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ABSTRACT

Motivation: RNA family models group nucleotide sequences that
share a common biological function. These models can be used to
find new sequences belonging to the same family. To succeed in
this task, a model needs to exhibit high sensitivity as well as high
specificity. As model construction is guided by a manual process,
a number of problems can occur, such as the introduction of more
than one model for the same family or poorly constructed models.
We explore the Rfam database to discover such problems.
Results: Our main contribution is in the definition of the
discriminatory power of RNA family models, together with a first
algorithm for its computation. In addition, we present calculations
across the whole Rfam database that show several families lacking
high specificity when compared to other families. We give a list of
these clusters of families and provide a tentative explanation. Our
program can be used to: (i) make sure that new models are not
equivalent to any model already present in the database; and (ii) new
models are not simply submodels of existing families.
Availability: www.tbi.univie.ac.at/software/cmcompare/. The code
is licensed under the GPLv3. Results for the whole Rfam database
and supporting scripts are available together with the software.
Contact: choener@tbi.univie.ac.at

1 INTRODUCTION
Structured non-coding RNAs are nucleotide sequences that are not
translated into protein but have, in the folded state, their own specific
functions (Mattick and Makunin, 2006). This function is very much
dependent on the secondary and tertiary structure (the folded state),
while on the other hand, the primary structure or sequence sees more
change (Mattick and Makunin, 2006) in the form of mutation.

One can define relationships between non-coding RNAs in
different species. A set of related sequences is called an RNA family.
Each set is defined by its members performing the same function in
different species. When genomes are sequenced, one is interested
in finding members of known families in the new data, as well as
finding new families if previously unknown non-coding RNAs are
discovered.

The problem—finding homologues—exists for proteins, too.
Software to perform the same kind of searches exists in the form
of HMMer (Eddy, 1998) and the Pfam (Bateman et al., 2002)
database. Using profile hidden Markov models (profile HMMs), a
mathematically convenient solution was found, around which the
algorithms could be built. Unfortunately, the same solution proved
inadequate (Durbin et al., 1998, Chapter 10.3) for non-coding RNAs.

The task of building a model that describes a new family is still a
mostly manual process. Finding new members of existing families,
on the other hand, can be performed using software. The problem we
are discussing in this article applies equally well to other algorithms
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human acgucg aacuaga
cow accugg aacuaga
dog acuugg aag uca
cat acgucgaaacuaga
structure *<<*>>.**<**>*

Fig. 1. Multiple alignment of sequences from several species and the
consensus structure. Brackets denote nucleotide pairings, a star denotes a
consensus unpaired nucleotide and a dot a nucleotide not in the consensus.

to search for homologue sequences, but as our algorithm is specific
toward an existing software package, namely Infernal (Nawrocki
et al., 2009a), we will perform our analysis with respect to this
software and the corresponding Rfam (Griffiths-Jones et al., 2003)
database.

In order to model families of non-coding RNAs in a way that
provides both sensitivity and specificity, the consensus secondary
structure of the set of sequences has to be included in the
mathematical model from which the algorithm is created. Stochastic
context-free grammars provide access to such models, just as
stochastic regular grammars (in the form of profile HMMs) can be
used to model protein families.

We begin with a succinct introduction to the process of first
designing an Infernal RNA family model and then searching for
new family members. Building on those algorithms, we can define
the specificity of a given model compared to other known models
in a natural way using the already established Infernal language of
bit scores.

1.1 Infernal model design
Infernal is based on covariance models (Eddy and Durbin, 1994). We
assume that a structure-annotated multiple alignment of the family
sequences like the one in Figure 1 is at hand. Intuitively, new family
members should (i) align well and (ii) show the same secondary
structure. The more a sequence deviates from these two requirements
the worse it should score.

During the covariance model construction process, a so-called
guide tree is derived from the structure annotation. The nodes of
the tree fall into six classes: (1) a pair-matching (P) node for a
base pair; (2–3) two kinds of single nucleotide nodes, one left- (L)
and one right-matching (R); (4) a bifurcation (B) node to allow for
multiple external and internal loops; and two house-keeping nodes:
(5) a start-node (S) and (6) an end-node (E). Whenever possible,
left-matching nodes are used, e.g. in hairpin loops, delegating right-
matching nodes to be used only where necessary, such as the right
side of the last external loop. This removes ambiguity from the
construction process. The alignment from Figure 1 leads to the model
depicted in Figure 2.

Mutations in base pairs or single conserved nucleotides are
handled in the conventional stochastic RNA modeling approach by
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Fig. 2. A covariance model, displaying the six types of nodes needed for
construction. The nucleotide annotation follows the human sequence of the
multiple alignment of Figure 1.

keeping emission probabilities (or log-odd scores) for each possible
base or pair for the emitting nodes (P, L, R).

The way Infernal works, insertion of additional nucleotides or
deletion of parts of the consensus sequence cannot be handled by the
matching nodes alone. For the final model, each node is replaced by a
number of states. One state acts as the main state, that is, for example,
each pair (P) node has a pair state matching both a left and a right
nucleotide. The deletion of one of the two nucleotides is handled by
adding two states, one only left- (L), one only right-matching (R).
A fourth state (D) handles the deletion of both nucleotides while
two inserting states (IL, IR) are used for insertions relative to the
consensus. Transitions from one state to the next happen with some
probability which is close to 1.0 for the consensus state and far less
likely for the other possible states. The exact numbers are calculated
by fitting probability distributions using the multiple alignment data.

Nodes matching only a single nucleotide are extended with a
deletion state and either a left- or a right-inserting state, depending
on the main state. A bifurcation (B) leads directly to two new start
(S) nodes, effectively to two complete submodels. By arbitrary
selection, the right start node is extended with a left-inserting state
to allow for insertions between a bifurcation.

Mostly, however, it is enough to keep the picture of the model
(Fig. 2), using only matching nodes, in mind.

With the additional states the model is completed. The fitting of
the probability distributions given the nucleotide consensus data is
outside of the scope of this text and we refer the reader to the book
on the subject matter by Durbin et al. (1998).

1.2 Searching with covariance models
The complete model is a graphical representation of the stochastic
context-free grammar that does the real work. A pair state (P), for
example leads to a total of 16 productions of the form Pk →aQb,
where Pk is the k’th node to be processed, Q abstracts over the
possible targets states, which depend on the node k+1 and (a,b) are
the 16 possible nucleotide pairs. The whole process leads to CFGs
with a huge number of productions (in the order of the number of
nodes times a small constant), especially when compared with single
RNA folding grammars (Dowell and Eddy, 2004), that have in the
order of 10–100 productions.

The actual search process uses the CYK algorithm (newer
versions of Infernal use the Inside algorithm to calculate the final
score) to find the best parse of an input string given the model. Input
strings are all substrings of a genome up to a given length. Using
dynamic programming, this approach is fast enough that whole
genomes can be processed in a matter of hours or days.

Our interest in this article is not the search process of Infernal,
but how a parse is scored and the best alignment of string against
model is selected.

Notation. Given an alphabet A, A∗ denotes the set of all strings
over A. Let s∈A∗ be a, possibly empty, input string.

Notation. Let m, m1, m2 be covariance models in the form
of stochastic context-free grammars conforming to the Infernal
definition.

Given a model m and an input string s, the CYK score can be
calculated over all parses P of the string s by the model m:

CYK(m,s)=
max{Score(P(m,s))|P(m,s) is successful}. (1)

A successful parse is a parse that consumes the complete input s
and finishes in terminal end states. During such a parse a score is
built up from the transition and emission scores that were calculated
for each model during its construction.

Several methods exist to perform the calculations. Arguably,
closer to Equation (1) is the use of tree grammars and algebras
in Giegerich and Höner zu Siederdissen (2010), but Infernal uses
traditional dynamic programming to implement the CYK algorithm.
Whichever method is used, they are more efficient than the
enumeration of all possible parses. Finally, the alignment of the
input against the model can be retrieved using backtracking or other
methods.

2 METHOD
A covariance model with high specificity assigns low bit scores to all
sequences that do not belong to the model family. Finding sequences
that lead to false positives, that is having a high score while not
belonging to the family, is a problem. We take a view that does not
look at a single model, but rather at two models at the same time.
Then, we can say that:

A covariance model has low specificity with respect to another
model if there exists a sequence s∈A∗ that achieves a high CYK
score in both models.

We acknowledge that ‘high score’ is not well-defined, but consider
what constitutes a high score in Infernal. Hits in Infernal come as
a tuple, the score itself and an e-value. One is typically interested
in scores of 20 bit or higher and e-values of 1.0 or less, depending
on the model. The e-value is dependent on the genome size, but
given such guidelines one finds good candidates. In light of this, the
meaning of ‘high score’ becomes more clear. As we use the same
measure as Infernal, a string that achieves, say, 40 bit in two different
models points to low specificity, as the string would be considered a
good hit when searching for new family members with both models
separately.

Using the previous definition, we find an analog to Equation (1)
to calculate (i) the highest score achievable by (ii) a single input
string:

Link(m1,m2)=MaxiMin(m1,m2)=
argmaxs{min{CYK(m1,s), CYK(m2,s)}|s∈A∗}. (2)

Here, m1 and m2 are two different covariance models. MaxiMin
returns the highest scoring string. The highest score is defined as the
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Table 1. Recursive calculation of the maximal score achieved by an input string common to both model m1 and m2

minP (a,b)=
{

a a<b

b otherwise
(3)

maxmin x=argmax
{

minP(s1,s2)|(s1,s2)∈x
}

(4)

MaxiMin (k1,k2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0,0) k1 =E∧k2 =E

maxmin{MaxiMin(k′
1,k′

2)+(ek1,a,b,ek2,a,b)+(tk1→k′
1
,tk2→k′

2
)

| k′
1 ∈ck1

,k′
2 ∈ck2

,a∈A,b∈A} k1 =P∧k2 =P

maxmin{MaxiMin(k′
1,k′

2)+(ek1,a,ek2,a)+(tk1→k′
1
,tk2→k′

2
)

| k′
1 ∈ck1

,k′
2 ∈ck2

,a∈A} k1 ∈{L,IL}∧k2 ∈{L,IL}
maxmin{MaxiMin(k′

1,k′
2)+(ek1,b,ek2,b)+(tk1→k′

1
,tk2→k′

2
)

| k′
1 ∈ck1

,k′
2 ∈ck2

,b∈A} k1 ∈{R,IR}∧k2 ∈{R,IR}
maxmin{MaxiMin(k1,k′

2)+(0,tk2→k′
2
)

| k′
2 ∈ck2

} k1 =E∧k2 ∈{D,S}
maxmin{MaxiMin(k′

1,k2)+(tk1→k′
1
,0)

| k′
1 ∈ck1

} k1 ∈{D,S}∧k2 =E

maxmin{{MaxiMin(k′
1,1,k′

2,1)+MaxiMin(k′
1,2,k′
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| {k′
1,1,k′

1,2}=ck1
,{k′

2,1,k′
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} ∪
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1,1,E)+MaxiMin(E,k′
2,2)

| {k′
1,1,k′
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,{k′

2,1,k′
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} ∪
{MaxiMin(k′

1,1,k′
2,2)+MaxiMin(k′

1,2,E)+MaxiMin(E,k′
2,1)

| {k′
1,1,k′
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maxmin{MaxiMin(k′
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1,2,E)
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2
)
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} (k1,k2)∈{(S,S),(D,D)}
(−∞,−∞) otherwise

(5)

We abuse notation quite a bit to reduce notational clutter. The state type of model 1 at index k would be type1
k1

but we write k1 = E to determine if the state
is an end state. Additional data structures are simplified as well. The states into which a transition is possible (the children of state k) are written ck1 instead
of c1

k1
. Emission scores for each model are in the matrix e which is indexed by the state k and the nucleotide(s) of the emitting state. Transition scores for

transition from state k to k′ are found in the matrix t. The case where k1 = E ∧k2 = E terminates the recursion, as each correctly built covariance model
terminates (each submodel) with an end-state (E) (cf. Fig. 2). Addition of pairs happens element-wise: (a,b)+(c,d)= (a+b,c+d).

minimum of the two CYK scores. This guarantees that both models
score high. Variants of the algorithm are possible, for example
MaxPlus which sums both scores before maximizing. However,
MaxiMin provides better results in case one of the two models
contains many more nodes than the other. More importantly, it
provides a score which would actually be achieved during a search
using one of the two models, while the other would score even
higher. As the sequence s ‘links’both models via their discriminative
power, we shall use the term Link from now on.

The trivial implementation suggested by Equation (2) is not well-
suited for implementation as it requires exponential runtime due to
the enumeration of all possible strings in A∗.

In order to find the highest scoring string, we perform a kind of tree
alignment with additional sequence information. The tree alignment
part optimizes the structure of each model, while sequence alignment
is performed for nucleotide emitting states as well. Both alignments
are tightly coupled as is the case for covariance models themselves.

A pair state (P), for example, leads to another structure than a left-
emitting (L) state. This also explains why we have to deal with a
small restriction in our algorithm. The tree alignment requires us
to align each state with at most one other state, but not two or
more. After an explanation of the implementation, we discuss this
further.

Implementation: We present a simplified version of our recursive
algorithm in Table 1. To set the field, we need two additional
functions. Equation (3) defines the minimum of a pair of values
in a natural way. The function maxmin [Equation (4)] is a small
helper function selecting the maximal pair, where the maximum of
two pairs is defined by the maximum of individual minima, hence
the name max-min.

The recursion has to be performed simultaneously over both
models. For model m1 we have index k1 and for model m2, k2 will
be used. Note though, that by following just one of the elements of
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the tuples, the CYK algorithm can be recovered. We are, in essence,
performing two coupled CYK calculations at the same time.

Internally, all states are kept in an array. The first index is
guaranteed to be a start state (S) and the last index to be an end
state (E). The first state is the root state of the whole model, too.
Three additional arrays are required.

The states that can be reached from a state are stored in an array
named c for children. Because indices from one model are never
used in the other model, we can always write ck1

instead of c1
k1

.
We use the same simplification for emission scores. The array e

holds such scores. It is indexed with the nucleotides that are to be
emitted. This is to be written as ek1,a,b for pairs and either a or b
are missing for single nucleotide emitting states.

The third required array, t, stores transition scores. Whenever the
recursion descends from a state k1 into a possible child state k′

1, a
lookup tk1→k′

1
is performed. Not all transitions incur a cost. A branch

into the two child states always happens with probability 1.0.
We have abused notation to simplify the recursion a bit. The

determination of the type of the current state requires an additional
data structure to perform the lookup for the indices k. Instead of
writing Xk1

, where X is such a data structure, we just write k1 = E
to assess if state k1 happens to be an end (E) state.

Some of the cases found in the source code have been removed for
clarity. Most cases deal with symmetric states. The last state to visit
is, for example (E, E). This initializes the CYK score to (0.0,0.0).
The case (MP, MP) handles the emission of a pair of nucleotides.
There are some cases like (S, x), where x is any state except (S), that
require special handling. These special cases ((E, D) and (E, S) are
given as an example) do not contribute any information on how one
goes about calculating the common score, but simply make a large
recursion more unwieldy.

The algorithm is asymptotically fast. Given the number of states
n1 and n2 of the two models, each pair of states will be visited once
at most. In addition, the number of children ck1

and ck2
per state is

fixed by a constant. If h denotes the maximal number of children
per state, the total runtime is bounded by O(n1n2h2).

A restriction in the implementation: Consider the structure
annotation of two different covariance models: ma: < < > > and mb:
*< >*. Model ma has two nodes Pa

1 – Pa
2 and model mb three nodes:

Lb
1 – Rb

2 – Pb
3. An input string like ccgg is likely to result in a

good score for both models, especially if we assume that the family
sequences are similar to ccgg. Equation (2) would return that result
after some time. For a fast implementation, those two models are
rather inconvenient as Pa

2 has to be matched against both Lb
1 and Rb

2
at the same time. By allowing to match only one state against one
other state, our algorithm produces suboptimal scores in such cases.
Fortunately, this is a minor problem for real models. This can be
explained by the relative scarcity of such cases and the regularity of
the covariance model building process. If left-matching and right-
matching nodes could be used at will, e.g. in hairpin loops, our
simplification would have more than minor consequences.

Local and global scoring: Infernal does not require that a sequence
matches the whole model. Instead, a local search is performed. Each
string is aligned against the part of the model where it scores best.
Should this require the deletion of parts of the model, this does not
invoke many delete (D) states. One can simply do a transition into
a local start or end state. These transitions are possible only with

small probability (typically around 0.05 divided by the number of
nodes in the model) but this still gives higher scores than potentially
having to descend into dozens of delete states.

Since Infernal scores locally with respect to the model, we do
the same by default. Details of the implementation are omitted.
Using the –global switch, this behaviour can be changed. In that
case, both models have to be aligned and the resulting string will be
optimal with respect to the whole model, not just some submodel.
Several other switches known from Infernal are available, too.

Just one string?: Of course if only a single string has a good score
in both models, the problem would be moot as the probability to
encounter that exact string is close to zero. But consider that from the
pairwise score and the corresponding string, suboptimal strings can
be generated easily. Given the length k of the string s, then k points
for substitutions give 3k strings that score almost as high. A further
3
(k
2
)

strings score less, and so forth with 3 and more substitutions.
Furthermore, insertions and deletions are possible.

This means that whenever there is one high-scoring string, there
will be many more, we just present the worst case.

3 RESULTS
The Rfam 9.1 database contains 1372 different models. All pairwise
calculations lead to a total of 940 506 results. The time to calculate
the score and string for each pair is typically less than one second,
but of course depending on the size of the models in question. Of
all pairs, about 70 000 are noteworthy with scores of 20 bit or more.
Figure 3 shows the distribution of scores among all pairs of family
models. Negative scores have been truncated towards zero as any
score lower than this certainly means that the two models in question
are separated very well.

Among the high-scoring pairs are several interesting examples,
some of which we will take a closer look at. Similar results for
other models can be extracted from the data available for download.
It is possible to generate, among others, model-centric views that
show the high-scoring neighborhood of a particular model and global
views that show high-scoring pairs. As Figure 4 aptly demonstrates,
clusters of families form early (in this case, only the 20 highest
scoring edges are drawn).
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Fig. 3. Distribution of bit scores for all 940 506 pairs of covariance models.
About 70 000 pairs have scores of 20 bit or more, pointing towards weak
separation between the two models.
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Fig. 4. The 20 highest scoring edges between RNA families. Each edge represents a string that, between the connected nodes, results in a bit score at least
as high as the given value. The two connected family models have low discrimination in such a case. For each family model the Rfam index and name are
shown.

Table 2. Occurrence of shapes in results with at least 20 bit each

m1 _ [] [][] [][][] [[][]] Complex
m2 _ [] [][] [][][] [[][]] Complex
Found 19 644 49 289 1576 40 12 28

Unstructured regions (dashes) and hairpins (square brackets) as the common region
occur most often. The other shapes show that complex substructures can form. The
high number of lone hairpin structures is a direct consequence of the huge meta-family
of snoRNAs which have a simple secondary structure. Under ‘complex’, all structures
that did not fit into the given shapes were collected.

In Table 2, we have gathered some results. The 70 000 pair scores
over 20 bit have been split according to the abstract shape of the
secondary structures of the hit. A shape (Reeder and Giegerich,
2005) is a representation of the secondary structure that abstracts
over stem and interior loop sizes. In this case, each pair of brackets
defines one stem. Intervening unpaired nucleotides do not lead to
the creation of a new stem. Hits such as _/_ are unstructured,
but similar, sequences. The shape []/[] is just one hairpin, while
the two shapes [[][]]/[[][]] on the same string point to an
interesting pair score as the string apparently folds into complex
high-scoring structures that align well, too.

In principle, it is possible that the common sequence folds into
two different secondary structures. At abstract shape level 5 (the
most abstract) this did not happen for the current Rfam database.
Our algorithm, however, is capable to deal with such cases.

Let us now take a closer look at two examples that are particularly
interesting. The first was selected because RNaseP is a ubiquitous
endoribonuclease and the second to highlight how problematic
models can be discovered.

1st example: The RNaseP families for bacteria (type a and b) and
archaea show weak separation as can be seen in Figure 5. The three
involved models (Rfam id 10, 11 and 373) have different noise cutoff
scores. The noise cutoff is the highest score for a false hit in the Rfam
NR database, scores above this threshold are likely homologues (cf.
Nawrocki et al., 2009b). For the three different RNaseP families,
these scores are 43, 93 and 59 bit, respectively. A look at Figure 5
shows, that no random sequence could score high in both model 373
and 11, one can, at most, find a hit that is remote at best. The picture
is entirely different for the high-scoring sequence between RNaseP,

0 0 0 1 1
RNaseP_bact_b

NC:93

00010
RNaseP_bact_a

NC:43

1 0 1
(8)

00373
RNaseP_arch

NC:59

4 7
(-46)

100
(41)

Fig. 5. Link scores for different RNaseP models (with noise cutoff (NC))
with weak separation. Values in brackets are the difference to the noise cutoff
thresholds. The difference is as at least as high as given. A negative value
means that in one or two of the models, the score was lower than the noise
cutoff. For example, the Link score of 101 bit between bact_a and bact_b
is 8 bit higher than the NC of bact_b.

type a and RNaseP in archaea. Here, we find a sequence that is at
least 41 bit higher than the noise cutoff. A similar picture presents
itself for the sequence found for the two bacterial RNaseP models,
though the score difference between the noise cutoff and the highest
score is only 8 bit.

The sequences and their scores show something else, too.
In Section 2, we described how to generate many similar strings
from the one returned string. In this case, where the gap between
cutoff and score is as wide as 41 bit, we could indeed create a very
large number of strings. Each of which with a score that makes it a
likely hit.

Additionally, the high scores between the three RNaseP models
are somehow expected, given that all three models describe variants
of RNaseP. Nuclear RNaseP (not shown), on the other hand, is well
separated from these three models with a maximal score of 24 bit.

2nd example: For our second example (Fig. 6), we have chosen a
set of four family models. Each presents with not only a high Link
score with regard to the others but also the scores are over the noise
cutoff threshold by a large margin, too.
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01086
LR-PK1
NC :150

00943
MIR824
NC:52

1 2 3
(-27)

0 1 2 5 9
snR63
NC:59

1 1 1
(-39)

1 3 5
(76)

0 1 2 6 6
snR45
NC :41

7 4
(-76)

89
(37)

95
(36)

Fig. 6. A high-scoring set of families, explicitly selected for the large
difference to the noise cutoff value. Models 1259 and 943 score 135 bit
on some input, which is at least 76 bit higher than the respective noise cutoff
value. Notice, too, that not all pairs show such a behavior. Models 1086 and
943 have a high Link score with 123 bit, but at least the noise cutoff value
is higher than this value (by 26 bit), making a hit less likely in one model.
Some of the models were built using very few seed sequences and this seems
to increase the chance of finding weak models.

These models show that high noise cutoff values are not
necessarily enough. On the one hand there are indeed some 28 500
edges between families where the Link score is higher than both
threshold values. In these cases one would reasonably argue to have
found a homologue, even though the chance for a false positive does
exist. One cannot, on the other hand, simply set the noise threshold
to safe levels. This is because interesting sequences in the form of
distant family members are likely to be found above the current
noise threshold values.

The examples chosen for Figure 6 point out another problem with
some of the models in the Rfam database. Models like RF00943
were created using only two seed sequences and five sequences
in total. This is, of course, not a problem of Infernal but one of
biological origin. As long as more members of the class have not
been identified, the resulting models are a bit sketchy.

4 DISCUSSION
We have presented a polynomial-time algorithm that, for any two
covariance models, returns a string that scores high in both models.
Using this algorithm, several questions regarding RNA family
models can be answered.

First, it is possible to determine if a model has high discriminative
power against other models. This is important to avoid false
positive results when searching for previously unknown new family
members. The discriminative power can be quantified using the
same measure as used in Infernal itself, thereby giving answers in a
language, namely bit scores, that makes comparisons possible and
easy.

Second, if a model shows overlap with another, it can be
determined which regions of the model do actually show this
behaviour. This is possible, as we not only return a score value,
but other information, too. This includes the offending string, the
respective secondary structures and a detailed score account.

Third, the algorithm is extendable. Borrowing ideas from
Algebraic Dynamic Programming (Giegerich and Meyer, 2002),

an optimization algebra can be anything that follows the dynamic
programming constraints. Included are the CYK scoring algebra
and the different information functions as well as an algebra product
operation. Additional algebras require roughly a dozen lines of code.

Fourth, the MaxiMin, or Link score lends itself as a natural
similarity score for RNA families. Closely related families, in terms
of primary and secondary structure—not necessarily biological
closeness, show a higher Link score than others. This requires further
investigation to determine how much biological information can be
extracted. Pure mathematics cannot answer which biological relation
does actually exist.

In the case of prospective meta-families, we have two open
research problems. One is to take a closer look at high-scoring
families to determine their biological relationship. Are high scores
an artifact of poorly designed families, or a case of an actual meta-
family? The other problem became evident in the 1st example, where
not all members of the RNaseP family scored high against each
other. This suggests that meta-families cannot be modeled in Infernal
directly, but how to adapt RNA family models in such a case remains
open.

Researchers designing new families will also find value in the
tool, as one can scan a new family model against existing ones to
be more confident that one has indeed identified a new family and
not an already existing one in disguise.

The Infernal Users Guide (Nawrocki et al., 2009b) mentions
homology between family models as a reason for the existence of the
different cutoff scores for noise, gathering and trusted. We think it is
important to be able to determine, computationally, the importance
of the cutoff scores when assigning new hits to families.

Another fact is that cutoff scores, like the models themselves, are
set by the curators of the family. Our scoring scheme relies on the
Infernal scoring algorithm itself. As numbers of models were created
from very few seed sequences it is possible that the relevant cutoff
scores are set too high to capture remote members. A cutoff score
above the highest pair scores involving such a model could be of
help while scanning new genomes for remote family members.

Finally, we have to acknowledge that Infernal uses the Inside-,
not the CYK-algorithm to determine final scores. This can pose
a problem in certain exceptional circumstances but these should
be rare. Mathematically (cf. Nawrocki et al., 2009b), CYK =
Prob(s,π|m), while Inside=Prob(s|m). The CYK algorithm gives
the score for the single best alignment π of sequence s and model m
while the Inside algorithm sums up over all possible alignments. This
just means that we underestimate the final score, or said otherwise,
the Inside scores for the Link sequence given the corresponding
models will be even higher than the CYK scores.

Curated thresholds and Infernal 1.0: The version change to
Infernal 1.0 requires re-examination of all threshold values (cf.
infernal.janelia.org). The next release of the Rfam
database is expected to have done this, meaning that a comparison
between (new) cutoff values and the scores calculated here is of
current interest.
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