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Abstract

Multi-core multi-socket distributed shared-memory com-
puters (DSM computers, for short) have become an impor-
tant node architecture in scientific computing as they provide
substantial computational capacity with relatively low space
and power requirements. Compared to conventional computer
networks, inter-chip networks used in DSM computers feature
higher bandwidth, lower latency and tighter integration with
the CPU.

The inter-chip network is a shared resource among the user
application and many other services, which can lead to consid-
erable variation of execution times of identical communication
tasks.

In this work, we explore traffic patterns resulting from MPI
collective communication primitives and investigate the ques-
tion whether inter-chip link load is a reliable indicator and
predictor for the execution time of collective communication
primitives on a DSM computer. Our experiments on a Sun
Fire X4600 M2 DSM computer with 32 cores (eight quad-core
CPUs) indicate that specific single link loads are positively
correlated with the execution time of MPI ALLREDUCE. Ob-
serving patterns over multiple links allows refinement of the
single-link observation.

1. Motivation

Multi-core multi-socket distributed shared-memory
(DSM) computers are a viable option to consolidate
cluster infrastructure and to improve communication
performance by reducing inter-node communication.
One can think of a DSM computer as a small cluster
with very high bandwith and low latency point-to-point
interconnect.

In a cluster environment (many interconnected inde-
pendent nodes), the overall performance is usually lim-
ited by the inter-node communication which is typically
slow compared to local computation. Yet, recent work
has shown that an unexpectedly high percentage of com-
munication time is spent within multi-core nodes [3]. As

a result, the node-internal communication performance
– although faster than inter-node communication – is be-
coming more important for distributed applications’ per-
formance in a conventional cluster setting.

With current DSM computers integrating up to 48
cores in a single chassis, there is an increasing set of
distributed applications which can run efficiently on a
single DSM computer, thereby removing the need for
a conventional cluster environment. To improve such
an application’s performance usually requires optimis-
ing the intra-node communication performance.

The situation for distributed applications executed on
a single DSM computer changes considerably compared
to a cluster environment as dedicated communication
times among CPUs and memory access times become
potentially identical. Additionally – and also in con-
trast to clusters – both computation (via memory ac-
cess and/or cache coherency) and communication access
the inter-chip communication network, which makes it a
shared resource. Consequently, execution times of com-
munication and computation can no longer be consid-
ered independent of each other but potentially heavily
influence each other.

MPI collective communication functions [5] are pow-
erful communication primitives whose optimisation is
key to maximising performance of many parallel scien-
tific computing applications. Collective communication
can be seen as a parametriseable collection of point-to-
point communications with only a few defined synchro-
nisation points and the specific schedule being left to
the implementation. We believe that a static schedule
(or a set of several static schedules) is inadequate to ef-
ficiently exploit the available bandwidth in a contem-
porary multi-core DSM computer. Dynamic schedules
might guarantee a more consistent performance over a
wide range of network traffic scenarios. Dynamic sched-
ules require, however, a cheap, yet reliable performance
predictor, which is the motivation of our work.

MPI blocking communication provides function calls
which return only when communication has finished
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(i.e., communication and computation is mutually ex-
clusive for a single MPI process). There is an on-
going discussion on integrating non-blocking collec-
tive communication primitives into future versions of
MPI. Non-blocking communication allows for over-
lapping communication and computation. However,
when communication and computation overlap on DSM
computers, usage patterns of shared resources become
highly dynamic. In the worst case, this could lead to
lower performance compared to blocking communica-
tion. Non-blocking collective communication imple-
mentations can, however, devise an efficient dynamic
communication strategy, subject to available perfor-
mance indicators. Therefore delivering the performance
promises of non-blocking collective communication on
DSM computers requires reliable communication per-
formance predictors.

While DSM computers have existed for a long time,
only recent developments have made them an almost
ubiquitous computing platform. First, AMD integrated
high-bandwidth low-latency inter-chip network inter-
faces (HyperTransport) into its mainstream server CPU
family (Opteron), thereby removing the need for ded-
icated inter-chip communication circuits and simplify-
ing the design of multi-socket computers considerably.
Second, the integration of memory interfaces into CPUs
enabled low-latency access to memory via inter-chip
network thereby allowing very-low-latency non-uniform
memory access (NUMA) computers. Third, multi-core
CPUs have mitigated the scaling limitations of inte-
grated inter-chip networks (for example AMD Opterons
only support up to eight-socket configurations) by pro-
viding more cores per socket. Currently, systems with
48 cores (eight quad-core CPUs) are available. Finally,
the evolution of communication technology has led to
inter-chip point-to-point interface specifications match-
ing typical internal bandwidths of CPUs (HyperTrans-
port 3.1: 16 bit@3.2 GHz, max. 16 bit bi-directional
bandwidth of 25.6 GB/s), leading to a communication
performance which is at par with computation perfor-
mance.

2. Problem Formulation

Inter-chip networks of contemporary DSM comput-
ers are typically used by multiple system services, they
are a shared resource. Most prominently, remote mem-
ory access, the cache coherency protocol and system I/O
usually use the same inter-chip network as dedicated
communication between CPUs. Consequently, identi-
cal user-triggered communication can meet very differ-
ent resource usage scenarios leading to variations in ex-
ecution times.

Dynamic communication schedules can mitigate this
effect. To choose the most efficient schedule for a com-
munication operation at any given time, a performance
model is required, taking the load on all relevant shared
resources into account. The fastest schedule is then de-
rived from the model by extrapolating current usage on
all relevant shared resources.

Our aim in this paper is to identify the relevant ob-
servables necessary to implement dynamic schedules
for MPI collective communication functions on DSM
computers at the lowest possible cost (i.e., observation
should be feasible on standard hardware and should
cause only little overhead).

We hypothesise that on DSM computers the respec-
tive bandwidth available on each link of the inter-chip
network is the single most relevant parameter influenc-
ing the execution time of a collective communication
function. If this hypothesis can be verified, observing
the inter-chip network bandwidth would provide suffi-
cient information for optimizing dynamic communica-
tion schedules. Contemporary CPUs feature hardware
performance counters which provide detailed informa-
tion on the link traffic with high accuracy and at low
cost, therefore on existing CPU architectures, monitor-
ing inter-chip network bandwidth is possible for user ap-
plications at basically no extra cost.

3. Related Work

Scogland et al. [12] describe in a more general setting
than our MPI-centric one that although multi-core hard-
ware is mostly symmetric (i.e. cores have equivalent raw
performance and bandwidth available), resulting work-
load per core is highly asymmetric due to the interaction
of communication and computation.

Kayi et al. [7] report performance figures for large-
scale simulations on a hybrid cluster consisting of nodes
with 2 sockets (4 cores) and 8 sockets (16 cores), re-
spectively. They found that application performance was
poorer on the more powerful nodes. Only when appli-
cations employed some kind of node-internal load bal-
ancing, improvements could be observed. Core binding
was found to improve the situation, too.

Porterfield et al. [11] conducted a detailed perfor-
mance study of a variety of AMD quad-core multi-
socket systems over a set of memory benchmarks. They
found that performance models characterising memory
by maximum bandwidth and average latency parameters
are not sufficient to model the deep memory hierarchies
found in modern ccNUMA architectures. Specifically,
they found performance variability for memory-bound
benchmarks to be a serious obstacle to load balancing
and performance tuning [10]. Binding threads and data
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to specific sockets and carefully selecting the sockets
they are bound to both reduced variability and improved
overall performance of the benchmarks.

Underwood [17] discussed the mismatch between
frequently used MPI microbenchmarks and the setting
which MPI functions encounter in real-world applica-
tions, reporting an execution time difference up to a fac-
tor of four in extreme cases.

Mamidala et al. [9] investigated performance of
MPI collectives on contemporary multi-core architec-
tures. They concentrate on exploiting features of mod-
ern multi-core architectures (e.g. shared caches) for
improving average performance of selected collectives.
Their work does not consider execution time deviations
of identical function calls. Mamidala et al. show more
efficient ways to implement collectives while our work
demonstrates the behaviour of a given implementation
in the dynamic setting inherent to multi-core distributed
shared-memory computers. Our work is complemen-
tary, as Mamidala et al. try to understand and reduce
average execution time while we try to understand and
improve execution time variability.

Hoefler and Lumsdaine investigated the performance
of non-blocking MPI collectives on Infiniband and sug-
gested measures for improving overlap of communica-
tion and computation [6]. They showed that perfor-
mance can be improved considerably. They do, how-
ever, not consider inter-chip networks but only inter-
node networks (Infiniband).

AMD provides a technical report ”Performance
Guidelines for AMD Athlon and AMD Opteron cc-
NUMA Multiprocessor Systems” [2] which summarises
detailed measurements performed on a system with four
dual-core AMD Opteron CPUs. A synthetic benchmark
is used which comprises two tasks reading/writing data
from/to independent memory locations. Execution times
for all possible combinations of task and data place-
ment are measured. Additional tasks read data from
local memory to simulate background activity. The
benchmark chosen explores how (remote) memory ac-
cess translates into HyperTransport activity under vary-
ing task and data placement scenarios. In contrast to the
data presented by AMD, we consider collective commu-
nication instead of point-to-point communication. Fur-
thermore, while AMD creates a synthetic background
activity, our goal is to infer unknown background activ-
ity patterns and its impact on execution time on a known
collective communication.

In summary, existing work concentrates on clus-
ter settings when evaluating overall application perfor-
mance. In contrast, we argue that the performance of
existing DSM computers is sufficient to run distributed
applications entirely on a single DSM computer. De-

tailed performance analysis of DSM computers exist in
literature but mostly focuses on the relative placement
of tasks and data. Where communication functions are
investigated, the aim is at reducing the average perfor-
mance. To the best of our knowledge, our work is the
first one investigating the execution time variance of col-
lective communication due to background activity on a
DSM computer’s HyperTransport inter-chip network.

4. Experimental Setup

Our aim is to better understand execution times of
MPI collective communication primitives on DSM com-
puter inter-chip networks. To make insights attractive
to as many distributed applications as possible, we have
chosen a DSM computer with many cores and a complex
inter-chip network.

The Sun Fire X4600 M2 server [15] fulfils these re-
quirements by supporting up to eight quad-core CPUs,
which results in an inter-chip network of the maximum
size currently supported by the AMD Opteron architec-
ture (8 sockets) and a maximum worst-case traffic pres-
sure per link (up to four cores sharing a single link). The
X4600’s inter-chip network fully relies on functionality
(cache coherency protocol, . . . ) and interfaces (Hyper-
Transport) integrated in the AMD Opteron architecture.
However, Opteron-internal tables specifying routing and
hardware buffer sizes can be set at system start-up po-
tentially leading to physically identical DSM systems
executing identical applications yet exhibiting varying
appliation performance.

The general findings of our experiments will there-
fore apply to a wide range of servers with similar archi-
tecture while the exact results of our measurement are
obviously specific to the system used.

4.1 Hardware

Our prototypical DSM computer is a Sun Fire X4600
M2 server [15] by Sun Microsystems, which we will
refer to as ”X4600” in the following. The X4600 is
designed to accept up to eight CPU/memory modules
and can therefore exploit the maximum number of CPUs
currently supported by AMD’s Opteron 8000 CPU fam-
ily [1]. The motherboard itself provides no memory
or computing facilities but only module interconnect,
power and I/O.

Each CPU/memory module carries local memory.
The total of all local memory present on all modules is
mapped by the operating system into a uniform address
space (8 × 4 GB = 32 GB for our system).

Every CPU/memory module features a single CPU
socket, which can be fitted with a single-core, dual-
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Figure 1. HyperTransport socket interconnect topol-
ogy of a Sun Fire X4600 M2 server equipped with eight
CPU modules.

core or quad-core AMD Opteron. The CPU used in
our X4600 configuration is an AMD quad-core Opteron
8356. Each 8356 core features 2 MB private L2 cache
while a 2 MB L3 cache is shared among all four cores.
The cache-coherency protocol guarantees that all exist-
ing cache copies of data in memory are refreshed when
data is modified anywhere in the system.

The AMD Opteron architecture integrates all mem-
ory controller functionality and three HyperTransport
interfaces on-die [4]. The latter makes it possible to
build servers with a very dense inter-socket communica-
tion network [8]. The AMD Opteron 8356 HyperTrans-
port interfaces comply to HyperTransport 1.0, specify-
ing 16 bit wide links with a clock frequency of 1 GHz.
The links work in double-data-rate mode which results
in a total bandwidth of 4 GB/s per direction.

Our system is equipped with eight CPU/memory
modules. Sockets 0 and 7 dedicate one of their three
links to connect the inter-socket network to system I/O.
Figure 1 shows the X4600’s inter-socket network topol-
ogy (”twisted ladder”). Our X4600’s inter-chip network
therefore consists of 22 unidirectional HyperTransport
links, while the two remaining links connect the network
to system I/O facilities (hard disk drive, network, ..).

4.2 Operating System, Middleware

The used operating system is OpenSolaris 10 5/09.
OpenSolaris features memory placement optimisation
(MPO) which attempts to allocate memory as near to a
process as possible [13, 14]. While the Solaris scheduler
is able to move threads between all available cores (and
therefore also between sockets), data remains by default
on the CPU/memory module where it was first allocated.

The MPI distribution used is OpenMPI 1.3. Open-
MPI provides support for core binding, i.e. manually

assigning an MPI process to a core. We always bind
all processes to distinct cores with the root process be-
ing assigned to core 4 (i.e. the first core on the second
socket, thereby avoiding socket 0 through which I/O ac-
cess is routed).

The AMD Opteron architecture provides hardware
event counters to measure link load [1]. We have used
the Solaris lcpc(3CPC) library for setting up and
reading out hardware event counter values.

5 Experiments

We have chosen the MPI Allreduce function as a
prototypical MPI collective communication function. In
this operation, all processes send arrays of identical size
and type to the root process. There, entries of the same
index are reduced using a specified arithmetic function.

In terms of communication performance, it
would suffice to consider MPI Allgather, as
MPI Allreduce can be assembled from an all-
gather operation followed by some local computation.
MPI Allreduce, however, natively integrates this
computation following communication and therefore
provides better workload characteristics in terms of
possible interference between communication and
computation.

Each process is bound to a specific core. No specific
measures are taken to guarantee placement of data in lo-
cal memory.

There is no explicit waiting between consecutive calls
of MPI Allreduce. While this might be unrealistic
in most application settings, it maximises stress on the
inter-chip network and therefore allows observation of
effects which might only be visible sporadically other-
wise.

Using hardware counters accessible via libcpc, we
measure the link load (i.e. sent/received data words on
the observed link in the given time interval) in both di-
rections on all links during execution of a given com-
munication function (48 measurements). Specifically,
we monitor the Opteron’s ”Link Event” registers (0F6h,
0F7h, 0F8h, 1F9h, ”HyperTransport Link x Transmit
Bandwidth”, see [1] for full details).

5.1 MPI Allreduce with 8x4 processes

We measure the execution time of an
MPI Allreduce function call (using hrtimer())
collecting and processing messages of 16kB each
from 32 MPI processes. Additionally, we monitor the
traffic on all HyperTransport links during execution of
MPI Allreduce. The measurements are repeated for
consecutive 2000 calls of MPI Allreduce.
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Figure 2. Execution times of 2000 consecutive
MPI Allreduce calls.
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Figure 3. Execution time distribution of
MPI Allreduce calls executed in less than 500µs .

Figure 2 shows the execution time of each
MPI Allreduce call over wallclock time (i.e. the x-
axis corresponds to time progress during experiment).
Most calls take less than 1000 µs (the median of all mea-
surements is 363 µs). However, some execution times
deviate considerably with maximum execution times up
to 600 ms!

More than 95% of all measurements result in an ex-
ecution time smaller than 500 µs. Figure 3 shows the
distribution of these measurements.

While the majority of calls is very fast, the remain-
ing calls consume an disproportional amount of time.
The accumulated execution time of the 100 slowest calls
(5%) consumes 93% of the overall sum of all execution
times.

We hypothesise that the longer execution times can
be explained by activity on the inter-chip network re-
sulting in reduced available bandwidth on some Hyper-
Transport links. In the following, we focus on relating
MPI Allreduce execution time with HyperTransport
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Figure 4. Execution time of MPI Allreduce ver-
sus total inter-chip network traffic.
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Figure 5. Execution time of MPI Allreduce ver-
sus traffic on HyperTransport link 12.

link load.
A first naive approach could be to relate execution

time to the overall traffic on the inter-chip network dur-
ing execution of each call as shown in Figure 4. No
obvious correlation can be identified.

We use GGobi [16] to interactively explore the 23-
dimensional space spanned by our measurements (22x
HyperTransport outgoing link traffic, 1x MPI Allreduce
execution time) and find that some link traffic data is
positively correlated with the MPI Allreduce execu-
tion time. Figure 5 shows the traffic on link 12 over the
execution time of MPI Allreduce. The positive cor-
relation is obvious. Similar correlation exists for data
from several links.

The correlation observed is sufficient to distinguish
short, medium and long execution times by single link
load observations.

The observed link load stems from at least one collec-
tive communication (initiated by our foreground task)
and multiple additional (point-to-point and maybe col-
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Figure 6. Min/max/median HyperTransport link load
for calls of MPI Allreduce with an execution time
smaller than 500µs.

lective) communication triggered by background tasks
(scheduler, cache coherency protocol, I/O activity, ...).
According to Figure 1, messages exchanged between
cores on different sockets can lead to routing of the
message through up to three HyperTransport links. We
therefore try to identify traffic patterns rather than sim-
ple link load to explain execution times.

Figure 6 shows the observed minimum, maximum
and median HyperTransport link load for all links when
inspecting data for all calls of MPI Allreduce which
result in an execution time smaller than 500µs. The
links are ordered by their median load.

To identify distinct traffic patterns being related with
specific execution time levels, we use GGobi’s auto-
matic brushing tool which allows colouring of data in all
plots according to an additional given parameter (execu-
tion time in our case). Inspection reveals that increased
activity on Links 1, 3, 13 and 15 corresponds to an ex-
ecution time of about 80ms (the third cluster from left
in Figure 5) . Figure 7 shows the activity on each of
the links for some measurements resulting in high (red),
low (blue) and moderate (about 80ms, orange) execu-
tion times respectively. The large star pattern is formed
by measurements resulting in execution times of around
80ms exclusively.

5.2 Discussion of measurements

Our measurements of 2000 consecutive
MPI Allreduce calls reveal that while most calls
(95%) finish within a very short time (less than 500 µs,
median is 362 µs), the remaining 5% consume 93% of
the experiment’s run time.

It is possible to identify HyperTransport links whose
load is positively correlated with MPI Allreduce ex-
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Figure 7. HyperTransport link load for selected calls
of MPI Allreduce on Links 1, 3, 13, 15, 25, 27, 37
and 39.

ecution time. While not a very accurate indicator, single
link load data of selected links seems sufficient to sepa-
rate typical execution times from pathological cases.

The distribution of execution times is not continu-
ous but shows strong clustering. Mining the measure-
ments for correlations between clusters of similar exe-
cution time has revealed that increased traffic on a set of
links directly corresponds to execution times within the
cluster. This insight can be used to improve accuracy of
the above indicator.

6 Conclusions and Outlook

We have shown that MPI Allreduce execution
time is correlated with HyperTransport link load. This
is an important observation as a multitude of root causes
might originally be involved, leading ultimately to the
varying execution times observed. Relying on the cor-
relation identified, we can focus on a much smaller set
of observables. Current CPU architectures provide on-
chip hardware performance counters for monitoring of
inter-chip network traffic which allows link loads to be
observed easily from a user application at run-time.

Which links need to be observed is a function of the
full set of communication triggered by both foreground
and background tasks. Our method of identifying rele-
vant links relies on visual inspection of data which im-
plies a big overhead in case substantial changes to the set
of tasks are made. It would therefore be most desirable
to partially automate the process of identifying relevant
links.

Different implementations of MPI Allreduce lead
to different communication patterns. Therefore our
findings only apply to the specific implementation
ofMPI Allreduce in the used OpenMPI version.

Proceedings of the Second International Workshop on  
HyperTransport Research and Applications (WHTRA2011) Feb. 09, 2011, Mannheim, Germany

6



We have considered a single foreground traffic pat-
tern (MPI Allreduce). Further work will investigate
other MPI collective communication functions and the
effects they will encounter when being executed on an
inter-chip network with varying load.

We have not actively triggered any background com-
munication activity. The varying execution times ob-
served show that symmetric multi-core architectures in
use today sporadically exhibit extremely asymmetric
performance behaviour. This is due to the asymmetry
of the communication infrastructure (see Figure 1) as
well as conflicting resource usage by competing user
and system tasks and communication stack deficiencies
(see [12]).

There are two ways how our findings could be ap-
plied: First, it could be used to construct a predictor
for execution times of selected communication functions
under dynamic load situations. Second, it could also be
used as a bottom-up analysis tool for system activity af-
fecting the execution time of communication.

We plan to extend our work by identifying relevant
background tasks and reducing their activity if possible.
We will as well equip our benchmark with the cheap pre-
dictor proposed in this work. A simple measure to show
the viability of our predictor in a conventional MPI set-
ting would be to postpone execution of communication
calls if the predictor suggests very long execution times.

During preparation of this work, the maximum num-
ber of cores available on an AMD Opteron CPU has in-
creased from four to twelve. As a consequence, larger
distributed applications can be run on a single server,
increasing the complexity of traffic patterns on the inter-
chip network while relying heavily on its performance.
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