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Abstract—One challenging task for VLSI and reconfigurable
system design is the identification of the smallest number format
possible to implement a given numerical algorithm guaranteeing
some final accuracy while minimising area used, execution time
and power. We apply affine arithmetic, an extension to interval
arithmetic, to estimate the rounding error of different floating-
point dot-product variants. The validity of the estimated error
bounds is demonstrated using extensive simulations. We derive
the analytical models for rounding errors over a wide range of
parameters and show that affine arithmetic with a probabilistic
bounding operator is able to provide a tighter bound compared
to conventional forward error analysis. Due to the tight bounds,
minimum mantissa bit width for hardware implementation can
be determined and comparison of different dot-product variants
is possible. Our presented models allow for an efficient design
space exploration and are key to specialised code generators.
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I. INTRODUCTION

Advanced signal processing applications and scientific com-

puting applications employ IEEE floating-point (FP) arith-

metic to achieve high accuracy, large dynamic range and effi-

cient application development. Floating-point operands consist

of a sign bit, an exponent field and a mantissa field. Hardware

cost is typically dominated by the size of the mantissa field.

Knowledge on the minimal mantissa bit width (precision) is

therefore vital to achieving efficient hardware implementations

of floating-point algorithms.

On reconfigurable hardware, reducing the precision (man-

tissa bit width) of floating-point operands directly translates

into increased parallelism, and if exploited correctly, to in-

creased performance. In contrast to static architectures’ short-

vector SIMD units, which typically provide a linear throughput

increase with reduced precision, FPGAs allow for superlinear

gains in parallelism with reduced precision (see [1] for an

introduction to area complexity of arithmetic operations and

our recent work [2], [3] for experimental evaluation of custom-

precision floating-point dot-product throughput on FPGAs and

hybrid reconfigurable CPUs, respectively). However, an open

research question is the estimation of optimal mantissa bit

width, i.e. identifying the most suitable precision for imple-

mentation of a given algorithm, retaining the result’s required

accuracy while minimising a cost function including hardware

resources, execution time and power consumption.

In this paper, we aim at deriving a relation between the

user-specified final accuracy and a uniform minimum mantissa

bit width for sequential and parallel floating-point dot product

implementations over varying vector size. Similar to [4], our

work makes use of probabilistic floating-point error analysis

based on affine arithmetic (AA) in order to derive realistic

bounds of the rounding error. In contrast to existing work, we

consider a general floating-point dot product, investigate the

impact of implementation variants and explore a fine-grained

design-space considering precision and vector length.

The scientific contributions of this work are:

• Demonstration of an efficient and reliable Matlab-based

framework for static floating-point error analysis of feed-

forward algorithms based on AA modeling and its appli-

cation on experimentally determining AA rounding error

bounds of different floating-point dot-products.

• Presentation of analytical equations modeling AA round-

ing error bounds of floating-point dot-products as a

function of vector length, precision and input range.

• Mantissa bit width estimation and comparison of different

floating-point dot-product implementations.

The remainder of this paper is organized as follows. Sec-

tion II summarises related work, followed by some background

on floating-point error analysis in Section III. Section IV

presents our Matlab-based framework for performing AA-

based floating-point error analysis. Section V experimentally

derives the AA probabilistic bounds for floating-point dot-

products. The analytical equations modeling AA probabilistic

error bounds are derived in Section VI. Section VII presents

AA bounds for precision estimation and design space ex-

ploration of different dot-product implementations. Finally,

Section VIII gives the conclusion and details future work.

II. RELATED WORK

Error analysis is concerned with understanding and estimat-

ing the effect of parameter variations and rounding error on an

algorithm’s final result. In this work, we focus on the effects

of rounding error. Error analysis techniques can be static

or dynamic [5]. Static error analysis is based on analytical

derivations, often providing conservative estimates. Dynamic

error analysis is based on simulations and gives typically more

realistic error estimates but requires typically long simulation

times and the validity depends on the chosen test data.

Methods for static floating-point error analysis comprise

classical forward error analysis, backward error analysis and

range-based analysis techniques. Classical forward error anal-

ysis [6] often provides very pessimistic error estimates ren-

dering this method impractical for bit width estimation. A



comprehensive discussion on classical forward error analysis

for different floating-point algorithms can be found in [6].

Examples of range arithmetic based methods for error

analysis that make use of either interval arithmetic or affine

arithmetic are given in [5], [7], [8], [4]. One example of

interval arithmetic for error anlysis is the work of Krämer [7].

Fang et al. [8], [4] employed affine arithmetic [9], a recently

developed mathematical tool for refined range analysis, to

model rounding error of floating-point algorithms. The key

idea is to use an AA-based probabilistic bounding operator to

obtain a reliable estimate of the final error bound. Lee et al. [5]

presented MiniBit, an automatic and static approach based

on AA for optimizing bit width of fixed-point feedforward

designs. To our knowledge, in existing literature, there is no

work that applies AA for performing error analysis of the

general floating-point dot-product over a wide range of vector

length, precision used, and numerical range.

III. FLOATING-POINT ROUNDING ERROR ANALYSIS

Floating-point arithmetic [10] is the standard approach for

approximating real number arithmetic in modern computers.

A floating-point number uses three fields to represent a real

number r: a sign bit s, a biased exponent e and a mantissa

f . Given s, e, f and the bias, using IEEE-754 conven-

tions, a normalised binary floating-point numer evaluates to

r = (−1)s · 2e−bias · 1.f . Every real number x ∈ R can be

approximated by a floating-point representation x̂ = fl(x)

x̂ = fl(x) = x + x · δ, |δ| ≤ u, u = 2−p (1)

with a relative error δ no larger than the unit roundoff u = 2−p,

where p is the precision (number of binary digits to represent

the mantissa 1.f ) [6].

Numerical forward rounding error analysis deals with the

question how the rounding operations of some given algorithm

implemented in finite-precision arithmetic affects the final

numerical result. Methods used include classical forward error

propagation, interval arithmetic, and affine arithmetic.
a) Classical Error Propagation: Classical error propa-

gation as used by [6] tries to derive symbolic expressions in

δ, |δ| ≤ u typically concentrating on higher order terms.
b) Interval Arithmetic: Interval arithmetic (IA) [9] is a

range-based model for numerical computation where each real

quantity x is represented by an interval x̄ = [xmin, xmax].
Those intervals are then added, subtracted, multiplied, etc.,

in such a way that each computed interval x̄ is guaranteed

to cover the unknown value of the real quantity x. In error

analysis, IA can be used to derive worst-case rounding error

bounds. The major disadvantage of IA is that it cannot

capture correlations between variables, thereby leading to very

pessimistic bounds for long computational chains.
c) Affine Arithmetic: In affine arithmetic (AA) [9] the

uncertainty of any real quantity x is represented by an affine

form x̂ = g(ǫ1, ..., ǫn), which is a first-order polynomial

expressed as

x̂ = x0 + x1ǫ1 + ... + xnǫn = x0 +

n
∑

i=1

xiǫi, (2)

where coefficient x0 is the central value, while other coeffi-

cients xi are partial deviations (i = 1, 2, ..n), and ǫi is the

noise symbol whose value is assumed to lie in [−1, 1].
AA can be used to model the rounding error of arithmetic

operations [4]. AA is an improvement of IA, in the sense

that it can keep track of correlations between quantities,

thereby potentially leading to more accurate estimated ranges

compared to the ones computed by IA. The limitation of AA

is that linearity is not guaranteed for non-affine arithmetic

operations, potentially leading to inaccurate error estimates.

IV. MATLAB-BASED FRAMEWORK FOR FLOATING-POINT

ERROR ANALYSIS USING AFFINE ARITHMETIC

To derive the affine forms and to perform our experiments,

we created a framework for automated AA-based floating-

point error analysis using probabilistic bounding operators [4]

in Matlab. Affine forms can become very complex expres-

sions after multiple arithmetic operations have been applied

to the input form. In contrast to symbolic frameworks, we

represent AA models of floating-point operands as numerical

row vectors. Computed result of each atomic floating-point

operation is obtained by transferring AA forms of input

operands to the corresponding function which evaluates the

operation following affine arithmetic. The whole computa-

tional process is vector-based and can therefore be performed

efficiently in Matlab. For verification of the AA error models,

our framework integrates arbitrary-precision arithmetic via the

GNU MPFR Library1 (version 3.0.0). MPFR C functions are

compiled into MEX files and called from Matlab.

V. AA ERROR BOUNDS FOR FLOATING-POINT

DOT-PRODUCTS

The main limitation of simulation-based error analysis

are the very long simulation times required. We investi-

gate whether AA-based error analysis allows for deriving

in less time error bounds comparable to the ones reported

by simulation. In the following, we compare error bounds

and calculation time of AA-based and simulation-based error

analyses. For demonstration, we estimate the rounding errors

of two dot-product implementation variants.

A. Dot-Product

Given two column vectors x, y of length n: x =
[x1, ..., xn]T , y = [y1, ..., yn]T , the dot-product of x and y

is defined as

x
T
y =

n
∑

i=1

xi · yi = x1y1 + ... + xnyn. (3)

Different dot-product implementation variants result in differ-

ent rounding errors [6]. In this paper, we perform error analysis

for two different floating-point dot-product architectures: a

sequential dot-product and a parallel (or binary-tree) dot-

product [2] (see Fig. 1), with the use of basic floating-point

operations, i.e. multiplication and addition, only.

1http://www.mpfr.org/



Fig. 1. Dot-product implementation variants

B. Experiment setup

The chosen numerical range is [−128, 128]. The precision

p (mantissa bit width) of floating-point operands varies in

unit step from 20 bits up to 53 bits (double-precision). The

exponent bit width is fixed as 11 bits. The vector length n of

two input vectors ranges from 100 to 1000 with step size of

100. The chosen confidence interval [4] for AA probabilistic

bounding operator is K = 3 (corresponding to a probability

of 99.7% the rounding error occurring will fall within the AA

probabilistic bound estimated). To evaluate the accuracy of the

AA probabilistic rounding error bound, we compare it against

the maximum rounding error obtained by running Monte-Carlo

simulation over a sufficiently large number of 106 samples for

each pair of (p, n). For each sample, we compute the difference

between the finite-precision result and its infinite-precision or

accurate version, for which a 80-bit mantissa format was used.

Among 106 computed differences, the maximum value is then

chosen and considered as the maximum rounding error. The

Over-Estimate Ratio (OER) is used to evaluate the reliability

of AA probabilistic bound and defined as

OER =
AA probabilistic bound

Maximum error by simulation
. (4)

All the simulations are run on an AMD Athlon 3800 Dual

Core desktop CPU with clock frequency of 2.0 GHz.

C. Results

Rounding error bounds: Fig. 2 presents the contour maps

of the maximum rounding error (dashed lines) obtained by

simulation and the AA probabilistic rounding error bound

(solid lines) of sequential dot-product. We observe that re-

gardless of the vector length or the precision, AA probabilistic

bounds are very close to realistic errors via simulation and the

OERseq of AA probabilistic bound of sequential dot-product

is always within the range: 1.2 ≤ OERseq ≤ 2.2. For parallel
dot-product, Fig. 3 plots the experimental result. Similarly, the

OERpar of AA probabilistic bound for parallel dot-product

is always within the range: 1.3 ≤ OERpar ≤ 4.1.
What we learn from Fig. 2 and Fig. 3 is that the AA

probabilistic bound is a reliable and efficient estimate, cor-

responding to the overestimation of the mantissa bit width at

most log2(2.2) ≈ 1 bit and log2(4.1) ≈ 2 bits for sequential-

and parallel dot-product implementations, respectively.

Calculation time: Table I reports the time (in seconds)

required for approximating maximum error via simulation of

106 samples, and for estimating AA probabilistic bound for
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Contours of Max. error and AA bound, (sequential dot−product, basic operations, range [−128,128])

Fig. 2. Contours of maximum rounding error (dashed lines) and AA
probabilistic bound (solid lines) for sequential floating-point dot-product.
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Fig. 3. Contours of maximum rounding error (dashed lines) and AA
probabilistic bound (solid lines) for parallel floating-point dot-product.

single-precision dot-products with the smallest vector length

of 100. In terms of calculation time, the AA-based approach

achieves a speedup of about three to four orders of magnitude

compared to the simulation-based approach.

VI. ANALYTICAL EQUATIONS OF ROUNDING ERROR

BOUNDS FOR FLOATING-POINT DOT-PRODUCTS

In this section, we make use of AA probabilistic bounding

operator to derive some analytical expressions for error bounds

of floating-point dot-products as a function of numerical range,

precision p and vector length n. In the followings, we assume

that each element of two input vectors is uniformly distributed

in a symmetric range, i.e. xi, yi ∈ [−a, +a].

A. Conventional forward error bound

The conventional forward error bound for

a sequential dot-product [6] is presented as

|xT
y−fl(xT

y)| ≤ nu
1−nu

∑n

i=1
|xiyi|, where u = 2−p is the

unit roundoff. We use the maximal value of xi, yi to estimate

the conventional bound, thereby
∑n

i=1
|xiyi| ≈ na2. The

TABLE I
EXECUTION TIME [S] OF ROUNDING ERROR ESTIMATION FOR

SINGLE-PRECISION DOT PRODUCT (n = 100)

Simulation [s] AA [s] Speedup

(106 samples)

Sequential impl. 230 0.043 5.34 × 10
3

Parallel impl. 3041 0.195 1.56 × 10
4
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Fig. 4. Rounding error of sequential single-precision dot-product

conventional forward error bound of sequential dot-product

is, therefore, estimated as

|xT
y − fl(xT

y)| ≤ nu

1 − nu
· na2. (5)

B. Analytical expressions of AA probabilistic bounds

Similar to [4], we represent each floating-point quantity by

a numerical range component and a rounding error compo-

nent and apply the probabilistic bounding operator to derive

analytically rounding error bounds for sequential- and parallel

dot-products. The AA probabilistic rounding error bound for

sequential floating-point dot-product Bprob,seq is calculated as

Bprob,seq = 2−p ·K ·
√

2

6
·a2 ·

√

18n + K2(n2 + n − 2). (6)

For parallel floating-point dot-product using a binary-tree

adder (with ⌈log2(n)⌉ adding stages), the AA probabilistic

rounding error bound Bprob,par is estimated as

Bprob,par = 2−p ·K ·
√

2

6
·a2 ·

√

18n + 2K2⌈log2(n)⌉n. (7)

C. AA error model vs. Conventional error model

Fig. 4 compares rounding error bounds and corresponding

OERs of single-precision (p = 24) sequential dot-product

derived by using conventional model in (5) and AA probabilis-

tic bouding operator in (6). The OER of conventional bound

continuously increases with increasing vector length, making

it useless for mantissa bit width estimation. The OER obtained

by AA modeling remains almost unchanged (i.e., between

1 and 2) over whole range of vector length, which reveals

that affine arithmetic with a probabilistic bounding operator is

able to provide tighter bounds, compared to conventional error

model, for floating-point error analysis.
VII. PRECISION ESTIMATION AND COMPARISON OF

DIFFERENT DOT-PRODUCT VARIANTS

Due to the tight bounds derived by using AA, precision

estimation (minimum mantissa bit width) and comparison of

different dot-product implementations are possible.

A. Precision estimation

Given a user-specified accuracy, the smallest precision for

implementation of sequential- and parallel dot-products i) can

analytically be identified by using analytical models in (6) and

(7), or ii), can experimentally be determined by evaluating the

respective affine forms using our framework (as shown in Fig.

2 and Fig. 3).

TABLE II
REQUIRED PRECISION FOR DOT-PRODUCT IMPLEMENTATIONS TO

ACHIEVE A FINAL ACCURACY OF 10−7 (xi, yi ∈ [−128, 128])

Vector length n 100 200 300 500 1000

Sequential impl. [bits] 45 46 47 48 49
Parallel impl. [bits] 44 45 45 45 46

Difference [bits] 1 1 2 3 3

B. Comparison of different dot-product implementations

Given the same numerical range and working precision,

it can easily be proved from (6) and (7) that parallel dot-

product implementation provides more accurate final result.

Furthermore, the error bounds in Fig. 2 and Fig. 3 allow for

a visual comparison of different dot-product implementations

with respect to final accuracy and smallest precision required

(see Table II). The superior accuracy achieved by a parallel

dot-product, however, comes at the cost of more resources

required for employing a parallel implementation.

VIII. CONCLUSION AND OUTLOOK

In this work, we have shown that affine arithmetic with a

probabilistic bounding operator is able to provide a tighter

error bound compared to conventional forward error analysis.

More importantly, we have derived analytical models for

rounding errors of different floating-point dot-product variants

over a wide range of parameters. Our presented models are key

to efficient design space exploration and to specialised code

generators. Future work will focus i) on coupling estimated

bit width with hardware resource usage models and ii) on

modelling of more complex non-affine arithmetic operations.
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