PLATFORM-AS-A-SERVICE (PAAS): THE ADOXX
METAMODELLING PLATFORM

Dimitris Karagiannis and Niksa Visic

University of Vienna, Knowledge Engineering Research Group, Briinnerstr. 72,
A-1210 Vienna, Austria
{dk, nv}@dke.univie.ac.at

Abstract. This paper researches the synergies between metamodelling
platforms and cloud computing paradigm. In particular, a classification of
services that belong to different levels of abstraction, or cloud layers
(SaaS, PaaS), is given, using ADOxx — complex, distributable, scalable
and component-based metamodelling platform - as an example.
Furthermore, the feasibility of porting desktop metamodelling platforms
to the cloud is explored, including the possible advantages and
disadvantages the cloud may provide.

Keywords: PaaS, SaaS, ADOxx, Metamodelling, Platform

1 Introduction

Metamodelling approaches are an active research field and in the past
20 years serious application areas in the software and information
technology industries have been found. It is only logical to assume that
metamodelling approaches will expand to other application areas, not
only in software and information system engineering, but also to other
disciplines in- and outside of computer science. To support the rapid
expansion and popularity of metamodelling approaches we should view
existing modelling and metamodelling software as legacy software that
needs to be evolved by taking advantage of the benefits cloud computing
has to offer.

The basic explanation about the notions modelling method and cloud
computing follows.

Modelling Method: The Concept

A modelling method [1] consists of two components: a modelling
technique, which is divided in a modelling language and a modelling
procedure, and mechanisms & algorithms working on the models

described by the modelling language (see Figure 1). The modelling
language contains the elements with which a model can be described:
syntax, semantics and notation. The modelling procedure describes the
steps applying the modelling language to create results, i.e., models.
Algorithms and mechanisms provide ““functionality to use and evaluate™
models described by a modelling language. When such functionalities,
enabling structural analysis as well as simulation of models are defined
for existing modelling technique, the modelling methods are formed [2].

| modeling

method |
4 usedfor ! 8

g = mechanisms
1 &
modeling usedin
’——{ technigue }’—‘ £y
S

modeling delivers b

| | I '
e viwkaation | modeling | procedure generic
language defires mesning machanisms
L £ | | & aigarithms
defines grammar r

of languiage application

specific
steps results mechanisms

s
o semantics 1= g
] & algorithms
I b
] arranges 1
i

mechanisms
& algorithms |

Figure 1. Modelling methods, mechanisms and algorithms
(Karagiannis & Kihn, 2002)

To support this concept, metamodelling platform should be realized on
a component-based, distributable, and scalable architecture [1]. This kind
of architecture also has advantages when transporting the platform into
the cloud. Additionally, one of the most important elements of the
metamodelling platforms, the meta-metamodel, needs to contain all the
general concepts (metamodel, classes, relations, attributes, model types,
etc.) for method definition and method application.

The Cloud: Layers and Services

Cloud computing has been coined as an umbrella term to describe a
category of sophisticated on-demand computing services initially offered
by commercial providers, such as Amazon, Google, and Microsoft. It
denotes a model on which a computing infrastructure is viewed as a
*“cloud”, from which businesses and individuals access applications from
anywhere in the world on demand [3].

The cloud is a large pool of easily usable and accessible virtualized
resources (such as hardware, development platforms and/or services).
These resources can be dynamically reconfigured to adjust to a variable
load, allowing optimum resource utilization. This pool of resources is
typically exploited by a pay-per-use model in which guaranties are
offered by the infrastructure provider by means of customized SLAS
(Service Level Agreements) [4].

Cloud computing services are divided into three classes, according to
the abstraction level of the capability provided and the service model of
providers, namely: (i) Infrastructure-as-a-Service (laaS), (ii) Platform-as-
a-Service (PaaS), and (iii) Software-as-a-Service (SaaS) [5]. These
abstraction levels can be viewed as layered architecture where services of
higher layer can be composed from services of the underlying layer.

The Infrastructure-as-a-Service (laaS) layer provides low-level,
virtualized resources, such as storage, networks, and other fundamental
computing resources via self-service to the user. In general, the user can
deploy and run arbitrary software, which usually includes operating
systems as well as applications [6].

The Platform-as-a-Service (PaaS) layer provides capability to deploy
custom applications on top of the cloud’s infrastructure. These
applications are deployed wusing the programming languages,
development tools and APIs defined by the cloud provider. The process
of implementing and deploying a cloud application becomes more
accessible and simplified by removing the need to manage the underlying
software and hardware infrastructure (including complex programming
details, scalability, load balancing, etc.) and allowing the developer to
focus on important issues [6].

The Software-as-a-Service (SaaS) layer is the highest layer in the
proposed cloud model [5]. SaaS layer provides ready-to-run services that
are deployed and configured for the user. All data manipulated in such
systems is held in the cloud. One of the most prominent advantages of
SaaS layer applications is universal accessibility regardless of the client
system’s software availability [6].

2 Related Work

The notion of exploring synergies between metamodelling approaches
and cloud computing is still very young. One of the first mentions of
Method-as-a-Service paradigm appears in a keynote speech from Rolland
C. [7], where he proposes to adopt a service-based paradigm analog to

SaaS. The aim was in developing method engineering approach driven by
the needs of method clients, whereas implementation details of method
services should remain under the control of method providers. The
implementation is further discussed in [8].

There is also an ongoing research conducted by AtlanMod: team [9] in
which they introduce the notion of Modelling-as-a-Service as a way to
provide modelling and model-driven engineering services from the cloud.
A similar concept, or rather a small part of it, is also present in the
industry (The Enterprise Architect? blog), called Model-Execution-as-a-
Service, where the ultimate goal is to support the agile application
lifecycle, from a first idea to a working application, and from a working
application to long-term business agility (i.e., the evolution of an
application along with the business) trough simple and fast model-driven
development & deployment in the cloud.

Research in these topics is still in a preliminary phase, resulting in lack
of related scientific literature and concrete results. The first web-based
modelling tools (sometimes also marketed as diagram drawing software)
have started to emerge during the last few years, such as Gliffys, Cacoo?,
Createlys, Diagramlye, LucidChart?, etc. Most recently, there is a trend of
cloud-enabling present in the industry, especially with BPM (Business
Process Management) and office software solutions, where desktop
applications are transferred into the cloud and offered as a service for a
recurring subscription fee (The Business Software Centres). This model
of cloud deployment is also known as “SaaS deployment without re-
development™. In most of the cases ported applications appear to run as
if locally installed on a client computer.

Searching for the web-based metamodelling tools did not bring many
results. One of the most prominent contributions is GEMSjax [10], a
web-based metamodelling tool for collaborative development of domain
specific languages. By employing modern Web 2.0 technologies (Ajax
and REST services), it allows simultaneous web browser-based creation
and modification of metamodels and model instances, as well as remote
model access over a simple web-based interface.

1 http://www.emn.fr/z-info/atlanmod/index.php/Main_Page
2 http://www.theenterprisearchitect.eu/

3 http:/www.gliffy.com/

4 https://cacoo.com/

5 http://creately.com/

6 http://www.diagram.ly/

" http://ww.lucidchart.com/

8 http://www.businesssoftwarecentre.com/

9 http://www.realtechsolutions.co.uk/

3 Integrating ADOxx with the Cloud and Cloudlike
Infrastructure

ADOxx [2] is an extensible, repository-based metamodelling platform,
which offers a three-step modelling hierarchy with a rich meta-
metamodel. ADOxx can be customized using metamodelling techniques
and extended with custom components to build a modelling environment
for a particular application domain. The ADOxx platform kernel provides
basic modules for managing models and metamodels. In addition, the
ADOxx generic components for graphical and tabular model editing, for
model analysis, for simulation, or for model comparison can be reused
and customized in all solutions derived from ADOxx. Each ADOxx-
based solution contains a solution-specific modelling language and may
have additional set of solution specific components.

Applications build by the ADOxx users
Applications SaaS

build by the
- : Modelling Methods, Modelling Languages,
icati ADOxx users E » B guag
Applications Model Transformation, Simulation, Analysis, Sarvi
build by the Validation. Execution, Lifecycle Management. fces
ADOxx users provided
PaaS by the
: : e ; ADOxx
Metamodel Compiler, Metamodel Hierarchy Builder, Programming
Languages (GraphRep, AdoScript), APIs. cloud
IaaS

Databases, Virtual Machines, Operating Systems, Hardware, Network Connectivity, etc.

Figure 2. Overview of ADOxx PaaS and SaaS Level Services

Because of the architecture with three levels of abstraction (meta-
metamodel, metamodel, model), ADOxx can be seamlessly integrated
into the cloud, where metamodelling and modelling can be provided as a
service — metamodelling services on PaaS and modelling solutions,
including modelling methods, on SaaS level, introducing a new cloud
computing notions: Modelling-as-a-Service and Method-as-a-Service. On
PaaS level ADOxx contains a set of specialized components and
frameworks for defining a modelling language (metamodel, domain
specific modelling language) and modelling method without or very little
hand coding: dialog-based metamodel hierarchy builder/explorer for
defining abstract syntax and semantics of a modelling language, special
programming language called GraphRep for defining notation (visual or
graphical syntax), and scripting language called AdoScript that provides

mechanisms to define specific behavior and functionality of a modelling
method. ADOXxx also has a variety of APIs that can be used and extended
to support additional functionality and services on PaaS (metamodel
editing, method editing, method integration, method extension, etc.), as
well as on SaaS level (model transformation, model editing, model
simulation, model analysis, model lifecycle management, model
validation, model execution, etc.). For further details see Figure 2.

One of the prerequisites of cloud computing, especially on SaaS level,
is that services are accessible from anywhere on any machine without
worrying about software requirements on the client side. To improve
ADOxx platform integration with the cloud, which means switching from
cloudlike infrastructure to real cloud infrastructure, new web-based
interface development is a necessity. ADOxx is using remote desktop
technology limited to Windows operating systems only. By switching to
web-based access to the platform, employing only a web browser, full
cloud integration can be achieved.

4 Conclusion

Transferring any software from “desktop™ form to ““as-a-service”
form is hard work. A new growing branch in the IT industry dedicated
only to consulting enterprises regarding cloud migration and offering
help with application porting to the cloud is proof enough to grasp the
complexity of this process. Metamodelling platforms, which are in most
cases very complex software systems composed from multiple
interconnected components, are no exception. By reverse engineering
and dividing metamodelling platforms into small specialized
components, each dedicated to a relatively independent task that can be
offered as a service, and arranging those in appropriate cloud computing
layers (PaaS, SaaS) the porting process can be simplified. Regardless, by
using this procedure it is generally only possible to make cloud-like
applications that will in most cases perform inferiorly as opposed to
applications engineered from scratch with cloud architecture in mind
(true cloud applications). Extensions (new web-based GUIs, etc.) and
modifications (communication between internal components, data
management, etc.) to the desktop applications are sometimes necessary if
we wish to use all the advantages that cloud has to offer.

Method-, Modelling-, and Metamodelling-as-a-Service are still very
young research topics, which makes them even more interesting, but —
because of their pioneering status — also risky to tackle with. Service-

orientation and model-driven engineering, as outlined in [9], are two of
the most dominant software engineering paradigms, followed by
metamodelling paradigms, including language engineering and method
engineering. It can be concluded with certainty that the need for web-
based modelling and metamodelling solutions will only grow, which will
also initiate even bigger research interest in these topics.

References

[1] H. Kihn and D. Karagiannis, “Metamodelling Platforms,” Lecture Notes in
Computer Science, vol. 2455, no. 2455, pp. 182-182, 2002.

[2] D. Karagiannis and N. Visic, “Next Generation of Modelling Platforms,” in
Lecture Notes in Business Information Processing, BIR 2011, Riga, Latvia, 2011,
vol. 90, pp. 19-28, (In Press).

[3] W. Voorsluys, J. Broberg, and R. Buyya, “Introduction to Cloud Computing,” in
Cloud Computing: Principles and Paradigms, R. Buyya, J. Broberg, and A.
Goscinski, Eds. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011, pp. 1-41.

[4] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in the
clouds: towards a cloud definition,” SIGCOMM Comput. Commun. Rev., vol. 39,
no. 1, pp. 50-55, Dec. 2008.

[5] T. Grance and P. Mell, “The NIST Definition of Cloud Computing,” National
Institute of Standards and Technology, vol. 53, no. 6, p. 50, 2009.

[6] S. Jha, D. S. Katz, A. Luckow, A. Merzky, and K. Stamou, “Understanding

(7]

(8]

(9]

Scientific Applications for Cloud Environments,” in Cloud Computing: Principles
and Paradigms, R. Buyya, J. Broberg, and A. Goscinski, Eds. Hoboken, NJ, USA:
John Wiley & Sons, Inc., 2011, pp. 345-371.

C. Rolland, “Method Engineering: Towards Methods as Services,” in Making
Globally Distributed Software Development a Success Story, vol. 5007, Q. Wang,
D. Pfahl, and D. M. Raffo, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 10-11.

A. lacovelli, C. Souveyet, and C. Rolland, “Method as a Service (MaaS),” in
Second International Conference on Research Challenges in Information Science,
2008. RCIS 2008, 2008, pp. 371-380.

H. Bruneliére, J. Cabot, and F. Jouault, “Combining Model-Driven Engineering
and Cloud Computing,” 15-Jun-2010. [Online]. Awvailable: http://hal.inria.fr/hal-
00539168 _v1/. [Accessed: 17-Aug-2011].

[10] M. Farwick, B. Agreiter, J. White, S. Forster, N. Lanzanasto, and R. Breu, “A

Web-Based Collaborative Metamodeling Environment with Secure Remote Model
Access,” in Web Engineering, vol. 6189, B. Benatallah, F. Casati, G. Kappel, and
G. Rossi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 278-291.

