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ABSTRACT

Recently, the margin criterion has been successfully used for pa-
rameter optimization in graphical models. We introduce maximum
margin basedstructurelearning for Bayesian network classifiers and
demonstrate its advantages in terms of classification performance
compared to traditionally used discriminative structure learning
methods. In particular, we provide empirical results for genera-
tive structure learning and two discriminative structure learning
approaches on handwritten digit recognition tasks. We show that
maximum margin structure learning outperforms other structure
learning methods. Furthermore, we present classification results
achieved with different bitwidth for representing the parameters of
the classifiers.

Index Terms— Bayesian network classifiers, discriminative
learning, margin learning, custom-precision

1. INTRODUCTION

There are two fundamental approaches for learning probabilistic
classifiers: generative and discriminative learning [1]. Generative
learning optimizes the joint probability distribution of the features
and the class labels using maximum likelihood (ML) estimation.
The class label is usually predicted using the maximum a-posteriori
estimate of the class posteriors obtained by applying Bayes rule.
Discriminative learning uses an objective function, e.g. classification
rate (CR), conditional likelihood (CL), or margin, that optimize the
model for the classification task. Discriminative learning may lead
to better classification performance, particularly when the class con-
ditional distributions poorly approximate the true distribution [1].
Unfortunately, discriminative scores are usually not decomposable,
while generative scores, e.g. log likelihood, are decomposeable, i.e.
they can be written as sum of terms where each term depends on the
variable and its conditioning variables (parents).

Learning the graph structure of a Bayesian network classifier
is a challenging task. Recently, approaches for finding the optimal
generative Bayesian network structure have been proposed. These
methods are based on dynamic programming [2], branch-and-bound
techniques [3], or search over various variable orderings [4]. More
methods and a comprehensive overview can be found in [5] and
references therein. Discriminative structure learning1 is not less
difficult because of the non-decomposability of the scores. Discrim-
inative structure learning methods – relevant for learning Bayesian
network classifiers – are usually approximate methods based on local
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1Discriminative scoring functions (e.g. classification rate, conditional
likelihood, or margin) are used for structure learning.

search heuristics. In [6], a greedy hill climbing heuristic is used to
learn a classifier structure using the CR as score. Particularly, at each
iteration one edge is added to the structure which complies with the
restrictions of the network topology and the acyclicity constraints of
a Bayesian network. In a similar algorithm, the CL has been applied
for discriminative structure learning [7]. Recently, we introduced
a computationally efficient order-based greedy search heuristic for
finding discriminative structures [8]. This algorithm finds structures
with similar performance as greedy hill climbing at lower compu-
tational costs. This ordering heuristic first establishes an ordering
of the N features according to classification based information
measures. Given the resulting ordering, the algorithm efficiently
discovers high-performing discriminative network structure with
O

`

Nk+1
´

score evaluations wherek indicates the tree-width2 of
the learned sub-graph over the attributes. Our order-based structure
learning is based on the observations in [9] and shows similarities to
the K2 heuristic [10]. However, we proposed to use a discriminative
scoring metric (i.e. CR) and suggest approaches for establishing
the variable ordering based on conditional mutual information [11].
Further generative and discriminativeparameterlearning methods
for Bayesian network classifiers are summarized in [8, 12].

In this paper, we apply greedy hill climbing and order-based
heuristics for learning discriminative classifier structures. In con-
trast to previous work, we replace the CR score by the maximum
margin (MM) criterion. One of the most successful discriminative
classifiers, namely the support vector machine (SVM), finds a de-
cision boundary which maximizes the margin between samples of
distinct classes resulting in good generalization properties [13] of
the classifier. Recently, the margin criterion has been applied to
learn the parameters of probabilistic models. Taskar et al. [14] ob-
served that undirected graphical models can be efficiently trained to
maximize the margin. More recently, Guo et al. [15] introduced the
maximization of the margin for parameter learning based on convex
relaxation to Bayesian networks. We proposed to use a conjugate
gradient algorithm for maximum margin optimization of the param-
eters and show its advantages with respect to computational require-
ments [12]. Since then, different margin-based training algorithms
have been proposed for HMMs in [16, 17] and references therein.

To the best of our knowledge, this is the first work using the mar-
gin score forstructurelearning. We empirically evaluate our margin-
based discriminative structure learning heuristics on two handwrit-
ten digit recognition tasks. We use naive Bayes (NB) as well as
generatively and discriminatively optimized tree augmented naive

2The tree-width of a graph is defined as the size of the largest clique
(i.e. number of variables) of the moralized and triangulated directed graph
minus one. Since there can be multiple triangulated graphs, the tree-width is
defined by the triangulation where the largest clique has thefewest number
of variables. More details are given in [1] and references therein.



Bayes (TAN) [18] structures. Maximum margin structure learning
outperforms recent generative and discriminative structure learning
results [8]. Additionally, we perform classification experiments with
variable bitwidth of the classifier parameters. While learning is per-
formed in double-precision floating-point arithmetic guaranteeing
both wide range and high accuracy, we are interested in investigat-
ing if the same effort is required for classification. Our experiments
show that the presented classifier is extremely robust against trun-
cation and therefore allows for use of a fixed-point number format
while achieving a classification performance comparable to classi-
fication using double-precision floating-point arithmetic. This find-
ing can be used to achieve a high-performance implementation of
our classifier in custom or reconfigurable hardware or on fixed-point
DSPs.

The paper is organized as follows: In Section 2, we introduce
our notation, ML parameter learning as well as NB and TAN struc-
tures. Section 3 introduces different structure learning heuristics. In
Section 4, we introduce the MM criterion for discriminative struc-
ture learning. In Section 5, we present experimental results on hand-
written digit recognition. Section 6 concludes the paper and gives a
perspective on future work.

2. BAYESIAN NETWORK CLASSIFIERS

A Bayesian network [19]B = 〈G, Θ〉 is a directed acyclic graph
G = (Z,E) consisting of a set of nodesZ and a set of directed
edgesE connecting the nodes. This graph represents factoriza-
tion properties of the distribution of a set of random variables
Z = {Z1, . . . , ZN+1}. The variables inZ have values denoted
by lower case lettersz = {z1, z2, . . . , zN+1}. We use bold-
face capital letters, e.g.Z, to denote a set of random variables
and correspondingly boldface lower case letters denote a set of
instantiations (values). Without loss of generality, in Bayesian
network classifiers the random variableZ1 represents the class
variableC ∈ {1, . . . , |C|}, where |C| represents the number of
classes andX1:N = {X1, . . . , XN} = {Z2, . . . , ZN+1} de-
notes the set of random variables representing theN attributes of
the classifier. In a Bayesian network each node is independent
of its non-descendants given its parents. The set of parameters
which quantify the network are represented byΘ. Each random
variable Zj is represented as a local conditional probability dis-
tribution given its parentsZΠj

, i.e. PΘ

`

Zj |ZΠj

´

. The training
data consists ofM independent and identically distributed samples
S = {zm}M

m=1
= {(cm,xm

1:N )}M
m=1

whereM = |S|. The joint
probability distribution of a samplezm is determined as

PΘ (Z = z
m) =

N+1
Y

j=1

PΘ

“

Zj = z
m
j |ZΠj

= z
m
Πj

”

.

In this work, we restrict ourselves to NB and TAN structures.
The NB network assumes that all the attributes are conditionally in-
dependent given the class label. As reported in [18], the performance
of the NB classifier is surprisingly good even if the conditional inde-
pendence assumption between attributes is unrealistic or even wrong
for most of the data. Friedman et al. [18] introduced the TAN classi-
fier which is based on structural augmentations of the NB network.
In order to relax the conditional independence properties of NB, each
attribute may have at most one other attribute as an additional parent.
This means that the tree-width of the attribute induced sub-graph is
unity, i.e. we have to learn a 1-tree over the attributes. A TAN classi-
fier example is shown in Figure 1. In [8], we noticed that2-trees over

the features often do not improve classification performance signif-
icantly without regularization. Therefore, we limit the experiments
to NB and TAN structures.

C

X1 X2 X3 XN

Fig. 1. An example of a TAN classifier structure.

3. STRUCTURE LEARNING HEURISTICS

This section provides three structure learning heuristics. Note that
the parameters during structure learning are optimized generatively
using maximum likelihood estimation [19].

3.1. Generative Structure Learning

The conditional mutual information (CMI) [11] between the at-
tributes given the class variable is computed as:

I (Xi; Xj |C) = E
P(Xi,Xj ,C) log

P (Xi, Xj |C)

P (Xi|C) P (Xj |C)
.

This measures the information betweenXi and Xj in the con-
text of C. Friedman et al. [18] gives an algorithm for construct-
ing a TAN network using this measure. First, the pairwise CMI
I (Xi; Xj |C) ∀ 1 ≤ i ≤ N andi < j ≤ N is computed. Then,
an undirected 1-tree is built using the maximal weighted spanning
tree algorithm [19] where each edge connectingXi and Xj is
weighted byI (Xi; Xj |C). The undirected 1-tree is transformed to
a directed tree. Therefore, a root variable is selected and all edges
are directed away from this root. Finally, the class nodeC and the
edges fromC to all attributesX1, . . . , XN are added.

3.2. Greedy Discriminative Structure Learning

A Bayesian network is initialized to NB and at each iteration we add
the edge that, while maintaining a partial1-tree, gives the largest im-
provement of the scoring function. Basically, two scoring functions
have been considered: the CR [6] and the CL [7]. Structure learning
is terminated if there is no edge which further improves the score.
Thus, if we might obtain a partial 1-tree (forest) over the attributes.
This approach is computationally expensive since each time an edge
is added, the scores for allO

`

N2
´

edges need to be re-evaluated
due to the discriminative non-decomposable scoring functions we
employ. Overall, for learning a1-tree structure,O

`

N3
´

score eval-
uations are necessary. In our experiments, we consider either the CR
or the margin (defined in the next section) as scoring objective. Both
are discriminative learning criteria. The CR or margin computation
can be accelerated by techniques presented in [8].

3.3. Order-based Discriminative Structure Learning

In [8] an order-based greedy algorithm (OMI) has been introduced
which is able to find a discriminative TAN structure with only
O

`

N2
´

score evaluations compared to the greedy algorithm above
(O

`

N3
´

). The classification results of the order-based greedy al-
gorithm are not statistical significantly different compared to the
greedy algorithm. The order-based algorithm consists of 2 steps:



Step 1: Establish an ordering: First a total ordering≺ of the vari-
ablesX1:N according to the CMI is established. Therefore, the fea-
ture that is most informative aboutC is selected first. The next node
in the order is the node that is most informative aboutC conditioned
on the first node. More specifically, this algorithm forms an ordered
sequence of nodesX1:N

≺ =
˘

X1
≺, X2

≺, . . . , XN
≺

¯

according to

X
j
≺ ← arg max

X∈X1:N\X
1:j−1

≺

h

I
“

C; X|X1:j−1
≺

”i

,

wherej ∈ {1, . . . , N}.

Step 2: Selecting parents with respect to a given order to form
a 1-tree: Once the variables are orderedX

1:N
≺ , the parentXΠj

∈

XΠj
= X

1:j−1
≺ for eachX

j
≺ (j ∈ {3, . . . , N}) is selected. In case

of a small size ofXΠj
(i.e.N ) and of 1-trees a computational costly

scoring function to findXΠj
can be used. Again, we suggest to

use both, either the CR or the margin, for learning a discriminative
structure. We connect a parent toX

j
≺ only when the scoring ob-

jective is improved, and otherwise leaveX
j
≺ parentless (exceptC).

This might result in a partial 1-tree (forest) over the attributes.

4. DISCRIMINATIVE MAXIMUM MARGIN (MM) SCORE

The multi-class margin [15] of samplem can be expressed as

d
m
Θ = min

c6=cm

PΘ (cm|xm
1:N )

PΘ (c|xm
1:N )

=
PΘ (cm,xm

1:N )

maxc6=cm PΘ (c,xm
1:N )

.

For the sake of brevity, we only notate instantiations of the random
variables. Ifdm

Θ > 1, then samplem is correctly classified and
vice versa. The magnitude ofdm

Θ is related to the confidence of the
classifier about its decision. Taking the logarithm, we obtain

log d
m
Θ = log PΘ (cm

,x
m
1:N )− max

c6=cm
(log PΘ (c,xm

1:N )) .

Usually, the maximum margin approach maximizes the margin of
the sample with the smallest margin for a separable classification
problem [20], i.e. the objective function is written asM (B|S) =
minm=1,...,M log dm

Θ . For the non-separable problem, we aim to
relax this by introducing a soft margin, i.e. we focus on samples
with log dm

Θ close to zero. For this purpose, we consider thehinge
loss function

M (B|S) =
M

X

m=1

min [1, λ log d
m
Θ ] ,

where the scaling parameterλ > 0 controls the margin with respect
to the loss function and is set by cross-validation. Maximizing this
function with respect to the parametersΘ implicitly increases the
log-margin, whereas the emphasis is on samples withλ log dm

Θ < 1,
i.e. samples with a large positive margin are considered as constant
factor during on the optimization. We useM (B|S) as score for dis-
criminative structure learning, i.e. the CR criterion in the discrimina-
tive structure learning heuristics (see Section 3.3 and 3.2) is replaced
by M (B|S).

5. EXPERIMENTS

We present results for handwritten digit recognition. In the follow-
ing, we provide details about the MNIST and the USPS data sets:
MNIST Data: The MNIST data [21] contains 60000 samples for
training and 10000 digits for testing. We down-sample the gray-level
images by a factor of two which results in a resolution of14 × 14
pixels, i.e. 196 features.
USPS Data: This data set contains 11000 uniformly distributed
handwritten digit images from zip codes of mail envelopes. The
data set is split into 8000 images for training and 3000 for testing.
Each digit is represented as a16 × 16 grayscale image, where each
pixel is considered as feature.

For structure learning we use the algorithms introduced in Sec-
tion 3. In particular, we apply the following approaches for learning
TAN structures:

• TAN-CMI: Generative TAN structure learning using condi-
tional mutual information [18].

• TAN-CR: Discriminative TAN structure learning maximizing
the CR using the naive greedy heuristic [6, 8].

• TAN-MM: Discriminative TAN structure learning maximiz-
ing the margin using the naive greedy heuristic (this paper).

• TAN-OMI-CR: Discriminative TAN structure learning maxi-
mizing the CR using the order-based heuristic [8].

• TAN-OMI-MM: Discriminative TAN structure learning max-
imizing the margin using the order-based heuristic (this pa-
per).

The CR and MM scores are determined by 5-fold cross-validation
on the training data. Zero probabilities in the conditional probability
tables are replaced with small values (ε = 10−5). Furthermore, we
used the same data set partitioning for various learning algorithms.

Classifier Structure MNIST USPS
NB 83.73±0.37 87.10±0.61

TAN-CMI 91.28±0.28 91.90±0.50
TAN-OMI-CR 92.28±0.27 92.40±0.48
TAN-OMI-MM 92.71±0.26 95.47±0.37

TAN-CR 92.63±0.26 92.70±0.47
TAN-MM 93.15±0.25 95.40±0.37

Table 1. Classification results in[%] for MNIST and USPS data with
standard deviation. Best structure learning results are emphasized
using bold font.

Table 1 shows the classification rates for MNIST and USPS
for various learning methods. The classification rate is improving
for more complex structures using ML parameter learning. Dis-
criminatively optimized structures, i.e. TAN-OMI-CR, TAN-OMI-
MM, TAN-CR, and TAN-MM significantly outperform generatively
learned, i.e. TAN-CMI, and NB structures. Furthermore, margin op-
timized discriminatively learned structures, i.e. TAN-OMI-MM and
TAN-MM, are significantly better compared to TAN-OMI-CR and
TAN-CR, respectively. As already reported in [8], the greedy hill
climbing heuristic is only marginally better than the ordering-based
(OMI) heuristic. The difference in classification performance is in-
significant. However, the OMI heuristic uses onlyO

`

N2
´

score
evaluations compared to the greedy algorithm (O

`

N3
´

) for learn-
ing TAN structures.

Furthermore, we consider the implementation in hardware,
where custom-precision arithmetic can be implemented. Therefore,



knowledge about the optimal bitwidth of the classifier parameters
while maintaining the classification performance is essential. Any
unsigned fixed-point variable of bitwidthw = 64 covers a range
of [0 . . . 2w−b − 1], whereb is the position of the binary point.
Given the range of our parameters in the logarithmic domain, we
can approximate double-precision floating-point calculations by a
fixed-point number format withb = 12 integer andf = 52 frac-
tional bits, totalling 12+52=64 bits (Q12.52). In our classification
experiments (see Figure 2), we reduce the total width of the format
by truncating then least significant bits wheren is varied between
zero (Q12.52) and 63 (Q1.0). Results on both data sets show that
compared to double-precision floating point (see Table 1) a bitwidth
of 14 for fixed point variables (i.e. 2 fractional bits) is sufficient to
obtain good classification performance. This results in reduced stor-
age and computational requirements when implemented in custom
or reconfigurable hardware.
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Fig. 2. Classification performance versus number of bits for repre-
senting the parameters of the classifiers: (a) USPS data, (b) MNIST
data.

6. CONCLUSIONS

We use the maximum margin score for learning discriminative clas-
sifier structures. As search heuristic we apply greedy hill climbing
and an order-based heuristic. We empirically evaluate our margin-
based discriminative structure learning heuristics on the MNIST and
USPS handwritten digit recognition tasks. We use naive Bayes as
well as generatively and discriminatively optimized tree augmented
naive Bayes structures. Maximum margin structure learning out-
performs generative and discriminative structure learning results.
Additionally, the ordering heuristic performs similar compared to
the greedy hill climbing approach at lower computational costs.
Custom-precision experiments show that a bitwidth of 14 is suf-
ficient for good classification results. Future work includes the
evaluation of our maximum margin structure learning algorithm on
further data sets. Furthermore, discriminative parameter learning
approaches [8, 12] are investigated for margin-optimized structures.
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