support polymorphic functions whose
operands (parameters) can have more than one type. Types can be arranged in a sub-type hierarchy and
symbols (e.g., field-names, method-signatures) may be overloaded, meaning that the same symbol is used to
denote semantically different behaviour [CW85]. In Java, for instance, the equals method is usually overwrit-
ten and implemented differently for each class, which could lead to unintended behaviour during runtime.

An example for a synonym conflict on the schema level is the usage of distinct terms to denote the same
semantic concept. In our example, the proprietary schema uses the term author and the Dublin Core schema
the term creator to represent the person who has created the particular image.

Scaling/Unit Conflicts Semantic heterogeneity occurring on the metadata M0 instance level, when different
scaling systems are used to measure content values, are called scaling or unit conflicts. In our examples, the
dimensions of the described images are represented in pixels in the proprietary schema and in centimetre in
the Dublin Core schema. Even if the images had semantically the same dimension, the content values would
be different.

Representation Conflicts Representation conflicts are a result of using different encoding schemes for con-
tent values. For instance, two date values, which are semantically the same, could be represented differently
in each system (e.g., date=01.01.2007 or date=2007/01/01).

2.4 Techniques for Achieving Metadata Interoperability
Over decades experts working in the field of metadata interoperability have developed methods and solutions
to overcome the previously described heterogeneities. The goal of this section is to set up a framework for
categorising existing techniques according to their common characteristics.

Metadata interoperability can be achieved by eliminating the structural and semantic heterogeneities at
the metadata meta-model (M2), metadata model (M1), and the metadata instance (M0) level. We can identify
three principal ways to attain interoperability among models: (i) agreement on a certain metadata model,
(ii) introduction of, and agreement on a common meta-model, and (iii) reconciliation of the structural and
semantic heterogeneities. Table 2.2 provides an overview of a variety of techniques to achieve metadata
interoperability and classifies them according to the three previously mentioned categories. In the following
sections we will focus on each of these techniques and discuss their characteristics.

2.4.1 Model Agreement
Standardisation is a strong form of establishing an agreement by means of consensus building and an in-
tuitive, technically effective and economically well-recognised way to achieve interoperability. It requires
accredited institutions (e.g., World Wide Web Consortium (W3C), Object Management Group (OMG), In-
ternational Standardisation Organization (ISO), German Institute for Standardization (DIN)) for building
consensus, setting a standard, and eventually assuring its uniform implementation. Regarding the building
blocks of metadata, standardisation can cover the language level (standardised language), the schema level
(standardised metadata schema), the instance level, or several levels (hybrid metadata system).

Standardised Language

In Section 2.2.2, we have already shown a representative selection of various types of schema definition lan-
guages ranging from programming languages (e.g., Java), over conceptual modelling (e.g., UML) to logical
languages (e.g., Description Logics).

22 Chapter 2. Background

Model

Reconciliation

M2 – Schema

Definition

Languages

Standardised

Language

(e.g. OWL, UML,

XML Schema)

Metadata Meta-

Meta Model

(e.g. MOF)

Abstract Metadata

Model

(e.g. DCMI

Abstract Model)

Language

Mapping

Model Agreement Meta-Model Agreement

Metadata Framework

(e.g. MPEG-21, METS, OAIS)

Standardised

Metadata Schema

(e.g. DC, TEI,

MODS)

Application Profile

(e.g. DC Collection Profile)

Hybrid Metadata

System

(e.g. MPEG-7,

TV-Anytime)

M0 – Metadata
Instance

Transformation

M1 – Metadata

Schemes

Metadata

Crosswalk,

Schema Mapping

Global Conceptual Model

(e.g. CIDOC-CRM, FRBR)

Value Encoding Schema

(e.g. ISO-Norms, RFC-Specifications)

Controlled Vocabulary

(e.g. LCSH, DCC, MeSH)

Authority Record

(e.g. LOC Authorities, Deutsche Personennormdatei

(PND))

Table 2.2: A categorisation of metadata interoperability techniques

Each schema definition language defines a set of language primitives and, as in natural languages, postu-
lates that multiple parties agree on their semantics. This guarantees interoperability on the level of schema
definition languages. Consequently, metadata that are expressed in the same language can be processed by
any application that is aware of that language.

Agreement on the M2 level of schema definition languages is typically enforced through various forms
of standardisation. Programming languages are often specified by companies (e.g., Java by Sun Inc.) or
standardised by standards institutes (e.g., ANSI-C by the American National Standards Institute (ANSI)).
Languages designed for data representation and exchange are standardised by international consortia (e.g.,
W3C, OMG).

Standardised Metadata Schema

If there is an agreement or consensus on a set of metadata elements on the M1 level, and this agreement is
manifested in a standard, we speak of a standardised metadata schema. In Table 2.3, we present a selection
of metadata standards used in various domains. For each standard we indicate its application domain, which
requirements or purpose it fulfils, and to which schema definition languages it is bound in order to express a
metadata schema also on a technical level. Further we show which standardisation body maintains a standard,
the year of initial publication, and the current version together with the year when this version has been
released.

Most standardised metadata schemes are designed for a specific domain and a certain purpose. The VRA
Core Standard [VRA07], for instance, is tailored to the cultural heritage community and comprises metadata
elements for the description of works of visual culture as well as the images that document them. The Dublin

2.4. Techniques for Achieving Metadata Interoperability 23

Name
Application

Domain
Purpose

M2 Language

Bindings

Standard-

isation Body

Current

Version

Year of Initial

Publication

Dublin Core Element

Set (DC)

domain

independent

description of a

wide range of

resources

XMLS, RDF/S ISO/NISO
1.1

(2008)

1998

Visual Resources

Association Core

(VRA Core)

cultural heritage

description of

works of visual

culture and

images that

document them

XMLS

VRA Data

Standards

Committee

4.0

(2007)
1996

Guidelines for Elec-

tronic Text Encoding

and Interchange (TEI)

humanities, social

sciencies,

linguistics

representation of

texts in digital

form

XMLS

Text Encoding

Initiative

Consortium

P5

(2007)
1990

Learning Objects and

Metadata (LOM)
eLearning

description of

digital or non-

digital learning

objects

XMLS, RDF/S IEEE
1.0

(2002)
1997

Sharable Content

Object Reference Model

(SCORM)

eLearning

aggregation,

description, and

sequencing of

learning objects

XMLS

Advanced Dis-

tributed

Learning

Initative (ADL)

3rd Edition

(2004)
2000

Online Information

Exchange (ONIX)

publishing / retail

(books and

serials)

provision of

product

information to

online retailers

DTD, XMLS EDItEUR group
release 2.1

(2005)
2000

MARC 21 Format for

Bibliographic Data
(digital) libraries

exchange of

bibliographic data

XMLS

(MARCXML)

Network Devel-

opment &

MARC

Standards

Office

update no. 7

(2006)
1999

Metadata Object

Description Schema

(MODS)

digital libraries

subset of MARC

fields using

language-based

tags

XMLS

Network Devel-

opment &

MARC

Standards

Office

3.2

(2006)
2002

Maschinelles

Austauschformat für

Bibliotheken (MAB)

(digital) libraries

in german

speaking

countries

exchange of

bibliographic data

XMLS

(MABxml)

Expertgroup for

data formats

2

(2001)
1973

Format for Bibliographic

Records (RFC1807)

universities, r&d

organisations

description of

technical reports
XMLS

Network

Working Group

1.0

(revised in

2002)

1995

Geographic Information

Metadata (ISO 19115)

geographic

information

systems (GIS)

documentation of

geographic digital

resources

XMLS, GML ISO
1.0

(2003)
2003

Table 2.3: A representative selection of metadata standards

Core Metadata Element Set [DC06] is an example for a schema that is broad and generic enough to describe
a variety of resources across domains.

Besides Dublin Core and VRA, our selection also comprises the Guidelines for Electronic Text Encoding
and Interchange (TEI) [TEI07], a standard mainly used in the humanities and social sciences for representing
texts and data about texts in digital form. In the case of TEI, the standardisation body is the consortium that
has developed this metadata standard.

24 Chapter 2. Background

As representatives for the eLearning domain, we have selected the Sharable Content Object Reference
Model (SCORM) [ADL07] and the Learning Objects Metadata (LOM) [IEE02] standards. While the first
standardises the aggregation and sequencing aspects of learning objects, the latter is mainly concerned with
their description. Further, the development of SCORM is driven by the Advanced Distributed Learning
Initiative12, which embraces several standardisation bodies, including IEEE13.

The MARC 21 Format for Bibliographic Data [LOC07c], a metadata standard in the libraries domain
for the purpose of exchanging bibliographic data, is maintained by the Network Development and MARC
standardisation office. MAB and its successor MAB 2 [DNB07a] represent the German counterparts to the
family of MARC standards and have been developed by a group of library domain experts. The Metadata
Object Description Schema (MODS) [LOC07d] is a metadata standard that defines a subset of the MARC
fields using language-based instead of numeric-based tags. RFC1807 [NWG95] is a very old bibliographic
metadata standard mainly used in universities and research organisations for describing technical reports.

Online Information Exchange (ONIX) [EDI07] is another metadata standard and is situated at the border-
line of bibliographic description and electronic commerce. Its main purpose is to provide product information
about books and serials to online retailers. The standard is maintained by an international group of book re-
tailers and vendors, called EDItEUR.

Finally, from the domain of geographic information system our selection contains ISO 19115 [ISO03a],
a metadata standard designed for the documentation of geographic digital resources.

The technical implementation of a metadata standard is bound to one or more schema definition lan-
guages, which provide the facilities to represent a standard’s metadata elements in a machine-readable way.
Regarding our selection of metadata standards, we can observe that the majority is bound to XML Schema.
Some (e.g., DC and LOM) also provide bindings for RDF/S, and the ISO 19115 standard even defines the
Geography Markup Language (GML) [OGC04], which is an extension of the XML grammar.

Hybrid Metadata System

We denote metadata standards that cannot be assigned to a single level but span multiple levels as hybrid
metadata systems.

An important representative for a hybrid metadata system is the MPEG-7 [ISO07b] standard. It spans the
M2 and M1 levels and defines a set of metadata schemes (MPEG-7 Description Schemes) for creating multi-
media metadata descriptions as well as a schema definition language called the MPEG-7 Description Defini-
tion Language (DDL), which is an extension of XML Schema. This language provides the solid descriptive
foundation for users to create their own metadata schemes, compatible with the MPEG-7 standard [Kos03].

The TV-Anytime standard is a representative for a hybrid metadata system that spans the M1 and M0
levels. On the M1 level, it heavily reuses elements defined by the MPEG-7 standard and tailors them to the
requirements of the broadcasting domain. Further it defines a set of classification schemes, which are in fact
controlled vocabularies allowing the classification of telecast along various dimensions. Sample dimensions
are a telecast’s content (e.g., news, arts, religion/philosophies), its formal structure (e.g., magazine, cartoon,
show), or even its atmosphere (e.g., breathtaking, happy, humorous, innovative). The terms listed in the
classification schemes are possible content values within metadata descriptions and can therefore be used as
content values in M0-level metadata instances.

Instance Level Agreement

If several parties agree on a set of possible content values for M0 level metadata descriptions, we denote this
as instance level agreement. In the real world, we can find various forms of agreements or standards on the
instance level.

12Advanced Distributed Learning Initiative: http://www.adlnet.gov/
13Institute of Electrical and Electronics Engineers (IEEE): http://www.ieee.org/

2.4. Techniques for Achieving Metadata Interoperability 25

One frequently occurring form are controlled vocabularies such as the Library of Congress Subject Head-
ings (LCSH) [LOC07b], the Dewey Decimal Classification System (DDC) [OCL07], or the Medical Subject
Headings (MeSH) [NLM07]. The main goal of a controlled vocabulary is to support search and retrieval of
resources by indexing them with terms taken from a vocabulary that has been designed by domain experts
who posses expertise in the subject area. The complexity of a controlled vocabulary can range from a simple
list of terms, over a hierarchical arrangement of terms (taxonomy), to systems that defined terms and the
semantic relationships between them (thesaurus).

Authority control is another form of instance level agreement and very similar to controlled vocabular-
ies. The goal is to disambiguate identical entities by linking the content values of metadata descriptions to
uniquely identifiable authority records maintained and shared by a central authority. In the library domain,
authority control is commonly used to relate potentially distinct names of one and the same person with a
single uniquely identifiable entity. The Library of Congress Authorities [LOC07a] or the German Personen-
normdatei (PND) [DNB07b] are examples for centrally maintained directories of person names.

A value encoding schema is a form of instance level agreement, which defines exactly how to encode a
certain type of content value. The ISO 8601 [ISO04] standard, for example, provides encoding rules for dates
and times; the ISO 3166 [ISO06b] standard defines how to represent country names and their subdivisions.
This kind of standardisation guarantees that machines can correctly interpret non-textual content values, such
as dates and times, or abbreviated textual values representing some entity, such as country codes.

In theory, if all metadata in all information systems within a certain integration context were instances of a
single standardised metadata schema expressed in a single schema definition language, and if also all content
values used within the metadata instances were taken from a single controlled vocabulary, all the structural
and semantic heterogeneities mentioned in Figure 2.6 would be resolved, at least technically.

2.4.2 Meta-Model Agreement

In real-world environments, we can observe that institutions often do not adhere to standards. Attempts to find
an agreement for a standard often results in semantically weak minimum consensus schemes (e.g., the Dublin
Core Element Set) or models with extensive and complex semantic domains (e.g., the CIDOC Conceptual
Reference Model (CRM) [ISO06a]). Often it is not practicable for institutions to agree on a certain model or
apply an existing standard because they already have their proprietary solutions in place. In such a case, one
possibility for achieving interoperability is not to agree on a model but on a common meta-model. For all
existing proprietary models in place, instance-of relationships from a model to the common meta-model are
established. Through this relationship, the elements of the proprietary models can then be manipulated as if
they were elements of the meta-model. Therefore, meta-model agreement implicitly enables interoperability
by creating correspondences between proprietary models via a common meta-model.

Metadata Meta-Meta Model

An example for such an approach on the M2 level of schema definition languages is the OMG Meta-
Object Facility (MOF), which is a universal modelling language in which modelling systems can be speci-
fied [OMG06a]. It solves language mismatches by introducing the M3 level and by superimposing a metadata
meta-meta model containing a set of elements for modelling language primitives. If the model elements of
M2 schema definition languages are aligned with the elements of the M3 MOF model, it is possible to express
metadata in terms of the more general MOF model.

Kensche et al. [KQCJ07] propose another model that serves as an M3 abstraction for particular meta-
models on the M2 level. They relate certain metamodels (e.g., EER, OWL) with a generic meta-metamodel
through generalisation and introduce roles to decorate M3 level elements with M2 specific properties that
must be preserved.

26 Chapter 2. Background

Abstract Metadata Model

The specification of an abstract metadata model is another way of achieving interoperability. Such a model
resides on the M2 level of schema definition languages and serves as a technical reference for the implemen-
tation of metadata schemes in information systems. If there is an agreement on such a meta-model in all
information systems and all metadata schemes are expressed in terms of the elements provided by this model,
the metadata information objects are interoperable at least from a structural point of view because they are
technically represented in the same way. The DCMI Abstract Model [PNNJ05] is an example for an abstract
metadata model. In a similar manner as RDF/S, it defines an information model for representing Dublin Core
metadata in a machine-processable way.

Global Conceptual Model

Introducing a global conceptual model is a way of achieving interoperability on the M1 level of metadata
schemes. All information systems to be integrated must align their metadata model elements with the more
general elements defined in the global model, which formalises the notions in a certain domain and defines
the concepts that appear in a certain integration context.

The CIDOC CRM is an example for such a model being designed for the Cultural Heritage domain.
It defines 81 entities and 132 properties, most of them on a very abstract level (e.g., physical thing,
section definition). Another example for a global conceptual model is the Functional Requirements
for Bibliographic Records (FRBR) [IFL97] model, which has been defined by the International Federation
of Library Associations and Institutions. With its four key entities (work, expression, manifestation,
item) it represents a generalised view of the bibliographic universe, independent of any cataloguing standard
or implementation [Til04]. The Suggested Upper Merged Ontology (SUMO)14 is also a global model that
will promote data interoperability, information search and retrieval, automated inferencing, and natural
language processing [NP01]. It defines high-level concepts such as object, continuousObject, process,
or quantity. Another example for a global model approach is the Descriptive Ontology for Linguistic and
Cognitive Engineering (DOLCE) [Won03].

Metadata Framework

A metadata framework can be considered as a skeleton upon which various objects are integrated for a given
solution [CZ06] and is another way of achieving interoperability on the M1 level of metadata schemes. It typ-
ically provides a data model consisting of a set of abstract terms, and a description of the syntax and semantics
of each model element. Again, the idea is to integrate existing metadata by aligning their model elements to
a set of elements defined by the metadata framework. Examples for metadata frameworks are the MPEG-21
Multimedia Framework [ISO07a], the Metadata Encoding and Transmission Standard (METS) [LOC07e], or
the Open Archival Information System (OAIS) [CCS02].

Application Profile

An application profile [HP00, BDH+01] is a special kind of model agreement. On the one hand, it is a
schema consisting of data elements drawn from one or more standardised schemes, optimised for a particular
application domain, whereas its focus is on the reuse of existing, standardised model elements. On the other
hand, from a technical point of view, an application profile is a metadata model, which is an extension of a
set of agreed upon meta-models.

Application profiles are created by application developers who declare how to apply standardised schema
elements in a certain application context. Within an application profile one cannot create new model elements
that do not exist elsewhere. If this is required, a new metadata schema containing these elements, must be

14The Suggested Upper Merged Ontology: http://ontology.teknowledge.com/

2.4. Techniques for Achieving Metadata Interoperability 27

created and maintained. Refinement of standard elements definitions is allowed. Developers can set the
permitted range of values (e.g., special date formats, particular formats for personal names) and narrow or
specify the semantic definition of the metadata elements. Application profiles are created with the intent of
reuse and are tailored for specific purposes or certain user communities.

Example application profiles are the Dublin Core Collections Application Profile [DC07] for describing
collections of physical or digital resources, the Eprints Application Profile [AJP07] for describing scholarly
publications held in institutional repositories, or the application profiles15 that were created when METS
was introduced in several digital libraries. An application profile created for the domain of annotations is
described in [SHJK08].

2.4.3 Model Reconciliation

Often, especially in settings where the incentives for an agreement on standards are weak, neither model nor
meta-model agreement are suitable interoperability techniques. The digital libraries domain, for instance, is
such a domain: there is no central authority that can impose a metadata standard on all digital libraries. Such
settings require other means for reconciling heterogeneities among models.

Language Mapping

If metadata schemes are expressed in different schema definition languages, mappings on the language level
are required to transform the instances, i.e., the M1 level metadata models, from one linguistic representa-
tion to another. Because of the substantial structural and semantic discrepancies among schema definition
languages (see Section 2.2.2), translation from one language into another can cause loss of valuable seman-
tic information. Nevertheless, in literature we can find many approaches that focus on mappings between
OWL and XML Schema [LF04], OWL and the Relational Model [MHS07], XML Schema and the Relational
Model [ACL+07], Object Oriented Languages (e.g., UML, Java) and OWL [GDDD04], etc.

Schema Mapping

If an agreement on a certain model is not possible, schema mapping is an alternative to deal with hetero-
geneities among metadata schemes. In the digital libraries domain, metadata crosswalks have evolved as a
special kind of schema mappings. A crosswalk is a mapping of the elements, semantics, and syntax from
one metadata schema to another [NIS04]. The goal of crosswalks is to provide the ability to make elements
defined in one metadata standard available to communities using related metadata standards. A complete or
fully specified crosswalk consists of the semantic mapping between model elements and a metadata instance
transformation specification [PL98]. In practice, however, crosswalks often define only the semantic mapping
on the M1 level and leave the problem of instance transformation to the application developers.

Instance Transformation

In the context of mappings, instance transformation is the approach for achieving interoperability on the
metadata instance level, when there is no agreement on value encoding schemes or other standardisation
mechanisms. Instance transformations are functions that operate on the content values and perform a specified
operation, such as the concatenation of the values of two fields (e.g., GivenName=John, FamilyName=Doe)
into a single field (e.g., Creator=John Doe).

15A list of METS application profiles is available at http://www.loc.gov/standards/mets/mets-registered-profiles.
html

28 Chapter 2. Background

2.5 On the Quality of Interoperability Techniques
In this section, we focus on the quality of the previously mentioned interoperability techniques and analyse to
what extent a certain technique can deal with the various kinds of heterogeneities discussed in Section 2.3.2.

For two reasons we restrict ourselves on techniques that enforce interoperability on the metadata model
(M1) and instance level (M0): first, as we have generalised in Section 2.2.2, we can apply an abstract view on
models on various levels and distinguish between model and instance level heterogeneities. This is because
at the core of both, the schema definition language and the metadata schema, are in fact models. Therefore,
we can analyse their potential of dealing with heterogeneities between models and their instances. The
second reason is that in practice one can assume that all metadata can be transformed into a uniform language
representation.

For determining the quality of an interoperability technique, we have analysed whether it can resolve
a specific heterogeneity type. Table 2.4 summarises the results of this analysis: one dimension shows the
various interoperability techniques, the other the heterogeneities grouped by their types. The dotted line
separates the model (M1) and the instance level (M0) for both, techniques and heterogeneity types. The
greyed areas represent the groups of heterogeneities described in Section 2.3.2.

2.5.1 Model Agreement Techniques

Model agreement techniques are an effective means for achieving interoperability. If all proprietary systems
adapt their existing information systems in a way that their models fit into a hybrid metadata system, a
standardised metadata schema, or an application profile, most heterogeneity problems can be resolved.

A fixed and semantically well defined set of given metadata elements resolves naming-, identification-,
and constraints conflicts. Neither occur abstraction level incompatibilities, multilateral correspondences or
meta-level discrepancies if there exists only one agreed-upon metadata model. If all involved parties use
the same model, it cannot occur that some concepts are not available in a model, which implies that model
agreement techniques also resolve domain coverage conflicts. Further, a standardised or agreed-upon schema
or application profile can also resolve domain conflicts by fixing the semantic domain (e.g., application profile
for the domain of videos or audio material).

The remaining semantic heterogeneity conflicts on the instance level (scaling/unit and representation
conflicts) can also be resolved: through the combination of constraints on the model level and agreement
on the instance level (value encoding, controlled vocabulary, authority record) it is possible to narrow the
domain of possible content values within a metadata description to a fixed set of values. Hybrid metadata
systems, such as TV-Anytime, also span the M0 level by defining fixed classification schemes and therefore
also provide interoperability on the instance level.

2.5.2 Meta-model Agreement Techniques

Meta-model agreement techniques such as global conceptual models or metadata frameworks are less power-
ful than model agreement techniques. Rather than agreeing on a certain model, their approach is to impose a
meta-model and use generalisation relationships (e.g., sub-class or sub-property) to relate the elements
of existing proprietary models to the elements of the common meta-model.

These alignment possibilities are very restricted: neither can they deal with instance level heterogeneities,
nor can they handle structural heterogeneities. Figure 2.7 illustrates that problem based on the example
presented in Section 2.1. It shows the TV-Anytime and the Dublin Core elements for representing the name of
a person who has created a certain resource. The TV-Anytime model defines two separated fields GivenName
and FamilyName, while the Dublin Core model defines only a single field Creator to capture the same
information. A global conceptual model containing the elements Person and Name has been introduced
to bridge this structural heterogeneity conflict. We can see that global conceptual models cannot deal with

2.5. On the Quality of Interoperability Techniques 29

H
y
b
ri
d

 M
e
ta

d
a
ta

 S
y
s
te

m

(e
.g

.
M

P
E

G
-7

,

T
V

-A
n
y
ti
m

e
)

S
ta

n
d
a
rd

is
e
d
 M

e
ta

d
a
ta

S
c
h
e
m

a

(e
.g

.
D

C
,

T
E

I,
 M

O
D

S
)

G
lo

b
a
l
C

o
n
c
e
p
tu

a
l
M

o
d
e
l

(e
.g

.
C

ID
O

C
-C

R
M

,
F

R
B

R
)

M
e
ta

d
a
ta

 F
ra

m
e
w

o
rk

(e
.g

.
M

P
E

G
-2

1
,

M
E

T
S

,

O
A

IS
)

A
p
p
lic

a
ti
o

n
 P

ro
fi
le

(e
.g

.
D

C
 C

o
lle

c
ti
o

n
 P

ro
fi
le

)

M
e
ta

d
a
ta

 C
ro

s
s
w

a
lk

,
S

c
h
e
m

a

M
a
p
p
in

g

V
a
lu

e
 E

n
c
o
d
in

g
 S

c
h
e
m

a

(e
.g

.
IS

O
-N

o
rm

s
,

R
F

C
-

S
p
e
c
if
ic

a
ti
o

n
s
)

C
o
n
tr

o
lle

d
 V

o
c
a
b
u
la

ry

(e
.g

.
L
C

S
H

,
D

C
C

,
M

e
S

H
)

A
u
th

o
ri
ty

 R
e
c
o
rd

(e
.g

.
L
O

C
 A

u
th

o
ri
ti
e

s
,

D
e
u
ts

c
h
e
 P

e
rs

o
n
e
n
n
o
rm

d
a
te

i

(P
N

D
))

In
s
ta

n
c
e
 T

ra
n
s
fo

rm
a
ti
o

n

Naming Conflicts          

Identification

Conflicts
         

Constraints

Conflicts
         

Abstraction Level

Incompatibility
         

Mulitlateral

Correspondences
         

Meta-Level

Discrepancy
         

Domain Coverage          

Domain Conflicts          

Terminological

Mismatches
         

Scaling/Unit

Conflicts
         

Representation

Conflicts
         

M
0
 L

e
v
e
l

H
e
te

ro
g

e
n

e
it

ie
s

M
1
 L

e
v
e
l

H
e
te

ro
g

e
n

e
it

ie
s

M1 Level Interoperability Techniques M0 Level Interoperability Techniques

Table 2.4: The quality of various interoperability techniques

basic heterogeneity conflicts such as multilateral correspondences. It is not possible to relate the elements
GivenName and FamilyNamewith the element Name in a way that machines can process their instance content
values appropriately.

Other types of heterogeneities, which are not resolvable for meta-model agreement techniques, are meta-
level discrepancies (e.g., Name modelled as entity instead of an attribute) and domain coverage conflicts.
Concepts available in the global model may simply not be explicitly available in the proprietary models.
The heterogeneities that can be resolved are abstraction level incompatibilities and, in the case of global
conceptual models, domain conflicts if the models’ domains are not completely incompatible. Unlike global
conceptual models, metadata frameworks are domain independent and cannot resolve domain conflicts by
imposing a certain domain. As we can see in the example, both interoperability approaches could resolve
terminological mismatches by aligning terminologically conflicting elements to a common element in the
global model (e.g., Creator sub-property Name).

30 Chapter 2. Background

In general, the problems with global conceptual models are manifold: first, it is hard to find a model
that covers all possible ontological requirements of all systems in an integration context. Second, also the
generic nature and complexity of global models can lead to varying interpretations and inconsistent align-
ments between the global conceptual models and the metadata schemes in place. Third, conceptual models
(e.g., the CIDOC CRM) often lack of any technical specifications with the result that they are implemented
differently in distinct systems. Meanwhile the belief on a success of global conceptual model approaches
is decreasing: Wache [Wac03] asserts that no global model can be defined in such a way that it fulfils all
conceptual requirements of all possible information systems that are integrated in a certain domain. Halevy
et al. [HIST05] argue that in large scale environments global models, which should enable interoperability,
actually become the bottleneck in the process of achieving interoperability. For a more detailed discussion
of the problems encountered with global conceptual models, especially with the CIDOC CRM, we refer
to [NH07].

TV Anytime Model

Person
Name

GivenName

FamilyName

Dublin Core Model

Creator

Global Conceptual
Model

Person

Name

? ?

Figure 2.7: Example for achieving interoperability via a global conceptual model

2.5.3 Model Reconciliation Techniques

Schema mapping (metadata crosswalks) is powerful enough to produce the same interoperability quality as
model agreement techniques. Provided that the underlying mapping mechanism is strong enough, schema
mapping can deal with all kind of heterogeneities on the schema level such as different element names, dif-
ferent ways of identifying these elements, incompatible constraints definitions and all the remaining conflicts
ranging from abstraction level incompatibilities to terminological mismatches. In combination with instance
transformation, it can also resolve semantic heterogeneities on the instance level, i.e., scaling/unit and repre-
sentation conflicts.

2.6. Summary 31

2.5.4 Observations on the Quality of Interoperability Techniques
Regarding our analysis, we can observe that there exist various options for providing interoperability among
heterogeneous metadata information objects. Each option has its special qualities and can be seen as com-
plementary building block for achieving metadata interoperability. Standardised metadata schemes alone,
for instance, cannot deal with instance level heterogeneities. Therefore they must be combined with value
encoding schemes, controlled vocabularies, or authority records in order to address also the instance level.
The same is the case for schema mappings or crosswalks; they operate only on the schema level and must be
combined with instance transformation techniques to achieve maximum interoperability. Meta-model agree-
ment techniques such as global conceptual models or metadata frameworks have the disadvantage that they
provide only a restricted set of alignment relationships (sub-class, sub-property). Furthermore, they can
hardly be combined with instance level interoperability techniques.

If we also consider the technical implementation effort that arises for each of the previously presented
techniques — small effort for model agreement, large effort for model reconciliation — it turns out that
model agreement or standardisation, both on the schema and the instance level, should be the prime choice.
However, often this is not possible, because information systems are already in place or institutions do not
have sufficient incentive to follow a certain standard. In such scenarios, the more labour intensive, but equally
effective approach of metadata mapping, i.e., schema mapping in combination with instance transformation,
is an appropriate way for achieving interoperability.

2.6 Summary
As we can clearly see from the discussions in this chapter, metadata interoperability affects all technical levels
of metadata: the M2 level of schema definition languages, the M1 level of metadata schemes, and the M0
level of metadata instances. For achieving metadata interoperability, several types of structural and semantic
heterogeneities must be resolved on each level. We distinguish between three categories of interoperability
techniques: agreement on a certain model, agreement on a certain meta-model, and model reconciliation.

From our analysis, we can observe that model agreement techniques, such as hybrid metadata systems
and standardised metadata schemes, as well as model reconciliation techniques cover large parts of possible
heterogeneities, if they are combined with appropriate techniques on the instance level: metadata standards
should be applied in combination with value encoding schemes, controlled vocabularies, or authority records.
Metadata mapping should also consider M0 level heterogeneities and support instance transformation.

Global conceptual models and metadata frameworks provide only restricted means for relating source
model elements with those of a global model and do not consider the instance level. Therefore, one outcome
of our analysis is that these techniques are less powerful than metadata standardisation or mapping. Com-
paring standardisation and mapping, the clear disadvantage of mapping is its technical complexity. However,
in open environments having no central standardisation authority, metadata mapping is the remaining, more
complex but equally powerful technique.

The Web is such an open environment. It already exposes a multitude of autonomous, incompatible media
repositories and it is unlikely that there will ever exist a single agreed-upon metadata schema. Like [FHM05],
we also believe that in future, many institutions and organisations relying on a large number of diverse,
interrelated media sources will make use of the Web architecture to access available repositories. Since, also
in the Web context, the metadata information objects exposed by these repositories are not compatible by
default, it requires novel mapping techniques that build upon the Web infrastructure and are powerful enough
to deal with the heterogeneities we outlined in this chapter.

Chapter 3

Metadata Mapping

In the previous chapter, we have defined metadata as information objects that describe resources. Example
resources are digital images, videos, or other multimedia content objects but also non-digital objects such as
artefacts in museums or books in libraries. The nature of metadata information objects, i.e., their structure
and the meaning of their elements (e.g., author, description, etc.), largely depends on the metadata creator’s
design choices as well as on the characteristics of the repository they reside in (e.g., relational database, flat
files). For establishing uniform access to multiple autonomous metadata repositories, one needs to deal with
the distinct characteristics of the information objects stored therein. Hence, one must establish metadata
interoperability and find an appropriate technique to deal with various kinds of heterogeneities.

In this chapter, we analyse metadata mapping, a technique that allows domain experts to reconcile the
various heterogeneities that impede metadata information objects from being interoperable. First we precisely
describe our perception of metadata mapping and analyse in detail how mapping solutions can support domain
experts in mapping metadata (see Section 3.1). Then, in Section 3.2, we set up an evaluation framework by
conducting an requirements analysis based on state-of-the-art mapping literature. In Section 3.3, we present
and categorise a representative selection of mapping solutions, which is then, in Section 3.4, evaluated against
the evaluation framework.

3.1 What is Metadata Mapping?

From all previously mentioned interoperability techniques, those classified as model reconciliation techniques
are the most complex ones. Since heterogeneities can occur on all tree levels, it is necessary to specify map-
pings for each level: language mappings for the M2 level, schema mappings for the M1 level, and instance
transformations for the M0 level. Before a mapping on a certain level can be defined, the heterogeneities on
the level above must be reconciled, i.e., one must deal with M2 language differences before specifying M1
schema mappings.

Previously, in Section 2.2.2, we have already outlined the characteristics of a representative set of schema
definition languages and pointed out the divergence in their abstract and concrete syntax. Because of that,
metadata mapping does not deal with heterogeneities on the language level (M2) but assumes that all meta-
data information objects are expressed in the same schema definition language. This can be achieved by
transforming metadata information objects from one language representation into another, which could also
entail loss of semantics

Here we further elaborate on metadata mapping, a technique that subsumes schema mapping and instance
transformation as described in Section 2.4.3. Before discussing its technical details, we define the scope of
this technique as follows:

33

34 Chapter 3. Metadata Mapping

Definition 3.1 Given two metadata schemes, both settled in the same domain of discourse and expressed in
the same schema definition language, we define metadata mapping as a specification that relates their model
elements in a way that their schematic structures and semantic interpretation is respected on the metadata
model and on the metadata instance level.

From a model perspective, a metadata mapping defines structural and semantic relationships between
model elements on the schema level and between content values on the instance level. To represent such
relationships, any mapping mechanism requires a set of mapping elements with a well-defined syntax and
semantics. From this perspective, we can regard not only metadata schemes but also a mapping between
metadata schemes as being a model. Bernstein et al. [BHP00] as well as Madhavan et al. [MBDH02] have
proposed such a perspective. Furthermore, we can denote the total of all mapping relationships contained in
a mapping model as mapping specification.

Technical Details

From a technical perspective a metadata mapping can formally be defined as follows:

Definition 3.2 A metadata mapping is defined between a source schema S s ∈ S and a target schema S t ∈ S,
each consisting of a set of schema elements, es ∈ S s and et ∈ S t respectively, which are optionally connected
by some structure. A mapping M ∈ M is a directional relationship between a set of elements es

i ∈ S s and
a set of elements et

j ∈ S t, where each mapping relationship is represented as a mapping element m ∈ M.
The semantics of each mapping relationship is described by a mapping expression p ∈ P. The cardinality of
a mapping element m is determined by the number of incoming and outgoing relationships from and to the
schema elements. To support heterogeneity reconciliation on the instance level, a mapping element carries
an appropriate instance transformation function f ∈ F.

Figure 3.1 illustrates the main elements of a metadata mapping specification. Typically, the cardinality of
a single mapping element is either 1:1, 1:n, or n:1, meaning that an element from a source schema is related
with one or many elements from the target schema and vice versa. In theory, m:n mappings would also be
possible, but in practice they rarely occur because one can model that kind of element correspondence using
multiple 1:n or n:1 relationships.

A mapping expression p defines the semantics of a mapping element, i.e., it describes how the interpreta-
tions of the model elements, denoted as I(es

i) and I(et
j), are related. In its simplest form, such an expression

could be unknown, stating that two elements are related, without giving any evidence how. A more com-
plex example are mapping expressions that indicate the confidence of a mapping relationship according to a
specified metrics, as described in [MIKS00]. One can distinguish between the following types of mapping
expressions (e.g., [SPD92]):

• exclude (I(es
i) ∩ I(et

j) = ∅): the interpretations of two schema elements have distinct meanings. In the
example presented in Section 2.2, the interpretations of the elements rights in the Dublin Core and
birthday in the proprietary schema exclude each other.

• equivalent (I(es
i) ≡ I(et

j)): the interpretations of two, possibly lexically different schema elements are
equivalent. The elements author in the proprietary and the element creator in the Dublin Core
schema are examples for such a relationship.

• include (I(es
i) ⊆ I(et

j) ∨ I(et
j) ⊆ I(es

i)): the interpretation of one schema element contains the interpre-
tation of another element. In the context of our example, the interpretation of the Dublin Core element
creator includes the interpretations of the TV-Anytime elements GivenName and FamilyName be-
cause these elements describe a person in the role of an author.

3.1. What is Metadata Mapping? 35

M

Ss

e1s

e2s

e3s

m1(pa)

fX

m2(pb)

fy

mk(pc)

fz
ens

St

e1t

e2t

e3t

emt

Figure 3.1: The main elements of a metadata mapping specification

• overlap (I(es
i) ∩ I(et

j) , ∅ ∧ I(es
i) * I(et

j) ∧ I(et
j) * I(es

i)): the interpretations of two schema ele-
ments overlap but do not include each other. The elements description, synopsis, and info are
examples for elements with overlapping interpretations. A description element usually provides similar
information as a synopsis or info element, but in a more comprehensive form.

Instance transformation functions are the mechanism to cope with the structural and semantic hetero-
geneities on the instance level. If, for instance, two models (e.g., the TV-Anytime and the DC illustrative
samples) are incompatible due to a multilateral correspondences conflict (e.g., GivenName and FamilyName
in the source model and Creator in the target model), this can be resolved by relating the elements through a
mapping relationship and assigning an instance transformation function concat, which concatenates the data
values of the respective fields and returns the appropriate result. Figure 3.2 illustrates the role of mapping
expressions and instance transformation functions in metadata mappings.

Ss

Person
Name

GivenName

FamilyName

St

Creator

m1
(includes)

concat()

Figure 3.2: Achieving metadata interoperability through instance transformation

36 Chapter 3. Metadata Mapping

Mapping Phases

Besides being a mechanism for capturing the semantic and structural relationships between the elements of
distinct models, metadata mapping is also a process consisting of a cyclic sequence of phases. As illustrated
in Figure 3.3, we can identify four such phases: (i) mapping discovery, (ii) mapping representation, (iii)
mapping execution, and (iv) mapping maintenance.

Mapping
Discovery

Mapping
Representation

Mapping
Execution

Mapping
Maintenance

Figure 3.3: The four major phases in the metadata mapping cycle

The reason for the cyclic arrangement of the mapping phases is the fact that mapping maintenance is
also the key for discovering new mappings from existing ones. If for instance, there is a mapping between
schema A and schema B and another mapping between schema B and schema C, and all this information is
available in a registry, the system could derive an additional mapping between schema A and C, based on
their transitive relationship.

Mapping discovery is concerned with finding semantic and structural relationships between the elements
of two schemes and reconciling the heterogeneities on both the schema and the instance level. Deep domain
knowledge is required to understand the semantics of the elements of the source and target schemes in order to
relate their elements on the schema and the instance level. Rahm and Bernstein [RB01] as well as Kalfoglou
and Schorlemmer [KS03] describe a variety of mapping discovery techniques that operate on both levels.

Mapping representation is the second phase of the mapping process and denotes the formal declaration
of the mapping relationships between two metadata schemes. Noy and Musen [Noy04] identifies three types
of formalisms for representing mappings: (i) representing them as instances of a defined mapping model,
(ii) defining bridging axioms or rules to represent transformations, and (iii) using views to define mappings
between a source and a target schema.

Mapping execution is the phase for executing mapping specifications at run-time. Mappings can be used
for various interoperability-dependent tasks such as metadata transformation, answering queries over a set of
metadata sources, or creating software stubs that encapsulate the mappings and provide transparent access to
the underlying metadata source. Halevy [Hal01] gives an overview of view-based mapping approaches.

Mapping maintenance is the last step in an iteration of the metadata mapping phases. Usually, a registry
provides the necessary maintenance functionality and keeps track of available metadata schemes and map-
pings between them. This information allows systems to deal with issues like versioning (e.g., [NM04]),
which is required whenever there are changes in the source or target schema of a certain mapping.

3.2. Requirements Framework 37

3.2 Requirements Framework

In the subsequent presentation, we focus on a discussion of requirements for metadata mapping solutions.
This discussion provides the understanding needed to form the basis for the evaluation framework we use for
our mapping tool analysis later in this chapter.

We have organised the requirements into general requirements for mapping tools (Section 3.2.1) and
requirements for each of the previously mentioned phases in the mapping process: mapping discovery (Sec-
tion 3.2.2), mapping representation (Section 3.2.3), mapping execution (Section 3.2.4), and mapping main-
tenance (Section 3.2.5). Finally, in Section 3.2.6, we summarise the requirements in terms of an evaluation
framework for comparing existing mapping solutions.

3.2.1 General Requirements

Turning metadata mapping into practice requires the implementation of a mapping component, which is
usually part of a larger metadata integration architecture. Like any other piece of software, an integration
architecture has some general requirements. First, it should fulfil some architectural properties common to
any metadata integration architecture. Second, it should be able to lift and normalise metadata represented in
various schema definition languages to a common level; otherwise, if language mismatches are not resolved,
metadata mapping is hardly possible. Third, and this is essential for creating mappings, it should provide a
graphical user interface that supports domain experts in creating mappings.

Architecture Design

The ultimate goal of any metadata interoperability technique is to achieve uniform access to metadata and
digital media objects stored in multiple autonomous media repositories. Like other interoperability tech-
niques, metadata mapping is just a prerequisite for achieving this goal. Therefore, the ultimate goal and the
general requirement for any metadata integration architecture is uniform accessibility of metadata via a single
interface. This requirement can be fulfilled by providing a query interface for a certain query language or by
exposing a well-defined Application Programming Interface (API) for accessing the metadata.

Another basic requirement for an integration architecture is modularity. For each data source involved in
an integration scenario, one has to implement an adapter. Also the mappings and particularly the processing of
the mappings must be embedded into a software component. An additional data source joining an integration
scenario, should not affect the adapters of other data sources. Also the (re-)specification of mappings should
not affect the implementation of software components; this should rather be a configuration task.

Domenig and Dittrich [DD99] give an overview of possible integration architectures. A very well known
architecture for a modular integration approach are Mediated Query Systems, which have been proposed by
Wiederhold [Wie92]. They consist of two types of software modules: mediators and wrappers. Each data
source is encapsulated by a wrapper, which is an application specifically designed for each kind of data source.
Its task is to accept queries from a mediator and to answer them on the basis of the underlying data source’s
technology. Mediators are modules that accept user queries formulated over a user-selected target (mediation)
schema and reformulate them into sub-queries according to previously defined metadata mappings. Then they
disperse them to the local sources where they are executed, collect and combine the results and present them
to the user in a certain format. Other architectural designs, especially Peer-to-Peer data management systems
(e.g., Piazza [HIMT03], P-Grid [Abe01], Edutella [NWQ+02], Hyperion [RGKG+05]), abstain from central
mediators and mediation schemes and define point-to-point mappings directly between the models of the
involved data sources (e.g., GridVine [ACMHvP04]). However, as Halevy et al. observe in [HIMT03], from
a formal mapping perspective, there is little difference between these two kinds of mappings.

38 Chapter 3. Metadata Mapping

Lifting and Normalisation

As already mentioned in Section 3.1, metadata mapping postulates that all metadata information objects
are expressed in the same schema definition language. This means, that all metadata models are internally
represented as instances of the same metadata meta-model. Therefore, lifting and normalisation of metadata
expressed in distinct languages to a common representation is another general requirement. A practical
example from typical data integration scenarios, is the mapping of relational database schemes to XML
Schema.

The LIFT tool which is part of the MAFRA ontology mapping framework [MMSV02] is an example
for a component that fulfils this requirement. It provides means to lift DTDs, XML Schemes, and relational
databases to a common structural ontology level.

Graphical User Interface

Metadata mapping cannot be fully automated and will always depend on interactions with domain experts.
Usually it is not the technicians who define semantic relationships between schema elements, but expert users
such as librarians, curators, or knowledge workers. Technicians are concerned with the technical implemen-
tation of mappings. Based on the semantic relationships, they reconcile structural heterogeneities among
schemes and concentrate on the implementation of instance transformation functionality. For both aspects,
the domain expert view, and the technician view, a mapping solution should provide a graphical user in-
terface (GUI) to support the domain experts as well as the technicians in their mapping tasks. Especially
the domain expert view must follow an intuitive design and guide the users’ attention to the relevant places,
especially when large metadata schemes need to be mapped.

Robertson et al. [RCC05] present several advanced visualisation methods for larger schemes. Following
and highlighting existing links when a model element is selected is one of the proposed techniques, auto-
scrolling during typing and an incremental search mechanism are other examples.

Another useful design strategy is to separate between schema and data view, as it is implemented in
Clio [MHH+01, HHH+05]. The schema view represents the main perspective for mapping definition. To get
further information on a schema element’s semantics, the user can switch to the data view and retrieve sample
data for that element.

The majority of mapping solutions is implemented as stand-alone desktop applications. However, recently
they have also begun to emerge on the Web, Yahoo Pipes [Yah07] being the prime example for this category.
Via a simple, intuitive Web-interface users can aggregate XML data and define mappings between model
elements. Provided that a Web-based mapping solution is simple enough, this category of mapping solutions
can attract a large number of users, lead to collaborative mapping efforts, and give insights on the different
semantic perceptions of model elements.

3.2.2 Mapping Discovery Requirements
The first metadata mapping step is to determine the relationships between a source and a target schema. In
the literature, mapping discovery is also denoted as matching, mapping, and especially in combination with
ontologies, alignment. Although finding the matching elements is an intellectual task, which is mainly carried
out by humans, there are automated approaches to support users in mapping discovery. When many users are
involved in determining the right mappings, building consensus on the defined mappings is essential.

Matching / Alignment Support

The larger metadata schemes are, the more difficult it is to find the set of potential mappings between schema
elements. Fully automatic schema matching is considered to be an AI-complete problem, that is, as hard
as reproducing human intelligence [BMPQ04]. Although this problem is not yet solvable, there are many

3.2. Requirements Framework 39

(semi-)automatic techniques that can support the user in matching tasks. Hence, a mapping solution should
provide some mechanism for the automated resolution of semantic correspondences between the elements of
heterogeneous metadata schemes; we call this requirement alignment support1.

The term alignment frequently occurs in the context of ontology alignment and is used interchange-
ably with the term ontology mapping, wherefore Kafoglou and Schorlemmer [KS03] provide a survey of
automatic and semi-automatic techniques. Rahm and Bernstein [RB01] provide a survey of approaches in
the database domain, Shvaiko and Euzenat [SE05] analyse both schema and ontology mappings, and Doan
and Halevy [DH05] analyse mapping discovery solutions from a data integration perspective. Most of the
approaches cited in these surveys are based on heuristic algorithms comparing the lexical and structural fea-
tures of models (e.g., PROMPT [NM03]), or employ machine learning techniques to find mappings (e.g.,
GLUE [DMDH02]). Some approaches operate either on the schema level (e.g., Cupid [MBR01]) or only
on the instance level (e.g., SemInt [LC00]), recent developments (e.g., COMA++ [ADMR05]) include both
levels in order to automatically discover mappings between models.

Consensus Building

When metadata schemes are developed independent from each other, their structural and semantic properties
are likely to be different, which leads to the heterogeneities we have discussed earlier in Section 2.3. This is
also the case when two schemes are mapped. As their semantic interpretation, also the mappings between two
metadata schemes are always bound to a certain context. A mapping created by person A is not necessarily
true for person B. Therefore, consensus building is a principal requirement for any integration scenario. The
prerequisite for consensus building is a precise definition and documentation of the semantics of the schemes
to be mapped. If only one person is involved in establishing the mappings, no tool support is required for
consensus building. Larger scenarios involving several persons and extensive metadata schemes to be mapped
will benefit from tool support for consensus building.

Zhdanova and Shvaiko [ZS06] propose a public, community-driven approach for mapping discovery
where end users, knowledge engineers, and developer communities take part in the process of establishing
mappings. The resulting mappings are handled as subjective alignments, hence as mappings that are cus-
tomised to a certain user, a community, or application requirements. From already existing mappings, and
the information about users, communities, groups, and social networks, the system can determine valuable
information for mapping discovery. For instance, if several users have mapped their user-defined schemes
to the same target schema, the system can leverage past experience and propose mappings for new mapping
tasks.

Another approach that supports consensus building is the ESP game, proposed by von Ahn and Dab-
bish [vAD04]. Although being developed for another purpose, which is the labelling of online images, it
demonstrates how a game like approach can motivate people to build a consensus on the semantics online
resources. If we consider metadata schemes and mappings as being online resources, such game-like ap-
proaches could open the door for novel consensus building techniques.

3.2.3 Mapping Representation Requirements

After metadata mappings have been discovered, they must be represented in a machine read- and interpretable
way. A semantically well-defined formalism ensures that mappings can actually be processed in the subse-
quent mapping phases. Since the decision whether a metadata mapping is semantically correct, depends
on the context, the formalism must provide means for context representation. Finally, the properties of a

1On the Web, there are two sites that provide up-to-date information on the research topic of ontology alignment: the Ontology Align-
ment Source (http://www.atl.lmco.com/projects/ontology/) and OntologyMatching.org (http://www.ontologymatching.
org/)

40 Chapter 3. Metadata Mapping

metadata mapping largely depends on the schema definition language used for describing metadata schemes.
Therefore, a mapping formalism should be flexible in its language bindings.

Mapping Formalism

For reconciling heterogeneities by means of metadata mapping, one needs to formally declare mapping rela-
tionships between the elements of two metadata schemes. A set of such relationships is denoted as mapping
specification. A mapping formalism builds the basis for mapping specifications. It provides a machine read-
and interpretable language for creating mappings and, as it is the case with schema definition languages, a
concrete and an abstract syntax. The concrete syntax (e.g. a serialisation in XML or the graphical illustra-
tion of a mapping element) allows the serialisation, registration, and exchange of mapping specifications and
also enables human readability. The abstract syntax, i.e., the meta-model of mapping specifications, repre-
sents a semantically well-defined corpus for mapping specifications and ensures the correct interpretation of
mappings across machines and system boundaries.

The strength of a mapping formalism denotes its ability to express those relationships that are required to
reconcile the various kinds of heterogeneities, mentioned in Section 2.3.2. We have distinguished between
two levels (model and instance level) and two main heterogeneity categories: structural and semantic het-
erogeneities. In combination with instance transformation, metadata mapping can reconcile a broad range of
heterogeneities: naming, identification, and constraints conflicts as well as abstraction level incompatibilities,
multilateral correspondences, domain coverage conflicts, terminological mismatches and meta-level discrep-
ancies can be resolved through mappings on the schema level. Instance transformation, if it is an integral part
of a mapping formalism, can resolve the remaining semantic heterogeneity conflicts on the instance level.

In the literature we can find many approaches that support mappings among metadata schemes. Unfor-
tunately, most of them do not consider the whole heterogeneity spectrum but focus mainly on schema level
mappings and disregard the instance level. Observer [MIKS00], for instance, only allows the specification of
synonym, homonym, overlap, disjoint, and overlap relationships between entities of metadata schemes. Xiao
and Cruz [XC06] have defined a mapping language for P2P systems, which provides one-to-one mapping
relationships such as equivalent, broader, narrower, union, and intersection between schemes. Even less
expressive is GridVine [ACMHvP04], which relies on the very restricted set of built-in OWL mapping prim-
itives (e.g., owl:equivalentProperty). Although these kind of mappings suffice for human interpretation,
the question remains how machines should interpret them in order to provide uniform access to the sources.
They need exact information about relationships between concepts and precise processing instructions for
dealing with the instances or data originating from heterogeneous sources.

The MAFRA ontology mapping framework [MMSV02] is an example for a system that covers the whole
heterogeneity spectrum through the definition of semantic bridges. Piazza [HIMT03] is a representative for
the family of integration systems that uses queries (views) as representation mechanism for mappings. This
approach is well known from the domain of relational databases and is, depending on the expressiveness of
the query language, also suitable for other technologies (e.g., XML, XQuery).

Mapping Context

Like metadata schema definitions, also metadata mappings are formal declarative specifications that are sub-
ject of interpretation. More specifically, metadata mappings define how heterogeneity conflicts, if they are
detected, should be resolved. The problem is that even within a single metadata integration scenario, data
sources as well as the mappings created between their metadata schemes and instances may embody differ-
ent assumptions on how information should be interpreted. If, for instance, a schema A is mapped to two
schemes B and C, which differ in their semantic domain, an element of A could be interpreted differently in
relation with elements of B than it is interpreted in relation with elements of C. If mappings are created across
integration scenarios, the importance of context grows. Therefore, a mapping formalism should provide sup-

3.2. Requirements Framework 41

port for specifying the mapping context, i.e., the setting in which the interpretation of a metadata mapping is
semantically correct.

COIN [GBMS99] has been one of the early information integration system that has explicitly incorporated
context into mapping definitions. With the context interchange framework, it provides a formal, logical spec-
ification for modelling metadata models, axioms for identifying correspondences between model elements,
and context axioms, that permit the specification of named contexts and therefore the definition of alternative
interpretations of information objects. Based on this work, Wache [Wac03] has provided an integration for-
malism that supports not only the representation of context but also the transformation of information objects
between contexts to enable cross-context reconciliation of semantic heterogeneities.

Language Binding

As described in Section 2.2.2, metadata information objects are instances of metadata models that can be
expressed in various schema definition languages. A metadata scheme for describing books, for instance,
can be, depending on an application’s requirements, expressed as Java or XML Schema model. Therefore, if
mappings between schemes are established, the resulting mapping is always bound to a certain language.

Expressing and representing mappings requires a formalism that can either be language independent or
bound to a certain schema definition language. The advantages of a language independent or generic approach
are its applicability for other schema definition languages. The main disadvantage is the increased complexity
and additional development effort: if a mapping tool follows a language-independent approach, i.e., if it is
open to any schema definition language, a generic metadata meta-meta model as well as language-specific
extensions must be defined. However, we believe that flexibility in the language binding is necessary to
support the variety of existing schema definition languages and for being open to future developments.

With the Ontology Definition Metamodel Specification (ODM) [OMG06b], the Object Management
Group (OMG) has released a set of metadata meta-models that reflect the abstract syntax of RDF, OWL,
Common Logic (CL), and Topic Maps. In addition, mappings between these models are provided and ex-
pressed in the MOF QVT Relations Language [OMG05]. The goal of the ODM approach is to support
interoperability between MOF-based modelling tools independent of the schema definition language they
support.

MAFRA [MMSV02], a mapping framework that enables the transformation of instances of source ontolo-
gies into instances of target ontologies is an example for a language dependent approach that expresses map-
pings as instances of a meta-ontology, which in this case is expressed in DAML-OIL [W3C01]. We can find
language-dependent bridging axioms in ontology languages such as OWL, which provide language primitives
to define semantic relationships (e.g., equivalent, sameAs) between ontology concepts. RuleML [The06] is
an effort to develop a rule language that is independent of any schema definition language. Semex [CDH+05]
is an example for a system that formulates mappings between schemes in terms of queries. In other words,
the elements of one schema model are defined as a query over the elements of another schema model.

3.2.4 Mapping Execution Requirements

We have defined the mappings. Now What? With this question, Noy [Noy04] points out that the definition
and representation of mappings is the necessary precondition but not the goal in itself. The ultimate goal of
metadata mapping is to achieve uniform access to metadata in multiple autonomous information systems.

In the mapping execution phase, mappings are used to reformulate queries over one schema into queries
over another schema, to calculate query plans, to optimise queries, and to generate stubs or wrappers to data
sources.

42 Chapter 3. Metadata Mapping

Query Reformulation

Users of an integrated and interoperable system environment should have the possibility to formulate queries
over a user-selected target metadata schema and receive results from a set of integrated data sources, each
potentially employing a different source metadata schema. Hence, the integration system must convert the
queries formulated over the user-selected schema into queries over the data sources’ metadata schemes. Meta-
data mappings are the technical specifications that serve as input for this process, which is commonly referred
to as query reformulation.

If we regard metadata mappings as definitions that describe how to construct the elements of a target
schema from the elements in a source schema, they fulfil the same functionality as views. Previously, we
have already mentioned that using views is a common formalism for representing mappings in the context of
relational databases. Hence, if mapping specifications are not available in terms of views per se, as it is the
case in systems such as Piazza [HIMT03], they can be transformed into such a representation. In principle,
there are two ways of representing mappings using views: (i) the data sources, i.e., their schema elements, are
described as queries (views) over the user-selected schema — this is referred to as Local as View (LaV) — or
(ii) the user-selected schema is described as a set of views over the data sources — this is known as Global
as View (GaV). In the first case, query reformulation means rewriting the queries similar to rewriting a query
using a view [Hal01]. In the second case, reformulation works analogously to view unfolding in traditional
relational database systems.

Rajaraman et al. [RSU95] follow an approach similar to view-based query reformulation and use a global
query language to define query templates consisting of a head and a body clause. The head contains a
predicate denoting the view, arguments for the predicate, and binding patterns that indicate, which arguments
of the predicate are expected to be bound and which are free. The body contains a program that produces the
query result.

Query Plan

For efficiently accessing integrated data sources, the system must calculate a query plan and optimise query
reformulation. Usually, the main goal of a query plan is to reduce the execution time of queries on the
data sources. There are two main tuning possibilities to achieve that: first, by avoiding redundant queries,
i.e., queries that return a subset of results of a previously executed query. This is also known as query
containment [MLF00] and is a metric that can be calculated prior to query execution. Second, query time
can be reduced by analysing the capabilities [PGH96] of the involved data sources. The capabilities of a data
source depend on its physical properties such as network connection speed, average response time, but also
on logical properties, such as the availability of data in a data source2. Another optimisation goal that can
be achieved by a query plan is the minimisation of response time. This reduces the time it takes until the
first query response is returned from a data source, which is important especially in distributed environments,
such as P2P systems.

Calculating query plans and optimisation techniques are well studied in the domain of traditional database
systems. Jarke and Koch [JK84] provide a survey of available techniques. Tatarinov and Halevy [TH04]
propose optimisation techniques for Peer-to-Peer Data Management Systems and describe an algorithm for
calculating XQuery query containment and optimisation algorithms for pruning of redundant queries and for
minimising the required query reformulations.

Integration Component Generation

In order to enable a data source to be integrated with other sources, all the previously mentioned requirements
must be packed into data source specific integration components. If a mapping solution follows a federated
architecture, such components are typically mediators or wrappers.

2Even if a certain entity is represented in a data source’s metadata schema, this doesn’t guarantee that the instance data are available.

3.2. Requirements Framework 43

Semi-automatic mechanism, which support users in setting up these components, can avoid a purely
manual implementation for each data source. Although it will always be necessary to perform certain source-
specific adoptions, at least some generic aspects (e.g., query reformulation) can be realised automatically.
Such a feature could, for instance, be embedded in a mapping tool and allow the generation of source code
skeletons based on mapping specifications.

TSIMMIS [CGMH+94] is one of the early data integration systems that automatically generates mediator
as well as wrapper components based on high level configurations. Another approach, which is also relevant
for capability-based optimisation, is to transform the mapping specifications into templates, which represent
the possible queries a mediator can ask. Wrapper Generators [UWGM02] can be applied to create a table
holding the various query patterns contained in the templates; since it is not realistic to create a template for
each possible form of a query, the wrapper must include a mechanism which works with query containment.

3.2.5 Mapping Maintenance Requirements

Mapping maintenance is necessary to keep track to available metadata schemes and mappings between them.
This enables domain experts to reuse already existing schemes and mappings, which in turn contributes to
greater metadata interoperability. Furthermore, as discussed in Section 3.1, mapping maintenance provides
valuable input for subsequent mapping discover phase.

Metadata registries play a central role in the maintenance phase. They provide means for registering
mapping specifications together with the metadata schemes involved in an integration scenario and can of-
fer advanced functionality based on the pool of available mappings and schemes: they can verify mapping
specifications by detecting potential conflicts with other mappings, propose existing mappings for specific or
similar metadata schemes, or infer potential, not yet explicitly expressed mapping relationships.

Mapping Verification

Although the truth of a mapping always depends on its interpretation in a certain context (e.g., the one of the
mapping creator), it is possible to detect potential conflicts with other already existing metadata mappings.
Although it is difficult to resolve such conflicts automatically, it is at least possible to provide some kind of
notification mechanism. In general, mapping verification can improve the quality of mappings and could also
contribute to building consensus on mappings in the context of a certain application domain.

In Clio [MHH+01, HHH+05], mappings are verified by proposing alternative mappings to the user. They
see example instance data and how they would appear under the current mapping. This should illustrate a
given mapping and the perhaps subtle differences between other mappings.

Mapping Reusability

Mappings can potentially be reused for future integration tasks. A metadata registry can analyse the relation-
ships between existing schemes and mappings and use heuristics to identify similarities. On that basis, the
system can, for instance, propose possible mappings to domain experts. Especially with a growing number
of schemes and mappings, registries play an important role for mapping reusability.

Mapping Inference

Based on existing mapping relationships, a mapping registry could also infer not yet explicitly available
mappings. Suppose we have three metadata schemes A, B, and C. If there is a mapping between the elements
of A and B, and B and C, it is possible to exploit these transitive relationships and explicitly derive a proposal
for a mapping relationship from A to C. In another setting, if for instance some elements of B are subclasses,
or subproperties of elements of A, and there exist mapping relationships between the elements of A and C,

44 Chapter 3. Metadata Mapping

the system could automatically or semi-automatically infer mapping relationships between the elements of B
and C.

GridVine [ACMHvP04] and Piazza [HIMT03], both belonging to the domain of Peer-to-Peer data man-
agement infrastructures, are systems that perform that kind of transitive mapping inference: each node in
the system has mappings to a small set of other nodes and when a query is posed over a node, it transitively
follows the nodes that are connected by semantic mappings (chaining mappings).

3.2.6 Requirements Summary
As a summary of the discussions in the previous sections, Table 3.1 outlines the requirements that are, in our
conception, the essential ingredients for building mapping solutions. We do not consider them as obligatory
features, which must be fulfilled by any mapping solution, but rather as complementary building blocks, some
of which are more essential than others.

Through the arrangement of the requirements along the four phases of the metadata mapping cycle, we
want to emphasise the importance of considering metadata mapping as a process rather than a single step.
Mapping discovery, for instance, is not enough to achieve the goal of uniform accessibility. It requires
a formalism that can capture the various heterogeneity aspects and a mechanism for executing mapping
specifications. Also having some kind of mapping registry gains great importance when the number of data
sources and metadata schemes to be integrated grows.

Different from many other approaches in the field of metadata mapping, we discuss mapping discov-
ery only superficially: we only distinguish between solutions that support users in discovering mapping
relationships and those that do not. For further details on this topic we refer to the surveys of Rahm and
Bernstein [RB01] as well as Kalfoglou and Schorlemmer [KS03]. The main focus of our analysis lies on
the mapping process as whole and especially on the strength and expressiveness of the underlying mapping
formalism.

3.3 Mapping Solutions
Mapping solutions are the means to establish metadata interoperability in integration scenarios where map-
ping has been chosen as being the appropriate technique. We can regard them as technical manifestation of
the previously mentioned mapping phases (discovery, representation, execution, maintenance) — though it
depends on the mapping solution how and to what extent it supports a certain phase.

There exists a multitude of mapping solutions with varying mapping capabilities, different stages of stabil-
ity and distinct underlying business models. In this section, we introduce a categorisation for a representative
while not complete selection of mapping solutions. It includes tools from major software vendors that are
active in the domain of data integration, such as BEA, IBM, Sybase, Microsoft, Cape Clear, Altova, and Data
Direct, as well as frequently cited research projects, and novel Web-based solutions such as Yahoo Pipes.
The focus of our evaluation is on solutions and tools; theoretical mapping approaches lacking an at least pro-
totypical implementation are therefore not part of this evaluation. After an initial categorisation of mapping
solutions in Section 3.3.1, we will describe each category of mapping solutions in detail in Sections 3.3.2 to
3.3.5 and conclude with preliminary observations in Section 3.3.6.

3.3.1 A Categorisation of Mapping Solutions
For a coarse-grained categorisation of mapping solutions, we investigate their architectural properties, which
are a direct result of the application domain they were designed for. In industrial, large scale environments
metadata mapping solutions are an integral part of Enterprise Information Integration (EII) and Enterprise
Application Integration (EAI) suites. EII and EAI systems are usually extensive and heavyweight software
suites, where mapping is usually only a small subset of the supported features. Besides that, we have also

3.3. Mapping Solutions 45

Requirement Description

Uniform Accessibility Provide access to a set of (distributed) metadata sources via a single access point

Modularity
Adding additional sources and mappings without affecting/changing existing

system components

Lifting & Normalisation
Flexible means to convert metadata expressed in distinct schema definition

languages to a common metadata meta-model

Mapping GUI
A graphical user interface supporting domain experts and technicians in creating

mappings

Schema Matching / Alignment

Support

(Semi-)automatic support for determining mappings; either on the schema level,

the instance level, or on both levels

Consensus Building Features
Providing features that support users in building consensus on conflicting

mappings

Model-Level Structural

Heterogeneity Reconciliation
The ability to represent and reconcile structural heterogeneities on the model level

Model-Level Semantic

Heterogeneity Reconciliation
The ability to represent and reconcile semantic heterogeneities on the model level

Instance-Level Semantic

Heterogeneity Reconciliation

The ability to represent and reconcile semantic heterogeneities on the instance

level

Context Representation The ability to capture context of interpretation of a metadata mapping

Flexible Language Binding
A generic, language independent mapping formalism that can easily be bound to a

certain schema definition language

Query Reformulation
Reformulate queries over a user selected schema into queries over the target

schema representation according to mapping definitions

Query Plan / Optimisation Algorithmic support for minimising the query execution / response time

Integration Component

Generation

(Semi-)automatic generation of data-source specific integration components

(mediators, wrappers, adapters, etc.)

Mapping Verification Detection of potential conflicts with other mappings

Mapping Reusability System support for reusing existing mapping definitions

Mapping Inference
Infer not yet explicitly expressed mapping relationships from existing mapping

specifications

G
e

n
e

ra
l

M
a

p
p

in
g

D
is

c
o

v
e

ry
M

a
p

p
in

g
 R

e
p

re
s

e
n

ta
ti

o
n

M
a

p
p

in
g

 E
x

e
c

u
ti

o
n

M
a

p
p

in
g

 M
a

in
te

n
a

n
c

e

Table 3.1: Requirements framework for the evaluation of metadata mapping solutions

identified the category mapping tools, which embraces lightweight standalone tools designed for the sole
purpose of mapping. The category other solutions contains all mapping tools that cannot be assigned to
any of the previously mentioned categories, such as XML editors or modelling tools that may also provide
mapping support for certain kinds of schema definition languages, or Web applications.

46 Chapter 3. Metadata Mapping

For each solution we describe what type of software it is (commercial, research prototype) and to which
solution category it belongs (EII suite, EAI suite, mapping tool, other). Furthermore, we analyse for what
kind of schema definition languages a solution provides mapping capabilities and which software platforms
are supported. Additionally, we briefly sketch which mapping phases are covered by a certain mapping
solution.

3.3.2 Enterprise Information Integration (EII) Suites
EII subsumes industrial solutions dealing with the problem of data integration. Generally, they aim at (i) iden-
tifying data sources, (ii) building virtual schemes, and (iii) reformulating queries over a virtual schema into
queries over multiple data source specific schemes. EII systems provide real-time information by integrating
heterogeneous data sources on demand without moving or replicating them [HAB+05]. In such solutions,
mappings are generally represented as views and executed through a query rewriting mechanism. To what
extent mapping discovery and maintenance is supported depends on the solution.

BEA Liquid Data 8.1

BEA Liquid Data for WebLogic [BEA07] is an Enterprise Information Integration suite that allows to estab-
lish a real-time unified view over heterogeneous data sources such as relational databases, XML data, flat
files (e.g., CSV-files), and third party application data. It leverages XML standards throughout the mapping
phases and also delivers query results structured in XML. Liquid Data is available for all major software
platforms.

While not supporting the discovery phase of the mapping process, BEA Liquid Data offers a view-based
approach for the mapping representation phase: all supported schema definition languages are lifted to the
level of XML Schema. The mappings between source and target schemes are expressed in XQuery. For
executing mappings, BEA provides the Liquid Data Server for deploying mapping specifications and a dis-
tributed query processor for translating queries according to the mappings. To a certain extent, BEA Liquid
Data also supports the mapping maintenance phase: schemes as well as mappings between schemes are stored
in the Liquid Data Repository, which enables the reuse of mappings.

Sybase Data Integration Suite — Avaki Studio / Server 7.0

The Sybase Data Integration Suite [Syb07], with its components Avaki Studio and Avaki Server 7.0, is a data
federation solution which provides standardised access to distributed heterogeneous data through a single
layer. It supports the integration of the same types of data sources as BEA Liquid data, but follows a mapping
approach based on the relational model. Both Avaki Studio and Server are available for all major software
platforms.

Mappings are created using the Avaki Studio application — support during the mapping discovery phase
is not provided. For mapping representation Avaki defines a mapping model based on the relational model.
One or more input sources, a single result element, and a set of operators which can be arranged sequentially
to combine or transform data from one or more input sources, are the main constituents of that mapping
model. For the mapping execution phase, the mapping models are deployed as data services exposing SQL-
DDL (view) schema definitions. All data services and mapping models are registered and maintained in a
data catalogue.

3.3.3 Enterprise Application Integration (EAI) Suites
EAI systems deal with the problem of integrating applications through business processes. They are well
known in the context of Service Oriented Architectures (SOA) where they connect and integrate loosely cou-
pled, distributed software components usually by using Web Services in order to fulfil a certain business

3.3. Mapping Solutions 47

task (e.g., booking a flight). Since the applications involved in a business process expose metadata corre-
sponding to various, incompatible schemes, also EAI systems require mapping techniques for resolving these
discrepancies.

Different than EII systems, which can query a set of heterogeneous sources via a virtual unified target
schema, the focus of EAI systems is on the exchange of data residing at multiple sites. Hence, during the
execution phase, mappings do not serve as input for query reformulation but for transforming data from a
source into a target schema.

Microsoft Biztalk 2006

Microsoft BizTalk Mapper [Mic07] is part of the BizTalk Server Enterprise Application Integration Suite and
allows to create and edit mappings in order to translate or transform messages within business processes from
one format into another. Since BizTalk is a pure EAI suite and XML has evolved as the de-facto standard for
structuring messages within business processes, mapping is supported among XML schema definitions. Like
the whole BizTalk suite, also the mapper is available only for Microsoft Windows 2003 and XP platforms.

The mapping discovery phase is supported by the Microsoft BizTalk Mapper, meaning that expert users
get technical assistance in determining mapping relationships. Schemes as well as mappings are represented
in a BizTalk-specific mapping model and are transformed to XSL style-sheets during the mapping executing
phase. For maintaining mappings, BizTalk relies on a simple WebDav repository where mappings can be
published and reused in other integration tasks.

Cape Clear Studio and Server 7

The Cape Clear EAI suite [Cap07] comprises two main products: the Cape Clear Server and the Cape Clear
Studio. The former provides the environment for deploying business processes and Web Service components.
The latter is a design tool for creating Web Services and BPEL processes. Data Transformation Web Services
are a special kind of service: they permit the integration of non-XML data sources that represent data as
structured text (e.g., CSV, EDI, SWIFT). However, they must first be lifted to the level of XML Schema in
order to be mappable with other message formats within a business process. Cape Clear Studio and Server
are both Java applications — the Studio is an Eclipse Rich Client Application — and therefore run on all
major software platforms.

Cape Clear Studio does not support mapping discovery. Mappings must be defined manually between
XML Schema definitions using the Cape Clear Studio XSLT mapper. This implies that mappings are repre-
sented as XSL style-sheets. For the execution of mappings at run-time, a Data Transformation Service can
be deployed on the Cape Clear Server and be incorporated into any business process. So far the mapping
maintenance phase is not supported because there is no possibility to publish or share the created mappings.

IBM WebSphere Integration Developer 6.0.2

IBM’s contribution to the market of EAI suites is the WebSphere platform, an environment for deploying
reusable business processes on a Service Oriented Architecture (SOA) foundation. The IBM WebSphere
Integration Developer [IBM07], a tool for modelling business processes, also has mapping capabilities. Since
business objects are the WebSphere internal representation of application data, the Integration Developer
supports mappings among instances of that proprietary model. Additionally it also supports the development
of mediation services, which are services that intercept and modify messages passed between existing services
within a business process. For this kind of service, the Integration Developer provides XML Schema mapping
capabilities. As the whole WebSphere EAI suite, also the IBM WebSphere Integration Developer is available
for all major software platforms.

Although the extent is minimal, we can categorise the IBM WebSphere Integration Developer as solu-
tion that supports the mapping discovery phase: it can automatically create mapping relationships among

48 Chapter 3. Metadata Mapping

attributes having the same lexical name. Mappings are represented either in a proprietary model (business
object maps) when they are created between business objects, or as XSL style-sheet when XML Schema
definitions are mapped. They can be deployed as software modules on a WebSphere Process Server or a
WebSphere Enterprise Service Bus. Mapping maintenance is not supported.

3.3.4 Mapping Tools
Different from EAI and EII suites, where mapping solutions are only part of a broader application infrastruc-
ture, mapping tools are lightweight standalone systems created for the sole purpose of mapping. The market
for this category of mapping solutions is still sparsely populated; Altova with its products MapForce [Alt07a]
and SchemaAgent [Alt07b] turned out to be the only well-known commercial representative.

Altova MapForce and SchemaAgent 2008

At the time of this writing, Altova MapForce in combination with Altova SchemaAgent is the most powerful
mapping solution on the market. MapForce supports mapping between any combination of SQL-DDL def-
initions in relational databases, XML Schema and DTD declarations, and flat files formats such as CSV or
EDI. These tools are currently available only for Microsoft Windows platforms.

MapForce assists the user during the mapping discovery phase by automatically matching child elements
of already mapped elements. In contrast to any other mapping solution mentioned so far, MapForce allows
the definition of mappings among several kinds of schema definition languages (XML Schema, SQL-DDL,
etc.); this implies that internally, MapForce relies on a generic representation for these kind of schemes and
also for the mapping between them. For the mapping execution phase, it provides the possibility to generate
code from these proprietary mapping representations; a mapping specification can be compiled into XSLT
code, XQuery, Java, C++, and C#. The mapping maintenance phase has been completely outsourced to
Altova SchemaAgent, which is another standalone product that works in combination with Altova MapForce.
Besides capabilities for registering schemes and mappings, it provides graphical means to view and analyse
dependencies between them.

COMA++

The COMA++ [ADMR05] research prototype, an extension of COMA [DR02], is a generic schema mapping
tool. It supports the user in the mapping discovery phase by matching schemes expressed in SQL-DDL,
XML Schema, XML Data Record (XDR), or OWL. The tool is written in Java and is therefore platform-
independent.

The focus of COMA++ is on the mapping discovery phase; it allows the combination of a variety of
matching algorithms in order to find appropriate mappings between schemes. Internally, the schemes are
uniformly represented as directed graphs, i.e., also the mappings are represented in a proprietary format.
Currently, COMA++ does not support the mapping execution phase, neither for query rewriting nor for
transforming models from one schema to another. For the mapping maintenance phase, COMA++ provides a
repository component which centrally stores schemes, matching results, and mappings between schemes. An
outstanding feature in this phase is the ability to derive new mappings from previously determined matching
results.

Clio

Clio [MHH+01, HHH+05] is an IBM research prototype for creating and executing mappings among schemes
expressed in SQL-DDL or XML Schema. It is implemented in Java and therefore platform independent.

For the mapping discovery phase, Clio relies on a semi-automatic tableaux-based algorithm which cal-
culates all the possibilities in which schema elements relate to each other and prompts the user to select the

3.3. Mapping Solutions 49

semantically correct relationship. Internally, mappings are represented as an abstract query graph which can
be serialised into specific languages such as XQuery, XSLT, and SQL/XML. The execution of queries in the
mapping execution phase is left to the user. Clio does not provide any mapping maintenance support.

3.3.5 Other Solutions
Mapping support may also be a feature of solutions that do not belong to one of the above mentioned cate-
gories. In the following, we briefly discuss tools and applications offering mapping capabilities.

Stylusstudio 2007 / DataDirect XML Converters

Stylusstudio [Dat07] is an XML Integrated Development Environment (IDE) that supports mappings among
schemes expressed in SQL-DDL, XML instance documents, XML schemes, DTDs, and EDI documents. In
combination with DataDirect XML Converters, it allows the conversion of any legacy data format into XML.
At the moment, Stylusstudio is available for Windows platforms only.

The mapping discovery phase is not supported by Stylusstudio. For representing mappings, Stylusstudio
relies on standardised XML technologies and compiles mapping relationships drawn on the user interface
directly into XSLT or XQuery; hence it does not define a proprietary mapping model. Executing the XQuery
code on a certain data source or transforming XML documents using the resulting XSL style-sheet is left to
the user. With Stylussstudio it is currently not possible to deploy mapping services covering the mapping
execution phase. The mapping maintenance phase is also unsupported.

TopBraid Composer

TopBraid Composer [Top07], which is the commercial extension of the Protégé OWL editor3, is a Semantic
Web ontology development platform which also supports the creation of mappings between ontologies. The
tool has been implemented in Java, using the Eclipse Rich Client Platform and therefore runs on any Java-
enabled software platform.

In version 2.3.0, TopBraid does not support the mapping discovery and maintenance phases. However,
it is possible to create mappings between ontologies, which can be compiled either into SPARQL query
construct statements or into SWRL4 rules. Support for the mapping execution phase is currently not provided.

Yahoo Pipes

Yahoo Pipes [Yah07] has introduced a novel facet into the metadata mapping domain. Through a Web appli-
cation, users can aggregate data from various sources such as XML feeds, online CSV files, or other online
applications (e.g., Flickr, Google and Yahoo search results) and deploy new data services (mashups) that
provide uniform access to these sources. This also includes mapping between the various source formats —
a task which is supported by Yahoo Pipes by an intuitive, easy-to-use online interface. Since all Yahoo Pipes
features are part of a Web application, this mapping solution can run in an ordinary Web browser on any
platform.

Mapping discovery is the only phase not supported by Yahoo Pipes; users have to identify the semantic
and structural correspondences on their own. For representing metadata (e.g., XML tags of feeds), Yahoo
Pipes relies on a very simple hierarchical model consisting of elements and sub-elements only. Thus, it does
not regard any schema definitions, which might not even exist for certain data sources, but concentrates on
the instance level. Users can create mappings between elements without being confronted with complex
schema definitions. For representing the mappings between the data elements, Yahoo Pipes employs its own
proprietary model which defines a collection of modules for assembling data transformation pipes. The fact

3Protégé OWL editor: http://protege.stanford.edu/overview/protege-owl.html
4Semantic Web Rule Language (SWRL): http://www.w3.org/Submission/SWRL/

50 Chapter 3. Metadata Mapping

that Yahoo Pipes also supports the mapping execution phase becomes obvious when creating a pipe: during
the modelling process, each mapping module automatically executes itself and presents the resulting instance
data to the user. Each pipe created is stored and optionally published on Yahoo Pipes — the maintenance
phase is therefore supported. Other users can copy existing pipes and adapt them to their needs or include
the resulting instance data of an existing pipe as data source in their own pipe. These features enable even
non-expert users to collaboratively assemble pipes and create mappings in a trial-and-error manner.

3.3.6 Preliminary Observations

In Table 3.2 we have summarised the features of the previously discussed mapping solutions. Before we per-
form an in-depth analysis of each mapping solution in respect to the supported mapping phases, we conclude
this section with some preliminary observations:

First, only Altova MapForce in combination with Altova SchemaAgent as well as Microsoft BizTalk
Server support all four mapping phases. Other tools lack at least one phase. Especially mapping discovery,
an issue which has gained much attention in scientific literature, has not yet found its implementation in com-
mercial mapping solutions — and if at all, then only to a minor, rather trivial extent such as the comparison
of schema element names.

The second observation is that many solutions use their own proprietary models for representing schemes
and mappings among them. Additionally, we notice that there is a strong support for XML technologies
(XML Schema and DTD) and the relational model (SQL-DDL); support for other technologies is rather
minor.

Third, we can observe that most mapping solutions support the mapping execution phase by compiling
mapping specifications into executable code (e.g., XSLT, XQuery) and providing the possibility to deploy
this code as an executable service.

Our last observation is that the majority of mapping solutions support the mapping maintenance phase,
but in a varying degree: in Microsoft BizTalk, for instance, users can publish their mappings in a web-
accessible WebDav repository that does not provide any further sophisticated functions. Altova’s SchemaA-
gent, COMA++, and Yahoo Pipes mark the opposite end of the spectrum and provide an extensive set of
maintenance functionality.

3.4 Analysis of Mapping Solutions
After we have set up the evaluation framework in Section 3.2 and presented a representative selection of
mapping solutions in Section 3.3, we now analyse these solutions according to the imposed requirements.

In the previous section, where we briefly introduced the mapping solutions, we already outlined which
mapping phases a solution supports. Here we analyse in detail how and to what extent a solution supports the
requirements of a certain mapping phase.

3.4.1 General Requirements

In the evaluation framework, this category contains all requirements that must be supported by any mapping
solution but cannot be assigned to any of the four mapping phases.

Uniform Accessibility

Uniform accessibility denotes the possibility of deploying a single access point to a set of heterogeneous
sources from previously defined metadata mappings. A single access point could be a query interface or a
service that provides transparent access the metadata provided by other services.

3.4. Analysis of Mapping Solutions 51

License Type Schema Definition
Language Support

Supported
Platforms Discovery Representation Execution Maintenance

BEA Liquid Data 8.1 Commercial XML Schema

HP-UX, MS
Windows 2000/XP,
Red Hat Linux, Sun

Solaris, IBM AIX

   

Sybase Data
Integration Suite -
Avaki (Studio/Server)
7.0

Commercial Proprietary

Red Hat/Suse
Linux, Windows
2003/XP, Sun

Solaris, IBM AIX

   

Microsoft BizTalk
Server 2006 Commercial XML Schema Windows 2003/XP    

Cape Clear 7
(Studio/Server) Commercial XML Schema

 Red Hat Linux,
Sun Solaris,

Windows 2003/XP
   

IBM WebSphere
Integration Developer Commercial Proprietary, XML

Schema

Red Hat/Suse
Linux, Windows
2000/2003/XP

   

Altova MapForce /
SchemaAgent Commercial Proprietary

Windows
2000/2003/

XP/Vista
   

COMA++ Research Proprietary Java    

Clio Research Proprietary Java    

StylusStudio /
DataDirect XML
Converters

Research XML Schema Windows Platforms    

TopBraid Composer Commercial OWL Java    

Yahoo Pipes Commercial XML Windows 2000/XP    

 Supported

 Not Supported

M
ap

pi
ng

 T
oo

ls
O

th
er

 S
ol

ut
io

ns
General Properties Mapping Phases Support

EI
I S

ui
te

s
EA

I S
ui

te
s

Table 3.2: Metadata mapping solutions — categorisation and overview

By their nature, Enterprise Information Integration (EII) Suites fulfil exactly that requirement. BEA
Liquid Data, for example, provides the means to create data views over a set of data sources that can then be
queried in a uniform manner using XQuery. Also the Sybase Data Integration Suite allows the deployment
of a unified data layer.

Different from EII Suites, the mapping solutions categorised as Enterprise Application Integration Suites
(Microsoft BizTalk Server, Cape Clear, and IBM Websphere Integration Developer), do not provide uniform
access via a single query interface but rather allow transparent access to data from incompatible data sources

52 Chapter 3. Metadata Mapping

through deployed business processes. In Service Oriented Architectures, a business process typically exposes
the aggregated and converted data via a Web Service interface.

Among the pure metadata mapping tools we cannot find any solution that supports uniform accessibility.
Although it is possible to deploy mappings with Altova MapForce in terms of services that provide integrated
access to a single source, this is not possible for multiple sources. COMA++ does not support mapping
execution at all and therefore cannot provide uniform access. Clio has the facilities to convert mappings into
queries or transformation style-sheets without considering query execution.

From the group of non-categorised solutions, StylusStudio enables the deployment of so called XML
Pipelines5. An XML Pipeline allows to aggregate metadata from a set of XML sources and define various
processing steps to transform them into a single format exposed by a single endpoint. StylusStudio therefore
supports uniform accessibility. Yahoo Pipes acts in a similar manner, with the difference that all pipelines
may be created and shared on the Web. TopBraid Composer does provide means to deploy a uniform access
interface for various sources.

Modularity

Assuming that a mapping solution already provides access to a set of data sources, often the need arises to
add additional or remove already integrated data sources without changing any existing implementations. De-
pending on the modularity of a mapping solution’s architecture, this requirement can optionally be supported.
Obviously this is only relevant for solutions that do fulfil the previous requirement and provide uniform access
to multiple sources.

When using EII Suites such as BEA Liquid Data or the Sybase Data Integration Suite, removing or adding
metadata sources requires the redefinition and redeployment of previously created views. We regard this task
as a minor modification of an integration definition rather than a change in the implementation and therefore
categorise EII Suites as mapping solutions that support modularity.

With EAI Suites the required effort is similar: BizTalk Server, Cape Clear Server, and the IBM WebSphere
Server require the redefinition and redeployment of existing business processes and service orchestrations
whenever new sources are added. Therefore they partially fulfil the modularity requirement.

Mapping solutions that follow a pipe-line approach for providing uniform access to metadata sources
(StylusStudio, Yahoo Pipes) are highly modular: data sources can be included into an integration scenario
by defining an additional input source for a pipe and the corresponding mappings; a task, which can be
performed without redeploying previously defined pipe components.

Flexibility in Lifting and Normalisation

Lifting and Normalisation denotes the ability to lift metadata expressed in distinct schema definition lan-
guages to a common metadata meta-model. As already mentioned in Section 3.1, it is commonly agreed that
this is a pre-condition for metadata mapping. Therefore mapping solutions should provide the flexibility to
lift metadata of any kind to that common meta-model.

All analysed Enterprise Information Integration as well as all Enterprise Application Integration Suites
fulfil this requirement. BEA Liquid Data can lift any data available in relational databases (RDB), XML files,
delimited files, Web Services, and third party applications (e.g., Siebel, SAP) to the level of XML Schema.
The Sybase Data Integration Suite offers so called data services to transform data available in specific source
formats to its internal, proprietary representation. Microsoft BizTalk and IBM WebSphere both provide
extensible and customisable adapter frameworks6 for lifting external data to their internal representation.
Also CapeClear provides a fixed set of data transformers for common formats such as SOAP, CSV, structured
text (e.g., EDI, SWIFT), or Excel spread-sheets.

5XMLPipelineDefinitionLanguage:http://www.w3.org/TR/xml-pipeline/
6Microsoft BizTalk Adapter Framework and IBM WebSphere Integration Framework

3.4. Analysis of Mapping Solutions 53

Since Altova MapForce supports mapping between any combination of SQL-DDL, XML Schema, Flat
Files, and EDI messages, internally it must have the facilities to lift these meta-models to a common repre-
sentation. However, it is not possible to extend MapForce with adapters for custom data formats. Although
not providing the flexibility to lift any proprietary format, COMA++ and Clio can both lift SQL-DDL and
XML Schema definitions to their internal representation. COMA++ also supports lifting of OWL ontologies
and XML Data Records (XDR).

The DataDirect XML Converters give StylusStudio the flexibility to lift practically any format to the level
of XML Schema, which is its internal meta-model. DataDirect already contains a large number of converters
for widely-used formats and gives users the means to easily build their own converters. TopBraid supports
the lifting of a fixed set of other meta-models (e.g., UML) to the level of OWL. The same is the case for
Yahoo Pipes which provides data sources adapters for XML, RDF, JSON, iCal, and CSV files.

Mapping GUI

Metadata mapping is a complex task, both for domain experts and technicians. Therefore any mapping
solution must support these user groups by providing a Graphical User Interface (GUI).

Since all analysed solutions fulfil this requirement, its importance becomes obvious. The EII Suites
provide graphical means for building data views (BEA Data View Builder, Sybase Avaki Studio), and the EAI
Suites provide orchestration design tools (BizTalk Orchestration Designer, Cape Clear Studio, WebSphere
Integration Developer). Also all other solutions offer graphical means for creating mapping specifications.
Compared to all other solutions, Yahoo Pipes provides an outstanding and easy to use Web-based mapping
GUI.

3.4.2 Mapping Discovery Requirements
This category of the evaluation framework lists the common requirements that occur during the first mapping
phase, which is mapping discovery. From the previous section we already know that this phase is supported
only by a few tools.

Schema Matching / Alignment Support

The Schema Matching or Alignment requirement denotes the ability to (semi-)automatically support users in
determining metadata mappings.

Among the commercial solutions, IBM WebSphere Integration Developer supports the user in creating
mappings by automatically aligning model elements with the same lexical representation. This could be
the case, if, for instance, two attributes in two distinct schemes have the same label (e.g., Person). Altova
MapForce extends this feature and automatically aligns lexical equivalent child elements (e.g., firstName)
of already mapped elements. Since this kind of mapping support is trivial, these solutions support the schema
matching requirement only partly.

Microsoft BizTalk, or more specifically the BizTalk-Mapper, offers advanced schema matching capabil-
ities and therefore supports this requirement. Besides having the capability of matching schema elements
based on their lexical names, it can also autolink elements based on their structure (e.g., their sub-elements).

COMA++ and Clio are research prototypes whose main feature is in fact schema matching. While the
Clio matching algorithm operates only on the schema level, COMA++ uses a composite approach to combine
different schema and instance level matching algorithms.

Consensus Building Features

A mapping solution offering consensus building features supports users or user communities in building
consensus on conflicting mappings.

54 Chapter 3. Metadata Mapping

From all solutions under investigation, only Yahoo Pipes partly supports this requirement. It has built-
in user and community management features, which are an important prerequisite for building consensus.
Further it is built upon Web technology, which lowers the entry barriers for building communities. For
existing mappings, Yahoo Pipes offers search and browsing as well as ranking features. Mappings can be
cloned and reused for other integration tasks; we can assume that cloning demands at least a minimal degree
of agreement and consensus on a certain mapping.

3.4.3 Mapping Representation Requirements

By their nature, all mapping solutions require a formalism for representing mappings. As we have seen in
Figure 3.2 in the previous section, this is indeed the case for all solutions under consideration. At this point
we will analyse the strength and expressiveness of each formalism, i.e., its ability to capture the various kinds
of heterogeneities and interoperability conflicts.

Model-Level Structural Heterogeneity Reconciliation

Structural conflicts on the model level fall into two categories: element definition conflicts occur because
the elements of distinct models might have assigned different names, identifiers, or conflicting constraints.
Domain representation conflicts arise because domain experts reflect the constituents of a domain in different
generalisation hierarchies, using a different number and different types of elements. While element definition
conflicts are easily resolvable by renaming elements, dealing with domain representation conflicts is a more
complex task. They can be reconciled by providing the ability to relate, for instance, a general entity in one
model with more concrete entities in another model.

All EII Suites under investigation can resolve element definition conflicts and relate elements with dif-
ferent names, identifiers, or data type constraints. BEA Liquid Data can also resolve a majority of domain
representation conflicts. Although not directly reflected in the Data View Builder GUI, one can create XQuery
expressions to relate a source element to multiple target elements. Further it is possible to deal with different
generalisation hierarchies and relate concrete with more general model elements by defining conditions that
filter out relevant data values. By providing a rich set of operators, Sybase Avaki Studio can also resolve
these heterogeneity conflicts.

Among the EAI Suites, Microsoft BizTalk and Cape Clear Studio both rely on the power of XSLT to
transform objects from a source schema to a target schema. The creation of XSL style-sheets is supported by
mapping GUIs, which in both cases do not reflect the full power of XSLT. In Biz Talk Mapper, for instance,
it is not possible to manually create 1:n mapping relationships between model elements. However, when
manipulating the XSL style-sheets directly, all element definition and domain representation conflicts can
be resolved. The IBM WebSphere Integration Developer does not rely on standardised technologies such
as XQuery or XSLT, but allows the definition of so called business maps among business objects. Using
a predefined set of transform type objects, domain experts can relate different model structures and resolve
structural heterogeneities.

Altova provides a powerful mapping model for reconciling any structural heterogeneity and can transform
such representations into XSLT or XQuery. Clio does not provide these capabilities on the GUI, but also relies
on XQuery and can therefore represent the required mapping information. COMA++ is a schema matching
tool with the primary intent to discover mappings but has limitations in representing mapping relationships
between an entity and one or more attributes.

Stylusstudio also relies on XQuery and can therefore deal with any structural heterogeneity. TopBraid
Composer uses SPARQL, or more specifically, the SPARQL CONSTRUCT statement, which like XQuery
gives the freedom to design and construct any target model from a set of source models. Finally, also Yahoo
Pipes can indirectly represent structural mappings through its operators.

3.4. Analysis of Mapping Solutions 55

Model-Level Semantic Heterogeneity Reconciliation

The two main classes of semantic conflicts on the model-level are domain conflicts (e.g., semantically over-
lapping, subsuming, or incompatible model elements) and terminological mismatches (e.g., synonyms and
homonyms). A mapping formalism should provide means to define the type of heterogeneity between two
model elements (e.g., element X and element Y semantically overlap, element X and element Y are syn-
onyms) and the ability to reconcile that conflict, if possible.

From the category of EII Suites, all solutions provide means to resolve domain conflicts and terminolog-
ical mismatches, if the domains of the mapped schemes are not incompatible (e.g., billing and gardening).
However, it is possible, for instance, to map semantically subsuming elements (e.g., author and person) by
filtering and transforming instances according to specific conditions (e.g., authors = persons that have written
books). Sybase Avaki provides a library of operators and expressions, BEA Liquid Data the expressiveness of
XQuery to perform that task. However, none of them provides the means to explicitly define the type of het-
erogeneity (e.g., subsume, overlap, synonym, etc.), which is remarkable because many scientific approaches
in literature concentrate on this kind of semantic representation (see Section 3.2.3).

EAI Suites support semantic heterogeneity reconciliation on the model level in a similar way as EII Suites
and do not offer means to represent the semantics of mapping relationships. Microsoft BizTalk provides an
extensible set of functions that fulfil the same task as operators in the above mentioned EII Suites. WebSphere
relies on the definition of maps that describe a series of transformation steps, which defines how to transform
source into target business objects. Since each map is in fact Java code, one can utilise the full expressiveness
of a programming language for the semantic reconciliation of incompatible model elements.

For Altova our analysis bears the same results as for EII and EAI Suites: semantic reconciliation is
possible through a set of operators but there is no mechanism to represent the nature of a mapping relationship.
Clio does not provide such operators or functions (sort, join, rename) in its mapping model and therefore does
not have any advanced capabilities for resolving semantic heterogeneities, if we disregard the fact that one
could manually edit the XQuery interpretation of the mapping generated by Clio. The same is the case for
COMA++ — it has no reconciliation operators and does not offer means to represent the semantics of a
mapping relationship.

Stylusstudio utilises the full power of XQuery and its functions for heterogeneity reconciliation; Top-
Braid represents mappings in SPARQL which also uses the set of XQuery function primitives for reconciling
semantic heterogeneities on the model level. Yahoo Pipes is not extensible with respect to its operators but
provides a fixed set, which is sufficient to deal with semantically conflicting model elements.

Instance-Level Semantic Heterogeneity Reconciliation

Instance transformation is the means for reconciling semantic heterogeneities on the instance level. It spec-
ifies how an instance value can be transformed from one representation into another. A transformation is
usually implemented in terms of functions, which can define simple operations such as data type conver-
sion (e.g., string to integer) but also more complex tasks such as converting scales (e.g., weight:pound to
weight:kg). For complex transformation tasks, a mapping formalism should support the implementation of
custom, domain-specific functions.

BEA Liquid Data provides a set of standard functions for creating data views and is also extensible by
creating custom functions to perform specialised tasks. The same is the case for the Sybase Data Integration
Suite.

Also the EAI Suites provide such means: Microsoft BizTalk and Cape Clear rely on XSLT which in fact
is a fully functional language for implementing a broad range of transformation scenarios. IBM WebSphere
does not rely on standard technologies but allows to implement custom transform types for converting data
values within business objects from one representation to another.

Altova offers a variety of standard functions for transforming data and also allows the implementation
and registration of custom functions. Clio implicitly supports this feature by relying on XQuery but does not

56 Chapter 3. Metadata Mapping

provide the necessary means on the GUI level. COMA++ does not have any data transformation capabilities.
Also Stylusstudio and TopBraid Composer support instance level reconciliation of semantic hetero-

geneities. The former allows the definition of user-defined XQuery functions. The latter relies on SPARQL
which also uses the XQuery function set. Yahoo Pipes currently provides only a fixed set of functions that
cover a wide, but not extensible spectrum of possible transformations.

Context Representation

Since the semantic correctness of mappings depends on the mapping context, i.e., the setting in which a
mapping has been created, a mapping formalism should be able to capture such information.

A very simple and limited form of context representation is to capture user information, i.e., the user-
name of the domain expert that has created a mapping. From all mapping solutions under consideration, only
Yahoo Pipes binds established mappings to a certain user. More suitable support to represent the context of
mappings is not provided by any other representative mapping solution under investigation.

Flexible Language Binding

If a mapping solution relies on a generic formalism, it is open for mappings between schemes expressed in a
variety of schema definition languages. The drawback of such an approach is the increased complexity and
additional implementation effort for each single language to be supported. As already illustrated in Figure 3.2,
some solutions have mapping capabilities for specific languages (e.g., XML Schema, OWL) while others rely
on proprietary meta-models.

Solutions bound to a specific language do not have the flexibility to map metadata expressed in other
languages without lifting them to a common representation. BEA Liquid Data, all EAI Suites, Stylusstudio,
and also Yahoo Pipes are bound to XML Schema or XML respectively and therefore cannot be considered as
having a flexible language binding. This is also the case for TopBraid composer, which is bound to OWL.

Sybase Avaki relies on a proprietary model and has specific bindings for other types of models. Also
Altova MapForce, Clio and COMA++ rely on a generic approach and have bindings for languages such as
XML, OWL, or SQL-DDL.

3.4.4 Mapping Execution Requirements
In this section, we analyse to what extent the analysed mapping solutions fulfil common requirements that
occur when mappings are executed during run-time.

Query Reformulation

Mapping solutions that are part of virtually integrated systems, hence systems that leave the data in their data
sources without replicating them to a central store, require a mechanism that reformulates queries according
to a mapping definition. A common way to implement such a mechanism is to work with views, i.e., the user
selected target schema is described as a set of views over the data sources.

Regarding our representative selection of mapping solutions, we can further divide them into two cate-
gories: those that use mappings to generate views, and those that use them to transform metadata from one
representation to another. Only the Enterprise Information Integration (EII) Suites fall into the first category:
in BEA Liquid Data, the domain experts create views over a set of data sources using XQuery. Sybase Avaki
follows a hybrid approach: it supports the definition of so called view models, which are sequences of oper-
ations that combine or transform data from one or more sources. Other solutions, such as Altova MapForce
or Stylussstudio, allow to generate XQuery code from mapping definitions, but do not provide means to exe-
cute these queries. Therefore we consider them not to support query reformulation in the mapping execution
phase.

3.4. Analysis of Mapping Solutions 57

Query Plan / Optimiser

Obviously, only metadata solutions that provide capabilities for query reformulation, can offer means for
optimising query access to data sources.

BEA Liquid Data offers a variety of features for query optimisation. First it allows to view query plans
and to analyse the execution times for each part of a query. Users can either rely on a built-in optimiser
or perform manual optimisation by, for instance, changing the order of the data sources to be queried or by
giving optimisation hints that override the default behaviour of the optimiser. Sybase Avaki does not provide
any query optimisation features but relies on a built-in caching service, which stores (temporary) query results
for a definable time span.

Integration Component Generation

A mapping solution should provide at least some semi-automatic means to compile mapping specifications
into executable integration components, such as data source adapters, stubs, wrappers, or mediators.

With BEA Liquid Data one can deploy mapping specifications on the Liquid Data Server, while Sybase
Avaki allows the deployment of mapping models as data services. On Microsoft BizTalk Server and all other
EAI Suites under investigation, mapping specifications are deployed as part of executable business processes.
Altova MapForce provides the possibility to generate executable Java or C# source code from a mapping
specification and also in Yahoo Pipes users can deploy and execute their pipes.

3.4.5 Mapping Maintenance Requirements

The mapping maintenance phase is usually supported by a kind of mapping registry, which stores information
about available schemes and mappings between schemes.

Mapping Verification

If schemes and the mappings between schemes used in a certain integration context are available, an auto-
mated mechanism could detect conflicting mapping specifications.

None of the mapping solutions under investigation provides such a fully automatic mechanism. Only Clio
and Altova SchemaAgent partly support this requirement: Clio verifies mappings by presenting alternative
mappings to the user during the mapping discovery phase. SchemaAgent provides a GUI that allows users to
browse available schemes and already established mappings between those schemes.

Mapping Reusability

Reusing existing schema definitions is a very simple way of achieving interoperability; the same is the case
with schema mappings. If there is already a mapping specification that reconciles the heterogeneities among
two schemes, and the mapping could also fit for other integration scenarios, one should reuse and possibly
modify that mapping.

As soon as mappings are available in a mapping repository, they can be discovered and reused in other
scenarios. Additional repository features, for instance searching and browsing mappings, could even improve
the reuse potential. However, only Altova SchemaAgent and Yahoo Pipes provide such advanced function-
ality. In SchemaAgent users can browse existing schemes and mappings and Yahoo Pipes provides a faceted
search interface that guides users through the bulk of already created pipes. All other solutions offer rather
unsophisticated repository features such as storing mapping specifications in a central WebDAV repository.

58 Chapter 3. Metadata Mapping

Mapping Inference

Deriving new mapping relationships from existing ones currently seems to be an invariably scientific topic
because it has not yet been implemented in any of the commercial products or research prototypes we have
analysed in this section.

3.4.6 Analysis Results

Regarding the results of our analysis, summarised in Table 3.3, from a high level perspective, we can make
the following observations:

Most mapping solutions fulfil the general requirements we have set up for our analysis; heavyweight EII
and EAI Suites fulfil them better than standalone mapping tools. This is because the latter are designed solely
for the task of mapping and produce mappings that can be deployed in other systems. Heavyweight suites
cover the whole spectrum from creating mappings to providing uniform access to data sources.

The mapping discovery phase is weakly supported, which leads us to the conclusion that the field of
automatic schema matching, which has extensively been studied in literature, is still not mature enough for
being deployed in practice. Only the category of research prototypes includes sophisticated schema matching
support; if a commercial solution supports this phase, then only in a very unsophisticated way, such as
comparing the lexical representation of model elements.

Mapping representation is well supported: almost all solutions provide the means to reconcile hetero-
geneities among schemes and their instances. However, none of them puts an emphasis on the semantic
nature of a mapping relationship. Furthermore, none of them has strong means to represent a mapping con-
text. Most mapping solutions rely on a single, specific schema language (e.g., XML Schema), which implies
that these tools must support lifting and normalisation in order to provide support for metadata expressed in
other schema definition languages.

The mapping execution phase is very weakly supported. From the analysed EII Suites, only BEA Liquid
Data executes queries, reformulates them according to previously defined mappings and optimises the queries
using a tailorable query optimisation algorithm. EAI Suites do not provide such means but rely on the
deployment of business processes, which also transform data from one format into another using pre-defined
mappings. In a similar way, in Yahoo Pipes, mappings are an integral part of pipe definitions, which can be
deployed and executed on the Web.

The potential of mapping maintenance has not yet been considered by most mapping solutions. Only
Altova SchemaAgent can be regarded as a suitable and useful schema and mapping repository, which en-
ables (manual) mapping verification and reuse. Due to its Web-based nature Yahoo Pipes, implicitly enables
mapping maintenance. Users can search existing pipes, i.e., also existing mappings, for specific sources, and
tailor them to their specific needs. This leads to high reusability of existing mappings and thereby to higher
interoperability.

3.5 Summary

In this chapter we have analysed the characteristics of a representative set of metadata mapping solutions
against an evaluation framework derived from the state-of-the-art literature. In contrast to other surveys,
we have conceived metadata mapping as being a cyclic sequence of phases rather than a single task (e.g.,
mapping discovery). We believe that this viewpoint is essential for domain experts who want to employ these
solution also in real-world scenarios.

One outcome of this study is that many solutions concentrate only on a specific mapping task: research
prototypes concentrate mainly on mapping discovery and disregard how these mappings could be executed
in a real-world system. Commercial solutions, in contrast, have a completely different focus: they support

3.5. Summary 59

B
E

A
 L

iq
u
id

 D
a
ta

 8
.1

S
y
b
a
s
e
 D

a
ta

 I
n
te

g
ra

ti
o
n
 S

u
it
e
 -

A
v
a
k
i
(S

tu
d
io

/S
e
rv

e
r)

 7
.0

M
ic

ro
s
o
ft
 B

iz
T

a
lk

 S
e
rv

e
r

2
0
0
6

C
a
p
e
 C

le
a
r

7
 (

S
tu

d
io

/S
e
rv

e
r)

IB
M

 W
e
b
S

p
h
e
re

 I
n
te

g
ra

ti
o
n

D
e
v
e
lo

p
e
r

A
lt
o
v
a
 M

a
p
F

o
rc

e
 /

S
c
h
e
m

a
A

g
e
n
t

C
O

M
A

+
+

C
lio

S
ty

lu
s
S

tu
d
io

 /
 D

a
ta

D
ir
e
c
t
X

M
L

C
o
n
v
e
rt

e
rs

T
o
p
B

ra
id

 C
o
m

p
o
s
e
r

Y
a
h
o
o
 P

ip
e
s

Uniform Accessibility           

Modularity           

Lifting & Normalisation           

Mapping GUI           

Schema Matching /

Alignment Support
          

Consensus Building

Features
          

Model-Level Structural

Heterogeneity

Reconciliation

          

Model-Level Semantic

Heterogeneity

Reconciliation

          

Instance-Level Semantic

Heterogeneity

Reconciliation

          

Context Representation           

Flexible Language

Binding
          

Query Reformulation           

Query Plan / Optimisation           

Integration Component

Generation
          

Mapping Verification           

Mapping Reusability           

Mapping Inference           

 Supported  Not Supported Partly Supported

EII Suites EAI Suites Mapping Tools Other Solutions

M
a
p

p
in

g
 M

a
in

te
n

a
n

c
e

G
e
n

e
ra

l
M

a
p

p
in

g

D
is

c
o

v
e
ry

M
a
p

p
in

g
 R

e
p

re
s
e
n

ta
ti

o
n

M
a
p

p
in

g
 E

x
e
c
u

ti
o

n

Table 3.3: Metadata mapping solutions evaluation summary

the mapping representation and execution phases, and disregard the discovery phase. Both research and
commercial solutions have in common, that the support for mapping maintenance is rather weak.

60 Chapter 3. Metadata Mapping

So far, the majority of mapping solutions operates in closed environments on the basis of metadata avail-
able in structured data sources. Yahoo Pipes is the only Web-based solution that allows users — also non-
experts — to create and share mapping specifications (pipes), which integrate metadata from several sources,
on the Web.

Part II

Methodology and Concepts

61

Chapter 4

Towards A Web-based Metadata
Integration Architecture

After having presented the technical background and the related work in the previous chapters, we now
introduce the main contribution of this thesis: a Web-based metadata integration architecture that conceives
the data sources to be integrated as Web services that are accessible by their URLs via the HTTP protocol.
Without forcing domain experts to adopt a pre-defined schema, as it is the case in global-ontology approaches,
we want to give them the possibility to query multiple autonomous and distributed metadata services by
formulating SPARQL queries over a selected target metadata schema.

In Section 4.1, we first analyse the goals to be achieved by such an architecture. Thereafter, in Section 4.2,
we give a high-level overview of the principal metadata architecture, discuss a set of technical properties that
influence our design, describe the technical components involved, and briefly motivate the technology choices
for our implementation. Then, in Section 4.3, we describe how domain experts can utilise these components to
realise a certain metadata integration scenario. Finally, in Section 4.4, we define the functional requirements
for the mapping model we will focus on in the subsequent chapters.

4.1 Goals
From an institutions’ perspective there is often a strong need to keep in place already existing systems and
the metadata stored therein. Due to technical reasons but also because of legal issues (e.g., digital rights
management) many institutions are not able to export their metadata into a central data store or adjust their
systems to requirements coming from external systems. So rather than materialising metadata from various
sources into a central data store, we need to provide a virtual integrated system that builds on top of existing
architectures and integrates metadata on demand. In the following we describe the major high-level goals
to be achieved by such a system. Although most of them originate from the well-known problems of data
integration [SL90], we believe that it is worth to investigate them further from the perspective of metadata
integration.

4.1.1 Any Kind of Data, any Type of Data Source

A given system may store highly structured metadata in a relational database, maintain semi-structured meta-
data descriptions like XML or HTML documents, or even store completely unstructured metadata, such as
files on the file system. In case that two data sources maintain structured metadata, the applied data mod-
els might still differ in their usage of constraints. Depending on the data model’s structural properties, data

63

64 Chapter 4. Towards A Web-based Metadata Integration Architecture

sources are accessible through different interfaces including Web browsers, structural query languages (e.g.,
SQL), unstructured queries (e.g., Google-like full-text search), or domain specific interfaces such as metadata
exchange protocols (e.g., OAI-PMH1, Z.39.502).

Since our goal is to build a metadata integration framework that can be used by higher level applications
to access metadata from various sources, providing a full-text search interface is insufficient. We rather need
to offer a more expressive, structured query language.

4.1.2 Reconciliation of Heterogeneous Metadata

Metadata schemes define the semantics of metadata. Many institutions use standardised schemes (e.g., TV-
Anytime [ETS06], Dublin Core [DC06], MARC-21 [LOC07c]), others apply their own proprietary schemes,
which are tailored to their specific needs. The complexity of metadata schemes ranges from flat element lists
(e.g., Dublin Core) to complex ontologies (e.g., CIDOC-CRM [ISO06a] or FRBR [IFL97]). As soon as there
is more than one metadata schema involved it is likely that semantic conflicts occur. The common approach to
deal with this issue is to specify metadata mappings between schema elements. In the digital library domain
such mappings are called crosswalks and are already available at least for some standardised schemes3.

Client applications usually formulate their queries over a certain target metadata schema4 and expect the
results to be returned according to that schema. If for instance an application provides a query interface for
the Dublin Core Element Set, the queries are formulated using the DC elements (e.g., return all books with
dc:creator XY) and also the expected results should contain DC elements. It is the task of the integration
system and its built-in mapping mechanism to translate between queries formulated over a chosen target
schema into queries over other source-specific schemes.

4.1.3 Location Transparency

The metadata themselves should not be replicated or moved into a centralised storage system but must remain
within the institutions that host the metadata. For a client that queries multiple systems in order to retrieve
metadata that match a certain query-criterion, the location of the involved data sources should be transparent.
Therefore, we must build components that establish this transparency and hide the technical details of the
involved data sources from the requesting client application. As a technical prerequisite, we assume that each
institution is connected to the World Wide Web and has the possibility to serve its metadata using common
Web technologies.

Transparent access to decentralised data sources requires discovering and retrieving metadata from rel-
evant sources without client intervention. Since factors like connection speed or the technical capabilities
of a data source can affect query response time of the integration system, these aspects should be taken into
account when formulating a query plan. They are, however, out of the scope of this work.

4.2 Architecture Overview

In this section, we discuss the technical properties of our metadata integration architecture. Thereafter, we
present its main technical components and the standards we will use for its implementation.

1The Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH),http://www.openarchives.org/oai
2Z.39.50 Gateway: http://www.loc.gov/z3950/gateway.html
3A list of mappings (crosswalks) between various metadata formats: http://www.ukoln.ac.uk/metadata/

interoperability/
4In other contexts, the target metadata schema is also called mediation schema or global schema.

4.2. Architecture Overview 65

4.2.1 Technical Considerations
The field of metadata integration has been widely studied in the past and today there exists a variety of
established standard architectures we have to consider in our design. Furthermore, we are facing an open
distributed environment in which well-known principles from the closed-world database do not hold anymore.
In the following we will elaborate on these issues and furthermore discuss, why metadata updatability is out
of the scope of this thesis.

The Spectrum of Metadata Integration Architectures

The purpose of any integration systems is to give users or applications the ability to query information of
different kind from different sources and to return the results in a uniform way. Figure 4.1 illustrates a
taxonomy of known architectures for querying heterogeneous data and describes what kind of data can be
integrated by a certain architecture type; Universal Database Management Systems, for instance, can integrate
native structured data, while (Meta)search-Engines are designed for unstructured native data.

Materialised Systems

Systems for querying
heterogeneous data (sources)

Virtual Integrated Systems

Universal DBMS Data Warehouses Federated
Databases

(Meta)search
Engines

Mediated Query
Systems

move the data let the data where it is

- native structured
data

- native and
derived structured
data

- unstructured
native data

- mostly structured
native data

- unstructured,
semi-structured, or
structured native
data

Figure 4.1: A taxonomy of known architectures for querying heterogeneous data [DD99]

We can distinguish between two main classes of integration systems: materialised and virtual integrated
systems.

In materialised systems, metadata are integrated a priori into a central data store. Data warehouses are an
example for the materialised approach: they provide a central data store that gets populated once and retrieves
updates via periodic data imports. The central store defines a so called star-schema, which has been designed
bottom-up for a certain purpose (e.g., business reporting, data analysis) and integrates the elements of the
data source specific schemes. The advantage of materialised systems is the query response time, which can
be as low as in traditional database systems. The drawbacks are the lacking up-to-dateness of the integrated
metadata, which depends on the update frequency, and the redundancy of metadata.

Virtual integrated systems integrate metadata on demand from decentralised data stores. Queries are
executed in a decentralised manner and the integration system must translate and forward the queries to the
right data sources. The query translation process relies on previously defined schema mappings, which makes
this approach more difficult to implement. The advantage of a virtual integrated system is that the data sources

66 Chapter 4. Towards A Web-based Metadata Integration Architecture

remain autonomous, that only those metadata required for answering queries are transmitted and that those
metadata are always up to date. On the other hand, the involved data sources must always be available, and
the query response times heavily depend on the quality of the network connection.

In the previous section we have already outlined our motivation for following the principles of virtual in-
tegrated systems: the involved institutions want to keep their metadata in their own data stores. Furthermore,
the intent of our architecture is to provide access to up-to-date metadata from a large amount of data sources
for search and discovery purposes. Metadata analysis or other query latency time critical tasks are out of the
scope of this thesis.

Regarding the various types of virtual integrated systems presented in Figure 4.1, our architectural choice
clearly falls on mediated query systems, since they support any kind of metadata: unstructured, semi-structured,
and structured metadata. A mediated query system supports a virtual view over the integrated data sources
and does not store any data itself. It obtains the relevant data from the sources and uses the answers from the
sources to answer user queries. Levy [Lev99] summarises the problems mediated query systems aim to solve
as follows:

• Data sources can contain closely related and overlapping metadata.

• The systems where metadata are stored have different query capabilities and expose distinct interfaces.

• Metadata is stored in multiple data models and corresponds to various incompatible schemes.

The Open-World-Assumption and its Implications

Database systems are based on the so called closed-world-assumption, which states that what is not explicitly
known to be true, is false. It is assumed that the available knowledge base is complete and that a system has
full control over the available information. A variety of techniques, which contribute to the high performance
and efficiency of today’s database systems, are based on the closed world assumption: integrity constraints,
data validation mechanisms, query optimisation algorithms, etc.

In metadata integration scenarios, which follow a virtual integrated approach, the closed-world assump-
tion does not hold anymore. It is replaced by the so called open-world-assumption, which states that what is
not explicitly known to be true, is unknown. It assumes that no single observer has a complete knowledge
base or control over the available information.

We can identify several implications caused by open-world-assumption:

• The maintainers of the data sources decide which metadata to expose. Therefore, it cannot be guaran-
teed that the results returned to the user or requesting application are complete.

• Validation, as it is known from database systems, is possible only to a limited extent within the bound-
aries of the open-world-assumption. It might even be out of place because it is not possible to determine
if a given metadata set violates the constraints of a superimposed schema.

• Query optimisation requires different techniques than those known from the database domain. We
cannot estimate the cost of a query using a complete, source-spanning data dictionary but must rely on
other methods such as query containment and capability-based optimisation.

Metadata Updatability

An issue that is closely related to the closed- and open-world-assumptions, is the updatability of integrated
metadata.

Even in controlled database environments, where the contained data are known to be complete, supporting
updates through mappings is still a critical, only partially resolved issue. Since mappings in databases are
typically realised as views, this issue is also known as the view update problem and has first been investigated

4.2. Architecture Overview 67

by Dayal and Bernstein [DB78]. They observed that finding a unique update translation even for very simple
views is rarely possible due to the intrinsic under-specification of the update behaviour by a view, i.e., a view
that maps a source to a target schema does not necessarily define the corresponding mapping relationship for
the opposite direction. Consequently, today’s commercial database systems provide only limited support for
updatable views.

What is difficult to achieve in close-world systems is hardly possible in uncontrolled, open-world environ-
ments: virtual integrated systems, especially those based on mediated query systems, generally do not support
metadata updatability and provide read-only access to the metadata they integrate from various sources. Since
our metadata integration approach will follow such an architecture, we will give users and applications the
possibility to retrieve metadata via a structured query language but abstain from providing write access or
update functionality.

4.2.2 Components

Our integration architecture comprises two main components, which are typical for a mediated query sys-
tem: wrappers and mediators. Additionally, we employ an integration registry that is aware of available
components and their technical as well as semantic query capabilities. All components in our integration
architecture expose their functionality on the Web via dereferencable URIs. Thus, we can already achieve
a certain degree of technical interoperability by building our metadata integration architecture on-top of the
Web Architecture.

In Figure 4.2, we illustrate the main architectural components of our architecture using an example that
involves two metadata sources: one (source A) that maintains its metadata in a relational database and another
one (source B) that stores metadata descriptions in some XML-based format. Both data sources are encap-
sulated by wrapper components, which expose the semantics of the provided metadata in terms of a source
schema (S A and S B), and provide a uniform query interface for requesting applications. The mediator also
provides a query interface, exposes a target schema S T , and maintains mappings (MAT and MBT) between
the two source schemes and the target schema. The integration registry maintains references to all involved
architectural components as well as to all schemes and mapping specifications.

Wrappers

Wrappers encapsulate local data sources and provide query access to the metadata stored therein. They accept
queries formulated in a certain query language and return the matching metadata in a unified format. The
semantics of metadata is expressed and exposed in terms of a source schema and it is the wrapper’s task to
translate between the source schema and native data descriptions (e.g., RDBMS tables, XML files, flat-file
structures).

The purpose of wrapper components is to lift the involved data sources to a common technical level, which
is necessary to overcome the technical heterogeneities between the involved data sources. This requires that:

• Each wrapper exposes its metadata using a common data model.

• Each wrapper describes its source schema using a common schema definition language.

• Each wrapper provides an interface that accepts queries expressed in a common query language.

Since we want to provide a Web-based metadata integration architecture that conceives the data sources
to be integrated as Web services, the applied data model, schema definition language, and query language
should also be Web-enabled, i.e., they should incorporate common Web standards and protocols such as
HTTP and URI.

68 Chapter 4. Towards A Web-based Metadata Integration Architecture

Mediator

MAT MBT

Q

QA QB

ST

Data Source Wrapper (A)

SA

Data Source Wrapper (B)

SB

RDB
RDB
XML

Integration Registry

STSASB

MAT MBT

R

RA RB

Figure 4.2: Components of a mediator-wrapper architecture

Mediators

Mediators accept queries from the application layer, unfold them into sub-queries, disperse them to local data
sources where they are executed, and finally combine and present the results to the client application. A me-
diator defines a target schema that is exposed to the client and can be used for formulating structured queries.
The process of unfolding queries relies heavily on previously defined mapping specifications between the
target and the source schemes, which are exposed by the wrappers. Mapping specifications are part of more
extensive integration specifications, which contain all the information required for the query unfolding pro-
cess. Integration specifications contain all the information for setting up a mediator component instance; the
mediator itself is a generic component.

In principle, mediators have to fulfil the same technical requirements as wrappers: they must operate
on the same data model, schema definition language, and query language as wrappers. Additionally, they
must be able to process mapping specifications, which are based on the data models and schema definition
languages that are used by wrappers and mediators.

Integration Registry

Each artefact that is part of the integration architecture (e.g., wrappers, source schemes, mediators, target
schemes, mappings) is registered with the integration registry. By introducing such a registry we ensure
that data sources can be discovered and enforce a certain community aspect in metadata integration: we
allow institutions or organisations, which elaborate an integration scenario, to publish their integration- and
mapping-specifications. Other institutions can reuse these specifications and the integration registry could
derive additional operational mappings from existing ones.

4.2. Architecture Overview 69

Integration specifications describe the technical details of a wrapped data source: its access parameters
(e.g., URL), the source schema it exposes (e.g., Dublin Core), and also other technical information (e.g.,
average response time; data statistics) required by the mediator for unfolding queries. A central aspect each
integration specification must cover is the information about structural and semantic mismatches between
source and target schemes. We denote this kind of information mapping specification; it contains the mapping
relationships among the elements of the source and the mediator’s target schemes.

Furthermore, it is likely that two data sources, even if they expose the same schema, do not contain the
same contents, which results in queries that cannot be answered by all data sources. Hence, during mapping
execution time, the mediator needs a mechanism to determine if a certain wrapper is relevant to a query. For
our metadata integration architecture, we follow the approach of parameterised views [PV99] and compile
mapping specifications into a capability description, which contains a set of query templates, each defining
how to rewrite the conditions of a query over the target schema into conditions over the source schema. A
query transformer, which is part of the mediator, takes the capability description and unfolds the original
query by substituting its conditions. In this way, templates reflect the operational mappings as well as the
set of possible queries and the mediator can handle semantic mismatches and determine if a data source is
relevant to a query. Further details on the generation of query templates as part of capability descriptions will
be given in the subsequent chapters.

4.2.3 Standards-based Metadata Integration

As we have seen in the previous section, building a mediated metadata integration system requires a common
schema definition language, a common data model and a query language that operates on this data model. We
believe that the usage of standards in integration scenarios is a major step forward towards interoperability,
at least on a technical level. Therefore we have decided to rely on the Resource Description Framework
(RDF) [W3C04b], the RDF Vocabulary Description Language (RDFS) [W3C04a], and the SPARQL Query
Language for RDF [W3C08].

The main design goal of RDF is to provide a framework for representing metadata about arbitrary re-
sources in a way so that machines can exchange and understand the meanings. Another often unfamiliar
aspect of RDF is that it has been designed for metadata integration and aggregation5 purposes: the RDF
data model is a directed labelled graph, which is simple and yet powerful enough to allow the description of
metadata of any kind originating from various heterogeneous sources [PGMW95].

RDFS is a language for describing ontologies and schematic descriptions in a machine-processable way.
It provides the constructs and the expressiveness to describe the semantics of data. Although it was originally
not intended to be used for data integration, we can benefit from its popularity, which is reflected in the
availability of various RDFS-specific tools. One can, for instance, resort to existing RDF APIs (e.g., Jena6,
RDF databases (e.g., OpenLink Virtuoso7, Oracle RDF8), and also already existing wrapper components
(e.g., D2RQ [BS04]).

SPARQL is a query language that operates on the RDF data model and can be used to express queries
across diverse data sources. Given that wrappers can translate between RDF and native data models, we can
use this query language for accessing the data sources in an integrated fashion. Therefore, in our architecture,
each wrapper and mediator exposes a SPARQL query interface in terms of a Web Service definition.

5The W3C RDF Data Access Working Group is working on this issue, has defined data access use cases and has released a W3C
recommendation for the SPARQL query language in January 2008

6The Jena Semantic Web Framework: http://jena.sourceforge.net/)
7Virtuoso RDF DB: http://virtuoso.openlinksw.com/wiki/main/Main/VOSRDF
8Oracle Spatial RDF: http://www.oracle.com/technology/tech/semantic_technologies/index.html

70 Chapter 4. Towards A Web-based Metadata Integration Architecture

4.3 Metadata Integration Workflow
In the following, we describe the interaction between a client, which can be a domain expert or an application,
and our propose metadata integration architecture. We assume that the client requires search functionality on
multiple institutions based on the Dublin Core metadata schema and that one wrapper encapsulates a rela-
tional database containing proprietary ONB metadata, while the other exposes BBC TV-Anytime metadata
that is natively stored in an XML data source. Figure 4.3 illustrates9 the interactions between the client and
the proposed metadata integration architecture as well as the workflow within the system.

Integration Registry

STSASB

MAT MBT

Mediator

MAT MBT

ST

ONB Wrapper

SA

RDB

BBC Wrapper

SB

RDB
XML

1

1

2

3
MAT

MBT

4

4

5

5

6

7

Figure 4.3: Metadata integration workflow

1. Each wrapper component that exposes metadata from a certain data source is registered at the integra-
tion registry. It publishes a basic profile, which is a human readable description, an interface description
and the wrapper’s source schema. In our example, the published profiles points to the proprietary ONB
(S A) and the TV-Anytime schema (S B).

2. A client who wants to query multiple autonomous sources using a specific target schema S T (in our
case Dublin Core) contacts the integration registry and checks if there are existing integration and
mapping specifications available for the wrappers to be integrated. If this is not the case for a certain
wrapper, the domain expert must create one (MAT and MBT).

3. The client application uses the integration specification to set up the generic mediator component,
expresses a query over a previously selected target metadata schema and executes it at the mediator.

4. The mediator component rewrites the query over the target schema into queries over the source schemes,
which requires that the operational mappings between the target (Dublin core) and the source schemes

9In this illustration, we have omitted the reference pointers between the registry and the mediator and wrapper components. The
numbers in the figure correspond to the numbering in the following description.

4.4. Functional Requirements 71

(TV-Anytime, ONB) are available in terms of mapping specifications. Based on that, the mediator
unfolds the original query into rewritten sub queries and forwards them to the wrappers.

5. The wrappers receive the queries from the mediator and answers them from the data available in the
encapsulated data source. For the relational data source, the corresponding wrapper must translate
the mediator’s query into a native SQL query; for the XML data source, XQuery could provide the
necessary native access.

6. The mediator collects the query results that are returned from the wrappers, combines them and returns
them to the client in a uniform way.

7. For reusability purposes, the client may publish the integration specification in the integration registry.

4.4 Functional Requirements
Earlier, in Section 3.1, we have defined metadata mapping as being a cyclic process consisting of four subse-
quent phases: discovery, representation, execution, and maintenance. Given the metadata integration archi-
tecture presented in the previous section, we now discuss and identify the functional requirements, denoted
as FR, we have to consider for each of these phases in the conceptual design and the implementation of our
mapping model we will focus on in subsequent chapters.

4.4.1 Mapping Discovery
The first mapping phase is mapping discovery. It is concerned with determining semantic mapping relation-
ships among incompatible metadata schemes and usually supported by automated matching tools. Although
the development of such tools is out of the scope of this work, we at least want to consider the requirements
that enable mapping discovery in an open, Web-based environment.

Enabling Collaborative, Intellectual Mapping

Finding another automatic or semi-automatic mapping discovery algorithm is out of the scope of this work.
Much research has already been conducted in that area and found its implementation in various scientific
prototypes, but, as we have discussed in Section 3.4, not so much in commercial mapping solutions.

In the context of this thesis, we take one step back and rely on human intellect as the primary source for
determining mapping relationships. Mappings designed by domain experts are collected and build the basis
for proposing suitable mappings to other domain experts that need to create mappings in a similar context.
A critical mass of domain experts in a certain domain can produce a pool of mapping specifications, which
can then serve as input or blue-print for other domain experts. A mapping mechanism can support this by
considering the following functional requirements:

• FR 1: Mapping specification must be sharable. The technical barriers for accessing metadata schemes
and mappings must be as low as possible.

• FR 2: Mapping specifications must be readable for humans and machines. Domain experts must be
able to read and comprehend mappings created by others and also applications must be able to process
and interpret them correctly.

• FR 3: Mapping specifications must be reusable: to a large extent, the Web consists of Web pages
that have been created by simply copying and pasting and then adapting them to changing needs. In a
similar manner, this should also be possible for mapping specifications; a mapping mechanism should
give domain experts the possibility to take (copy) mappings created by others and adapt (paste) them
to their specific needs.

72 Chapter 4. Towards A Web-based Metadata Integration Architecture

At an advanced stage, we can introduce automatic mapping algorithms that operate on the pool of avail-
able, manually crafted mapping specifications. They could, for instance, exploit transitive mapping relation-
ships among distinct schemes and derive additional mapping specifications from existing ones. In the context
of this work, however, this is a long-term goal and therefore out of the scope.

Bottom Up Mapping Approach

Schemes that need to be mapped are often extensive and contain a large amount of schema elements, which
is a factor that makes metadata mapping an extremely complex task. This is where automatic discovery
algorithms can support domain experts in finding mapping relationships. Most algorithms (see Section 3.2.2)
take complete source and target schemes as input and try to determine mapping relationships among all their
elements.

It is a fact that domain experts often need to integrate only a subset of the metadata available in a data
source. Therefore they also need to consider only a subset of all available schema elements. A digital library
repository, for instance, which maintains metadata about digital images, might also store other institution-
specific data that are irrelevant for a certain integration context. We assume that domain experts concentrate
on the metadata relevant for their context and only need to create mappings for a subset of all schema el-
ements. Over time, when additional metadata are selected from a source, the number of mapped schema
elements can increase.

Our mapping mechanism must support such a bottom up mapping approach as follows:

• FR 4: If we allow domain experts to map only a selected set of elements of a certain schema, then
a mapping solution must support element-based identification, i.e., the elements must have unique
identifiers that can be referenced from outside a schema.

• FR 5: Mapping specification must provide at least basic means for representing the mapping context.
Distinct domain experts are likely to map different schemes differently, whereas each mapping is true
in a domain expert’s interpretation context but can be false in another expert’s context.

4.4.2 Mapping Representation
Closed-world, stand-alone mapping solutions can employ their own format for storing and serialising map-
ping specifications because there is no need to exchange them with other applications. In an open, Web-based
environment, the mapping specifications become part of the Web and are accessible by any client that sup-
ports the Web protocols. A mapping representation mechanism that exposes mappings on the Web must
consider that and publish mappings in an appropriate format.

Webify Mappings

The Web has become the primary medium for sharing and accessing information available in distributed
locations. From the previous requirements, we already know that our mapping mechanism must support some
of the features Web technology already provides (e.g., sharing, reusable contents). Therefore, it makes sense
to seamlessly integrate the whole mapping mechanism with the Web Architecture [JW04]. By following the
principles of Linked Data, we also guarantee that mappings are published in a human- and machine-readable
form and that they are easily accessible by simply dereferencing URIs. These principles, adapted to the
context of this thesis, are [BL06]:

• FR 6: All schemes, schema elements, and mapping specifications must have URIs as names.

• FR 7: They must have HTTP URIs so that people can look up those names.

4.4. Functional Requirements 73

• FR 8: When someone (e.g., a domain expert) or something (e.g., an application) looks up a URI, we
must provide useful information, i.e., interpretable data for humans and machines

• FR 9: We must include links to other URIs, so that they can discover more things, i.e., other schemes,
mappings, SPARQL endpoints, etc.

For the design of our mapping model, which provides the primitives to represent mappings among meta-
data models, this implies that all metadata models and their elements, as well as all elementary mapping
building blocks must have URIs assigned. The responses returned when dereferencing URIs must deliver
a result appropriate for the requesting client. Content Negotiation10, a built-in HTTP feature, is a suitable
mechanism for delivering various representations of the same resource when dereferencing an HTTP URI.

Generic Mapping Model — Flexible Language Binding

A mapping model must provide the primitives a domain expert requires to reconcile the semantic and struc-
tural heterogeneities on the metadata model and instance level. This calls for a model that allows the definition
of mapping relationships between schema elements and also considers the metadata instance level.

One can either define a separate model for each schema definition language or follow a generic approach
that provides mapping primitives on an abstract level. The advantage of the generic approach is the possibility
to extend the model in order to provide mapping support for a variety of languages. The clear disadvantage
is the increased complexity and additional design effort compared to language-specific mapping models.
Although we will mainly focus on mappings between RDFS schemes, we follow the generic approach in
order to provide future extensibility. Therefore further functional requirements to provide are:

• FR 10: A generic mapping model that captures all the necessary constituents for expressing mappings:
the source and target schemes to be mapped with all their elements, the instance metadata descriptions,
and the mapping relationships among schema elements together with their instance transformation
functions. Since such a model must in fact be able to represent metadata models as well as mappings
among them, we denote it as abstract mapping model.

• FR 11: The abstract mapping model must be flexible enough to support bindings to concrete M2
schema definition languages.

4.4.3 Mapping Execution

After mappings have been specified in terms of mapping specifications, we need to translate them into a
machine-interpretable and executable form, whereas that form largely depends on the applied language bind-
ing. When mappings are generated between XML metadata schemes, one must be able to generate either
XSL stylesheets for transforming metadata from one representation to another; or XQuery code, which al-
lows to query XML data sources in a view-like manner. For mappings among RDF metadata, one must be
able to generate SPARQL CONSTRUCT queries that retrieve metadata from an RDF source and return them,
also in a view-like manner, in the representation required by the requesting agent.

In a second step, a mapping mechanism must provide the means to execute mappings at run-time. If
mappings are translated into executable queries, one must provide mediation endpoints that accept these
queries and return the results from the integrated data sources. In a Web-based mapping environment, such
an endpoint is usually realised as a Web application that is accessible via a URI and provides the necessary
query processing capabilities.

We can summarise the mapping execution requirements as follows:

10A detailed specification for content negotiation is available at: http://www.ietf.org/rfc/rfc2295.txt

74 Chapter 4. Towards A Web-based Metadata Integration Architecture

• FR 12: It must be possible to translate mapping specifications into language-specific queries or trans-
formation stylesheets.

• FR 13: The results of such a translation must be executable by Web-based mediation endpoints.

4.4.4 Mapping Maintenance
A mapping registry supports interoperability efforts by enabling the reuse of existing metadata models and
mappings. Its basic task is to provide access to all models and mappings submitted by domain experts.
The Web can fulfil the functional requirements of a mapping registry. It can organise all mapping-relevant
information within a certain URI space and deliver models as well mapping elements whenever their URIs
are dereferenced.

Since metadata mappings represent valuable information for both humans and machines, a mapping reg-
istry must be able to deliver registry information in various formats. Humans typically use Web browsers
to view information represented in (X)HTML, machines require machine-processable formats such as RDF.
Thus, the mapping registry must be able to provide both.

We can define the following functional requirements for the mapping maintenance phase:

• FR 14: We must provide a Web-accessible mapping registry that maintains references to known map-
ping specifications and corresponding metadata schemes.

• FR 15: The information exposed by the mapping registry must be provided in a human- and machine
readable format.

4.5 Summary
In this chapter, we have first defined the high-level goals our Web-based metadata integration must achieve.
After a discussion on important technical properties of our architecture, such as the adherence to the open-
world-assumption or the non-updatability of metadata, we have described its main technical components and
the technologies we will apply for realising them. In order to illustrate the interactions between the domain
expert and the proposed metadata integration architecture as well as the internal processing steps, we have
described the metadata integration workflow our architecture follows. As a result of this chapter and as input
for the subsequent chapters we have defined a set of functional requirements, which we must consider in the
design and the implementation of our Web-based metadata integration architecture.

The outstanding difference between the proposed metadata integration architecture and existing mapping
solutions lies in its Web-focus. We do not provide another heavy-weight standalone mapping suite, which
can reconcile heterogeneities among closed-world systems (e.g., RDBMS), but build an open, light-weight
mapping solution that integrates with the architecture of the World Wide Web.

Chapter 5

Abstract Mapping Model

In the previous chapter, we have presented the principle properties of our Web-based metadata integration ap-
proach and derived a set of mapping-related requirements that influence the design of our mapping solution.
Here we elaborate on the mapping model that builds the core of the mapping mechanism we provide in order
to deal with structural and semantic metadata heterogeneities. It defines the machine-internal representation
— the abstract syntax — of the primitives we provide for expressing mapping relationships between distinct,
incompatible schemes. The extent to which heterogeneities can be resolved largely depends on the expres-
siveness of the supported language primitives. If, for instance, a mapping model does not provide instance
transformation functions, instance-level heterogeneities such as terminological mismatches or scaling/unit
conflicts cannot be resolved.

In this chapter, we define and specify an abstract mapping model that is independent of any schema defi-
nition language and provides the basis for language-specific extensions. After outlining our overall approach
in Section 5.1, we formally describe the generic metadata model for representing the source and target meta-
data schemes to be mapped in Section 5.2 and provide a formal specification in Section 5.3. Thereafter, in
Section 5.4, we extend the generic metadata model with mapping capabilities and provide a formal specifi-
cation for the abstract mapping model. Finally, in Section 5.5, we describe the behavioural aspects of the
abstract model in order to reflect the four mapping phases described in Section 3.1.

5.1 A Generic Mapping Approach
We can identify two main requirements an abstract mapping model must cover:

1. It must provide the primitives for expressing mapping relationships between the source and target
schemes to be mapped.

2. It must be possible to hook these mapping relationships to schema elements expressed in a certain
schema definition language

There are two possibilities to reach these requirements: either one builds an abstract mapping model on-
top of the abstract syntax of a specific schema definition language (e.g., XMLS, RDF/S, SQL-DDL) and thus
extends a certain language with mapping capabilities, or one follows a generic approach, meaning that on an
abstract level, the mapping model is capable of representing mappings between the elements of a generic data
model. With language-specific extensions it is possible to provide language-specific mapping primitives.

In our approach, we follow a generic approach and define an abstract mapping model that is generic in
the sense that it embraces the common elements required for mapping any kind of metadata schema. For
mapping schemes expressed in a certain schema definition language, it requires extensions that go along

75

76 Chapter 5. Abstract Mapping Model

with language-specific characteristics. In RDF/S or OWL, for instance, properties are handled as first class
objects and can be defined outside the scope of a class. This is not possible when expressing metadata
using the relational model, which requires the correspondences of properties, called attributes, always to be
expressed within the scope of a relation. Language specific extensions of the generic mapping model can
take these issues into account. Figure 5.1 illustrates the relationship between the generic mapping model and
the language specific extensions.

Generic
Mapping Model

RDF/S Mapping
Model

XML Schema
Mapping Model

RDB Mapping
Model

Figure 5.1: The generic mapping model with language-specific extensions

5.2 Representing Source and Target Metadata
Graph database models [AG08] are the predominant formalism for representing metadata in integration con-
texts. A graph is a data structure, consisting of a collection of vertices (nodes) and edges that connect pairs
of vertices. Especially directed graphs with labelled edges, i.e., directed labelled graphs, have found their
application in the area of data integration, as for instance the semi-structured data model [Abi97]. A directed
labelled graph G is a triple G =< V, E, L >, where V is a set of distinguishable vertices, E the set of edges,
and L the set of distinguishable labels that are assigned to the edges.

Data models such as RDF/S are based on graph data models by their nature. Since the hierarchical tree
model can be considered as specialisation of a graph, also XML, a semi-structural data model organised in a
hierarchical fashion, can be mapped to a graph. Also the prevalent relational model can, as [Cyg05] shows,
be mapped to a graph structure.

Our approach of representing metadata information objects follows the already well-established principles
of using directed labelled graphs as data model. For covering the metadata building blocks on each abstraction
level (see Section 2.2.2), we introduce a multi-layered, directed-labelled graph model, where the model on
each abstraction level is represented in terms of a graph G. The elements of a graph on a certain level
are instances of the graph-elements residing one layer above. This can be expressed by associating the
corresponding graph elements using a special edge, having the label type. Regarding metadata information
objects, we can identify three types of graphs:

• The language graph represents the abstract syntax of a schema definition language. In other words, the
language graph represents the elements and the structure of the metadata meta-model.

• The schema graph constitutes the elements and the structure of a metadata schema, thus the metadata
model. These elements are instances of the elements defined in the language graph.

5.2. Representing Source and Target Metadata 77

• The instance graph contains the elements and content values forming a metadata instance description.
They are instances of the elements defined in the schema graph.

In Figure 5.2, we sketch an excerpt of the illustrative metadata description presented in Section 2.1 and
arrange its building blocks using a multi-layer directed labelled graph approach:

M1 - Model Graph

M0 - Instance Graph

Person
Name

StringFamily
Name

&1

Given
Name

Doe

John

M2 - Language Graph

Complex
Type

Definition

Element
Declaration

Simple Type
Definition

FamilyName

GivenName

xs:element

xs:element

xs:type

xs:type

...

...

content content

type definition

...

John

Label

Legend

Labelled Edge

Vertix (Literal Node)

Vertix (Resource Node)

type

datatype

Figure 5.2: XML metadata represented as three layered, directed labelled-graph

The instance graph contains a distinguishable vertex (&1) representing an instance of a PersonName,
which is connected via two directed labelled edges (FamilyName, GivenName) with two vertices (Doe and
John respectively) containing instance values. To distinguish between the two kinds of vertices, we denote
each distinguishable vertex as Resource Node and a vertex containing a value as Literal Node. The
resource nodes and labelled edges in the instance graph are connected to the model graph via type relation-
ships. The literal nodes have datatype relationships to datatypes defined in the model or language graph.

The model graph defines the metadata schema elements: PersonName, FamilyName, GivenName, String.
Assuming that the structure and semantics of the schema graph is expressed in XML Schema, the labels of
the edges connecting these elements and building up the schema structure are defined by the XML Schema
abstract syntax or component model [W3C06]. The xs:type relationship within the model graph is XML
Schema-specific and assigns simple type, complex type, or data type definitions to elements. The dotted type
relationships have also instance-of semantics and connect the elements in the model graph with those in the
language graph.

78 Chapter 5. Abstract Mapping Model

5.3 Generic Graph Model Specification
When following a generic mapping approach, we require two types of data models: one for representing the
metadata schemes to be mapped, and another one for reflecting the abstract mapping model. Our goal is
to build both types of data models on a common core data model that resembles the structure of a directed
labelled graph.

Figure 5.3 illustrates the main components of that model from a static perspective in UML notation. For
the model elements we adopted the naming conventions used in the RDF abstract syntax, which is also based
on a graph data model. An RDF graph is a collection of triples, each consisting of a subject, a predicate, and
an object [W3C04e].

Triple

- uri: URI
Graph

Node

- uri: URI
Resource

- value: String
Literal

object

predicate
subject

1

0..* 1..*1..*

1

1

1..* 1

type

11..*

datatype
0..*

0..1

Figure 5.3: The generic data model from a static perspective

A Graph is uniquely identified by a Uniform Resource Identifier (URI) and contains an unordered set
of triples. Each Triple represents two nodes within a graph, connected by a directed, labelled edge. The
direction of an edge is given by the order of the nodes within a triple: the subject association references an
edge’s origin node, the object association its target node. The label of an edge is a resource, referenced by
the predicate association. We distinguish between various kinds of Nodes: Resource nodes are identified
by URIs, which makes them distinguishable and machine-interpretable. Literal nodes represent human-
readable labels. Within a triple, only resources can serve as subject, which makes them describable by further
triples. This is not the case for literals, which can only be the object of a triple. Triple predicates, i.e., labels
of edges, are also identified by resources and therefore distinguishable by their URIs. Each resource within a
graph has one or many type associations, which refer to the defining resource residing one abstraction level
above the respective graph. For each literal zero or one data type, which is a resource uniquely identified by
a URI, can be defined. If no datatype is assigned, the default data type xsd:string, which is a resource as
well, is applied.

There are two main differences between the RDF abstract syntax and our generic graph data model: first,
we assign URI identifiers to graphs. We require this feature because we want graphs on each meta-level
(metadata descriptions, metadata schemes) to be accessible by dereferencing their globally unique identifiers.
For RDF there exists an extension called Named Graphs [CBHS05], which extends the RDF abstract syntax
in a similar manner and permits a set of triples (i.e., a graph) to be named by an URI. Second, we introduce
an explicit type relationship for resources and an explicit datatype relationship for literals. This enables
the navigation to the corresponding typing nodes one meta-level above the respective model. In RDF, the
rdf:type property fulfils the same purpose for RDF resources. For literals, RDF concatenates the respective
datatype directly to the literal’s string representation (e.g., 5ˆxsd:integer).

5.3. Generic Graph Model Specification 79

5.3.1 Formal Definition
After the intuitive description given above, we now provide a formal definition of the generic mapping data
model. First we define the basic symbols that will be used throughout the rest of this work.

Definition 5.1 [Symbols]
Let

• N, with N = R ∪ L and R ∩ L = ∅, be the set of all nodes in a graph,

• R ⊆ N be the set of all resource nodes,

• Θ ⊆ R be the set of all types that can be assigned to resource nodes,

• L ⊆ N be the set of all literal nodes,

• D ⊆ R be the set of all data types that can be assigned to literal nodes,

• T be the set of all triples, and

• G be the set of all graphs.

Further, let

• STR be the set of strings, which are finite sequences of characters from a literal alphabet α, and

• URI ⊂ STR be the set of all Uniform Resource Identifiers (URIs) represented as strings according
to [NWG05].

Finally, if we let A be an arbitrary set, we denote P(A) the powerset of A, i.e., the set of all subsets of A.

Now we can precisely define the model elements that build up the generic mapping model and provide
the basis for further language-specific extensions.

Definition 5.2 [Node, Resource, Literal, Triple, Graph]

• A node n ∈ N is a pair n = (kn, tn) with (kn ∈ URI ∧ tn ∈ Θ) ∨ (kn ∈ STR ∧ tn ∈ D).

• A resource r ∈ R is a pair r = (ur,Θr), where ur ∈ URI denotes the associated identifier and Θr ⊆

Θ ∧ Θr , ∅ the set of associated types.

• A literal l ∈ L is a pair l = (cl, dl), where cl ∈ STR denotes the literal’s string value and dl ∈ D the
associated data type.

• A triple t ∈ T is a triple t = (st, pt, ot), where st ∈ R denotes the subject, pt ∈ R the predicate, and
ot ∈ N the object of a triple.

• A graph g ∈ G is a pair g = (ug,Tg), where ug ∈ URI denotes a graph’s unique URI identifier and
Tg ⊆ T the unordered set of triples in a graph.

The following constraints enforce that the URIs assigned to resources and graphs are unique and that
literals are distinct from resources.

∀a, b ∈ R : ua = ub −→ a = b

∀a, b ∈ G : ua = ub −→ a = b

80 Chapter 5. Abstract Mapping Model

To access the information represented in terms of the generic graph model we define a set of operators
denoted as accessors:

Definition 5.3 [Accessors]

• uri : R ∪ G −→ URI, defined as uri(x) := ux, returns the identifier of a resource or a graph.

• type : R −→ P(Θ), defined as type(r) := Θr, returns the set of all types of a resource node.

• value : L −→ STR, defined as value(l) = cl, returns the string value of a literal.

• datatype : L −→ D, defined as datatype(l) := dl, returns the data type of a literal node.

• subject : T −→ R, defined as subject(t) := st, returns the subject of a triple.

• predicate : T −→ R, defined as predicate(t) := pt, returns the predicate of a triple.

• object : T −→ N, defined as object(t) := ot, returns the object of a triple.

• triples : G × R × R × N −→ P(T), defined as triples(g, s, p, o) = {t | t ∈ Tg ∧ uri(subject(t)) = uri(s) ∧
uri(predicate(t)) = uri(p) ∧ (∃o ∈ R | uri(object(t)) = uri(o) ∨ ∃o ∈ L | value(object(t)) = value(o))},
returns all triples within a graph that match the given criteria.

5.4 Abstract Mapping Model Specification
A mapping model defines the language primitives required to reconcile the structural and semantic hetero-
geneities among metadata information objects. In our design, we let mappings also be directed labelled
graphs and therefore construct the abstract mapping model on the basis of the previously specified generic
graph model.

Since mapping requires semantic constructs for the definition of mapping relationships, we introduce the
mapping model’s elements as extensions of the elements defined in the generic graph model. Therefore, we
can define a mapping model M as being a specialisation of a directed labelled graph G, where M is a triple
M =< VM , E, LM >, with VM being the set of mapping elements, E the set of edges between distinct nodes,
and LM the set of labels taken from a fixed set of labels expressing mapping semantics. In Figure 5.4, we
present the generic mapping model from a static perspective using UML notation.

A MappingModel is a specialisation of a Graph and reconciles the heterogeneities among exactly one
source and one target graph. It comprises a set of mapping elements, whereas each MappingElement
is a specialisation of a Resource and defines a mapping relationship between one or more distinct source
resources and one target resource. This implies that a mapping element can either represent an 1:1 or
n:1 mapping relationship1. For reconciling the heterogeneities on the instance level, a mapping element can
contain a instance transformation function, represented by the class Function. A function takes an ordered
set, i.e., a list, of nodes as argument and returns a single node as result. Since a function is a specialisation
of a Resource, which in turn is a specialisation of a Node, a function can also take other functions as input
arguments, which allows nesting of instance transformation functions.

A mapping element carries an expression, which is a resource that defines the semantics of a mapping
element. As part of the abstract model, we provide the set of mapping expressions we have already defined
in Section 3.1. They have the following meaning:

• equivalent: the interpretation of the source and target resources is equivalent.

1The cardinality of mapping relationships has been discussed in Section 3.1

5.4. Abstract Mapping Model Specification 81

Triple

- uri: URI
Graph

Node

- uri: URI
Resource

- value: String
Literal

object

predicate
subject

1

0..* 1..*1..*

1

1

1..* 1

type

11..*

datatype
0..*

0..1

Mapping
Model

Mapping
Element

Function

1 0..* 0..*

1

0..*

1

source

0..*

1

target
0..*

1..*

source

0..*

1

target

0..*

1..*

argument

0..*

1 result

0..*

1

expression

{ordered}

Figure 5.4: The abstract mapping model from a static perspective

• sourceInclude: the interpretation of the source resource(s) includes the interpretation of the target
resource.

• targetInclude: the interpretation of the target resource includes the interpretation of the source
resource(s).

• overlap: the interpretation of the source and target resources overlap but do not include each other.

We do not require an exclude expression, because we can assume that, if the interpretations of two
elements exclude each other, no mapping relationship will be defined among these elements.

5.4.1 Formal Definition
In the following, we extend the definition of the generic graph data model with mapping semantics. First we
introduce the required additional symbols and then we provide a definition for the abstract mapping model’s
main conceptual entities.

Definition 5.4 [Symbols]
Let

• M ⊆ G be the set of all mapping models,

• FUN ⊆ R be the set of all instance transformation functions,

• P ⊆ R be the set of all mapping expressions, and

• E ⊆ R be the set of all mapping elements.

82 Chapter 5. Abstract Mapping Model

Definition 5.5 [Mapping Model, Function, Mapping Element]

• A mapping model m ∈ M is a 5-tuple m = (um,Tm, sm, tm, Em), where um ∈ URI denotes the mapping
model’s unique URI identifier, Tm ⊆ T the unordered set of triples in a mapping model, sm ∈ G the
source graph, tm ∈ G the target graph, and Em ⊆ E the set of associated mapping elements.

• A function f ∈ FUN is a quadruple f = (u f , θ f , A f , n f), where u f ∈ URI denotes instance transforma-
tion function’s unique identifier, θ f ∈ Θ ∧ θ f = {Function} its fixed type, A f ⊆ N the ordered set of
argument nodes, and n f ∈ N the result node of an instance transformation function.

• A mapping element e ∈ E is a 6-tuple e = (ue, θe, S e, te, fe, pe), where ue ∈ URI denotes a mapping
element’s unique identifier, θe ∈ Θ∧θe = {MappingElement} its fixed, mapping-specific type identified
by a URI, S e ⊆ R ∧ S e , ∅ the set of source elements, te ∈ R the target element, fe ∈ FUN the
associated instance transformation function, and pe ∈ P the associated mapping expression.

In order to be able to access the information provided by a mapping model, we define the following
accessors:

Definition 5.6 [Accessors]

• sourceGraph : M −→ G, defined as sourceGraph(m) := sm, provides access to the source graph of a
mapping model.

• targetGraph : M −→ G, defined as targetGraph(m) := tm, provides access to the target graph of a
mapping model.

• elements : M −→ P(E), defined as elements(m) := Em, returns the set of associated mapping elements.

• arguments : FUN −→ P(N), defined as arguments(f) := A f , returns the ordered set of all arguments
of a function.

• result : FUN −→ N, defined as result(f) := n f , returns the result node of an instance transformation
function.

• sourceElements : E −→ P(R), defined as sourceElements(e) := S e, returns a mapping element’s source
elements.

• targetElement : E −→ R, defined as targetElement(e) := te, returns a mapping element’s target ele-
ment.

• expression : E −→ P, defined as expression(e) := pe, returns a mapping element’s mapping expression.

• function : E −→ FUN, defined as function(e) := fe, returns the instance transformation function
assigned to a mapping element.

5.5 The Dynamic Aspects of the Generic Mapping Model
We have defined mapping as being a cyclic process consisting of four subsequent phases: mapping discovery,
mapping representation, mapping execution, and mapping maintenance. As shown in Figure 5.5, we can
depict that perception in the dynamic, behavioural aspect of the abstract mapping model.

The operation findMappings():MappingElement[] is a core function during the mapping discovery
phase and determines a set of mapping elements for a given source and target graph. The matching algorithm

5.6. Summary 83

+ findMappings(): MappingElement[]

+ executeMapping(Graph graph): Graph

+ registerMapping(MappingRegistry registry)

MappingModel

Figure 5.5: Reflecting the four mapping phases in the abstract mapping model

used in that process depends on the implementation of that operation on a concrete, language-specific level
and is out of the scope of this work.

The mapping representation phase does not need to be reflected in the dynamic behaviour of the mapping
model. The model itself, with its previously specified elements, provides the required primitives for speci-
fying mappings. Consequently, if no dynamic behaviour is implemented, our mapping approach supports at
least the mapping representation phase.

As discussed earlier, the characteristics of the mapping execution phase largely depend on the mapping
model’s language binding. If it is defined for XML, one can generate XQuery code or XSL stylesheets
from mapping specifications. For RDFS or OWL mappings one can generate SPARQL queries. Therefore,
mapping execution operations can hardly be generalised and should be provided at the level of a concrete
language binding (see Figure 5.1). Nevertheless, a minimum requirement that all concrete, language-specific
mapping model implementations should fulfil, is the possibility to transform a source instance graph to a
target instance graph according to the mapping specification. This kind of transformation is covered by the
operation with the signature executeMapping(Graph):Graph.

The necessary features for mapping maintenance are usually provided by a mapping registry, which keeps
track of available schemes and mappings between them. Therefore, the mapping model defines an oper-
ation registerMapping(MappingRegistry registry), which publishes the respective mapping model
in a mapping registry. If we assume that the mapping registry is Web-based, a MappingRegistry ob-
ject passed as parameter to such an operation should contain all relevant parameters (e.g., URL-endpoint,
security-credentials) required for publishing mappings on the Web.

5.6 Summary
In this chapter, we have illustrated and specified our abstract mapping model. It is based on a generic directed
labelled graph data model that is flexible enough to represent metadata models of on any abstraction level.
The mapping model itself is a specialisation of that graph and allows for the expression of mapping-specific
semantics, i.e., to model mapping relationships between source and target models. The dynamic aspects of
the abstract mapping model reflect the four mapping phases.

The abstract mapping model already provides the basic building blocks required for integrating mappings
with the Web architecture: each graph, all nodes within a graph except literals, and therefore also all map-
ping specifications including their mapping elements and instance transformation functions are identified by
URIs. In order to apply our Web-based integration architecture in a real-world integration scenario, we must
bind the abstract mapping model to a concrete schema definition language that allows us to treat URIs as
dereferencable HTTP URIs.

Part III

Implementation and Proof of Concept

85

Chapter 6

An RDFS Binding of the Mapping
Model

The abstract mapping model presented in the previous chapter defines the main concepts that are required
in order to deal with semantic and structural heterogeneities among incompatible metadata objects. Due to
its generic nature, it cannot be directly applied in a productive mapping solution because it is not bound to a
concrete M2 schema definition language.

In this chapter, we present a language-specific RDFS binding of the abstract mapping model described in
the previous section. Step-by-step we extend the model by language-specific elements to allow the expression
of mapping relationships among metadata schemes defined in RDFS. We start this chapter by giving a brief
overview of RDFS in Section 6.1 and then, in Section 6.2, describe how existing metadata schemes, such as
those presented in the illustrative examples in Section 2.1, can be lifted to the level of RDFS. In Section 6.3,
we provide an informal specification of the first step of the RDFS-specific extension of the abstract mapping
model. In Section 6.4, as a second step of the RDFS-specific extension of the abstract mapping model, we
describe how RDFS mappings can be processed in the mapping execution phase. In Section 6.5, we discuss
how an RDFS-tailored mapping registry can complete the cyclic mapping process by supporting the mapping
maintenance phase. Finally, in Section 6.6, we focus on the implementation details of the RDFS binding of
the abstract mapping model.

6.1 RDFS Overview

The Resource Description Framework (RDF) is a model for representing metadata descriptions on the Web.
RDF Schema (RDFS) is the adjacent language that allows the definition of M1-level metadata schemes1.

RDFS is a semantic extension of RDF and provides language primitives to describe groups of related
resources and their relationships [W3C04a]. The primitives themselves are also RDF resources and therefore
uniquely identified by URIs. RDFS metadata schema descriptions comprise classes and properties.

Classes define groups of semantically related resources (e.g., Person, Event) and the resources associated
with a class, called the extension of a class, represent its instances. This relationship is expressed using the
rdf:type property. A class can be a subclass of (rdfs:subClassOf) multiple other classes, which means
that all instances of a certain class are also instances of all its super-classes. Datatypes (e.g., integer) are also
classes and instances of datatypes (e.g., the integer value 5) are the members of the domain of the respective
datatype.

1In the context of RDF, metadata schemes defined in terms of RDFS are called vocabularies.

87

88 Chapter 6. An RDFS Binding of the Mapping Model

Properties in RDFS can be compared with attributes and relationships in other schema definition lan-
guages (e.g., object-oriented model) but take a different role because they are first-class objects and not
defined within the scope of a class. In order to define an RDFS class in terms of the properties its instances
may have, properties can be assigned to a class using the rdfs:domain property. This permits the dynamic
extension of classes with properties and the assignment of the same property to multiple classes. When a
property is assigned to a class using the rdfs:domain property, then any instance resource having that prop-
erty assigned is also an instance of that class. The rdfs:range property assigned to property states that the
values of a property are instances of one or more classes (e.g., integer values). Furthermore, a property can
be defined as sub-property (rdfs:subPropertyOf) of another property, meaning that all instance resources
related by one property are also related by the other.

Since RDFS is an extension of RDF, metadata schemes defined in RDFS can be serialised using any
available RDF syntax. The RDF standard proposes a serialisation into XML, called RDF/XML [W3C04d].
In practice, however, other syntaxes such as N3 [BL98] or Triple [SD02] are frequently used due to better
readability and known shortcomings2 of RDF/XML.

6.2 Lifting and Normalising Metadata Schemes to RDFS
As discussed in Section 3.1, metadata mapping postulates that all metadata schemes to be mapped are ex-
pressed in the same schema definition language. In the following we lift and normalise the schema definitions
presented in the illustrative examples (see Section 2.1) to the level of RDF Schema and use these schemes in
the subsequent sections for a stepwise introduction to the RDFS mapping model. The precise algorithm for
lifting models expressed in other schema definition languages is out of the scope of this work. Here, we refer
to the works conducted by others on that topic (see Section 2.4.3).

For the following examples, we have chosen the N3 syntax for representing schema-excerpts in a seri-
alised format. Here we only concentrate on the definition of classes and properties and omit any additional
schema information such as human readable documentation, which is usually assigned to classes and proper-
ties using the rdfs:label or rdfs:comment properties.

The first example is the RDFS representation of the metadata schema used in the XML program infor-
mation retrieved from the BBC TV-Anytime Service. When expressing the adjacent metadata schema, we
can omit purely structural elements such as ProgramInformationTable and concentrate on the elements
that express real-world semantics. In fact, the example describes a certain Program having amongst others a
title, belonging to a certain Genre with an associated genreName, and gives credits to a Person having
a givenName and a familyName. Example 6.1 illustrates how this metadata schema can be expressed in
RDFS:

Example 6.1 Parts of the TV-Anytime schema (TVA) lifted to RDFS

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix tva: <http://www.example.com/schema/tva#>.

tva:Program a rdfs:Class;

.

tva:title a rdfs:Property;

rdfs:domain tva:Program;

rdfs:range xsd:string;

.

2A detailed discussion of the major problems with RDF/XML is available at: http://www.dajobe.org/2003/11/

new-syntaxes-rdf/paper.html

6.2. Lifting and Normalising Metadata Schemes to RDFS 89

tva:genre a rdfs:Property;

rdfs:domain tva:Program;

rdfs:range tva:Genre;

.

tva:credits a rdfs:Property;

rdfs:domain tva:Program;

rdfs:range tva:Person;

.

tva:Genre a rdfs:Class

.

tva:genreName a rdfs:Property;

rdfs:domain tva:Genre;

rdfs:range xsd:string;

.

tva:Person a rdfs:Class

.

tva:givenName a rdfs:Property;

rdfs:domain tva:Person;

rdfs:range xsd:string;

.

tva:familyName a rdfs:Property;

rdfs:domain tva:Person;

rdfs:range xsd:string;

.

The next example illustrates the RDFS representation of the ONB metadata schema used for describing
digital images. From the tables of the relational database where the description is stored, we can derive the
schema information which can then be represented in RDFS. In Example 6.2 we show the RDFS represen-
tation of the ImageData table with some of its attributes. In fact, the metadata describe an Image having
amongst others a title and an author. The image depicts a certain Person having a firstname and a
lastname.

Example 6.2 Parts of the Austrian National library (ONB) schema lifted to RDFS

@prefix onb: <http://www.example1.com/schema/onb#>.

onb:Image a rdfs:Class;

.

onb:title a rdfs:Property;

rdfs:domain onb:Image;

rdfs:range xsd:string;

.

onb:author a rdfs:Property;

rdfs:domain onb:Image;

rdfs:range xsd:string;

.

onb:depictedPerson a rdfs:Property;

rdfs:domain onb:Image;

rdfs:range onb:Person;

.

onb:Person a rdfs:Class;

.

onb:firstname a rdfs:Property:

90 Chapter 6. An RDFS Binding of the Mapping Model

rdfs:domain onb:Person;

rdfs:range xsd:string;

.

onb:lastname a rdfs:Property:

rdfs:domain onb:Person;

rdfs:range xsd:string;

.

The third example is an RDFS representation of the elements defined in the Dublin Core metadata stan-
dard. Since a definition of its elements in RDFS is already available as part of the Dublin Core Element Set
specification3, Example 6.3 does not mirror the complete RDFS element definitions but just focuses on the
elements required in our further discussion:

Example 6.3 Parts of the Dublin Core schema (DC) represented in RDFS

@prefix dc: <http://purl.org/dc/elements/1.1/>.

dc:title a rdfs:Property.

dc:creator a rdfs:Property.

dc:format a rdfs:Property.

dc:coverage a rdfs:Property.

dc:date a rdfs:Property.

dc:description a rdfs:Property.

dc:type a rdfs:Property.

dc:subject a rdfs:Property.

6.3 RDFS Mapping Model Specification
Mapping incompatible RDFS metadata schemes requires the abstract mapping model to be extended by
elements that take RDFS-specific language primitives into account. In the following, we will introduce these
extensions with respect to existing heterogeneities in the above examples.

6.3.1 ClassMapping
We can see that Example 6.1 and Example 6.2 both define a class Person but identify them with distinct URIs.
Hence, we can say that there exist an identification conflict between two semantically related classes. In order
to reconcile that kind of conflict, we extend the abstract mapping model by an element ClassMapping, which
is a subclass of MappingElement and restricts the domain and range of a mapping relationship to instances
of rdfs:Class, i.e., to class declarations in RDFS metadata schemes.

Classes in RDFS — as in most other schema definition languages — can be arranged in a subsumption
hierarchy using the rdfs:subClassOf property, which means that all subclasses of a certain class inherit all
its properties. Hence, if a ClassMapping is established between a class A and a class B, and C is a subclass
of A, then there is also a mapping between class B and C.

Example 6.4 shows a mapping between the two Person classes in N3 notation. The namespaces used in
the example have the following meanings: http://www.example1.com/schema/onb# and http://www.
example.com/schema/tva# identify the context of the source and target schemes, the abstract mapping
model is defined in the namespace http://www.mediaspaces.info/mapping/abstract_mapping#, the

3http://dublincore.org/2008/01/14/dcelements.rdf

6.3. RDFS Mapping Model Specification 91

RDFS mapping elements are defined in the namespace http://www.mediaspaces.info/mapping/rdfs_
mapping#, and also the concrete mapping instance, i.e., the mapping between the two schemes, is bound to
a specific context identified by the namespace http://www.institution.com/mapping/onb_tva#.

Example 6.4 Sample ClassMapping

@prefix onb: <http://www.example1.com/schema/onb#>.

@prefix tva: <http://www.example.com/schema/tva#>.

@prefix am: <http://www.mediaspaces.info/mapping/abstract_mapping#>.

@prefix mm: <http://www.mediaspaces.info/mapping/rdfs_mapping#>.

@prefix map: <http://www.institution.com/mapping/onb_tva#>.

map:Person2Person a mm:ClassMapping;

am:expression am:equivalent;

am:sourceElement onb:Person;

am:targetElement tva:Person;

.

6.3.2 PropertyMapping
Also related properties with different URIs and names must be mapped with each other. In our examples,
the ONB schema defines a property author while the DC schema represents the semantically equivalent
information using the property creator. To resolve that kind of conflict, we introduce another mapping
element PropertyMapping, which is also a subclass of MappingElement and restricts the domain and range
of a mapping relationship to instances of rdf:Property. If a mapping is defined between the properties a
and b, and the property c is a rdfs:subPropertyOf of a, then there also exists a mapping relationship
between properties c and b.

Properties in RDFS are defined as first-class objects and are semantically bound to classes using the
rdfs:domain and rdfs:range properties. This allows properties to be related with multiple classes, which
means that resources having a certain property are also instances of multiple classes. In our example, the
property author could also have other classes, such as Book or Composition, as domain. In that case, it is
necessary to define property-mappings in the context of a certain class, because the author of a book might
be related differently to a target model than the author of an image. Therefore, we introduce the properties
sourceClassContext and targetClassContext both with rdfs:domain mm:PropertyMapping and
rdfs:range rdfs:Class.

So far, a PropertyMapping can only reconcile naming, identification and terminological conflicts be-
tween distinct properties. For more complex incompatibilities such as multilateral correspondences or scal-
ing/unit conflicts, we must provide the possibility to assign instance transformation functions to property
mappings. An instance transformation function is an instance of a Function, as defined in the abstract map-
ping model. It can provide any computational functionality for a set of input nodes, and is identified via a
unique URI. In practice, mapping experts can resort to existing functions and operators such as those defined
in the XQuery and XPath Functions and Operators specification [W3C07]. If none of the existing functions
provides the desired functionality, they can define and implement additional functions with arbitrary func-
tional behaviour. One could, for instance, even define mapping functions that incorporate information from
external services (e.g., data providers, online thesauri) into the mapping process.

Example 6.5 illustrates how the properties onb:firstname and onb:lastname, both defined as part of
the ONB schema, can be mapped to the DC property dc:creator in the context of the ONB source schema
class onb:Person. According to the semantic definition of dc:creator4, the instance values of the ONB

4The Dublin Core Usage Guide (http://dublincore.org/documents/usageguide/elements.shtml) says that personal
names should be listed surname first, followed by forename or given name

92 Chapter 6. An RDFS Binding of the Mapping Model

properties (e.g., firstname=Willy, lastname=Bogner) must be concatenated into a single string separated
by a comma and a space (e.g., Bogner, Willy). We can apply the XQuery Function fn:concat to achieve
such an instance transformation.

Example 6.5 Sample PropertyMapping between ONB and DC properties with class context and instance
transformation function

@prefix onb: <http://www.example1.com/schema/onb#>.

@prefix dc: <http://purl.org/dc/elements/1.1/>.

@prefix am: <http://www.mediaspaces.info/mapping/abstract_mapping#>.

@prefix mm: <http://www.mediaspaces.info/mapping/rdfs_mapping#>.

@prefix map: <http://www.institution.com/mapping/onb_dc#>.

@prefix fn: <http://www.w3.org/2005/xpath-functions#>.

map:fnln2creator a mm:PropertyMapping;

am:expression am:targetInclude;

mm:sourceClassContext onb:Person;

am:sourceElement onb:firstName;

am:sourceElement onb:lastName;

am:targetElement dc:creator;

am:transFunction map:fnlnConcat;

.

map:fnlnConcat a am:Function;

am:URI fn:concat;

am:argument (onb:lastname, ", ", onb:firstname);

am:result dc:creator;

.

The power of instance transformation functions lies in the possibility of nesting functions, i.e., in the
use of functions as input of other functions. In that way, mapping experts have the possibility to include
complex computational behaviour into mappings. Example 6.6 illustrates how the mapping in Example 6.55

could be defined the other way round, thus from the DC to the ONB schema. This requires the instances of
onb:firstname and onb:lastname to be extracted from a comma-separated instance value of dc:creator.
To achieve that we apply the following functions:

• fn:substring(string, start, length), fn:substring(string, start): is a pre-defined X-
Query/XPath function that returns the substring of a given string from the start position to the
specified length. If the length parameter is omitted, the function returns the substring from the
start position to the end. The first character in a string has index one. For example:

– fn:substring("Bogner, Willy", 1, 6) returns Bogner.

– fn:substring("Bogner, Willy", 9) returns Willy.

• op:numeric-add(arg1, arg2) and op:numeric-subtract(arg1, arg2): are both pre-defined
XQuery/XPath operators, whereas numeric-add returns the arithmetic sum of its operands (arg1 +

arg2) and numeric-subtract returns the arithmetic difference of its operands (arg1 - arg2).

5In this and also in the following examples we omit namespace declarations that have already been introduced in previous examples.

6.3. RDFS Mapping Model Specification 93

• fx:index-of-string(string, char): is a user-defined function, which we have introduced and is
not part of the XQuery/XPath functions and operators. It determines the index of the first occurrence of
a certain character (char) in a given string. As the fn:substring function, fx:index-of-string
starts counting the characters in a given string from index one.

For example:

– fx:index-of-string("Bogner, Willy", ",") returns 7.

Example 6.6 Sample PropertyMapping between DC and ONB properties with class context and instance
transformation function

@prefix fx: <http://www.functx.com#>.

@prefix op: <http://www.w3.org/2002/08/xquery-operators>.

@prefix map: <http://www.institution.com/mapping/dc_onb#>.

map:creator2ln a mm:PropertyMapping;

am:expression am:sourceInclude;

am:sourceElement dc:creator;

am:targetElement onb:lastName;

mm:targetClassContext onb:Person;

am:transFunction map:lnExtract;

.

map:creator2fn a mm:PropertyMapping;

am:expression am:sourceInclude;

am:sourceElement dc:creator;

am:targetElement onb:firstName;

mm:targetClassContext onb:Person;

am:transFunction map:fnExtract;

.

map:lnExtract a am:Function;

am:URI fn:substring;

am:argument (dc:creator, "1", map:lnEnd);

am:result onb:lastname;

.

map:lnEnd a am:Function;

am:URI op:numeric-subtract;

am:argument (map:commaIndex, "1");

am:result xsd:int;

.

map:fnExtract a am:Function;

am:URI fn:substring;

am:argument (dc:creator, map:fnStart);

am:result onb:firstname;

.

map:fnStart a am:Function;

am:URI op:numeric-add;

am:argument (map:commaIndex, "2");

94 Chapter 6. An RDFS Binding of the Mapping Model

am:result xsd:int;

.

map:commaIndex a am:Function;

am:URI fx:index-of-string;

am:argument (dc:creator, ",");

am:result xsd:int;

.

Example 6.6 also demonstrates the usage of the result relationship that has been defined in the abstract
mapping model specification in Section 5.4. The outermost function (e.g., map:lnExtract, map:fnExtract)
that is embedded into a PropertyMapping element defines a reference to the target element of a Property-
Mapping. Functions that serve as arguments for instance transformation functions and define a certain pro-
cessing behavior on node values (e.g., map:lnEnd, map:fnStart, map:commaIndex) define the datatype
(e.g., xsd:int) of the function’s return value, which will be required for internal processing during the
mapping execution phase.

In the previous examples, for each property mapping we have defined either a mm:sourceClassContext
or a mm:targetClassContext property, which bind a property mapping specification to a certain class (and
its subclasses) either in the source or in the target model. However, if we assume that there already exists
a mm:ClassMapping between two models and property mappings need to be defined within the context of
these classes, we can directly bind the property mappings to the class mappings and omit any class context
declaration. Therefore, we introduce an additional property mm:classMappingContext with rdfs:domain
mm:PropertyMapping and rdfs:range mm:ClassMapping. Example 6.7 shows such a declaration in a
mapping between the TVA and ONB schema.

Example 6.7 Sample PropertyMapping between ONB and TVA properties bound to the context of a ClassMap-
ping

map:Person2Person a mm:ClassMapping;

am:expression am:equivalent;

gm:sourceElement onb:Person;

gm:targetElement tva:Person;

.

map:fn2gn a mm:PropertyMapping;

am:expression am:equivalent;

gm:sourceElement onb:firstname;

gm:targetElement tva:givenName;

mm:classMappingContext map:Person2Person;

.

map:ln2fn a mm:PropertyMapping;

am:expression am:equivalent;

gm:sourceElement onb:lastName;

gm:targetElement tva:familyName;

mm:classMappingContext map:Person2Person;

.

After having introduced the RDFS-specific mapping model by example, we now provide a definition
in UML notation in Figure 6.1, leaving out some of the classes and associations that have already been

6.3. RDFS Mapping Model Specification 95

illustrated in Figure 5.4 to maintain readability. The classes Property and Class represent an RDFS-
specific extension of our generic graph data model. Both are specialisations of the class Resource and can
therefore be identified by URIs and be described with further triples. In order to represent RDFS-specific
mapping relationships, we introduce two MappingElement extensions: first, a class ClassMapping and
second, a class PropertyMapping, which can either be bound to the context of a set of source classes
(sourceClassContext), a set of target classes (targetClassContext), or to the context of already speci-
fied ClassMappings via the (classMappingContext) property. Additionally, the PropertyMapping and
ClassMapping classes refine the source and target associations defined by the general MappingElement
class: ClassMapping restricts the range of the source and target resources to Class instances, while Property-
Mapping restricts the range of the source and target resources to Property instances.

- uri: URI
Resource

Mapping
Element

ClassProperty

Property
Mapping

Class
Mapping

0..*

1

source

0..*

1..*

target

0..*

1

source

0..*

1..*

target

0..*

0..*

sourceClassContext

0..*

0..*

targetClassContext

0..*

0..*classMappingContext

Figure 6.1: An RDFS binding of the abstract mapping model

After having described our proposed RDFS binding of the abstract mapping model, we specify it formally
as follows:

Definition 6.1 [Symbols]
Let

• CLASS ⊆ R be the set of all RDFS classes as defined in [W3C04a] ,

• PROPERTY ⊆ R be the set of all RDFS properties as defined in [W3C04a],

• CM ⊆ E be the set of all class mappings, and

• PM ⊆ E be the set of all property mappings.

96 Chapter 6. An RDFS Binding of the Mapping Model

Definition 6.2 [Class Mapping, Property Mapping]

• A class mapping cm ∈ CM is a 6-tuple cm = (ucm, θcm, S cm, tcm, fcm, pcm), where ucm denotes its unique
identifier, θcm ∈ Θ ∧ θcm = {ClassMapping} its fixed type identified by a URI, S cm ⊆ CLASS the set
of source classes, tcm ∈ CLASS the target class, fcm = null indicates that instance transformations
cannot be applied for class mappings, and pcm ∈ P the associated mapping expression.

• A property mapping pm ∈ PM is a 9-tuple pm = (upm, θpm, S pm, tpm, fpm, ppm, S Cpm,TCpm,CMpm),
where upm denotes its unique identifier, θpm ∈ Θ ∧ θpm = {PropertyMapping} its fixed type identified
by a URI, S pm ⊆ PROPERTY the set of source properties, tpm ∈ PROPERTY the target property, fpm ∈

FUN the associated instance transformation function, ppm ∈ P the associated mapping expression,
S Cpm ⊆ CLASS the set of classes defining a property mapping’s source context, TCpm ⊆ CLASS the
set of classes defining a property mapping’s target context, and CMpm ⊆ CM the set of class mappings
defining a property mapping’s context.

In order to be able to access the information provided by the RDFS-binding of the abstract mapping
model, we extend Definition 5.6 by the following accessors:

Definition 6.3 [Accessors]

• sourceClassContext : PM −→ P(CLASS), defined as sourceClassContext(pm) := S Cpm, provides
access to the set of classes defining a property mapping’s source context.

• targetClassContext : PM −→ P(CLASS), defined as targetClassContext(pm) := TCpm, provides ac-
cess to the set of classes defining a property mapping’s target context.

• classMappingContext : PM −→ P(CM), defined as classMappingContext(pm) := CMpm, provides
access to the set of class mappings defining a property mapping’s target context.

6.3.3 Integrating Mapping Specifications with the Web Architecture
The central idea behind our mapping architecture is that the major artefacts required for integrating metadata
from heterogeneous sources become part of the Web. Therefore, schema definitions as well as mapping
specifications should become Web-accessible resources that are interpretable by humans and machines. In
that way, they become part of an open and inter-linked information network instead of technical specifications
that define the structures of closed information systems, such as relational databases.

For schema definitions lifted to the level of RDFS this implies that they must be published in some Web-
accessible location. A straight-forward solution is to assign them a dereferencable URL-namespace. The
elements of the ONB-namespace could be defined in the namespace http://www.onb.ac.at/schema/
onb#. If a client, which can either be a human using a web browser or an application, resolves that URI
it should obtain the schema definition in an appropriate data format, which could be (X)HTML for web
browsers and RDF/XML for applications.

Mappings between RDFS schemes are published in a similar manner. They map two Web-accessible
metadata schemes such as http://www.onb.ac.at/schema/onb# and http://www.bbc.org/schema/
tva# by defining a set of mapping elements within the context of a certain namespace, e.g., http://www.
mediaspaces.info/mapping/onb_tva#. Consequently, also all mapping elements are uniquely identified
by a certain dereferencable context and like mapping specification also read- and interpretable by human
agents and applications.

In that way, RDFS schema definitions as well as mappings between them become sharable, readable, and
subsequently also reusable. Furthermore, through the assignment of namespaces, they are unambiguously
bound to a certain context.

6.4. Executing RDFS Mappings 97

6.4 Executing RDFS Mappings
For the mapping execution phase, previously defined mapping specifications must be transformed into exe-
cutable code. The type of code to be generated depends on the applied language binding. In the case of an
RDFS-binding, i.e., when schemes and mappings are defined in RDFS and the metadata instances are avail-
able in RDF, one would generate SPARQL query templates to access source metadata and return the results
expressed according to the target metadata schema.

In the following, after a brief introduction of SPARQL, we will present an algorithm which allows us to
transform RDFS mapping representations to SPARQL query templates and describe how these templates are
executed during run-time in order to deliver metadata results expressed in terms of a target metadata schema.

6.4.1 An Introduction to the SPARQL Query Language
The SPARQL Query Language for RDF [W3C08] allows query formulation across diverse RDF data sources
and returns either results sets or RDF graphs. Here we briefly introduce the basic structure of the SPARQL
query language and concentrate on those parts we require in the context of metadata mappings.

A SPARQL query contains a basic graph pattern made up of a set of triple patterns, whereby the subject,
predicate, and object of each triple pattern may be variables. Its main building blocks are the SELECT
clause, which defines the variables to appear in the query results, and the WHERE clause, which defines the
basic graph pattern to be matched against a data graph. Example 6.8 shows a sample SPARQL query that
selects all images (onb:Image) taken by the author (onb:author) Ruebelt Lothar. The WHERE clause
contains two triple patterns, whereas the subject of each triple pattern corresponds to the variable defined in
the SELECT clause. As a result, it returns the URIs of the matching image resources.

Example 6.8 Sample SPARQL Query

@prefix onb: <http://www.example1.com/schema/onb#>.

SELECT ?img

WHERE

{

?img rdf:type onb:Image .

?img onb:author ‘Ruebelt Lothar’ .

}

Executing a SPARQL query results in a sequence of solutions. To modify results, the SPARQL query
language provides so called solution sequence modifiers which can be applied to create another sequence
used to generate the final query results:

• ORDER BY: establishes an order in the solution sequence. Can either be ascending (ASC) or descend-
ing (DESC).

• DISTINCT: eliminates duplicates in solution results set.

• LIMIT: puts an upper bound to the number of solutions returned.

• OFFSET: causes the solutions generated to start after a specified number of solutions.

Besides the SELECT query form, SPARQL also defines the CONSTRUCT form, which does not return
the variable bindings in a matching pattern but returns an RDF graph constructed by substituting variables in
a set of triple patterns. Hence, it returns a single RDF graph specified by a graph template.

98 Chapter 6. An RDFS Binding of the Mapping Model

With FILTER expressions one can restrict the matching graph patterns to a given expression. This elimi-
nates any solution that returns false when being substituted into the expression. SPARQL provides a mapping
of FILTER expressions to a subset of the functions and operators defined by XQuery; i.e., the evaluation of an
function is defined by XQuery functions. SPARQL extensions may provide additional FILTER expressions
and mappings to implementing functions.

Example 6.9 shows a SPARQL CONSTRUCT query template that returns all metadata about persons
available in the ONB data set expressed in terms of the TVA metadata schema. Because of the LIMIT solution
modifier, only the first ten matching results are returned. The FILTER expression restricts the matching graph
patterns to those that define a triple with any subject, predicate onb:firstname, and an object literal value
starting with letter ‘A’. In other words, the query returns the first ten arbitrary persons, whose firstnames start
with letter ‘A’. The results are represented compliant to the TVA metadata schema.

Example 6.9 Sample SPARQL CONSTRUCT Query

@prefix onb: <http://www.example1.com/schema/onb#>.

@prefix tva: <http://www.example.com/schema/tva#>.

CONSTRUCT

{

?x rdf:type tva:Person .

?x tva:givenName ?y

}

WHERE

{

?x rdf:type onb:Person .

?x onb:firstName ?y .

FILTER regex(?y, ‘A’)

}

LIMIT 10

For expressing n-ary mapping relationships between properties in SPARQL (e.g., firstname and last-
name to name), we require a SPARQL extension called Property Functions6. This extension is not part of the
current specification but is supported by SPARQL query engines such as ARQ7. A property function causes
a triple match to happen by executing some function that performs a calculation on input values and binds
the result to a given output variable. Example 6.10 shows a query that uses a property function upper-case
to convert the object node of a matching triple to uppercase. The matched triples are determined by the
pattern ?x onb:lastName ?ln., the final binding of the variable ?y, however, is calculated by the property
function ext:upper-case, with input argument ?ln and result variable ?y.

6Property functions in ARQ: http://jena.sourceforge.net/ARQ/extension.html#propertyFunctions
7ARQ — A SPARQL Processor for Jena: http://jena.sourceforge.net/ARQ/

6.4. Executing RDFS Mappings 99

Example 6.10 Sample SPARQL CONSTRUCT Query with Property Function

CONSTRUCT

{

?x tva:familyName ?y.

}

WHERE

{

?x onb:lastName ?ln.

?y ext:upper-case ?ln.

}

LIMIT 10

Before we focus on the algorithms for transforming mapping representations into executable queries, we
introduce a formal notation for the major constituents of the SPARQL query language:

Definition 6.4 [Symbols]
Let

• V be the set of all variables,

• PF be the set of all property functions,

• TP be the set of all triple patterns,

• Q be the set of all SPARQL queries, and

• QC ⊆ Q the set of all SPARQL CONSTRUCT query templates.

Now we can precisely define the constituents of a SPARQL query, which we will refer to later in this
section.

Definition 6.5 [Variable, Property Function, Triple Pattern, Query Template]

• A variable v ∈ V is a pair v = (nv, θv), where nv ∈ STR denotes the variable’s name and θv ∈ Θ ∧ θv =

{Variable} its fixed, variable-specific type identified by a URI.

• A property function p f ∈ PF is a triple p f = (rp f , fp f , Ap f), where rp f ∈ V denotes the result variable
of a function, fp f ∈ R a resource identifying the function, and Ap f ⊆ N∪V the ordered set of arguments.

• A triple pattern tp ∈ TP is a pair tp = (Ttp, PFtp), where Ttp denotes the set of triples and PFtp the set
of property functions in the respective triple pattern. Since SPARQL allows the subject and object of a
triple to be variables, we extend the original definition of a triple t ∈ Ttp, as specified in Definition 5.2,
to t = (st, pt, ot), where st ∈ R ∪ V, pt ∈ R, and ot ∈ N ∪ V.

• A query template8 q ∈ QC is a pair q = (cq,wq), where cq ∈ TP denotes the CONSTRUCT clause, and
wq ∈ TP denotes the WHERE clause of a query template.

Further, we define the following operations required for the specification of subsequent transformation
algorithms:

8Although SPARQL CONSTRUCT queries can contain solution sequence modifiers (ORDER BY, DISTINCT, LIMIT, OFFSET),
we can omit them in this specification. This is because the RDFS mapping specifications that serve as input for the transformation
algorithms, which are presented later in this section, are specified independently of any solution modification operations.

100 Chapter 6. An RDFS Binding of the Mapping Model

Definition 6.6 [Operations and Accessors]

• nodeVar : QC −→ V, defined as nodeVar(q) := vq, generates a new query variable for an existing
template.

• varBinding : QC ×R −→ V, defined as varBinding(q, p) := vp, accesses the object-variable binding of
a certain property p. If for instance a query template q contains a triple t = (?x, onb : firstname, ?y)
and p = onb : firstname, the operation varBinding(q, p) results9 in vp = ?y.

• resultVar : PF −→ V, defined as resultVar(p f) := rp f , returns a property function’s result variable.

• functionURI : PF −→ R, defined as f unctionURI(p f) := fp f , returns the resource identifying the
function.

• argList : PF −→ P(N ∪ V), defined as argList(p f) := Ap f , returns the ordered set of arguments of a
property function.

6.4.2 Transforming Mappings to SPARQL Query Templates

In the previous section, we have specified a mapping model that allows the declaration of semantic and
structural correspondences between source and target metadata schemes. For the query execution phase
we need to translate mapping specifications into a machine-processable representation, in order to deliver
metadata information objects available in a certain source schema in terms of a given target schema.

The mapping model is designed for representing mapping relationships among RDFS schemes. With such
a mapping specification as input, a machine should be able to retrieve metadata information objects expressed
in RDF. Since SPARQL is the means for accessing RDF data, we need to transform mapping representations
to SPARQL queries which allows a SPARQL processor to deliver metadata in terms of the defined target
schema.

We introduce this transformation capability by extending and redefining the previously specified RDFS
binding of the abstract mapping model as given in Figure 6.1 with behaviour that allows the generation of
SPARQL CONSTRUCT query templates from existing mapping representations. Figure 6.2 shows how that
behaviour is implemented: we assign an abstract operation toSPARQLTemplate():SPARQLTemplate to the
abstract class RDFSMappingElement, which is a specialisation of a generic MappingElement, and provide
element specific operation implementations in the classes ClassMapping and PropertyMapping. We also
specialise the abstract class MappingModel and add the class RDFSMappingModel defining the operation
generateSPARQL(): SPARQLTemplate[] for the mapping execution phase.

Algorithm 1 presents the pseudo-code for the toSPARQLTemplate operation, which is defined within the
scope of a ClassMapping. It takes a ClassMapping declaration as input and delivers the corresponding
SPARQL CONSTRUCT template, by adding one triple pattern to the CONSTRUCT clause cq, and one to the
WHERE clause wq. The resulting template transforms all resources that have the source class as rdf:type,
to resources having the target class as rdf:type. If a ClassMapping has multiple source elements, i.e.,
source classes, the algorithm generates multiple templates, one for each source class.

Example 6.11 shows how the ClassMapping specification defined in Example 6.4 results in a SPARQL
query template after applying the transformation algorithm.

9The result of the varBinding operation is always unique because the mapping elements that serve as input for the transformation
have distinct source and target resources assigned (see Section 5.4).

6.4. Executing RDFS Mappings 101

+ generateSPARQL(): SPARQLTemplate[]

RDFSMappingModel

0..
*

1..
*classMappingContext

1 0..
* + toSPARQLTemplate(): SPARQLTemplate

RDFSMappingElement

+ toSPARQLTemplate(): SPARQLTemplate

PropertyMapping

+ toSPARQLTemplate(): SPARQLTemplate

ClassMapping

MappingModel MappingElement

Figure 6.2: Extending and redefining the RDFS binding of the abstract mapping model with mapping execu-
tion behaviour

Algorithm 1: toSPARQLTemplate. Transforms ClassMappings to SPARQL construct templates.
Data: a ClassMapping element cm ∈ CM
Result: a set of SPARQL CONSTRUCT query templates Q ∈ QC

begin1

result ←− ∅2

foreach s ∈ sourceElements(cm) do3

q←− new();4

x←− nodeVar(q);5

add (x, rdf:type, targetElement(cm)) to cq;6

add (x, rdf:type, s) to wq;7

add q to result;8

end9

return result;10

end11

Example 6.11 SPARQL template generated from the sample ClassMapping in Example 6.4

@prefix onb: <http://www.example1.com/schema/onb#>.

@prefix tva: <http://www.example.com/schema/tva#>.

CONSTRUCT

{

?x rdf:type tva:Person.

}

WHERE

{

?x rdf:type onb:Person.

}

102 Chapter 6. An RDFS Binding of the Mapping Model

Algorithm 2 shows how PropertyMapping elements are transformed to SPARQL query templates. It
first generates an empty query template and two variables, one subject-variable x and one object-variable y.
It uses these variables to formulate the triple pattern in the CONSTRUCT clause cq, which corresponds to
the target property in the mapping specification. Then the algorithm distinguishes between two cases: in the
simple case, there is no instance transformation function, which implies that there is a 1:1 mapping between
properties, i.e., that only a single source property has been specified. In that case (line 14), the algorithm takes
that single element from the set of source properties and simply adds a triple pattern with the same subject-
and object-variables to the WHERE clause wq. If there is an instance transformation function defined as
part of a mapping element ((f ←− f unction(pm)) , null), it iterates through the defined source elements,
generates a new object-variable for each source element, and adds a triple pattern with subject-variable x and
the respective object-variable to the WHERE clause wq. Thereafter, it determines the object-variable binding
of the result property defined as part of a instance transformation declaration and invokes the operation
toPropertyFunction, which transforms a given instance transformation function f to a SPARQL property
function and adds this function to the given query template q with the previously determined result variable
binding resultVar. Finally, the algorithm considers sourceClassContext, targetClassContext, and
classMappingContext declarations and adds the appropriate rdf:type triples to the CONSTRUCT and
WHERE clauses of the query template.

Algorithm 2: toSPARQLTemplate. Transforms PropertyMappings to SPARQL construct templates.
Data: a PropertyMapping element pm ∈ PM
Result: a SPARQL CONSTRUCT query template q ∈ QC

begin1

q←− new();2

x←− nodeVar(q);3

y←− nodeVar(q);4

add (x, targetElement(pm), y) to cq;5

if ((f ←− f unction(pm)) , null) then6

foreach s ∈ sourceElements(pm) do7

z←− nodeVar(q);8

add (x, s, z) to wq;9

end10

resultVar ←− varBinding(q, result(f));11

toPropertyFunction(f , q, resultVar);12

else13

add (x, elementO f (sourceElements(pm)), y) to wq;14

end15

foreach tc ∈ targetClassContext(pm) do16

add (x, rdf:type, tc) to cq;17

end18

foreach sc ∈ sourceClassContext(pm) do19

add (x, rdf:type, sc) to wq;20

end21

foreach cm ∈ classMappingContext(pm) do22

add (x, rdf:type, targetElement(cm)) to cq;23

add (x, rdf:type, sourceElements(cm)) to wq;24

end25

return q;26

end27

6.4. Executing RDFS Mappings 103

Algorithm 3 transforms a specified instance transformation function to a SPARQL property function. It
is defined recursively because an instance transformation function can have other transformation functions as
arguments. Starting at the root function, it traverses the operator tree as far as possible and starts the transfor-
mation process with those operators that do not have any child operators, i.e., other functions as arguments.
Then the algorithm backtracks and generates property functions for the instance transformation functions that
have not been transformed yet. As input, the algorithm takes an instance transformation function f , a query
template q, and a property function’s result variable v. First it creates an empty ordered set (line 2) for the
arguments to be assigned to the generated property function. Then (line 3) it examines each argument arg
defined in the instance transformation function declaration. If an argument is another instance transformation
function (line 4), the algorithm generates a new result variable x and recursively calls the toPropertyFunction
operation (line 6) with the function argument arg, the given query template q, and the newly generated result
variable x as input. Then it adds the result variable x to the argument list of the property function that has
been created in the context of this recursion level (line 2). If an argument is not another function but another
property (line 9), the algorithm determines the object-variable binding for this property and adds that variable
to the argument list argList. Otherwise (line 12) the argument is treated as literal node (e.g., “2”) and directly
added to the argument list. Finally (line 16) the algorithm generates the property function and assigns the
given result variable v, the given instance transformation function’s URI identifier uri(f) and the generated
argument list argList. The property function is then (line 17) added to the WHERE clause wq of the given
query template q.

Algorithm 3: toPropertyFunction. Transforms instance transformation declarations to property func-
tions in SPARQL templates.

Data:

1. An instance transformation function f ∈ FUN;

2. A SPARQL query template q ∈ QC;

3. A result variable v ∈ V

Result: the given SPARQL query template q including a set of property functions PF ⊆ PF
begin1

argList ←− ∅;2

foreach arg ∈ arguments(f) do3

if arg ∈ FUN then4

x←− nodeVar(q);5

toPropertyFunction(arg, q, x);6

add x to argList;7

else8

if arg ∈ R then9

add varBinding(q, arg) to argList;10

else11

add arg to argList;12

end13

end14

end15

p f ←− (v, uri(f), argList);16

add p f to wq;17

end18

104 Chapter 6. An RDFS Binding of the Mapping Model

Example 6.12 shows how the mapping specification from Example 6.5, between the Dublin Core prop-
erty dc:creator and the ONB properties onb:firstName and onb:lastName with the assigned instance
transformation function map:fnlnConcat, is transformed to a SPARQL query template. The definition of
sourceClassContext results in an additional rdf:type definition in the template’s WHERE clause.

Example 6.12 SPARQL template generated from the sample PropertyMapping in Example 6.5

@prefix onb: <http://www.example1.com/schema/onb#>.

@prefix dc: <http://purl.org/dc/elements/1.1/>.

@prefix fn: <http://www.w3.org/2005/xpath-functions#>.

CONSTRUCT

{

?x dc:creator ?y.

}

WHERE

{

?x onb:firstName ?a.

?x onb:lastName ?b.

?y fn:concat (?b ", " ?a).

?x rdf:type onb:Person.

}

In Example 6.13, we show parts of the results of Algorithm 2 when being applied to the property mapping
defined in Example 6.6. Since the specification defines two PropertyMapping instances, this would also
result in two SPARQL CONSTRUCT templates. Here we show only the one for the mapping between
the properties onb:firstName and dc:creator. The example clearly demonstrates how nested instance
transformation functions are transformed to property functions and how a targetClassContext definition
results in an additional rdf:type definition in the template’s CONSTRUCT clause.

Example 6.13 SPARQL template generated from the sample PropertyMapping in Example 6.6

@prefix onb: <http://www.example1.com/schema/onb#>.

@prefix dc: <http://purl.org/dc/elements/1.1/>.

@prefix fn: <http://www.w3.org/2005/xpath-functions#>.

@prefix fx: <http://www.functx.com#>.

CONSTRUCT

{

?x onb:firstName ?y.

?x rdf:type onb:Person.

}

WHERE

{

?x dc:creator ?a.

?b fx:index-of-string (?a ", ").

?c op:numeric-add (?b "2").

?y fn:substring (?a ?c).

}

6.4. Executing RDFS Mappings 105

6.4.3 Run-time Execution of SPARQL Templates
The overall goal of metadata mapping is to provide uniform access to heterogeneous metadata located in
distributed, autonomous sources. An application on behalf of a user should have the possibility to access
these sources via a single, uniform interface. The predominant architectural approach applied to fulfil this
requirement is the mediator-wrapper architecture [Wie92], where the mediator provides the single interface
— typically a query interface — and transparently handles the translation between the involved, incompat-
ible metadata information objects. Mapping specifications, which are provided by domain experts, give the
mediator the necessary information to reconcile structural and semantic heterogeneities.

In our approach, we follow a Web-based approach, where schema information, as well as mapping spec-
ifications are defined in RDFS and published on the Web. The underlying metadata are represented in RDF
and the query language to access these data in a structured way is SPARQL. Therefore, we must give the
user the possibility to set up a mediator based on previously defined RDFS mapping specifications. The me-
diator can then integrate metadata from a given set of data sources, provide a SPARQL interface as uniform
metadata access point, and internally handle the retrieval and reconciliation of incompatible RDF metadata
information objects.

Figure 6.3 illustrates the main components involved in the mapping execution phase at runtime. The user
expresses a SPARQL query Q over a certain target schema S T and executes it at the SPARQL mediation
endpoint, which then retrieves the metadata from a set of given SPARQL endpoints, each exposing a certain
source schema (S A and S B). Based on the mapping specifications between the source schema of SPARQL
Endpoint A and the target schema (MAT) as well as the mapping specification between the schema of Endpoint
B and the target schema (MBT), the mediator formulates the queries QA and QB in order to retrieve the
requested metadata. The results RA and RB are then merged into R and returned to the user.

Mediator

MAT MBT

Q

QA QB

ST

SPARQL Endpoint (A)

SA

SPARQL Endpoint (B)

SB

SPARQL

SPARQL SPARQL

RA RB

R

Figure 6.3: Run-time execution of SPARQL templates — Overview

106 Chapter 6. An RDFS Binding of the Mapping Model

To achieve the goal of uniform accessibility, the mediation endpoint has to perform the following compu-
tational steps:

1. Analyse the incoming, user-formulated SPARQL query and select the relevant query templates for each
data source (query template selection).

2. Execute the user-query against the query templates, collect the results and deliver them to the user
(query unfolding and result collection).

Query template selection

For each data source, the mediator maintains an RDFS mapping specification that defines the structural and
semantic correspondences between the mediator’s schema, i.e., the target schema, and a data source’s schema.
After applying the transformation process described in Section 6.4.2, the mediator obtains a set of SPARQL
query templates for each data source.

From the set of generated query templates, the mediator must now decide, which ones to execute for an
incoming user query. This decision is taken by comparing the triple patterns in the WHERE clause of the
SPARQL user query, with those defined in the CONSTRUCT clauses of the generated SPARQL query tem-
plates. Figure 6.4 illustrates the basic strategy of the query template selection algorithm. The left-hand side
symbolises the triple pattern defined in the WHERE clause of an incoming SPARQL query, the right-hand
side the available SPARQL query templates that have been generated from an RDFS mapping specification.
The goal of the query template selection algorithm is to find the minimal number of matching query templates
for a given query triple pattern. Regarding the example, we can see that template T1 matches the triple pat-
tern, which connects the nodes A, B, and D in the incoming query. Template T2 matches the triple connecting
nodes B and C, and template T3 the triple connecting A and B.

We could now proceed and execute the query templates T1, T2, and T3 in order to retrieve the data required
to answer the query from the data source. However, there is an opportunity for a first optimisation step:
regarding the query templates, we notice that T3 matches a subset of the result graph matched by template
T1. Hence, the query result triples template T3 delivers are contained in the resulting triples of template T1.
Based on that, we can infer that there is no need to execute T3 to answer the query and simply omit the
execution of that template.

Example 6.14 shows a sample user query expressed over the ONB metadata schema, asking for all re-
sources that identify a person with a certain first-name. For metadata sources that maintain metadata using a
different scheme (e.g., Dublin Core), the mediator must apply mapping specifications and select the appropri-
ate SPARQL query templates. In the case of this query, the template presented in Example 6.13 is selected,
because its CONSTRUCT clause triple pattern matches the one in the WHERE clause in the user query.

Example 6.14 Sample user query executing the query template shown in Example 6.13

@prefix onb: <http://www.example1.com/schema/onb#>.

SELECT ?x

WHERE

{

?x onb:firstName "David".

?x rdf:type onb:Person.

}

If the user query included an additional triple pattern referring to the property onb:lastName, this would
result in the selection of a second query template, which maps the property dc:creator to onb:lastName.
The template selection process can further be improved by considering basic query optimisation strategies
such as query containment. Since query optimisation is out of the scope of this work, we refer to the related
work described elsewhere (see e.g., [MLF00]).

6.4. Executing RDFS Mappings 107

A

B

C

D

P1
P2

P3

?x
?yP1

Incoming Query: WHERE Triple Pattern Query Templates: CONSTRUCT Triple Pattern

?zP3

T1

T2

T3

?x ?yP2

?x ?yP1

T1

T2

T3

TN

?x ?yPN

Figure 6.4: SPARQL query template selection

Query unfolding and result collection

After the relevant templates have been selected, the mediation component must execute them in order to
retrieve the requested metadata information objects. Similar to views (see [Hal01]) in relational database
management systems, the SPARQL query templates deliver dynamic virtual graphs collected from the data
sources’ data graphs, expressed in terms of the user-selected target schema. The incoming user queries are
then executed against these virtual graphs, i.e., against the template execution results. From a data integration
perspective, we follow a Global-As-View (GAV) approach for specifying mappings, where each concept of
the global view is mapped to a query over the data source (see [Len02]).

In our current approach, the mediation component executes the selected templates as they result from
the translation of the previously defined mapping specifications, which leads to high latency. It does, for
instance, not consider that only a subset of the metadata in a data source should be selected during template
execution if a specific restriction on an object node is formulated in the user query (e.g., ?x onb:firstname
"David"). Nor does it consider the possibility to combine relevant query templates in order to reduce the
overall amount of query template executions. We can identify the following optimisation possibilities:

• Template adaption

• Template combination

• Persisting virtual graphs

• Capability-based optimisation

108 Chapter 6. An RDFS Binding of the Mapping Model

We can reduce the overall amount of metadata that is transferred between the wrapper and mediator
components by adapting the templates to be executed according to restrictions provided in the user query. If
for instance, the user query asks for “all persons having ’David’ as firstname” and we know that there is a
mapping relationship between onb:firstname and dc:creator and we also know that the object restriction
“David” is a literal of datatype xsd:string, we can add an appropriate SPARQL FILTER expression (see
Example 6.9) to the WHERE clause of the query template to be executed and thereby reduce the overall
amount of metadata being returned from the involved wrapper components. Example 6.15 shows how the
SPARQL query template presented in Example 6.13 can be adapted according to the object restriction given
in the user query presented in Example 6.14.

Example 6.15 The query template presented in Example 6.13 adapted to the user query shown in Exam-
ple 6.14.

CONSTRUCT

{

?x onb:firstName ?y.

?x rdf:type onb:Person.

}

WHERE

{

?x dc:creator ?a.

?b fx:index-of-string (?a ", ").

?c op:numeric-add (?b "2").

?y fn:substring (?a ?c).

FILTER regex(?y, "David")

}

Template combination denotes the possibility to create additional templates from existing ones. Without
optimisation, the query engine in the mediator executes the set of selected query templates, whereas each
template leads to one query to be executed. We can reduce the number of required query executions by
creating additional templates from the set of generated templates. The resulting templates should cover a
larger part of the triple pattern in the WHERE clause of the user query than the templates that are generated
directly from the mapping specification. If we regard Example 6.13 and assume that there exists another
template generated for the mapping between dc:creator and onb:lastName, we could, as illustrated in
Example 6.16, combine these templates into a single one. A user query, asking for a certain resource that
identifies a person with a certain first- and lastname, would then trigger that template instead of two separate
templates. For a more profound discussion of template based mapping approaches we refer to [RSU95].

Example 6.16 Sample combined query template.

CONSTRUCT

{

?x onb:firstName ?y.

?x onb:lastName ?z.

?x rdf:type onb:Person.

}

WHERE

{

?x dc:creator ?a.

?b fx:index-of-string (?a ", ").

6.5. Maintaining RDFS Mappings 109

?c op:numeric-add (?b "2").

?y fn:substring (?a ?c).

?d op:numeric-subtract (?b "1").

?z fn:substring (?a "1" ?d)

}

Another optimisation technique for reducing the query answering latency in the data sources is to persist
query results as virtual graphs. Analogous to materialised views (see [LW95]) known from the relational
database domain, we can cache the result of a query template execution as a concrete graph and update that
graph in a certain time interval. The drawback of this optimisation technique is that the persistence of virtual
graphs requires additional storage space. Therefore, the domain expert must decide for which templates this
trade-off between reduced latency and additional storage spaces is beneficial.

Since metadata are integrated from distributed, autonomous data sources, the mediator can also optimise
the order and timing of query execution. While closed database management systems can estimate the cost
of each query and deduce an optimised query plan, this is hardly possible in open, distributed environments.
The mediator, which executes the unfolded queries at the data source wrappers, has little or no knowledge
about the data sources’ internal query processing behaviour. Thus, the mediator must select a query plan
based on the capabilities of the involved data sources. For a more detailed discussion on capability-based op-
timisation in mediators, which also explains how such capabilities could be described, we refer to [PGH96].
DARQ [QL08], a query engine for executing federated SPARQL queries, implements such a query optimisa-
tion approach, which is based on data source capability descriptions. A general strategy for query federation
in SPARQL-based mediator-wrapper architectures is described in [LWB08].

All these optimisation techniques are currently out of the scope of our work. We neither provide any
further technical specification nor consider these techniques in our implementation. In our future work,
however, we must consider these issues in order to provide efficiency and low latency also for the mapping
execution phase.

6.5 Maintaining RDFS Mappings

For the mapping maintenance phase, we require a registry that enables the discovery of and access to existing
metadata schemes and mappings between them. The availability of a registry is an essential step towards
metadata interoperability because domain experts can reuse existing schemes and mappings rather than de-
signing new ones. This is the main reason why we defined metadata mapping as being a cyclic process where
the fourth phase, mapping maintenance, is followed by the first phase mapping discovery.

A noteworthy mapping solution, which supports the mapping maintenance phase, is Altova SchemaA-
gent [Alt07b]. It provides a registry for analysing and managing relationships among XML Schemes, XML
instance documents, and other XML based files. Domain experts working on data integration projects, can
use this tool to view existing schemes and mappings and reuse existing components in a modular develop-
ment approach. The drawback of this solution is that it operates in a closed-world environment, i.e., within
an institution hosting an Altova Schema Agent installation.

In contrast to existing stand-alone mapping solutions, we continue the approach we have followed also
for the preceding mapping phases and integrate our mapping maintenance solution with the architecture of
the World Wide Web. So far, we have defined metadata schemes and mappings between them as simply
being Web resources identified via URIs. For the concrete language-specific RDFS binding, we can define
these components as being dereferencable Web resources. In that way, we can regard the data maintained
by registries as dereferencable Web-resources. Therefore, in our approach, we are not building a mapping
maintenance solution but simply use the Web infrastructure for these tasks.

110 Chapter 6. An RDFS Binding of the Mapping Model

6.5.1 Mapping Registry Architecture
The central idea of our mapping registry approach is that all components involved in the mapping process
become dereferencable Web resources. Figure 6.5 illustrates the basic architecture of such a mapping registry:
the clouds represent the domains within the Web that a certain registry covers. Each registry is aware of a
certain amount of registered schemes (e.g., S A, S B, S T) and metadata mappings (e.g., MAT , MBT) and also
maintains links to other registries.

Legend

R1

ST

SA

SB

MAT

R2

ST2 SC
MCT2

MBT2

R3

SD
Registry Node

Metadata Schema

Metadata Mapping

MBT

Figure 6.5: Mapping registry architecture

Metadata schema definitions, such as those presented in Examples 6.1-6.3, and also their elements are
accessible by dereferencing their URLs. For the Dublin Core schema elements, this is already the case. If a
client (e.g., a Web browser) requests the element http://purl.org/dc/elements/1.1/title, it obtains
the definition of the schema element. Since Dublin Core is defined in RDFS, the client retrieves the schema
information in RDF/XML. Analogously to the DC schema, also all other involved metadata schemes must
be published in some Web-accessible location. The Austrian National Library could assign a URL to their
schema, which is within their domain, e.g., http://www.bildarchiv.com/schema/onb#. The BBC could
use the URL http://www.bbc.co.uk/tvradio/programmes/schema/tva# for publishing their RDFS
metadata schema definition.

Also the RDFS mapping specifications are published on the Web and made accessible via a URL that
also defines the context of a mapping. If, for instance, domain experts create a mapping between the Dublin
Core and the TV-Anytime metadata schema for a specific institution, they can publish that mapping within
the domain of that institution. For Example 6.4, that URL would be http://www.institution.com/
mapping/onb_tva#. It could, however, be any other Web accessible, dereferencable URL.

If we assume that all metadata schema definitions and all mapping specifications are available on the
Web, we require a mapping registry that can inform domain experts about their availability and location.
For that purpose, we set up a network of linked mapping registries, each of which maintains the relevant

6.5. Maintaining RDFS Mappings 111

information for a set of schemes and mappings. A registry node is also simply a Web accessible URL
(e.g., http://www.institution.com/registry), which delivers that information to a requesting client
application. On top of a registry node, one can build schema and mapping search applications that analyse the
available registry data and follow the links to other registry nodes for retrieving remote registry information.

A drawback of using dereferencable URLs as identifiers for schemes and mappings is their sensitivity
regarding changes in their physical location. If, for instance, the Austrian National Library decides to change
the domain-name of its Image Archive to http://www.imagearchive.at, without further maintaining
their current domain, all URL references pointing to schema http://www.bildarchiv.com/schema/onb#
become invalid. One well known approach for solving that problem is the introduction of a logical level for
identifiers that transparently handles changes in the physical location of schemes and mappings. Persistent
Uniform Resource Locators10 (PURLs) and Digital Object Identifiers11 (DOIs) are example technologies that
address this issue and introduce a link-resolver that returns the actual physical URL location for a given
logical URL. The proposed registry component could provide such a link-resolver mechanism, but this is out
of the scope of this work.

6.5.2 Mapping Registry Data Model
For maintaining data about registered schemes and mappings, the registry nodes require a common data
model. Previously, in the description of the abstract mapping model (see Section 5.4), we presented the
three-layered, directed labelled graph architecture and defined metadata schemes as simply being schema
graphs. Also a mapping specification is in fact a specialisation of a graph (see Section 5.4). From this
perspective, it appears to be natural to define the mapping registry data model on the basis of a general graph
data model too.

Figure 6.6 illustrates the conceptual design of the mapping registry data model. Analogously to the
MappingModel class, we define a SchemaModel as being a specialisation of a generic Graph. In the case of
a language-specific binding, a mapping model then has one target and one source schema model each of which
is identifiable via a URI. Also the RegistryModel is simply a specialisation of a graph and provides the links
to a set of known metadata schemes (registeredSchema), mappings (registeredMapping) among them,
and other known mapping registries (linkedRegistry).

Example 6.17 shows an example mapping registry entry. It references all known metadata schemes (e.g.,
http://purl.org/dc/elements/1.1/) and a mapping specification between the Dublin Core Element
Set and the TV-Anytime schema, which is available at http://www.institution.com/mapping/onb_
tva. Furthermore, it contains a link to another mapping repository, which is deployed at http://www.
institutionY.com/registry/r2.

Example 6.17 Sample Mapping Registry Entry

@prefix rm: <http://www.mediaspaces.info/mapping/registry#>.

@prefix am: <http://www.mediaspaces.info/mapping/abstract_mapping#>.

@prefix reg: <http://www.institutionX.com/registry/>.

reg:r1 a rm:RegistryModel;

rdfs:label "Institution X Metadata Registry";

rm:linkedRegistry <http://www.institutionY.com/registry/r2>;

rm:registeredSchema <http://purl.org/dc/elements/1.1/>;

rm:registeredSchema <http://www.bildarchiv.com/schema/onb>;

rm:registeredSchema <http://www.bbc.co.uk/tvradio/programmes/schema/tva>;

rm:registeredMapping <http://www.institution.com/mapping/onb_tva>;

10Persistent URL website: http://purl.org/
11Digital Object Identifier (DOI) System website: http://www.doi.org/

112 Chapter 6. An RDFS Binding of the Mapping Model

- uri: URI
Graph

Mapping
Model

0..*

1

source

0..*

1

target

Schema
Model

Registry
Model

0..*0..*

registeredSchema

0..*

registeredMapping

0..*
0..*

linkedRegistry

0..*

Figure 6.6: Mapping registry model

.

http://purl.org/dc/elements/1.1/ a am:SchemaModel;

rdfs:label "Dublin Core Metadata Element Set, Version 1.1";

.

http://www.bildarchiv.com/schema/onb a am:SchemaModel;

rdfs:label "Austrian National Library Metadata Schema";

.

http://www.bbc.co.uk/tvradio/programmes/schema/tva a am:SchemaModel;

rdfs:label "BBC TV-Anytime Metadata Schema";

.

http://www.institution.com/mapping/onb_tva am:MappingModel;

rdfs:label

"Mapping between the Dublin Core Element Set and TV-Anytime";

am:source <http://www.bildarchiv.com/schema/onb>;

am:target <http://www.bbc.co.uk/tvradio/programmes/schema/tva>;

.

6.6 Implementation Considerations
The technical realisation of the previously described metadata mapping approach can be divided into two
main areas: first, we must specify guidelines for deploying schemes and mappings on the Web so that they are
accessible via dereferencable URLs and readable for both humans and machines. Second, we must provide
a mediation service that allows domain experts to set up configurable mediation endpoints, which provide
SPARQL query access to a set of distributed and autonomous SPARQL data sources via a single query

6.6. Implementation Considerations 113

interface.

6.6.1 Deploying Schemes and Mappings on the Web
The various serialisation formats of RDF (e.g., RDF/XML, N3) are not primarily meant to be read or inter-
preted by humans. The RDF representation of metadata, schema definitions, and mappings among schemes
is a purely machine-oriented format, i.e., it describes data to be parsed and interpreted by machines. Humans,
who use a certain application (e.g., a Web browser) for accessing information on the Web, require an HTML
or XHTML representation of that data. Since we want our mapping architecture to be integrated with the Web
architecture and all schema information and mappings between schemes to be comprehensible for humans
and machines, we must consider this in the deployment of schemes and mappings on the Web.

The Semantic Web Deployment Working Group has already defined best-practice guidelines for publish-
ing schemes on the Web [BP08]. In order to be interoperable also with other Semantic Web applications we
follow these guidelines and adopt them to our needs.

For serving information in various formats when dereferencing a certain URL, the guidelines propose to
apply content negotiation, which is a built-in HTTP protocol feature. A client attempting to dereference a
URL, can specify which type of content it would prefer to receive in the response. It can do this by including
an Accept field in the header of a HTTP request message and specifying the preferred content types in terms
of a MIME type. When a client prefers to receive the response in XHTML or HTML, it issues a HTTP request
that includes the field Accept:application/xhtml+xml,text/xml. For the same response in RDF/XML,
it issues an Accept:application/rdf+xml request.

Since metadata schemes as well as metadata mappings are deployed on the Web in a machine- and human-
readable format, the domain experts require the following artefacts:

• A machine-readable RDF/XML representation of each schema- and mapping definition (e.g., onb.rdf
and onb.html)

• A renderable12 (X)HTML representation of each schema and mapping definition (e.g., onb2dc.rdf
and onb2dc.html).

Deploying and serving resources on the Web typically requires a Web server — and there exists a variety
of implementations (e.g., Microsoft Internet Information Services (IIS)13, Apache HTTP Server14). The
following technical details for schema and mapping deployment are Apache HTTP Server specific. For other
Web Servers, one has to consult the respective content negotiation documentation.

The Apache HTTP Web Services relies on the mod rewrite15 module, which is a rule-based URL rewrit-
ing engine, to rewrite requested URLs on the fly. If, for instance, the client requests the URL http://
www.example1.com/schema/onb with the HTTP header field Accept:application/xhtml+xml,text/
xml, the engine can redirect the request to the physical location of the (X)HTML file (e.g., http://www.
example1.com/schema/content/onb.html), which provides a human-readable definition of that schema.
In that same way, it is possible to redirect an Accept: application/rdf+xml request to the physical loca-
tion of the RDF/XML schema definition (e.g., http://www.example1.com/schema/content/onb.rdf).

Internally, the redirection process works as depicted in Figure 6.7. The client sends an HTTP request to
the server. The server determines the Accept field in the request’s HTTP header and returns an HTTP 303
See Also response which redirects to the location of the appropriate physical representation of the schema
definition. The client follows that URL and receives the schema definition in the desired format.

12In fact, (X)HTML is not really human-readable; its rather read- and processable by applications, which can render the provided
information in a human-friendly presentation format

13Microsoft Windows Server 2003: http://www.microsoft.com/WindowsServer2003/IIS/Default.mspx
14Apache Web Server: http://httpd.apache.org/
15Apache Mod Rewrite Module: http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html

114 Chapter 6. An RDFS Binding of the Mapping Model

Client Server

GET http://example1.com/schema/onb
Accept: text/html

303 See Other
Location http://example1.com/schema/onb.html

GET http://example1.com/schema/onb.html
Accept: text/html

200 OK
<HTML>

...
</HTML>

Dereference a schema/mapping URI, requesting HTML content

Client Server

GET http://example1.com/schema/onb
Accept: application/rdf+xml

303 See Other
Location http://example1.com/schema/onb.rdf

GET http://example1.com/schema/onb.rdf
Accept: application/rdf+xml

200 OK
<RDF>

...
</RDF>

Dereference a schema/mapping URI, requesting RDF content

Figure 6.7: Serving schemes and mapping using HTTP Content Negotiation (adapted from [BP08])

For the mapping definitions we apply exactly the same mechanism. Physically they are deployed in some
Web accessible location (http://www.institution.com/mapping/content/onb tva.rdf) and a set of
mod rewrite rules handles the rewriting of the virtual URLs to the physical location of the files to be served.

6.6.2 Mediation Service

The mapping execution phase is covered by a mediation service, that transforms mapping specifications as
described in Section 6.4.2 and support the run-time execution of SPARQL templates, as describe in Sec-
tion 6.4.3. Domain experts can use the service to easily set up new SPARQL mediation endpoints for a
selected set of data sources.

Simplicity and light-weigthness were the main design goals for that service. The domain experts should
have the possibility to create and publish sharable mediation endpoints without purchasing and installing
any heavy-weight standalone solution. Therefore we provide a Web-based solution, which allows to set up
SPARQL mediation endpoints using an ordinary Web-browser. In order to set up a new SPARQL endpoint, a
domain expert must perform the following steps:

1. Enter the URL of the desired SPARQL endpoint (e.g., http://www.mediaspaces.info/mediation/
endpoint1/sparql) within the domain (e.g., http://www.mediaspaces.info/mediation) of a
mediation service instance. If the endpoint does not exist yet, the user is prompted to create a new
SPARQL endpoint.

6.6. Implementation Considerations 115

2. In a configuration screen, the user then has to define the SPARQL endpoints of the data sources to be
integrated (e.g., http://www.institution1.com/sparql and http://www.institution2.com/
sparql).

3. For each data source, the URL location of the previously defined and published RDFS source schemes
must be defined. Also for the mediation endpoint, the domain expert must provide the URL of the
target or mediation schema.

4. Finally, for each source- and target schema pair, the domain experts must create an appropriate, Web-
accessible mapping entry.

After these steps have been performed properly, an additional SPARQL endpoint is created and provides
a single, uniform query interface to a set of distributed and autonomous data sources.

The mediation service is implemented as a Web application, which handles the incoming HTTP requests
and performs the appropriate processing in the back-end. The Web-application uses the Jena RDF API16 and
ARQ17 for advanced SPARQL query processing functionality. The information to be persisted is handled by
Jena and stored in an underlying Apache Derby18 database, whereas the database back-end can be switched
to any Jena-supported RDBMS.

Since we have implemented the mediation service in Java, which is platform-independent, it can be
installed on any platform which provides a Java Runtime Environment and a Java Servlet Container. By
default, we use the Jetty19, a simple, scalable, and efficient Web Server and Servlet Container.

6.6.3 Mapping Registry Service
As elaborated on earlier (see Section 6.5), the mapping registry is a network of registry nodes, where each
node provides metadata about a set of known metadata schemes and mappings between them. Each registry
node is identified by a dereferencable URL and exposes its metadata in a human- and machine-interpretable
way.

For users and applications who access a registry node by dereferencing a registry node’s URL, we must
deliver an appropriate representation. For metadata schemes and mappings, we have already described how
this can be realised. In fact, for registry metadata we can apply the same mechanism: we deploy registry
metadata in some Web-accessible location using a Web server and rely on content negotiation to deliver the
appropriate representation. This implies that for each registry node, the maintainer of such a node must
provide two data files (e.g, registry.rdf and registry.html) and define URL rewriting rules to route
incoming HTTP requests from a virtual URL (e.g., http://www.institution.com/registry), based on
the value of the HTTP Accept header field, to the appropriate representation format.

The obvious problem domain experts are facing with such an approach is that they do not know which
registry nodes to contact when searching for schemes or mapping between schemes. To overcome this lim-
itation, we have implemented a simple mapping registry service which provides basic search and discovery
functionality for domain experts. It is again realised as Java Web application, can be installed on any platform,
and can process the metadata provided by the registry nodes.

To set up a registry service instance, the domain experts need to provide a single registry node URL;
we assume that within a certain domain there exists at least one known node. The registry service can then
fetch the metadata from that node, follow the links to other, linked registry nodes and process the metadata.
If domain experts search for a specific schema or schema mapping by entering a URL identifier or search
strings into a Web form, the registry service delivers a list of results pointing to relevant registry nodes.

16Jena — A Semantic Web Framework for Java: http://jena.sourceforge.net/
17ARQ — A SPARQL Processor for Jena: http://jena.sourceforge.net/ARQ/
18Apache Derby: http://db.apache.org/derby/
19Jetty: http://www.mortbay.org/jetty-6/

116 Chapter 6. An RDFS Binding of the Mapping Model

6.7 Summary
In this chapter, we have described the conceptual design and the implementation of the RDFS binding of
the abstract mapping model presented earlier. We have illustrated how to lift schemes expressed in other
schema definition languages to the level of RDFS, provided a precise specification of the RDFS mapping
model, described how to translate mapping specifications to SPARQL query templates, and described how
these templates are processed in the mapping execution phase. For the mapping maintenance phase, we have
designed a lightweight, but functional mapping registry architecture.

The clear advantage of our approach, in contrast to other existing mapping solutions, is its simplicity and
light-weightness. All mapping artefacts (schemes, mappings, registry data) and also the supporting services
(mediation service, registry service) are Web-based and do not require the installation or purchase of any
standalone, heavy-weight mapping solution or data integration suite. For defining and publishing schemes,
mappings and registry data, domain experts require only an RDF-supporting editor. For setting up a mediation
endpoint, they can simply enter URLs into a Web application and provide the necessary metadata integration
information.

The focus of our approach is mainly on the mapping representation and maintenance phase, as well as
on the transition from the representation to the execution phase. The mapping discovery phase is out of the
scope of this work because it is a too broad research area for being discussed extensively in this work. Our
mapping model does, however, provide the necessary means to integrate schema mapping algorithms that
deliver a set of potentially related schema elements.

Since the discovery phase is out of the scope of this work and the execution phase is a too broad research
area for being discussed extensively in this work, there is still much future work to be conducted in these
areas.

One limitation in our proposed approach is the fact that the mapping representation phase requires the
definition of two separate representations, one in RDF and the other in HTML. At the moment, there exists
no RDF counterpart to XSL stylesheets, which would allow the rendering of a single document in various
representation formats.

Chapter 7

The OAI2LOD Server — Wrapping
OAI-PMH Data Sources

For including data source in an integration context, we require wrapper components that expose schema
information on the Web and make the contained metadata accessible via SPARQL. In this chapter, we provide
— as a proof of concept — an example for such a wrapper according to our architecture. For this purpose,
we describe the OAI2LOD Server, which is a wrapper component for the Open Archives Initiative Protocol
for Metadata Harvesting (OAI-PMH) [LdS02].

The OAI-PMH protocol is utilised for the exchange and sharing of metadata for digital and non-digital
items and enjoys growing popularity in the domain of digital libraries and archives. Currently, we know
of more than 1700 OAI-PMH compliant repositories exposing metadata descriptions for several millions of
items. The design of OAI-PMH is based on the Web Architecture [JW04], but it does not treat its conceptual
entities as dereferencable resources. The selective access to metadata is out of its scope too. One can, for
instance, retrieve metadata for a certain digital item, but one cannot retrieve all digital items that have been
created by a certain author.

In Section 7.1, we will give a brief introduction into the technical characteristics of OAI-PMH. Then, in
Section 7.2, we describe how the OAI2LOD Server builds a bridge between the OAI-PMH and the Linked
Data principles. In Section 7.3, we provide the implementation details, and finally, in Section 7.4, we discuss
how the Linked Data concepts have already influenced protocol development in the digital libraries domain.

7.1 What is OAI-PMH?

Client applications can use the OAI-PMH protocol to harvest metadata from Data Providers using open
standards such as URI, HTTP, and XML. Institutions taking the role of data providers can easily expose their
metadata via OAI-PMH by implementing light-weight wrapper components on top of their existing metadata
repositories.

7.1.1 Technical Details

The main conceptual entities in the OAI-PMH specification are Item, Record, and MetadataFormat. An
item represents a digital or non-digital resource and is uniquely identified by a URI. It can be described by an
arbitrary number of metadata records, each of which is bound to a certain metadata format, which can freely
be chosen by the data provider. To guarantee a basic level of interoperability, all data providers must support

117

118 Chapter 7. The OAI2LOD Server — Wrapping OAI-PMH Data Sources

the unqualified Dublin Core [DC06] format. Further, OAI-PMH provides the concept of a Set for grouping
related items and their associated metadata.

OAI-PMH is implemented on top of HTTP and defines a set of verbs to request different informa-
tion types: an Identify request retrieves administrative metadata (e.g., name, owner) about a reposi-
tory as a whole. GetRecord is used to fetch an individual record for a certain item in a given format,
whereas the request ListRecords harvests all metadata for all available items in a certain metadata format.
ListIdentifiers returns the identifiers (URIs) of all available items, ListMetadataFormats the formats
in which the data provider exposes metadata, and ListSets returns the available sets in an OAI-PMH repos-
itory.

Figure 7.1 shows a sample GetRecord request for a Dublin Core metadata record exposed by the Li-
brary of Congress and the corresponding response. The request URI contains the address of the repository,
the verbs, and required parameters like the item URI. The response consists of a <header> section, which
contains the item’s URI, and a <metadata> section encapsulating the metadata record.

Page 1 of 1oai_pmh_sample.txt

Printed: Wednesday, July 9, 2008 9:53:56 AM Printed For: Bernhard Haslhofer

REQUEST:

http://memory.loc.gov/cgi-bin/oai2_0?

 verb=GetRecord&

 identifier=oai:lcoa1.loc.gov:loc.gdc/gcfr.0018_0163&

 metadataPrefix=oai_dc

RESPONSE:

<OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/" ... >

...

<GetRecord>

 <record>

 <header>

 <identifier>

 ! oai:lcoa1.loc.gov:loc.gdc/gcfr.0018_0163</identifier>

 <setSpec>ascfrbib</setSpec>

 ...

 </header>

 <metadata>

 <oai_dc:dc

 xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"

 xmlns:dc="http://purl.org/dc/elements/1.1/" ...>

 <dc:title>Don Christopher Columbus to his friend, Don Louis de Santangel, on his arrival

 ! from his first voyage. At the Azores, Feb. 15, 1493.

 </dc:title>

 <dc:creator>Columbus, Christopher.</dc:creator>

 <dc:subject>America--Discovery and exploration--Spanish--Early works to 1800.</dc:subject>

 <dc:identifier>http://hdl.loc.gov/loc.gdc/gcfr.0018_0163</dc:identifier>

 <dc:coverage>America</dc:coverage>

 ...

 </oai_dc:dc>

 </metadata>

 </record>

</GetRecord>

</OAI-PMH>

Figure 7.1: Sample OAI-PMH communication

7.1. What is OAI-PMH? 119

7.1.2 Spreading and Future of OAI-PMH
There exist a number of OAI Data Provider Registries1, from which we know that currently 1765 institutions
worldwide maintain OAI-PMH repositories. Regarding their application domain, we can observe that the
protocol has been implemented in a variety of institutions, ranging from small research facilities to national
libraries that have integrated this protocol with their catalogue systems. Examples are the Institute of Biology
of the Southern Seas, exposing 403 records, and the U.S. National Library of Medicine’s digital archive,
exposing 1,272,585 records.

In order to estimate the amount and the characteristics of metadata one can retrieve via OAI-PMH, we
have carried out an analysis on the 915 registered repositories that delivered valid responses. Figure 7.2
illustrates the size of these repositories using a logarithmic scale on the Y-axis. The results show that 843 or
92% of all repositories expose metadata for less than 20,000 items. With 14,303 being the average number of
items, the total number of 13,087,842 items is made up of a large number of smaller OAI-PMH repositories.

Page 1 of 1oai_pmh_response.txt

Printed: Saturday, January 26, 2008 10:25:04 AM Printed For: Bernhard Haslhofer

REQUEST:

http://memory.loc.gov/cgi-bin/oai2_0?

 verb=GetRecord&

 identifier=oai:lcoa1.loc.gov:loc.gdc/gcfr.0018_0163&

 metadataPrefix=oai_dc

RESPONSE:

<OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/" ... >

...

<GetRecord>

 <record>

 <header>

 <identifier>

 ! oai:lcoa1.loc.gov:loc.gdc/gcfr.0018_0163</identifier>

 <setSpec>ascfrbib</setSpec>

 ...

 </header>

 <metadata>

 <oai_dc:dc

 xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/"

 xmlns:dc="http://purl.org/dc/elements/1.1/" ...>

 <dc:title>Don Christopher Columbus to his friend, Don Louis

 de Santangel, on his arrival from his first voyage.

 At the Azores, Feb. 15, 1493.

 </dc:title>

 <dc:creator>Columbus, Christopher.</dc:creator>

 <dc:subject>America--Discovery and exploration--Spanish--

 Early works to 1800.

 </dc:subject>

 <dc:identifier>

 http://hdl.loc.gov/loc.gdc/gcfr.0018_0163</dc:identifier>

 <dc:coverage>America</dc:coverage>

 ...

 </oai_dc:dc>

 </metadata>

 </record>

</GetRecord>

</OAI-PMH>

Figure 1: Sample OAI-PMH communication.

The results show that 843 or 92% of all repositories expose
metadata for less than 20,000 items. With 14,303 being the
average number of items, the total number of 13,087,842
items is made up of a large number of smaller OAI-PMH
repositories.

In total, the analysed repositories expose 161 different
metadata formats. Besides unqualified Dublin Core, which
is required to be implemented by definition, RFC1807 (12%),
MARC (11.8%) and MARC-21 (10.3%), MODS (7.5%), and
METS (5.7%) are most frequently used3. The large gap be-
tween Dublin Core and the other metadata formats reveals
that most data providers do not follow the OAI-PMH stan-
dard’s suggestion of exposing metadata in a semantically
richer format rather than unqualified Dublin Core.

We expect the number of institutions that expose meta-
data via OAI-PMH to grow even further. Major attempts
of building union catalogues, e.g., the The European Library
(TEL) project4, rely on this protocol for indexing metadata
originating from remote sources. Currently, that initiative
integrates 47 national libraries and gives access to approx-
imately 150 millions of metadata records. Since the OAI-
PMH endpoints of these libraries are currently not listed in
the before mentioned OAI Data Providers Registry we could

3Further information about these standards: http://www.
loc.gov/standards and http://rfc.net/rfc1807.html
4http://www.theeuropeanlibrary.org

Interval Number of Items

1-20,000

20,000-40,000

40,000-60,000

60,000-80,000

80,000-100,000

> 100,000

843

21

16

7

4

24

915

10

100

1000

1-
20

,0
00

20
,0

00
-4

0,
00

0

40
,0

00
-6

0,
00

0

60
,0

00
-8

0,
00

0

80
,0

00
-1

00
,0

00

> 1
00

,0
00

24

4
7

1621

843

Number of items in repository

Format Frequency

http://www.openarchives.org/OAI/2.0/oai_dc.xsd 900

http://www.openarchives.org/OAI/1.1/rfc1807.xsd 110

http://www.openarchives.org/OAI/1.1/oai_marc.xsd 108

http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd 94

http://www.loc.gov/standards/mods/v3/mods-3-2.xsd 69

http://www.loc.gov/standards/mets/mets.xsd 52

http://www.ndltd.org/standards/metadata/etdms/1.0/etdms.xsd 45

http://naca.central.cranfield.ac.uk/ethos-oai/2.0/uketd_dc.xsd 41

http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didmodel.xsd 39

http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:ctx 31

Unqualified Dublin Core

RFC1807

OAI MARC

MARC21 Slim

METS

ETDMS

UK ETD DC

MPEG-21 DIDL

?

0 300 600 900

39

41

45

52

69

94

108

110

900

Top 10 Metadata Standards

Number of repositories

Figure 2: Size of OAI-PMH repositories.

not consider them in our analysis.
Another reason why we expect the number of OAI-PMH

endpoints to grow is that popular open source digital library
systems, such as Fedora5, DSpace6, and EPrints7, provide
an OAI-PMH endpoint by default. These systems currently
find a widespread adoption in various small and medium
institutions (e.g., universities or museums) and will foster
the global distribution of open and Web accessible metadata
even more.

2.3 Shortcomings of OAI-PMH
The OAI-PMH protocol has been designed for transferring

large amounts of metadata from a server to a client over
the Web. From that perspective, it provides a reasonable
solution for clients that need to aggregate or index metadata.
However, it has two significant drawbacks:

• Non-dereferencable identities: although OAI-PMH is
built on the Web infrastructure, we believe that it does
not yet make use of its full potential. To retrieve in-
formation from a repository, a client must execute an
HTTP GET request on an OAI-PMH specific URI (see
Figure 1). This prevents Web clients that are unaware
of the protocol specifics from accessing the repository.

• Restricted selective access to metadata: the record se-
lection criteria in the OAI-PMH harvesting process are
restricted to item identifiers, metadata formats, sets,
and record creation date intervals. However, some
clients might only be interested in records matching
certain criteria (e.g., “all records describing items cre-
ated by X”) or even just a subset of the available meta-
data values (e.g., “all authors of all books in a library”).

One could argue that these features are out of the scope
of OAI-PMH and already implemented by other digital li-
brary protocols such as Z.39.598 or SRU9. However, because
of the popularity and widespread adoption of OAI-PMH in
contrast to other protocols, we believe that it should be en-
hanced in order to solve the above mentioned drawbacks.

5http://www.fedora.info
6http://www.dspace.org
7http://www.eprints.org
8http://www.loc.gov/z3950/agency/Z39-50-2003.pdf
9http://www.loc.gov/standards/sru/specs/

Figure 7.2: Size of OAI-PMH repositories

In total, the analysed repositories expose 161 different metadata formats. Figure 7.3 illustrates the top
ten metadata formats and clearly shows, that besides unqualified Dublin Core, which is required to be imple-
mented by definition, RFC1807 (12%), MARC (11.8%) and MARC-21 (10.3%), MODS (7.5%), and METS
(5.7%) are most frequently used2. The large gap between Dublin Core and the other metadata formats re-
veals that most data providers do not follow the OAI-PMH standard’s suggestion of exposing metadata in a
semantically richer format than unqualified Dublin Core.

We expect the number of institutions that expose metadata via OAI-PMH to grow even further. Major
attempts of building union catalogues, e.g., the The European Library (TEL) project3, rely on this protocol for
indexing metadata originating from remote sources. Currently, that initiative integrates 47 national libraries
and gives access to approximately 150 millions of metadata records. Since the OAI-PMH endpoints of these

1Available OAI Data Provider Registries: http://www.openarchives.org/Register/BrowseSites, http://gita.
grainger.uiuc.edu/registry/

2Further information about these standards: http://www.loc.gov/standards and http://rfc.net/rfc1807.html
3The European Library (TEL): http://www.theeuropeanlibrary.org

120 Chapter 7. The OAI2LOD Server — Wrapping OAI-PMH Data Sources

Interval Number of Items

1-20,000

20,000-40,000

40,000-60,000

60,000-80,000

80,000-100,000

> 100,000

843

21

16

7

4

24

915

Format

http://www.openarchives.org/OAI/2.0/oai_dc.xsd

http://www.openarchives.org/OAI/1.1/rfc1807.xsd

http://www.openarchives.org/OAI/1.1/oai_marc.xsd

http://www.loc.gov/standards/marcxml/schema/MARC21slim.xsd

http://www.loc.gov/standards/mods/v3/mods-3-2.xsd

http://www.loc.gov/standards/mets/mets.xsd

Unqualified Dublin Core

RFC1807

OAI MARC

MARC21 Slim

MODS

METS

ETDMS

UKETDDC (Qual. DC)

MPEG-21 DIDL

0 300 600 900

39

41

45

52

69

94

108

110

900

Top 10 Metadata Standards

Figure 7.3: Top 10 metadata formats

libraries are not yet listed in the before mentioned OAI Data Providers Registry, we could not consider them
in our analysis.

Another reason why we expect the number of OAI-PMH endpoints to grow is that popular open source
digital library systems, such as Fedora4, DSpace5, and EPrints6, provide OAI-PMH support by default. In
recent years, these systems have found widespread adoption in various small and medium institutions (e.g.,
universities or museums) and will foster the global distribution of open and Web accessible metadata even
more.

7.1.3 Shortcomings of OAI-PMH
The OAI-PMH protocol has been designed for transferring large amounts of metadata from a server to a client
over the Web. From that perspective, it provides a reasonable solution for clients that need to aggregate or
index metadata. However, it has two significant drawbacks:

• Non-dereferencable identities: although OAI-PMH is built on the Web infrastructure, we believe that
it does not yet make use of its full potential. To retrieve information from a repository, a client must
execute an HTTP GET request on an OAI-PMH specific URI (see Figure 7.1). This prevents Web
clients, which are unaware of the protocol specifics, from accessing the repository.

• Restricted selective access to metadata: the record selection criteria in the OAI-PMH harvesting pro-
cess are restricted to item identifiers, metadata formats, sets, and record creation date intervals. How-
ever, some clients might only be interested in records matching certain criteria (e.g., all records de-
scribing items created by X) or even just a subset of the available metadata values (e.g., all authors of
all books in a library).

4http://www.fedora.info
5http://www.dspace.org
6http://www.eprints.org

7.2. Design Considerations 121

One could argue that these features are out of the scope of OAI-PMH and already implemented by other
digital library protocols such as Z.39.597 or SRU8. However, because of the popularity and widespread adop-
tion of OAI-PMH in contrast to other protocols, we believe that it should be enhanced in order to solve
the above mentioned drawbacks. Institutions, which employ the OAI-PMH, could then provide powerful
metadata access functionality by implementing just a single protocol.

7.2 Design Considerations

At a first glance, the OAI2LOD server is a wrapper that exposes metadata of OAI-PMH compliant data
sources as Linked Data on the Web and provides a SPARQL query interface to these metadata. During design
time we have noticed that it also covers large parts of the OAI-PMH features by simply following the Linked
Data rules [BL06] and provides solutions for the shortcomings mentioned in the previous section.

The first Linked Data rule says that things should have URIs. In the context of OAI-PMH, items and sets
are such things. By definition, items already fulfil that rule because, according to the OAI-PMH specification,
each item must be identified by a URI (e.g., oai:lcoa1.loc.gov:loc.gdc/gcfr.0018_0163). This not
the case for sets as they are identified by arbitrary strings consisting of any valid URI unreserved characters
(e.g. ascfrbib). However, such strings are no valid URIs.

According to the second rule, URIs that identify resources should be resolvable HTTP URLs. In OAI-
PMH it is common to use non-resolvable URNs to identify items. The OAI2LOD server bridges this gap
by wrapping item URNs and set identifiers with resolvable HTTP URLs. Continuing the above exam-
ple, the item’s URI becomes http://example.com/resources/item/oai:lcoa1.loc.gov:loc.gdc/
gcfr.0018_0163, and the set’s identifier becomes http://example.com/resources/set/ascfrbib.

The third Linked Data rule proposes to deliver useful information whenever a URL is dereferenced. The
OAI-PMH protocol delivers useful information for harvesting clients that can parse and process OAI-PMH
responses. We believe that the provided metadata might also be valuable for applications that are unaware
of the OAI-PMH protocol specifics. For humans we should provide the possibility to browse, display, and
search metadata using an ordinary Web browser. Applications such as Web crawlers should be able to access
OAI-PMH metadata without knowing the protocol details. We fulfil this requirement (i) by assuring that
the responses delivered to a client contain only resolvable HTTP URLs, and (ii) by exposing data in various
representations.

When delivering metadata records to the client, we must assure that each field (e.g., creator) within a
record has assigned a resolvable URL. For some formats (e.g., Dublin Core) this is the case by definition
(e.g., http://purl.org/dc/elements/1.1/creator), for others we must publish a machine-readable
representation (e.g., in RDF/S or OWL) on the Web. Further, we have defined a machine-processable vocab-
ulary9 defining OAI-PMH specific concepts such as Item and Set.

XHTML and RDF serialisation formats, i.e., RDF/XML and N3, are the data representations the OAI2LOD
Server currently supports. While Web browsers can process the former and display the returned informa-
tion to humans, the latter can be processed by machines. The server uses content negotiation, as explained
in [BCH07], to decide which representation to deliver.

In the context of OAI-PMH, the forth Linked Data rule recommends that metadata records should contain
links to other related resources. One kind of link that should be included in a record delivered to a client is
a reference to its origin, i.e., the OAI-PMH endpoint and all relevant protocol parameters required to retrieve
the corresponding XML representation of an item and its records. We express this information using the
OAI2LOD specific oai2lod:origin property, which is defined as a sub-property of rdfs:seeAlso.

7http://www.loc.gov/z3950/agency/Z39-50-2003.pdf
8http://www.loc.gov/standards/sru/specs/
9http://www.mediaspaces.info/vocab/oai-pmh.rdf

122 Chapter 7. The OAI2LOD Server — Wrapping OAI-PMH Data Sources

Searching other OAI2LOD Server instances for equivalent or similar metadata records, is another strategy
for adding links. If we refer to the example presented in Figure 7.1, it is quite likely that other institutions
also have a copy of this book. This fact can be captured by adding an owl:sameAs10 property to the metadata
record. Currently we do this by regarding metadata records originating from distinct server instances and
comparing the values of a set of manually selected metadata fieles according to their lexical similarity using
the Levensthein string distance [Lev66]. If the similarity of two entries is above a certain threshold, two
records are linked. We ask the server administrator to specify (i) remote OAI2LOD Servers that expose
relevant data sets for the linking process, (ii) pairs of source and target fields to be analysed, and (iii) a
similarity threshold for each pair.

Figure 7.4 shows the RDF/XML representation of our example metadata record as it is returned by the
OAI2LOD Server. It contains the same metadata as the record in Figure 7.1 but represents them according
to the Linked Data principles. The owl:sameAs property points to a fictive URL which maintains metadata
about the same book. We can see that by following the Linked Data rules, we have bridged the problem of
non-dereferencable identities and support access to metadata repositories for a variety of Web agents.

Page 1 of 1oai2lod_response.txt
Printed: Wednesday, February 27, 2008 2:13:25 PM Printed For: Bernhard Haslhofer

<rdf:RDF
 ...
 xmlns:oai2lod="http://www.mediaspaces.info/vocab/oai-pmh.rdf#">

 <rdf:Description
 rdf:about="http://www.mediaspaces.info:2020/resource/item/
 oai:lcoa1.loc.gov:loc.gdc/gcfr.0018_0163">

 <rdf:type rdf:resource=
 "http://www.mediaspaces.info/vocab/oai-pmh.rdf#Item"/>

 <oai2lod:setSpec rdf:resource=
 "http://www.mediaspaces.info:2020/resource/set/ascfrbib"/>
 <oai2lod:origin rdf:resource= "http://memory.loc.gov/cgi-bin/
 oai2_0?verb=GetRecord&identifier=oai:lcoa1.loc.gov:loc.gdc/
 gcfr.0018_0163&metadataPrefix=oai_dc"/>
 <owl:sameAs rdf:resource=
 "http://example.com/resource/item/oai:example.com/itemX"/>

 <dc:title>Don Christopher Columbus to his friend, Don Louis
 de Santangel, on his arrival from his first voyage.
 At the Azores, Feb. 15, 1493.
 </dc:title>
 <dc:creator>Columbus, Christopher.</dc:creator>
 <dc:subject>America--Discovery and exploration--Spanish--
 Early works to 1800.
 </dc:subject>
 <dc:identifier rdf:resource=
 "http://hdl.loc.gov/loc.gdc/gcfr.0018_0163"/>
 <dc:coverage>America</dc:coverage>

 </rdf:Description>

</rdf:RDF>

Figure 7.4: Sample OAI2LOD Server response

10The owl:sameAS property, which is defined as part of the Web Ontology Language OWL, indicates that two URI references actually
refer to the same real-world thing.

7.3. Implementation 123

7.3 Implementation
The OAI2LOD Server, as illustrated in Figure 7.5, is a stand-alone server implemented in Java and based
on the architecture of the D2RQ Server [BS04]. It can be configured to expose all metadata records from
a specific OAI-PMH endpoint in a certain metadata format according to the principles described above. A
scheduled process regularly harvests metadata from the given endpoint, transforms them into RDF/XML us-
ing a format-specific XSL style-sheet, stores the transformed metadata in a built-in triple store, and exposes
the metadata to various kinds of clients. The built-in Request Handler/Dispatcher analyses the Accept prop-
erty in the HTTP headers and delivers metadata either in RDF/XML (Accept: application/rdf+xml) or
in XHTML (Accept: application/xhtml+xml). Then it forwards the client requests to the OAI2LOD
Server’s entry point that provides metadata in the appropriate representation using the HTTP 303 See Other
response.

OAI2LOD Server

OAI-PMH
Data

Provider

HTTP

Config
&

XSL

HTML
Browser

Linked
Data

Clients
SPARQL
Clients

Request Handler / Dispatcher

Triple Store

OAI-PMH
Harvester

HTTP

Figure 7.5: The OAI2LOD Server architecture

URI paths are used to expose different types of information in different representations. The /resource
path holds the URIs of all items and sets exposed by the server. When a client requests such a URI, the
OAI2LOD Server examines the Accept property and points to the URI path that delivers information in a rep-
resentation suitable for the client: the /data path provides access to all machine-readable RDF descriptions
for a certain resource; the /page path returns the same information in XHTML. Further, the /directory
path lists what types of resources (e.g., items, sets) are available in an XHTML representation. Analogously,
the /all path delivers that information in a machine readable RDF representation. Figure 7.6 shows examples
of OAI2LOD Server requests and the corresponding OAI-PMH requests that return the same information.

124 Chapter 7. The OAI2LOD Server — Wrapping OAI-PMH Data Sources

All available

resource types

/ (in HTML)

/all (in RDF)

N/A

All item

identifiers

/directory/Item (in HTML)

/all/Item (in RDF)

/oai?verb=ListIdentifiers&

metadataPrefix=oai_dc

The metadata

record

describing a

certain item

/resource/item/oai:lcoa1.loc.g

ov:loc.gdc/gcfr.0018_0163

--

/page/item/oai:lcoa1.loc.gov:l

oc.gdc/gcfr.0018_0163

(XHTML)

/data/item/oai:lcoa1.loc.gov:lo

c.gdc/gcfr.0018_0163

(RDF)

/oai?verb=GetRecord&

identifier=oai:lcoa1.loc.gov:loc.gdc/

gcfr.0018_0163&

metadataPrefix=oai_dc

OAI2LOD Request OAI-PMH Request

Figure 7.6: Comparison of OAI2LOD and corresponding OAI-PMH requests

7.3.1 Preliminary Experiences

The OAI2LOD Server version 0.2 serves records from an in-memory Jena RDF model, which is fed with
metadata records exposed by a certain OAI-PMH endpoint. The number of records a server instance can
host, depends on the amount of memory assigned to the Java Virtual Machine.

In our test environment11, we have exposed 25,000 records in a JVM having 128 megabytes of RAM
assigned. This indicates that a large fraction of existing OAI-PMH repositories (see Figure 7.2) could use the
OAI2LOD Server for exposing their metadata according to the Linked Data rules with a very low resource
effort.

7.3.2 Open Issues

Currently, the OAI2LOD Server exposes metadata records only in a single pre-defined format. When set-
ting up a server instance for a specific OAI-PMH repository, the administrator decides in which format the
metadata records are harvested. Since this approach contradicts a central idea of OAI-PMH we will further
investigate how the OAI2LOD Server could serve metadata in multiple formats. One potential solution is to
define mappings between formats.

Another important OAI-PMH feature is batch retrieval of metadata records. Using the ListRecords
request, a client can iteratively retrieve a chunk of records. The OAI2LOD Server currently supports these
features through SPARQL and its LIMIT and OFFSET clauses. However, we believe that alternatively we
could offer that feature via a dereferencable URI.

The OAI2LOD Server’s capabilities of linking items with other resources on the Web are limited and still
rely on human intervention. We need to experiment with further duplicate detection algorithms and similarity
metrics, in order to achieve better and scalable results.

11http://www.mediaspaces.info:3030/

7.4. The Future of OAI-PMH 125

7.4 The Future of OAI-PMH
The Open Archives Initiative Object Reuse and Exchange (OAI-ORE) [LVJ+07] specification is the latest
standardisation effort driven by the designers of the OAI-PMH protocol. Although the standards are still
in an alpha release status, we can already notice strong similarities with the ideas of Linked Data and the
OAI2LOD Server respectively.

OAI-ORE is a set of standards for the description and exchange of aggregations of Web resources. A
resource can be anything that is identified with a URI such as Web sites, online multimedia content, or items
stored in institutional digital library systems. In the ORE data model, an aggregation is an instance of the
conceptual entity Resource Map and is identified by a URI. A resource map describes the encapsulated
resources as a set of machine readable RDF statements, which makes them readable for a variety of Web
applications. Clients can retrieve aggregations by executing an HTTP GET request on a resource map’s URI.
The ATOM Syndication Format12 is specified as the primary serialisation format for delivering resource maps
to clients. However, since the ORE data model is defined in RDF, resources can not only be mapped to the
ATOM format but also serialised in other RDF exchange formats such as RDF/XML or N3.

Regarding the OAI-ORE specification from the perspective of Linked Data, we can observe that the
first two Linked Data rules are fundamental building blocks of the standard: all things, i.e., resource maps
and the aggregated resources, are identified by dereferencable URIs. Further, all terms used for describing
aggregations have a well-defined semantics, published in terms of a Web accessible vocabulary definition. It
also considers the third rule because resolving the URIs returns useful—i.e., processable and interpretable—
information for both human and machines. Finally, OAI-ORE also follows the fourth rule by providing
several possibilities to link resources: first, an aggregation of resources is by definition a collection of linked
(ore:aggregates) resources; second, the ORE model uses the owl:sameAs property to denote that two
identifiers refer to the same information object; third, it supports the concepts of nested aggregations.

OAI-PMH and OAI-ORE overlap in the fact that Resource Maps can be included as metadata records in
OAI-PMH responses, which allows batch retrieval and harvesting of aggregation information. We believe that
there lies a great potential in a tighter integration of these two standards: if OAI-PMH metadata repositories
expose their items as Web resources by assigning them HTTP-dereferencable URIs, these items could take
part in OAI-ORE aggregations. One possible strategy could be to define a common core data model that links
these two standards so that the ORE specification builds on top of the OAI-PMH protocol. Meanwhile, the
OAI2LOD Server can serve as a bridge between these two standards.

7.5 Summary
In this chapter, we have presented the OAI2LOD Server as a proof of concept for a wrapper component. It
allows us to expose metadata and schema information provided by OAI-PMH endpoints as dereferencable
Web resources and provides selective, structured access to these data via a SPARQL query interface. We have
designed the OAI2LOD Server according to the Linked Data Principles, which makes OAI-PMH metadata
accessible also for (Web) clients that are not aware of the OAI-PMH protocol specifics. Although the linking
of related metadata sets is not a requirement imposed by our Web-based metadata integration architecture,
the OAI2LOD Server provides rudimentary support for this feature. Improving the linking capabilities and
interlinking OAI2LOD Server instances with other data sets exposed according to the Linked Data principles
is on our future research agenda.

12RFC 4287 — The Atom Syndication Format, available at http://www.ietf.org/rfc/rfc4287.txt

Chapter 8

Qualitative Evaluation and Case Study

In the preceding chapters, we have presented the methodology and concepts of a Web-based metadata map-
ping approach and described its implementation for the RDFS schema definition language. In this chapter,
we compare it with other existing mapping solutions and demonstrate its feasibility and practical benefit in
an example metadata integration scenario.

Section 8.1 provides an in-depth analysis of the requirements our approach implements and compares
them with those of other mapping solutions. Thereafter, in Section 8.2, we present a case study we have
performed on the basis of the illustrative examples presented earlier in this work.

8.1 Comparison with Existing Mapping Solutions

Previously, in Section 3.4, we have performed an analysis of existing mapping solutions against the require-
ments framework we have set up based on an extensive literature study. Now, in this section, we will do the
same for our proposed Web-based metadata mapping solution and point out the areas where our approach
exceeds existing ones, but also show yet remaining limitations of our work.

For the analysis, we follow the same structure as in the analysis of existing tools (see Section 3.4) and
discuss, for each mapping phase, to what extent our approach fulfils a certain requirement in that phase.

8.1.1 General Requirements

This category contains all requirements that cannot be assigned to any of the four mapping phases. They are,
however, essential for any mapping solution.

Uniform Accessibility

If a mapping solution provides uniform accessibility, a domain expert can access a set of autonomous, dis-
tributed, and heterogeneous data sources via a single query interface, using a specific query language and by
formulating queries over a certain target (mediation) schema.

Different from pure mapping solutions, our approach goes beyond the formulation and representation of
mappings and provides the means to translate them into executable query templates. User queries, received at
the mediator interface, trigger these templates, fetch the requested metadata expressed in terms of the target
metadata schema from the integrated data sources, and return the results to the requesting client. Therefore,
our approach clearly supports the uniform accessibility requirement.

127

128 Chapter 8. Qualitative Evaluation and Case Study

Modularity

For adding an additional, incompatible data source to an integration context, i.e., to a certain mediation end-
point, it is not necessary to change the implementation of the already existing, productive endpoint. While
other solutions require the redefinition and redeployment of previously created integration (mapping) specifi-
cations, in our approach the domain expert can simply add additional data sources, by (i) installing a wrapper
component for that data source, (ii) defining and publishing a mapping between the newly created, wrapped
data source, and (iii) registering the data source at a mediation endpoint by providing its configuration (data
source-, schema-, and mapping-URI) via a Web-interface. Since adding another data source does not require
any modification of existing system components, our solution fulfils that requirement.

Flexibility in Lifting and Normalisation

Lifting metadata, which are expressed in different schema definition languages, to a common metadata meta-
model, which is in our case RDFS, is the wrapper components’ task. In fact, one can build wrappers for
any data source, ranging from industry standard databases (e.g., RDBMS) over Web-service adapters, to
wrappers for spreadsheet data. Therefore, in our architecture, lifting and normalisation is the task of the
wrapper designer and implementers. They must guarantee that the schema is defined in RDFS and published
on the Web, that the metadata themselves are delivered in RDF, and that both are accessible via a SPARQL
query interface.

However, in contrast to other works, our approach currently does not provide any automatic means for
transforming schema definitions to RDFS; for that part we referred to work conducted by others. Therefore,
we consider this feature to be partially supported by our approach.

Mapping GUI

Providing a fully-fledged, user-friendly mapping GUI that supports domain experts in creating mapping spec-
ifications, especially in drawing mapping relationships, is an important feature that must be supported by
any industrial mapping solution, be it a standalone or Web-based approach. In Web environments, such a
GUI should run in an ordinary Web browser and must therefore be based on Web front-end technologies
(JavaScript, CSS, Ajax). The main challenge lies in dealing with the limited interaction possibilities (e.g.,
drag-and-drop) current Web technologies offer.

So far, our approach provides a simple Web GUI for setting up mediation endpoints and for searching
metadata registry nodes. The design and implementation of a Web-based front-end has been outside the
scope of this thesis and is subject of our future work. Hence, in the context of this work, we can rate this
requirement as being supported partially.

8.1.2 Mapping Discovery

The mapping discovery phase is concerned with matching metadata schemes, i.e., with determining mapping
relationships between the element of two distinct metadata schemes — if possible automatically. Here we
briefly discuss to what extend our approach supports this phase.

Schema Matching / Alignment Support

At the beginning of our thesis, we have excluded the development of new matching algorithms from the
scope of this work, because this would shift its focus into a completely different direction. Schema matching,
and — to use recent terminology — ontology alignment, has been an active research area over decades, but
the results still cannot produce reliable mappings without the supervision of domain experts. This is the

8.1. Comparison with Existing Mapping Solutions 129

main reason why schema matching algorithms have not found widespread adoption in commercial mapping
solutions.

Although we do not provide schema matching algorithms, we have considered that there could be a need
to integrate them into our mapping approach and provided an adequate interface (see Section 5.5). The
requirement itself, however, is not supported by our solution.

Consensus Building Features

Our analysis of existing solutions revealed that currently only Yahoo Pipes partially supports building con-
sensus on conflicting requirements, simply by providing user and community features. We could say that
these features do not provide but enable consensus building.

Regarding our metadata mapping approach, the same is the case: we do not provide but enable consensus
building. Simply by the fact that we publish mapping specifications on the Web and providing the possibility
of copying and adopting mappings for similar integration scenarios, we enable domain experts to agree on a
set of common mapping relationships. This would not be possible when mapping specifications are held in
closed system environments. Therefore, we consider this requirement as being partially fulfilled.

8.1.3 Mapping Representation
Previously we stated that the aim of a mapping model is to provide the language primitives required to recon-
cile the structural and semantic heterogeneities among metadata information objects. It should be expressive
enough to bridge the various groups of heterogeneities described in 2.3.2. In the following, we will analyse
to what extend the mapping model presented in Section 6.3 fulfils that requirement.

Model-Level Structural Heterogeneity Reconciliation

This group of heterogeneities occurs because domain experts arrange model elements that reflect the con-
stituents of a certain domain in various ways and detail. The presented mapping model can resolve these
heterogeneities as follows:

• Naming conflicts: if classes or properties in distinct models are related but have different names as-
signed (e.g., lastname vs. surname), one can easily represent that fact by introducing a ClassMapping
or a PropertyMapping respectively.

• Identification conflicts: different (URI) identifiers in related classes or properties can be resolved the
same way as naming conflicts.

• Constraints conflicts: if two distinct models apply incompatible constraints on their properties (e.g.,
datatypes, enumeration values), one can introduce a dedicated Function that, for instance, performs
datatype conversion or maps a broader range of literal values to a given set of enumeration values.

• Abstraction Level Incompatibilities: such heterogeneities occur, for instance, when model A defines
the concepts Person and Organisation, while model B subsumes these classes in a single concept
Agent. In such cases, one can apply a ClassMapping to relate the concepts and split up or merge the
properties of the involved concepts using PropertyMappings and appropriate Functions.

• Meta-Level Discrepancy: if one model defines a property to capture certain information (e.g., creator)
and another model defines a class (e.g., Person) with several properties (e.g., firstname, lastname)
for a more fine-grained representation of the same information, one can resolve that as illustrated in Ex-
ample 6.5 by introducing a PropertyMapping bound to the respective class using the classContext
property.

130 Chapter 8. Qualitative Evaluation and Case Study

• Domain Coverage: different models usually describe one and the same domain in different levels
of detail. As a result, it frequently occurs that no mapping relationships between model elements
can be determined, because either the source or the target model simply does not define any explicit
elements covering a specific domain aspect. If the information is implicitly available in the instance
values of other elements, one can introduce Functions that extract that information or even contact
external services in order to obtain the necessary information. For instance, if a source model defines
a property location with instance location denominators in natural language (e.g., Vienna) and the
target model represents location information using GIS-coordinates, one could introduce a function
location2gis that contacts an external service to retrieve the corresponding GIS-coordinates. If the
required information is not even available implicitly, domain coverage conflicts cannot be resolved by
any mapping solution.

Model-Level Semantic Heterogeneity Reconciliation

Semantic heterogeneities occur because of differences in the semantics of models on the M1 level, i.e., due
to differences in the elements defined by a metadata schema:

• Domain Conflicts: if two models describe two completely incompatible domains (e.g., electronic
billing vs. multimedia contents), mappings can hardly be determined. We can, however, assume that
mappings will only be created in a specific integration context within a certain domain. If domains
subsume each other, or overlap one can apply the above mentioned mapping model primitives.

• Terminological Mismatches: synonym or homonym conflicts between model elements can easily be
resolved by creating mapping relationships between semantically related model elements. Also on
the instance level, one can handle such mismatches using Functions. One could even introduce a
function that looks up synonyms or homonyms in external thesauri to determine if there is a semantic
correspondence between two instance values.

Instance-Level Semantic Heterogeneity Reconciliation

Semantic heterogeneities can also occur because of semantic discrepancies on the M0 level, i.e., due to
differences in the content values of metadata information objects:

• Scaling/Unit Conflicts: can easily be resolved by introducing Functions that convert from one scale/unit
to the other.

• Representation Conflicts: as scaling/unit conflicts, this kind of heterogeneity can be resolved by intro-
ducing a Function that converts content values from one encoding scheme to another.

Context Representation

The semantics of a mapping relationship depends on the interpretation context of the domain expert who has
created the mapping specification. For other experts, the interpretation could be completely different. For the
purpose of representing a domain expert’s interpretation context after having created a mapping specification,
we rely on URI namespaces. Since each mapping model is a specialisation of a generic graph, which in turn
is identified by a URI, we have a mechanism we can use for context representation. Thus, each mapping URI
represents a certain context and we can say that this requirement is fulfilled.

8.1. Comparison with Existing Mapping Solutions 131

Flexible Language Binding

The core of our mapping solution relies on a generic, graph-based abstract mapping model that reflects the
mapping problem independent of any M2 schema definition language. In this thesis, we have implemented
an RDFS language binding, but in principal, bindings can be created for any schema definition languages that
can be reduced to a basic graph structure. XML, for instance, is based on a hierarchical tree model, which is in
fact a specialisation of a graph (see Section 2.2.2) and could therefore also be bound to the abstract mapping
model. The same is the case for the object-oriented model, which allows the definition of object graphs. The
clear disadvantage of our approach is the increased complexity and the additional implementation effort for
each schema definition language binding. The flexible language binding requirement, however, is fulfilled.

8.1.4 Mapping Execution

The mapping execution phase is concerned with processing previously defined mapping specifications at run-
time and with delivering the desired results to the requesting application. In the following, we analyse how
and to what extent our solution fulfils the requirements we have identified for this phase.

Query Reformulation

In the context of virtually integrated systems, this requirement demands that a mapping solution can reformu-
late queries received by a mediation endpoint according to a mapping specification. We follow an approach
that can be compared to views in relational databases: a mapping specification compiles to a set of query
templates, which provide source-schema transparent access to a data source’s metadata. An incoming user
query is executed against these templates, which in turn return the results in the appropriate representation.
Therefore, our query template approach fulfils the query reformulation requirement.

Query Plan / Optimiser

Query optimisation has not been the main focus of this thesis and is therefore still a major construction area
in our mapping solution. In Section 6.4.3, we have described a first, basic optimisation strategy that selects
the query templates to be executed by analysing if the graph structure defined in the CONSTRUCT clause of
a template is contained in another template. As a result, the total number of templates and consequently also
the total number of queries to be executed against the wrapped data sources is reduced. The development of
a fully fledged query plan and optimisation strategy is not available yet. Therefore, we rate this requirement
as partially fulfilled.

Integration Component Generation

Via a Web-based front-end, domain experts can easily set up new mediation endpoints by providing the URLs
of the data sources to be integrated and the respective mapping specifications. The mapping execution logic
is handled transparently by the mediation component and does not require any further development effort by
the domain expert. Therefore, this requirement is fulfilled.

8.1.5 Mapping Maintenance

For supporting the mapping maintenance phase, we have introduced the concept of a Web-based mapping
registry, which allows the discovery of available metadata schemes and mapping specifications. As we will
see in the following, it does not fully cover all but at least one essential mapping maintenance requirement.

132 Chapter 8. Qualitative Evaluation and Case Study

Mapping Verification

The validity of a mapping specification can be determined only within a specific context because it depends
on the interpretation of one or more domain experts. However, even within a certain context there could
be inconsistencies. One could for instance reference non-existing schema elements or map the same schema
elements several times but differently within one and the same mapping specification. So far, also commercial
solutions and academic prototypes provide only limited means for mapping verification. In our approach, this
aspect is not yet covered, but definitely subject of future work.

Mapping Reusability

The reusability requirement has been a major motivation for lifting the mapping process to the level of the
Web. We believe that domain experts can benefit from the work of others and reuse mapping specification
in their own integration context by tailoring them to their application specific needs. Analogous to human-
readable Web sites, where anyone can view and reuse — as long as there are no legal restrictions — the
source code of (X)HTML pages, we want to achieve the same for mapping specifications. Via the registry
service, domain experts can search for already existing mappings among specific metadata schemes, decide
if they are relevant, and modify them according to their own needs. Therefore, we support the requirement of
mapping reusability.

Mapping Inference

The requirement mapping inference denotes the ability to derive additional mapping relationships from ex-
isting ones. One could, for instance, exploit transitive mapping relationships among metadata schemes and
semi-automatically obtain input for additional mapping specifications. As all mapping solutions we have
analysed so far, we do not yet support this requirement.

8.1.6 Summary of Qualitative Evaluation

In Table 8.1, in the right-most column, we have summarised the results of our qualitative evaluation and
compared them against the requirements other existing mapping solutions fulfil. At a first glance, we can see
that the strength of our approach lies in the mapping representation and in the mapping execution phase.

From the general requirements category, we fulfil uniform accessibility and modularity, which are two
requirements only provided by large Enterprise Information Integration (EII) and Enterprise Application In-
tegration (EAI) suites as well as by the StylusStudio mapping tool and Yahoo Pipes. For lifting models
expressed in other schema definition languages than RDFS, we referred to related work and provided ex-
amples for the three illustrative scenarios presented at the beginning of this thesis. A first mapping GUI
prototype version is available, but in a still very rudimentary status.

Developing schema matching algorithms for the mapping discovery phase has been out of the scope of this
thesis and is therefore, as in most commercial mapping applications, not supported. However, by following
an open Web-based approach, we at least support consensus building in mapping discovery.

The clear strength of our approach lies in the mapping representation phase. Especially the introduction
of instance transformation functions provides mapping capabilities that go beyond those of existing solutions.
Additionally, we provide the possibility to represent the context of a mapping specification by means of URIs.
By following a generic design approach, we also achieve flexibility in language binding.

Also the mapping execution phase, or more specifically, the transition from the representation to the exe-
cution phase, is well supported. We provide a semi-automatic approach for integration component generation,
whereas the generated mediation components take over the task of query reformulation and, to a minor extent,
also the calculation of a query plan and optimisation strategies.

8.1. Comparison with Existing Mapping Solutions 133

B
E

A
 L

iq
u

id
 D

a
ta

 8
.1

S
y
b

a
s
e

 D
a

ta
 I

n
te

g
ra

ti
o

n
 S

u
it
e

 -

A
v
a

k
i
(S

tu
d

io
/S

e
rv

e
r)

 7
.0

M
ic

ro
s
o

ft
 B

iz
T

a
lk

 S
e

rv
e

r
2

0
0

6

C
a

p
e

 C
le

a
r

7
 (

S
tu

d
io

/S
e

rv
e

r)

IB
M

 W
e

b
S

p
h

e
re

 I
n

te
g

ra
ti
o

n

D
e

v
e

lo
p

e
r

A
lt
o

v
a

 M
a

p
F

o
rc

e
 /

S
c
h

e
m

a
A

g
e

n
t

C
O

M
A

+
+

C
lio

S
ty

lu
s
S

tu
d

io
 /

 D
a

ta
D

ir
e

c
t

X
M

L

C
o

n
v
e

rt
e

rs

T
o

p
B

ra
id

 C
o

m
p

o
s
e

r

Y
a

h
o

o
 P

ip
e

s

Uniform Accessibility            

Modularity            

Lifting & Normalisation            

Mapping GUI            

Schema Matching /

Alignment Support
           

Consensus Building

Features
           

Model-Level Structural

Heterogeneity

Reconciliation

           

Model-Level Semantic

Heterogeneity

Reconciliation

           

Instance-Level Semantic

Heterogeneity

Reconciliation

           

Context Representation            

Flexible Language

Binding
           

Query Reformulation            

Query Plan / Optimisation            

Integration Component

Generation
           

Mapping Verification            

Mapping Reusability            

Mapping Inference            

 Supported  

P
ro

p
o

s
e

d
 M

a
p

p
in

g
 S

o
lu

ti
o

n

Other Solutions

M
a

p
p

in
g

 M
a

in
te

n
a

n
c

e
G

e
n

e
ra

l
M

a
p

p
in

g

D
is

c
o

v
e

ry
M

a
p

p
in

g
 R

e
p

re
s

e
n

ta
ti

o
n

M
a

p
p

in
g

 E
x

e
c

u
ti

o
n

Not Supported Partly Supported

EII Suites EAI Suites Mapping Tools

Table 8.1: Qualitative evaluation against existing mapping solutions

Finally, by providing a mapping registry, we have also covered an important mapping maintenance re-
quirement: mapping reusability. The other features are subject to future work.

134 Chapter 8. Qualitative Evaluation and Case Study

8.2 Example Metadata Integration Scenario

In order to demonstrate the feasibility and practical benefits of our mapping solution, we have implemented
a sample metadata integration scenario, which provides uniform access to three autonomous, distributed and
heterogeneous library catalogues. In particular, we realised an advanced search interface that allows users to
search for resources (images, documents, etc.) in the integrated catalogues by entering search criteria for a set
of given metadata fields. One could, for instance, formulate a query which searches for all library resources
from a certain author and have a certain keyword in their title. The search form translates the search criteria
into SPARQL query requests and executes them at a predefined mediation endpoint, which a domain expert
has set up beforehand.

Since we want to give users a simple user interface with a comprehensible set of metadata fields, we have
chosen the Dublin Core metadata element set to be the target schema, i.e., the mediation endpoint can answer
queries formulated over the Dublin Core schema and return metadata from other data sources, that do not
necessarily describe their metadata using that schema.

8.2.1 Initial Situation

Our case study includes three heterogeneous data sources using the components we have presented in this
thesis. These are:

• The Austrian National Library’s (ONB) image archive (see Section 2.1.2), which maintains metadata
for historical images in a relational database1 using a proprietary schema.

• The Library of Congress (LOC) Open Archives repository2, which exposes collections of digitised
historical material, including photographs, movies, maps, pamphlets, sheet music, and books via the
OAI-PMH protocol using the MODS metadata schema3.

• The National Library of Australia’s (NLA) Digital Object repository4, which exposes metadata about
manuscripts, maps, music, pictures, books, and serials using the Simple Dublin Core schema.

As illustrated in Figure 8.1, we have three institutions in three different locations (Austria, Australia,
United States), each of them exposing metadata in a different metadata schema (proprietary ONB, MODS,
Dublin Core). In total we have two different technical interfaces: one SQL-accessible relational database and
two OAI-PMH endpoints. The goal is to make the different kinds data sources, the distributed locations, and
the heterogeneities of the metadata provided by these sources transparent to a requesting client.

8.2.2 Wrapping the Data Sources

Wrapping the involved data sources using dedicated wrapper components is the first step to be performed.
For the ONB’s relational database, we use the D2RQ Server [BS04], a component which publishes metadata
residing in relational databases on the Web and provides SPARQL access to these metadata. For wrapping
the LOC and NLA OAI-PMH metadata sources, we use the OAI2LOD Server presented earlier in this thesis.

1In fact, the ONB exposes the metadata also via OAI-PMH using the Dublin Core schema. For the purpose of this case study,
however, we demonstrate how metadata can be accessed directly from the underlying database.

2The LOC OAI-PMH endpoint: http://memory.loc.gov/cgi-bin/oai2_0
3The LOC exposes its metadata in three formats: Dublin Core, MODS, and MARC21. For demonstration purposes we request

MODS metadata
4The NLA OAI-PMH endpoint: http://www.nla.gov.au/apps/oaicat/servlet/OAIHandler

8.2. Example Metadata Integration Scenario 135

QONB

ONB SPARQL Endpoint

ONB
SPARQL

LOC SPARQL Endpoint

MODS
SPARQL

NLA SPARQL Endpoint

DC
SPARQL

DC Mediation Endpoint

DC

ONB
DC

MODS
DC

SPARQL

QMODS QDC

QDC

Figure 8.1: Example metadata integration scenario

Exposing ONB Metadata using D2RQ

A D2RQ Server instance, which has been set up for a certain relational database, requires a mapping file that
defines the correspondences between tables and columns and RDFS classes and properties. Based on that
information, it can rewrite incoming SPARQL queries to SQL statements and can transform the metadata
to be returned into an RDF representation. Such a mapping file can be generated automatically by running
the mapping generation tool, which is part of the D2RQ distribution. A detailed specification of the D2RQ
language specification is available elsewhere5.

Example 8.1 shows an excerpt of the D2RQ mapping file: it provides mapping information6 for two of
the three database tables (IMAGEDATA and IMAGEOBJECT), we have presented in our illustrative example in
Section 2.1.2. Due to the lack of space, we only show a small subset of the mapped table columns.

Example 8.1 Excerpt of the D2RQ configuration file for exposing ONB metadata

@prefix map: <file:/Users/haslhofer/Desktop/d2r-server-0.4/onb_mapping.n3#> .

@prefix onb: <http://www.mediaspaces.info/schemes/onb#> .

@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .

DB connection details

map:database a d2rq:Database;

d2rq:jdbcDriver "oracle.jdbc.OracleDriver";

d2rq:jdbcDSN "jdbc:oracle:thin:@databaseURL:1521:database";

d2rq:username "userName";

d2rq:password "password";

5D2RQ User Manual and Language Specification: http://www4.wiwiss.fu-berlin.de/bizer/D2RQ/spec/
6The original database tables and columns are named in German language. Here we translated them to English.

136 Chapter 8. Qualitative Evaluation and Case Study

.

Table IMAGEOBJECT

map:ImageObject a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern "ImageObject/@@IMAGEOBJECT.ID@@";

d2rq:class onb:Image;

.

map:ImageObject_TITEL a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:ImageObject;

d2rq:property onb:titel;

d2rq:column "IMAGEOBJECT.TITLE";

.

Table IMAGEDATA

map:ImageData a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern "Image/@@IMAGEDATA.ID@@";

d2rq:class onb:ImageObject;

.

map:ImageData_INFO a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:ImageData;

d2rq:property onb:info;

d2rq:column "IMAGEDATA.INFO";

.

map:ImageData_IMAGE a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:ImageData;

d2rq:property onb:imageObject;

d2rq:refersToClassMap map:ImageObject;

d2rq:join "IMAGEDATA.ID = IMAGEOBJECT.BILD_ID";

.

In the D2RQ mapping specification we can see that the tables and columns are mapped to certain RDFS
classes and properties that are defined within the http://www.mediaspaces.info/schemes/onb# names-
pace7. To enable other applications to correctly interpret them, we must provide the respective schema def-
inition at the location where the namespace points to. Therefore we create am RDFS schema definition for
the ONB metadata schema and deploy it, as described in Section 6.6.1, in the corresponding location.

Exposing LOC Metadata via the OAI2LOD Server

The metadata provided by the Australian National Library OAI-PMH repository can easily be exposed by
setting up an OAI2LOD Server instance. By default, OAI2LOD request metadata in the Dublin Core format
from a OAI-PMH endpoint; since in this case study we want to use the MODS metadata schema, we have
to provide an adequate OAI2LOD configuration together with an XSL stylesheet that transforms retrieved
MODS metadata records from XML to RDF/XML. Example 8.2 shows the configuration file we use to set
up our OAI2LOD Server instance.

7We use the http://www.mediaspaces.info/ namespace only for the purpose of this case study. In a productive environment,
the institutions should host their metadata schemes and mapping themselves

8.2. Example Metadata Integration Scenario 137

Example 8.2 OAI2LOD mapping file for exposing LOC metadata

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix oai2lod: <http://www.mediaspaces.info/vocab/oai2lod-server-config.rdf#> .

<> a oai2lod:Server;

rdfs:label "OAI2LOD Server exposing LOC metadata";

oai2lod:port 2020;

oai2lod:baseURI <http://www.mediaspaces.info:4040/>;

oai2lod:publishes <oai1>;

.

<oai1> a oai2lod:OAIServer;

oai2lod:serverURL <http://memory.loc.gov/cgi-bin/oai2_0>;

oai2lod:metadataPrefix "mods";

oai2lod:styleSheet "xsl/mods2rdf_xml.xsl";

.

In the XSL stylesheet, where the transformation from MODS XML to RDF/XML is defined, we must
refer to classes and properties that are part of an RDFS definition of MODS. Before creating such a definition
from scratch, one should always search the Web for already existing definitions. For the MODS schema,
such a definition has indeed already been developed as part of the SIMILE8 project and is now available at
http://simile.mit.edu/2006/01/ontologies/mods3.

Exposing NLA Metadata via the OAI2LOD Server

For exposing metadata from the Australian National Library on the Web, we simply have to a set up an
OAI2LOD Server instance with default parameters because support for the Dublin Core metadata schema is
a built-in OAI2LOD feature. We only need to change the oai2lod:baseURI property to the host (and port)
where the instance is running, and the oai2lod:serverURL to http://www.nla.gov.au/apps/oaicat/
servlet/OAIHandler, which is the NLA’s OAI-PMH endpoint URL.

8.2.3 Creating the Mapping Specifications
In the next step, we must create mapping specifications for the involved data sources. The target schema is
the Dublin Core schema and the two source schemes are the proprietary ONB and the MODS schema. For
the NLA data source we do not have to specify mappings because the wrapper already exposes Dublin Core
metadata.

Mapping from the ONB schema to Dublin Core

Example 6.5 in Section 6.3 illustrates part of the required mapping specification, which maps the onb:
firstname and onb:lastName properties, in the context of the class onb:Person, to the dc:creator
property. The property mapping uses the fn:concat instance transformation function to transform the ONB
instances into the representation required by the dc:creator property.

In Example 8.3, we present an excerpt of the extension of that mapping specification; basically, we simply
introduced additional property mappings. Since the Dublin Core Usage Guide proposes to use RFC8601 date
representations (e.g., 2003-07-03) for the dc:format property, we introduce a costum instance transforma-
tion that transforms the ONB-specific date representation (e.g., 03-JUL-03) to the required format.

8The SIMILE project: http://simile.mit.edu/

138 Chapter 8. Qualitative Evaluation and Case Study

Example 8.3 ONB-DC mapping specification

map:title2title a mm:PropertyMapping;

am:expression am:equivalent;

mm:sourceClassContext onb:ImageData;

mm:sourceElement onb:title;

mm:targetElement dc:title;

.

map:info2description a mm:PropertyMapping;

am:expression am:overlap;

mm:sourceClassContext onb:ImageData;

mm:sourceElement onb:info;

mm:targetElement dc:description;

.

map:creationDate2date a mm:PropertyMapping;

am:expression am:equivalent;

mm:sourceClassContext onb:ImageData;

mm:sourceElement onb:creationDate;

mm:targetElement dc:date;

am:transFunction map:dateConvert;

.

map:dateConvert a am:Function;

am:URI fx:date2rfc8601;

am:argument(onb:creationDate);

am:result dc:date;

.

map:mimeType2format a mm:PropertyMapping;

mm:sourceClassContext onb:ImageObject;

mm:sourceElement onb:mimeType;

mm:targetElement dc:format;

.

Mapping from the MODS schema to Dublin Core

For the metadata provided by the LOC OAI2LOD Server, we must define mapping relationships between
the source MODS schema and the target Dublin Core schema. Example 8.4 illustrates an excerpt of that
mapping. We can see that MODS defines most properties (e.g., mods:name) in the context of a certain class
(e.g., mods:CorporateName), while the Dublin Core element set is simply a flat list.

Example 8.4 MODS-DC mapping specification

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix mods: <http://simile.mit.edu/2006/01/ontologies/mods3#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

map:title2title a mm:PropertyMapping;

am:expression am:targetInclude;

mm:sourceClassContext mods:Title;

mm:sourceElement mods:value;

mm:targetElement dc:title;

.

8.3. Summary and Lessons Learned 139

map:altTitle2title a mm:PropertyMapping;

am:expression am:targetInclude;

mm:sourceClassContext mods:AlternativeTitle;

mm:sourceElement mods:value;

mm:targetElement dc:title;

.

map:corporateName2publisher a mm:PropertyMapping;

am:expression am:targetInclude;

mm:sourceClassContext mods:CorporateName;

mm:sourceElement mods:name;

mm:targetElement dc:publisher;

.

map:abstract2description a mm:PropertyMapping;

am:expression am:overlap;

mm:sourceClassContext mods:Item;

mm:sourceElement mods:abstract;

mm:targetElement dc:description;

.

map:topic2subject a mm:PropertyMapping;

am:expression am:targetInclude;

mm:sourceClassContext mods:Topic;

mm:sourceElement mods:name;

mm:targetElement dc:subject;

.

8.2.4 Deploying a Mediation Endpoint
The deployment of a mediation endpoint is now a straight-forward process and requires the following config-
uration steps:

• Using a Web browser, we contact the mediation service deployed at http://www.mediaspaces.
info/mediation. The service gives us the option to either choose an existing mediation endpoint
or to create a new on. We do the latter, create a new mediation endpoint and obtain its URL (e.g.,
http://www.mediaspaces.info/mediation/ep1).

• At the Web site that appears when contacting the mediation endpoint’s URL, we are prompted to
enter details about the target schema and the involved data sources. We enter the URLs of the wrapper
components we have deployed beforehand, together with the URLs of the source schemes that describe
the metadata within these sources.

• Then we deploy the two mapping specifications on the Web (e.g., http://www.mediaspaces.info/
mapping/onb_dc and http://www.mediaspaces.info/mapping/mods_dc) and equip our end-
point with these mappings by adding their URI references to the mediation endpoint configuration.

With these few configuration steps, a new mediation endpoint is set up and provides a uniform SPARQL
query interface (e.g., http://www.mediaspaces.info/mediation/ep1/sparql) to execute SPARQL
queries, formulated over the Dublin Core schema, over three autonomous, distributed metadata sources.

8.3 Summary and Lessons Learned
The aim of this chapter was to evaluate the features of our mapping solution against those of other existing
mapping solutions and to demonstrate the feasibility and practical benefits of our approach.

140 Chapter 8. Qualitative Evaluation and Case Study

From the results of the qualitative evaluation, we can clearly see that the strength of our approach lies in
the mapping representation and (in the transition to) the mapping execution phase. Mapping discovery has
not been the primary focus of this work and for mapping maintenance we have provided a registry solution
that covers the basic needs (discovery and reuse of mappings) but still lacks other important features.

The aspect that distinguishes our approach from existing ones, is the focus on the Web architecture: all
components (mediators, wrapper) and all involved artefacts (schema definition language, schemes, mappings)
are designed in a way, that allows human and machines to access them on the Web. Thereby URIs, and more
specifically URLs, play a major role.

The case study we have conducted by implementing an example metadata integration scenario has demon-
strated that by using our mapping solution, it requires only a few, basic steps to set up a new mediation end-
point; without the need to install a metadata integration suite in the local system environment. However, it
has also unveiled several limitations and areas for improvement in the future:

• Performance: we could identify two major performance bottlenecks when executing SPARQL queries
against a deployed mapping endpoint. First, the template selection and combination algorithms we em-
ploy in the mediator requires further optimisation strategies and techniques. For an incoming SPARQL
query, the mediator currently executes a set of templates for each data source, whereas each template
leads to a separate query to be executed; also if the query targets only a single data source. Combin-
ing and merging templates by using a more sophisticated selection algorithm will dramatically increase
query performance. Second, the wrappers we use to expose the involved data sources are still academic
prototypes and must be further improved in terms of query performance.

• Mapping GUI: as already mentioned, the domain experts require a mapping GUI for specifying map-
ping relationships, otherwise it is unlikely that they produce mapping specifications. Since our whole
architecture is based on Web technology, we could provide such an application also on the Web.

• Human readability: in our examples, we have defined metadata schema and mapping specifications
using the N3 notation and deployed them on the Web. Since the N3 language is a format intended
to be interpreted by machines, we also need a human-readable representation. Currently, we deploy
an HTML representation in parallel and use HTTP content negotiation for delivering the appropriate
representation to the requesting client, which means that the specifications must be written twice. A
transformation language similar to XSL, which could translate RDF serialisation formats to HTML
would solve the problem, but does not exist yet.

Recapitulating, we can say that the mapping solution we have developed so far demonstrates how meta-
data mappings can be realised in a Web environment. It does, however, require further work be invested in
order to eliminate the currently existing limitations.

Chapter 9

Conclusions

9.1 Summary

In this thesis, we have proposed a Web-based metadata mapping technique as a novel approach for establish-
ing metadata interoperability in an open, Web-based environment.

After an introduction to the area of metadata and its basic technical building blocks, we have exten-
sively discussed the notion of metadata interoperability and provided a categorisation of heterogeneities that
can prevent metadata information objects from being interoperable. For resolving these heterogeneities, we
can resort to a variety of interoperability techniques, such as metadata standardisation, application profiles,
global conceptual models, or schema mapping. An analysis on the quality of these techniques has revealed
that especially in metadata integration scenarios, where agreement on a certain metadata standard is not pos-
sible, mapping techniques provide the necessary means to resolve a broad range of structural and semantic
heterogeneities.

Subsequently, we have defined our conception of metadata mapping on a conceptual and technical basis,
and identified it as being a cyclic process consisting of four major phases: mapping discovery, mapping rep-
resentation, mapping execution, and mapping maintenance. For each phase, we have developed an extensive
set of requirements that should be met by mapping solutions in order to be suitable for the integration of in-
compatible metadata from a variety of autonomous and distributed data sources. Based on these requirements
we have derived an evaluation framework, against which we have analysed a representative set of metadata
mapping solutions. Our analysis has revealed, that the majority of existing solutions focuses on closed-world
database systems and does not provide means for mapping metadata information objects that are expressed
using novel Web-based data models, such as RDF/S. Furthermore, many mapping solutions do not consider
metadata mapping as a process, but concentrate only on certain phases: research prototypes primarily focus
on mapping discovery and disregard how these mapping could be further processed. Commercial solutions
support the representation and execution phase and partially disregard the discovery and maintenance phase.
Another limitation of many mapping solutions is the restricted expressiveness of the mapping languages
they provide for domain experts in order to express mapping relationships between the elements of distinct
metadata schemes.

Facing these deficiencies, this thesis has made three substantial contributions towards a metadata mapping
solution that addresses the needs of providing uniform access to incompatible metadata in an open, Web-based
environment.

Firstly, we have proposed an integration architecture that seamlessly integrates with the architecture of the
World Wide Web and a methodology that reflects the previously mentioned mapping phases. This enables the
deployment of uniform query interfaces to a set of distributed, autonomous, and heterogeneous data sources
in a Web-based environment. We can summarise the central characteristics of our approach as follows:

141

142 Chapter 9. Conclusions

• All involved artefacts are Web resources. Not only the metadata to be integrated and the corresponding
metadata schemes, but also the mapping specifications are Web resources and can be dereferenced via
their URLs.

• All involved architectural components are Web services. Mediators and Wrappers expose their SPARQL
query interfaces as URLs and can be looked up in a registry service, which is a Web service that main-
tains metadata about existing mediator and wrapper components as well as available schemes and
mapping specifications.

• Domain experts can interact with the proposed mapping technique via an easy-to-use Web GUI. They
do not need to install any additional mapping software in their local system environment.

Secondly, an abstract mapping model, which provides the means for defining mapping relationships
among incompatible metadata schemes has been proposed. It has the following characteristics:

• The abstract mapping model is generic and therefore independent of any concrete schema definition
language. It does, however, introduce the concept of URIs as identifiers for the model itself and all its
elements, and thereby binds the mapping process to the architecture of the World Wide Web.

• The abstract mapping model is built upon a minimal directed labelled graph data model and is therefore
applicable for all schema definition languages whose structure is derived from a graph-based grounding
structure.

• The abstract mapping model reflects the semantics of a mapping relationship in terms of a mapping
expression that is uniquely identified by a URI.

• The abstract mapping model introduces the concept of instance transformation functions, which is
an essential feature to reconcile a broad range of heterogeneities occurring in real-world integration
scenarios.

Thirdly, we have described an RDFS binding of the mapping model, which allows the definition of map-
ping relationships among metadata schemes expressed in RDFS. Its characteristics can be summarised as
follows:

• The RDFS binding extends the abstract mapping model with elements that take into account RDFS-
specific characteristics, such as the fact that RDFS properties are first-class objects.

• Although the focus of this thesis has clearly been on the representation and on the (transition to) the
execution phase, the RDFS mapping model also reflects the other phases: for the discovery phase, it
provides an interface for integrating schema matching and ontology alignment techniques; the mainte-
nance phase is supported by an interface for publishing mappings in a mapping registry.

• RDFS mapping specifications can be transformed into executable SPARQL query templates, which can
be processed by the mediator component in order to unfold incoming user queries.

• The execution of the SPARQL templates is slightly optimised by a basic template selection algorithm.

• Discovery and reuse of existing RDFS mapping specifications is supported by a mapping registry that
exposes registry metadata on the Web.

The result of these contributions is a metadata integration solution, which resembles a Web-based medi-
ator wrapper architecture. Domain experts can expose the data sources they need to integrate by installing
wrappers; the OAI2LOD Server we have provided is such a component. Our solution further enables domain
experts to establish uniform SPARQL query access to these sources by deploying a mediation endpoint at the
provided mediation service.

9.2. Future Work 143

9.2 Future Work
The results of this thesis, especially those of the qualitative evaluation and case study we have conducted in
Chapter 8, have opened several areas of future research work:

• For lifting and normalisation metadata schemes to the level of RDFS, we have referred to the works
provided by others. Our mapping architecture can integrate such algorithms and thereby support users
in creating RDFS (or OWL) metadata schemes from existing schema descriptions that are expressed in
different schema definition languages.

• The integration of schema matching and ontology alignment algorithms is also possible. We can pro-
vide adapters to a variety of algorithms and allow domain experts to select them as support for the
mapping discovery phase.

• The realisation of a Web-based mapping GUI, which allows domain experts to interactively create
mappings among two metadata schemes, has high priority in our future work. The user interface
of Yahoo Pipes shows that such a GUI can be realised with current Web technologies (HTML, CSS,
Ajax). We expect that such a mapping GUI will increase the sharing of mapping specifications, because
it supports domain experts in interpreting mappings created by others.

• By introducing community features such as tagging, wikis, or annotations, we could improve the pro-
cess of building consensus on a certain mapping specification, which can lead to higher interoperability.

• Performance improvement is another important area of future work: the mediation component re-
quires more sophisticated distributed query plan algorithms, which additionally take into account the
capabilities of involved data sources. We need to consider statistics about the kind of metadata (classes,
properties) contained in a data source and about the expected response times. The wrapper components
require further optimisation too. The D2RQ Server, for instance, does not yet utilise the full power of
the underlying relational database system. Certain SPARQL constructs (e.g., FILTER, LIMIT) are not
yet translated to SQL, which leads to high latency and requires extensive data processing in the wrap-
per component itself. An obvious limitation of the OAI2LOD Server in its current development stage
is that the metadata retrieved from OAI-PMH endpoints are replicated in an intermediate triple store
— and the performance of triple stores is still a major research area in the Semantic Web community,
although commercial database vendors (e.g., Oracle, OpenLink Virtuoso) have already started to work
on that issue.

• The OAI2LOD Server currently provides rudimentary capabilities for interlinking OAI-PMH data sets
with other data sets (e.g., DBPedia 1) that have been exposed according to the Linked Data Principles.

• The verification of mappings has been out of the scope of this thesis too. Especially, in an open-world
environment it is hard to determine the truth of a statement. However, some basic mechanism, which
could evaluate the correctness of mappings, would bring an enormous benefit for domain experts.

• Mapping inference, as for instance, the transitive closure of mapping relationships, is on our list of
future research topics.

1DBPedia is a structured representation of the data provided by Wikipedia. It is accessible at: http://dbpedia.org/About

Bibliography

[Abe01] Karl Aberer. P-grid: A self-organizing access structure for p2p information systems. In
CooplS ’01: Proceedings of the 9th International Conference on Cooperative Information
Systems, pages 179–194, London, UK, 2001. Springer-Verlag.

[Abi97] Serge Abiteboul. Querying semi-structured data. In ICDT ’97: Proceedings of the 6th Inter-
national Conference on Database Theory, pages 1–18, London, UK, 1997. Springer-Verlag.

[ACL+07] Mustafa Atay, Artem Chebotko, Dapeng Liu, Shiyong Lu, and Farshad Fotouhi. Efficient
schema-based XML-to-relational data mapping. Inf. Syst., 32(3):458–476, 2007.

[ACMHvP04] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. van Pelt. GridVine: Building internet-
scale semantic overlay networks. In International Semantic Web Conference (ISWC), volume
3298 of LNCS, pages 107–121, 2004.

[ADL07] ADL. Sharable Content Reference Model (SCORM). Advanced Distributed Learning Initative
(ADL), 2007. Available at: http://www.adlnet.gov/scorm/index.aspx.

[ADMR05] David Aumueller, Hong Hai Do, Sabine Massmann, and Erhard Rahm. Schema and ontology
matching with COMA++. In Fatma Özcan, editor, SIGMOD Conference, pages 906–908.
ACM, 2005.

[AG08] Renzo Angles and Claudio Gutierrez. Survey of graph database models. ACM Comput. Surv.,
40(1):1–39, 2008.

[AJP07] Julie Allinson, Pete Johnston, and Andy Powell. A Dublin Core application profile for
scholarly works, January 2007. Available at: http://www.ariadne.ac.uk/issue50/
allinson-et-al/.

[ALC00] ALCTS CC:DA. Task Force on Metadata: Final Report. Association for Library Collections
& Technical Services (ALCTS), 2000. Available at: http://www.libraries.psu.edu/
tas/jca/ccda/tf-meta6.html.

[Alt07a] Altova. Altova MapForce. Altova, Inc., 2007. Available at: http://www.altova.com/
products/mapforce/data_mapping.html.

[Alt07b] Altova. Altova SchemaAgent. Altova Inc., 2007. Available at: http://www.altova.com/
schemaagent_mapforce.html.

[BBB+02] Thomas Baker, Christophe Blanchi, Dan Brickley, Erik Duval, Rachel Heery, Pete Johnston,
Leonid Kalinichenko, Heike Neuroth, and Shigeo Sugimoto. Principles of metadata registries.
White paper, DELOS Network of Excellence on Digital Libraries, 2002.

145

146 BIBLIOGRAPHY

[BCH07] Chris Bizer, Richard Cyganiak, and Tom Heath. How to publish data on the
web, July 2007. Available at: http://www4.wiwiss.fu-berlin.de/bizer/pub/
LinkedDataTutorial/.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The description logic handbook: theory, implementation, and applications. Cam-
bridge University Press, New York, NY, USA, 2003.

[BDH+01] Thomas Baker, Makx Dekkers, Rachel Heery, Manjula Patel, and Gauri Salokhe. What terms
does your metadata use? Application profiles as machine-understandable narratives. In DC
’01: Proceedings of the International Conference on Dublin Core and Metadata Applications
2001, pages 151–159, Tokyo, Japan, 2001. National Institute of Informatics.

[BEA07] BEA. BEA Liquid Data for WebLogic 8.1. BEA Systems, Inc., 2007. Available at: http:
//edocs.bea.com/liquiddata/docs81/index.html.

[BHHK08] Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis, editors. The
Semantic Web: Research and Applications, 5th European Semantic Web Conference, ESWC
2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings, volume 5021 of Lecture
Notes in Computer Science. Springer, 2008.

[BHP00] Phillip A. Bernstein, Alon Y. Halevy, and Rachel A. Pottinger. A vision for management of
complex models. SIGMOD Rec., 29(4):55–63, 2000.

[BL98] Tim Berners-Lee. Notation 3. Design note, World Wide Web Consortium (W3C), 1998.
Available at: http://www.w3.org/DesignIssues/Notation3.

[BL06] Tim Berners-Lee. Linked data, July 2006. Available at: http://www.w3.org/

DesignIssues/LinkedData.html.

[BMPQ04] Philip A. Bernstein, Sergey Melnik, Michalis Petropoulos, and Christoph Quix. Industrial-
strength schema matching. SIGMOD Record, 33(4):38–43, 2004.

[BP08] Diego Berruta and John Phipps. Best Practice Recipes for Publishing RDF Vocabularies.
W3C Semantic Web Deployment Working Group, January 2008. Available at: http://www.
w3.org/TR/swbp-vocab-pub/.

[BS04] Christan Bizer and Andy Seaborne. D2RQ - Treating non-RDF databases as virtual RDF
graphs. In 3rd International Semantic Web Conference (ISWC2004), Hiroshima, Japan, 2004.
Available at: http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/.

[BU04] Gilad Bracha and David Ungar. Mirrors: design principles for meta-level facilities of object-
oriented programming languages. In OOPSLA ’04: Proceedings of the 19th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
pages 331–344, New York, NY, USA, 2004. ACM Press.

[BZCS01] Ana B. Benitez, Di Zhong, Shih-Fu Chang, and John R. Smith. MPEG-7 MDS content
description tools and applications. In CAIP ’01: Proceedings of the 9th International Con-
ference on Computer Analysis of Images and Patterns, pages 41–52, London, UK, 2001.
Springer-Verlag.

[Cap07] Cape Clear. CapeClear Studio / Server. Cape Clear Software Inc., 2007. Available at:
http://www.capeclear.com/products/index.shtml.

BIBLIOGRAPHY 147

[CBHS05] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs, provenance
and trust. In WWW ’05: Proceedings of the 14th international conference on World Wide Web,
pages 613–622, New York, NY, USA, 2005. ACM.

[CCS02] CCSDS. Open Archival Information Systems — OAIS. Council of the Consultative Commi-
tee for Space Data Systems (CCSDS), 2002. Available at: http://public.ccsds.org/
publications/archive/650x0b1.pdf.

[CDH+05] Yuhan Cai, Xin Luna Dong, Alon Halevy, Jing Michelle Liu, and Jayant Madhavan. Personal
information management with SEMEX. In SIGMOD ’05: Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, pages 921–923, New York, NY,
USA, 2005. ACM Press.

[CGMH+94] Sudarshan Chawathe, Hector Garcia-Molina, Joachim Hammer, Kelly Ireland, Yannis Pa-
pakonstantinou, Jeffrey D. Ullman, and Jennifer Widom. The TSIMMIS project: Integration
of heterogeneous information sources. In 16th Meeting of the Information Processing Society
of Japan, pages 7–18, Tokyo, Japan, 1994.

[Che76] Peter Pin-Shan Chen. The entity-relationship model — toward a unified view of data. ACM
Trans. Database Syst., 1(1):9–36, 1976.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM, 13(6):377–
387, 1970.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv., 17(4):471–523, 1985.

[Cyg05] Richard Cyganiak. A relational algebra for SPARQL. Technical report, HP Labs Bris-
tol, September 2005. Available at: http://www.hpl.hp.com/techreports/2005/
HPL-2005-170.html.

[CZ06] Lois Mai Chan and Marcia Lei Zeng. Metadata interoperability and standardization — a
study of methodology part I + II. D-LIB Magazine, 12(6), June 2006. Available at: http:
//www.dlib.org/dlib/june06/chan/06chan.html.

[Dat07] DataDirect Technologies. Stylus Studio 2007 and DataDirect XML Converters, 2007. Avail-
able at: http://www.stylusstudio.com/.

[DB78] Umeshwar Dayal and Philip A. Bernstein. On the updatability of relational views. In
VLDB’1978: Proceedings of the fourth international conference on Very Large Data Bases,
pages 368–377. VLDB Endowment, 1978.

[DC06] DC. Dublin Core Metadata Element Set, Version 1.1. Dublin Core Metadata Initiative, De-
cember 2006. Available at: http://dublincore.org/documents/dces/.

[DC07] DC. Dublin Core Collections Application Profile. Dublin Core Metadata Initiative
(DC), March 2007. Available at: http://dublincore.org/groups/collections/
collection-application-profile/.

[DD99] Ruxandra Domenig and Klaus R. Dittrich. An overview and classification of mediated query
systems. SIGMOD Rec., 28(3):63–72, 1999.

[DH05] AnHai Doan and Alon Y. Halevy. Semantic-integration research in the database community.
AI Magazine, 26(1):83–94, 2005.

148 BIBLIOGRAPHY

[DMDH02] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning to map be-
tween ontologies on the semantic web. In WWW ’02: Proceedings of the 11th international
conference on World Wide Web, pages 662–673, New York, NY, USA, 2002. ACM Press.

[DNB07a] DNB. Maschinelles Austauschformat für Bibliotheken. German National Library — Expert
group for data formats, 2007. Available at: http://www.d-nb.de/standardisierung/
formate/mab.htm.

[DNB07b] DNB. Personennormdatei (PND). German National Library, 2007. Available at: http:
//www.d-nb.de/standardisierung/normdateien/pnd.htm.

[DR02] Hong Hai Do and Erhard Rahm. COMA - a system for flexible combination of schema
matching approaches. In VLDB, pages 610–621. Morgan Kaufmann, 2002.

[EDI07] EDItEUR. Online Information Exchange (ONIX). The EDItEUR Group, 2007. Available at:
http://www.editeur.org/onix.html.

[ETS06] ETSI. TV Anytime — TS 102 822:1-7. European Telecommunications Standards
Instititute (ETSI), 2006. Available at: http://www.etsi.org/etsisite/website/
technologies/tvanytime.aspx.

[FHM05] Michael Franklin, Alon Halevy, and David Maier. From databases to dataspaces: a new
abstraction for information management. SIGMOD Rec., 34(4):27–33, 2005.

[GBMS99] Cheng Hian Goh, Stéphane Bressan, Stuart Madnick, and Michael Siegel. Context inter-
change: new features and formalisms for the intelligent integration of information. ACM
Trans. Inf. Syst., 17(3):270–293, 1999.

[GDDD04] Dragan Gasevic, Dragan Djuric, Vladan Devedzic, and Violeta Damjanovi. Converting UML
to OWL ontologies. In WWW Alt. ’04: Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, pages 488–489, New York, NY, USA, 2004.
ACM Press.

[Gil05] Anne J. Gilliland. Introduction to metadata — pathways to digital information, 2005.
Available at: http://www.getty.edu/research/conducting_research/standards/
intrometadata/index.html.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,
Third Edition. Addison-Wesley Longman, Amsterdam, The Netherlands, 3 edition, June
2005.

[Gru93] Tom Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-
tions, 5:199–220, 1993.

[HAB+05] Alon Y. Halevy, Naveen Ashish, Dina Bitton, Michael Carey, Denise Draper, Jeff Pollock,
Arnon Rosenthal, and Vishal Sikka. Enterprise information integration: successes, challenges
and controversies. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 778–787, New York, NY, USA, 2005. ACM Press.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4):270–
294, 2001.

[Has06] Bernhard Haslhofer. A service oriented architecture for integrating metadata from heteroge-
neous digital libraries. In The 1st International Workshop ”Semantic Information Integration
on Knowledge Discovery” (SIIK 2006), Yogyakarta, Indonesia, December 2006.

BIBLIOGRAPHY 149

[Has07] Bernhard Haslhofer. Uniform SPARQL access to interlinked (digital library) sources. In
The 6th European Networked Knowledge Organization Systems (NKOS) Workshop, Budapest,
Hungary, September 2007.

[Has08] Bernhard Haslhofer. A comparative study of mapping solutions. Technical report, University
of Vienna, January 2008. Available at: http://www.cs.univie.ac.at/publication.
php?pid=3886.

[HH05] Bernhard Haslhofer and Robert Hecht. Metadata management in a heterogeneous digital
libary. In eChallenges 2005, Ljubljana, Slowenia. IOS Press, October 2005.

[HHH+05] Laura M. Haas, Mauricio A. Hernández, Howard Ho, Lucian Popa, and Mary Roth. Clio
grows up: from research prototype to industrial tool. In SIGMOD ’05: Proceedings of the
2005 ACM SIGMOD international conference on Management of data, pages 805–810, New
York, NY, USA, 2005. ACM Press.

[HIMT03] Alon Y. Halevy, Zachary G. Ives, Peter Mork, and Igor Tatarinov. Piazza: data management
infrastructure for semantic web applications. In WWW ’03: Proceedings of the 12th inter-
national conference on World Wide Web, pages 556–567, New York, NY, USA, 2003. ACM
Press.

[HIST05] Y. Halevy, G. Ives, Dan Suciu, and Igor Tatarinov. Schema mediation for large-scale semantic
data sharing. The VLDB Journal, 14(1):68–83, 2005.

[HK08] Bernhard Haslhofer and Wolfgang Klas. A survey of techniques for achieving metadata in-
teroperability. ACM Comput. Surv., 2008. Accepted for publication.

[HL01] Jane Hunter and Carl Lagoze. Combining RDF and XML schemas to enhance interoperability
between metadata application profiles. In WWW ’01: Proceedings of the 10th international
conference on World Wide Web, pages 457–466, New York, NY, USA, 2001. ACM.

[HP00] Rachel Heery and Manjula Patel. Application profiles: mixing and matching meta-
data schemas, Sep 2000. Available at: http://www.ariadne.ac.uk/issue25/

app-profiles/.

[HS08] Bernhard Haslhofer and Bernhard Schandl. The OAI2LOD Server: Exposing OAI-PMH
metadata as linked data. In International Workshop on Linked Data on the Web (LDOW2008),
co-located with WWW 2008, Beijing, China, April 2008.

[IBM07] IBM. IBM WebSphere Integration Developer. IBM Inc., 2007.

[IEE02] IEEE WG-12. IEEE Standard for Learning Object Metadata: 1484.12.1-2002. IEEE Inc., jul
2002. Available at: http://ltsc.ieee.org/wg12.

[IFL97] IFLA. Functional Requirements for Bibliographic Records. Study Group on the Functional
Requirements for Bibliographic Records, International Federation of Library Assocations
(IFLA), 1997. Available at: http://www.ifla.org/VII/s13/frbr/frbr.htm.

[ISO03a] ISO TC 211. Geographic Information Metadata — ISO 19115:2003. International Stan-
dardizaton Organization (ISO), 2003. Available at: http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26020.

[ISO03b] ISO/IEC JTC 1/SC 32. SQL - ISO/IEC 9075-1:2003. International Standardizaton Organiza-
tion (ISO), 2003.

150 BIBLIOGRAPHY

[ISO04] ISO TC 154. Data elements and interchange formats — Information Exchange — Represen-
tation of dates and times — ISO 8601:2004. International Standardizaton Organization (ISO),
2004. Available at: http://www.iso.org/iso/catalogue_detail?csnumber=40874.

[ISO05] ISO/IEC JTC 1/SC 32. Common Logic (CL) — a framework for a family of logic-based lan-
guages - ISO/IEC 24707:2007. International Standardizaton Organization (ISO), December
2005.

[ISO06a] ISO TC 46. CIDOC Coneptual Reference Model (CRM) — ISO 21127:2006. International
Standardizaton Organization (ISO), December 2006.

[ISO06b] ISO TC 46. Codes for the representation of names of countries and their subdivisions
— Part 1: Country codes — ISO 3166-1:2006. International Standardizaton Organization
(ISO), 2006. Available at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=39719.

[ISO06c] ISO/IEC JTC 1/SC 34. Topic Maps — Part 2: Data model — ISO/IEC 13250-2:2006. Inter-
national Standardizaton Organization (ISO), June 2006.

[ISO07a] ISO/IEC JTC 1/SC 29. MPEG-21 Multimedia Framework — ISO 21000-1-7:2003-2007.
International Standardizaton Organization (ISO), 2007.

[ISO07b] ISO/IEC JTC 1/SC 29. MPEG-7 Multimedia Content Description Interface — ISO 15938-1-
11:2002-2007. International Standardizaton Organization (ISO), 2007.

[Jav06] Java Community Process. JSR 269: Pluggable Annotation Processing API, December 2006.
Available at: http://jcp.org/en/jsr/detail?id=269.

[JK84] Matthias Jarke and Jurgen Koch. Query optimization in database systems. ACM Comput.
Surv., 16(2):111–152, 1984.

[Joh04] Pete Johnston. Minerva - technical guidlines for digital cultural content creation pro-
grammes. Technical report, UKOLN, University of Bath. MLA The Council for Museums, Li-
braries and Archives, 2004. Available at: http://www.minervaeurope.org/structure/
workinggroups/servprov/documents/techguid1_0.pdf.

[JW04] Ian Jacobs and Norman Walsh. Architecture of the world wide web, volume one, December
2004. Available at: http://www.w3.org/TR/webarch/.

[KHS08] Mirjam Keßler, Bernhard Haslhofer, and Maximilian Schwarzmaier. Umfragereport zur
Nutzung von Metadaten. Technical report, KIM - Kompetenzzentrum Interoperable Meta-
daten, February 2008. Available at: http://www.kim-forum.org/material/pdf/
KIM-Umfragereport.pdf.

[Kos03] Harald Kosch. Distributed multimedia database technologies supported by MPEG-7 and
MPEG-21. CRC Press LLC, Boca Raton, Florida, United States, 2003.

[KQCJ07] David Kensche, Christoph Quix, Mohamed Amine Chatti, and Matthias Jarke. Gerome: A
generic role based metamodel for model management. Journal of Data Semantics, 8:82–117,
2007.

[KS03] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: the state of the art. Knowl.
Eng. Rev., 18(1):1–31, 2003.

BIBLIOGRAPHY 151

[LC00] Wen-Syan Li and Chris Clifton. Semint: a tool for identifying attribute correspondences in
heterogeneous databases using neural networks. Data Knowl. Eng., 33(1):49–84, 2000.

[LdS02] Carl Lagoze and Herbert Van de Sompel. The open archives initiative protocol for meta-
data harvesting — version 2.0, 2002. Available at: http://www.openarchives.org/OAI/
openarchivesprotocol.html.

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective. In PODS ’02: Proceedings
of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 233–246, New York, NY, USA, 2002. ACM.

[Lev66] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10, February 1966.

[Lev99] Alon Y. Levy. Logic-based techniques in data integration. In Jack Minker, editor, Workshop
on Logic-Based Artificial Intelligence, Washington, DC, June 14–16, 1999, College Park,
Maryland, 1999. Computer Science Department, University of Maryland.

[LF04] Patrick Lethi and Peter Frankhauser. XML data integration with OWL: Experiences and
Challenges. In 2004 Symposium on Applications and the Internet (SAINT 2004), pages 160–
170, Tokyo, Japan, 2004. IEEE Computer Society.

[LOC07a] LOC. Library of Congress Authorities. Library of Congress (LOC), 2007. Available at:
http://authorities.loc.gov/.

[LOC07b] LOC. Library of Congress Subject Headings (LCSH). Library of Congress, 2007. Available
at: http://www.loc.gov/aba/cataloging/subject/.

[LOC07c] LOC. MARC 21 Concise Format for Bibliographic Metadata. Library of Congress’ (LOC)
Network Development and MARC Standards Office, 2007. Available at: http://www.loc.
gov/marc/bibliographic/ecbdhome.html.

[LOC07d] LOC. Metadata Object Description Schema. Library of Congress’ (LOC) Network Develop-
ment and MARC Standards Office, 2007. Available at: http://www.loc.gov/standards/
mods/.

[LOC07e] LOC. METS (Metadata Encoding and Transmisson Standard). Library of Congress’ (LOC)
Network Development and MARC Standards Office, 2007. Available at: http://www.loc.
gov/standards/mets.

[LVJ+07] Carl Lagoze, Herbert Van de Sompel, Pete Johnston, Michael L. Nelson, Robert Sander-
son, and Simeon Warner. Open Archives Initative Object Reuse and Exchange (OAI-
ORE). Technical report, Open Archives Initative, December 2007. Available at: http:
//www.openarchives.org/ore/0.1/toc.

[LW95] David B. Lomet and Jennifer Widom, editors. Special Issue on Materialized Views and Data
Warehousing, volume 18 of Bulletin of the Technical Commitee on Data Engineering. IEEE
Computer Society, June 1995.

[LWB08] Andreas Langegger, Wolfram Wöß, and Martin Blöchl. A semantic web middleware for
virtual data integration on the web. In Bechhofer et al. [BHHK08], pages 493–507.

152 BIBLIOGRAPHY

[MBDH02] Jayant Madhavan, Philip A. Bernstein, Pedro Domingos, and Alon Y. Halevy. Representing
and reasoning about mappings between domain models. In Eighteenth national conference
on Artificial intelligence, pages 80–86, Menlo Park, CA, USA, 2002. American Association
for Artificial Intelligence.

[MBR01] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching with cu-
pid. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ramamo-
hanarao, and Richard T. Snodgrass, editors, VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages 49–58.
Morgan Kaufmann, 2001.

[McP02] A.K. McParland. TV-Anytime — using all that extra data. Technical report, BBC, sep 2002.
Available at: http://www.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP050.pdf.

[MHH+01] Renée J. Miller, Mauricio A. Hernández, Laura M. Haas, Lingling Yan, C. T. Howard Ho,
Ronald Fagin, and Lucian Popa. The Clio project: managing heterogeneity. SIGMOD Rec.,
30(1):78–83, 2001.

[MHS07] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap between OWL and relational
databases. In WWW ’07: Proceedings of the 16th international conference on World Wide
Web, pages 807–816, New York, NY, USA, 2007. ACM Press.

[Mic07] Microsoft. Microsoft BizTalk Mapper. Microsoft Inc., 2007. Available at: http://www.
microsoft.com/biztalk/techinfo/tips/mapper/default.mspx.

[MIKS00] Eduardo Mena, Arantza Illarramendi, Vipul Kashyap, and Amit P. Sheth. Observer: An
approach for query processing in global information systems based on interoperation across
pre-existing ontologies. Distrib. Parallel Databases, 8(2):223–271, 2000.

[Mil00] Paul Miller. Interoperability. What is it and why should i want it?, June 2000. Available at:
http://www.ariadne.ac.uk/issue24/interoperability/intro.html.

[MLF00] Todd Millstein, Alon Levy, and Marc Friedman. Query containment for data integration
systems. In PODS ’00: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 67–75, New York, NY, USA, 2000. ACM
Press.

[MMSV02] Alexander Maedche, Boris Motik, Nuno Silva, and Raphael Volz. Mafra — an ontology map-
ping framework in the semantic web. In Proceedings of the ECAI Workshop on Knowledge
Transformation, Lyon, France, 2002, 2002.

[NH07] Philipp Nussbaumer and Bernhard Haslhofer. CIDOC CRM in action - experiences and chal-
lenges. In László Kovács, Norbert Fuhr, and Carlo Meghini, editors, ECDL, volume 4675 of
Lecture Notes in Computer Science, pages 532–533. Springer, 2007.

[NIS04] NISO. Understanding Metadata. National Information Standards Organiza-
tion (NISO), 2004. Available at: http://www.niso.org/standards/resources/
UnderstandingMetadata.pdf.

[NK04] Natalya F. Noy and Michel Klein. Ontology evolution: Not the same as schema evolution.
Knowl. Inf. Syst., 6(4):428–440, 2004.

[NLM07] NLM. Medical Subject Headings. U.S. National Library of Medicine (NLM), 2007. Available
at: http://www.nlm.nih.gov/mesh/.

BIBLIOGRAPHY 153

[NM03] Natalya F. Noy and Mark A. Musen. The prompt suite: interactive tools for ontology merging
and mapping. Int. J. Hum.-Comput. Stud., 59(6):983–1024, 2003.

[NM04] Natalya F. Noy and Mark A. Musen. Ontology versioning in an ontology management frame-
work. IEEE Intelligent Systems, 19(4):6–13, 2004.

[Noy04] Natalya F. Noy. Semantic integration: a survey of ontology-based approaches. SIGMOD Rec.,
33(4):65–70, 2004.

[NP01] Ian Niles and Adam Pease. Towards a standard upper ontology. In FOIS ’01: Proceedings
of the international conference on Formal Ontology in Information Systems, pages 2–9, New
York, NY, USA, 2001. ACM Press.

[NWG95] NWG. A Format for Bibliographic Records (RFC 1807). Network Working Group (NWG),
jun 1995. Available at: http://rfc.net/rfc1807.html.

[NWG05] NWG. RFC3986 – Uniform Resource Identifier (URI): Generic Syntax. Network Work-
ing Group (NWG), 2005. Available at: http://www.gbiv.com/protocols/uri/rfc/
rfc3986.html.

[NWQ+02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn Naeve,
Mikael Nilsson, Matthias Palmér, and Tore Risch. Edutella: a P2P networking infrastructure
based on rdf. In WWW ’02: Proceedings of the 11th international conference on World Wide
Web, pages 604–615, New York, NY, USA, 2002. ACM Press.

[OCL07] OCLC. Dewey Decimal Classification (DDC). Online Computer Library Center (OCLC),
2007. Available at: http://www.oclc.org/dewey/.

[OGC04] OGC. Geography Markup Language. Technical report, Open Geospatial Consortium
(OGC), 2004. Available at: http://portal.opengeospatial.org/files/?artifact_
id=4700.

[OMG05] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification. Ob-
ject Management Group (OMG), November 2005. Available at: http://www.omg.org/
cgi-bin/apps/doc?ptc/05-11-01.pdf.

[OMG06a] OMG. Meta Object Facility (MOF) Core Specification - Version 2.0. Object Management
Group (OMG), January 2006. Available at: http://www.omg.org/cgi-bin/apps/doc?
formal/06-01-01.pdf.

[OMG06b] OMG. Ontology Definition Metamodel Specification (ODM). Object Management Group
(OMG), 2006. Available at: http://www.omg.org/docs/ptc/06-10-11.pdf.

[OMG06c] OMG. UML 2.0 – Infrastructure Specification. Object Management Group (OMG), 2006.
Available at: http://www.omg.org/docs/ptc/03-09-15.pdf.

[OMG07] OMG. Unified Modelling Language (UML). Object Management Group (OMG), 2007. Avail-
able at: http://www.uml.org/.

[OS99] A. M. Ouksel and A. Sheth. Semantic interoperability in global information systems. SIG-
MOD Rec., 28(1):5–12, 1999.

[PGH96] Yannis Papakonstantinou, Ashish Gupta, and Laura Haas. Capabilities-based query rewrit-
ing in mediator systems. In Proceedings of 4th International Conference on Parallel and
Distributed Information Systems, Miami Beach, Flor., 1996.

154 BIBLIOGRAPHY

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object exchange
across heterogeneous information sources. pages 251–260, 1995.

[PL98] Margaret St. Pierre and William P. LaPlant. Issues in crosswalking content metadata stan-
dards. Technical report, National Information Standards Organization (NISO), October 1998.
Available at: http://www.niso.org/press/whitepapers/crsswalk.html.

[PNNJ05] Andy Powell, Mikael Nilsson, Ambjörn Naeve, and Pete Johnston. DCMI Abstract Model.
Dublin Core Metadata Initiative (DC), March 2005. Available at: http://dublincore.
org/documents/abstract-model/.

[PV99] Yannis Papakonstantinou and Vasilis Vassalos. Query rewriting for semistructured data. In
SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD international conference on Manage-
ment of data, pages 455–466, New York, NY, USA, 1999. ACM Press.

[QL08] Bastian Quilitz and Ulf Leser. Querying distributed rdf data sources with sparql. In Bechhofer
et al. [BHHK08], pages 524–538.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema matching.
The VLDB Journal, 10(4):334–350, 2001.

[RCC05] George G. Robertson, Mary P. Czerwinski, and John E. Churchill. Visualization of mappings
between schemas. In CHI ’05: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 431–439, New York, NY, USA, 2005. ACM Press.

[RGKG+05] Patricia Rodrı́guez-Gianolli, Anastasios Kementsietsidis, Maddalena Garzetti, Iluju Kiringa,
Lei Jiang, Mehedi Masud, Renée J. Miller, and John Mylopoulos. Data sharing in the hyperion
peer database system. In VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, pages 1291–1294. VLDB Endowment, 2005.

[RSU95] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries using tem-
plates with binding patterns (extended abstract). In PODS ’95: Proceedings of the fourteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 105–
112, New York, NY, USA, 1995. ACM Press.

[SD02] Michael Sintek and Stefan Decker. Triple - a query, inference, and transformation language for
the semantic web. In Ian Horrocks and James A. Hendler, editors, International Semantic Web
Conference, volume 2342 of Lecture Notes in Computer Science, pages 364–378, Sardinia,
Italy, 2002. Springer.

[SE05] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching approaches. Journal
of Data Semantics, 3730:146–171, 2005.

[Sei03] Ed Seidewitz. What models mean. IEEE Software, 20(5):26–32, 2003.

[SHJK08] Karin Schellner, Bernhard Haslhofer, Wolfgang Jochum, and Ross King. Opening annotation
systems for multiple content and annotation types. International Journal on Digital Libraries,
2008. Submitted for publication.

[SK98] Amit Sheth and Wolfgang Klas. Multimedia Data Management: Using Metadata to Integrate
and Apply Digital Media Media. Mcgraw-Hill Education, New York, NY, USA, 1998.

[SL90] Amit P. Sheth and James A. Larson. Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Comput. Surv., 22(3):183–236, 1990.

BIBLIOGRAPHY 155

[SPD92] Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model independent assertions for
integration of heterogeneous schemas. The VLDB Journal, 1(1):81–126, 1992.

[Syb07] Sybase. Sybase Data Integration Suite. Sybase Inc., 2007. Available at: http://www.
sybase.com/products/dataintegration/dataintegrationsuite.

[TEI07] TEI. TEI P5: Guidelines for Electronic Text Encoding and Interchange. TEI Consortium,
2007. Available at: http://www.tei-c.org/Guidelines/P5/.

[TH04] Igor Tatarinov and Alon Halevy. Efficient query reformulation in peer data management
systems. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pages 539–550, New York, NY, USA, 2004. ACM Press.

[The06] The Rule Markup Iniative. RuleML – version 0.91, October 2006. Available at: http:
//www.ruleml.org/.

[Til04] Barbara Tillett. What is FRBR — a conceptual model for the bibliographic universe, 2004.
Available at: http://www.loc.gov/cds/FRBR.html.

[Tol06] Andreas Tolk. What comes after the semantic web - pads implications for the dynamic web.
In PADS ’06: Proceedings of the 20th Workshop on Principles of Advanced and Distributed
Simulation, page 55, Washington, DC, USA, 2006. IEEE Computer Society.

[Top07] TopQuadrant Inc. TopBraid Composer, 2007. Available at: http://www.

topbraidcomposer.com/.

[UWGM02] Jeffrey D. Ullman, Jennifer Widom, and Hector Garcia-Molina. Database Systems - The
Complete Book. Prentice Hall, Inc., 2002.

[vAD04] Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In CHI ’04:
Proceedings of the SIGCHI conference on Human factors in computing systems, pages 319–
326, New York, NY, USA, 2004. ACM Press.

[VJBCS97] Pepjijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon, and M. J. R. Shave. An analy-
sis of ontological mismatches: Heterogeneity versus interoperability. In AAAI 1997 Spring
Symposium on Ontological Engineering, Stanford, USA, 1997. Stanford University.

[VRA07] VRA. VRA Core 4.0. Visual Resources Association’s (VRA) Data Standards Commitee, mar
2007. Available at: http://www.vraweb.org/projects/vracore4/index.html.

[W3C01] W3C. DAML+OIL, December 2001. Available at: http://www.w3.org/TR/daml+
oil-reference.

[W3C04a] W3C. RDF Vocabulary Description Language 1.0: RDF Schema. W3C Semantic Web
Activity - RDF Core Working Group, February 2004. Available at: http://www.w3.org/
TR/rdf-schema/.

[W3C04b] W3C. Resource Description Framework (RDF). W3C Semantic Web Activity - RDF Core
Working Group, 2004. Available at: http://www.w3.org/RDF/.

[W3C04c] W3C. Web Ontology Language (OWL). W3C Semantic Web Activity – Web Ontology
Working Group, 2004. Available at: http://www.w3.org/2004/OWL/.

[W3C04d] W3C Semantic Web Activity - RDF Core Working Group. RDF/XML Syn-
tax Specification (Revised), 2004. Available at: http://www.w3.org/TR/2004/

REC-rdf-syntax-grammar-20040210/.

156 BIBLIOGRAPHY

[W3C04e] W3C Semantic Web Activity - RDF Core Working Group. Resource Description Framework
(RDF): Concepts and Abstract Syntax, 2004.

[W3C06] W3C. XML Schema 1.1 Part 1: Structure. W3C XML Core Working Group, August 2006.
Available at: http://www.w3.org/TR/xmlschema11-1/.

[W3C07] W3C XML Query Working Group. XQuery 1.0 and XPath 2.0 Functions and Operators,
2007.

[W3C08] W3C. SPARQL Query Language for RDF. W3C Semantic Web Activity – RDF Data Access
Working Group, 2008. Available at: http://www.w3.org/TR/rdf-sparql-query/.

[Wac03] Holger Wache. Semantische Mediation für heterogene Informationsquellen. PhD thesis, Uni-
versity of Bremen, 2003.

[Wie92] Gio Wiederhold. Mediators in the architecture of future information systems. Computer,
25(3):38–49, 1992.

[WK03] Utz Westermann and Wolfgang Klas. An analysis of XML database solutions for the man-
agement of MPEG-7 media descriptions. ACM Comput. Surv., 35(4):331–373, 2003.

[Won03] WonderWeb Consortium. DOLCE: a descriptive ontology for linguistic and cognitive engi-
neering, 2003. Available at: http://www.loa-cnr.it/DOLCE.html.

[XC06] Huiyong Xiao and Isabel F. Cruz. Ontology-based query rewriting in peer-to-peer networks.
In In Proceedings of the 2nd International Conference on Knowledge Engineering and Deci-
sion Support, 2006, 2006.

[Yah07] Yahoo! Inc. Yahoo Pipes, 2007. Available at: http://pipes.yahoo.com.

[ZS06] Anna V. Zhdanova and Pavel Shvaiko. Community-driven ontology matching. In York Sure
and John Domingue, editors, ESWC, volume 4011 of Lecture Notes in Computer Science,
pages 34–49, Berlin, Heidelberg, 2006. Springer.

Appendices

157

Appendix A

Implementation Resources

We have enclosed a CD-ROM that contains the implementations of the components described in this thesis.
These are:

• A Mapping API, which has been implemented as an extension of the Jena Semantic Web Framework.
This API covers the mapping representation and execution phase of the RDFS binding of our abstract
mapping model we have presented in Sections 6.3 and 6.4.

• The current release (0.2) of the OAI2LOD Server wrapper component described in Chapter 7.

All components have been implemented in Java and are available as source and binary files. Building
these components requires the Java Development Kit 1.5+ and Apache Ant 1.7. Detailed build instructions,
installations guidelines, and other technical details are summarised in a README.TXT file, which is located
in the root directory of the enclosed CD-ROM.

159

CURRICULUM VITAE

Bernhard Haslhofer

Research Group Multimedia Information Systems
Department of Distributed and Multimedia Systems
Faculty of Computer Science
University of Vienna

Postal Address: Liebiggasse 4/3-4, 1010 Vienna, Austria
Phone: +43 1 42 77 39635 Fax: +43 1 4277 39649
E-Mail: bernhard.haslhofer@univie.ac.at
WWW: http://www.cs.univie.ac.at/bernhard.haslhofer

Personal

Born: March 14, 1979 in Steyr, Austria

Citizenship: Austria

Education

2004-2008: Ph.D. in Computer Science, University of Vienna

2003-2006: Master’s in Information and Knowledge Management, Vienna University of Technology

1998-2003: Diploma in Economics and Computer Science, Vienna University of Technology

2001-2002: Erasmus Student, Stockholm University

Research and Professional Experience

03.2007-Present: Research Assistant at University of Vienna, Department of Distributed and Multimedia Systems

02.2004-02.2007: Junior Researcher at ARC Seibersdorf research GmbH, Studio Digital Memory Engineering

10.2002-01.2004: Student Assistant at University of Vienna, Department of Distributed and Multimedia Systems

07.2002-01.2003: Placement Student at Raiffeisen Capital Management

03.2001-06.2001: Tutor at Vienna University of Technology, Institute of Software Technology

