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Abstract—Recently, several algorithms have been proposed
to tackle different conservation questions under phylogenetic
diversity. Such questions are variants of the more general
problem of budgeted reserve selection under split diversity,
an NP-hard problem. Here, we present a novel framework,
Split Diversity Algorithm* (SDA*), to unify all these at-
tempts. More specifically, SDA* transforms the budgeted
reserve selection problem into a binary linear programming
(BLP), that can be solved by available linear optimization
techniques. SDA* guarantees to find optimal solutions in
reasonable time.
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I. INTRODUCTION

The importance of phylogenetic information in bio-
diversity assessment and conservation biology has been
intensively discussed since the early 1990s [1]–[4]. Vane-
Wright et al. [5] were the first to include the taxonomy
of species into biodiversity evaluation and introduced
the concept of taxic diversity. Faith [6] and Crozier [7]
soon recognized that taxic diversity can be improved by
taking into account evolutionary time. Consequently, Faith
defined the phylogenetic diversity (PD) of a set of taxa
as the sum of the edge lengths of the minimal sub-tree
connecting these taxa with the root. PD has subsequently
been extended to account for species extinction risks [8],
[9], budget constraints [10], and ecological interactions
[11]. Recently, it has been observed that the traditional
measure of species richness [12] is a good surrogate for
PD [13], [14]. However, a recent study on the distribution
of PD for the plants of the Cape of South Africa showed
that PD is decoupled from species richness [15].

With the advent of molecular data, phylogenetic trees
are nowadays often inferred from several genomic regions
[16]. Such phylogenomic methods, however, pose a prob-
lem for PD [17], [18] because it was well documented
that different genes exhibit different rates of evolution [19]
or conflicting phylogenetic signals [20]. Even single gene
trees may be unreliable due to model misspecification or
violations of treelikeness in the data [21]. These may cause
unreliable PD estimates or different PD values computed

from different trees. To resolve this issue we have recently
introduced split diversity (SD) [22]. SD combines PD from
different trees, thus integrating incompatible phylogenetic
information into the analysis. It has been shown that SD
can also be computed on the split system [23] representing
the given collection of trees [22], [24]. SD equals PD when
the split system corresponds to a tree, thus generalizes PD.

Recently, various conservation questions using PD have
gained increasing interest, particularly with respect to their
associated bioinformatic challenges. The simplest question
is taxon selection under PD: For a given set 𝑋 of taxa,
its phylogenetic tree and a number 𝑘 find 𝑘 taxa which
maximize the PD over all possible 𝑘-element subsets
[6]. This question is motivated by the fact that limited
resources can only support a fraction of all species, thus
an optimal 𝑘-set will maximize the protection of PD and
feature diversity. It was shown that the simple greedy
strategy guarantees the optimal solution [25], [26] and
efficient algorithms exist [17], [24]. This simple question
has been extended to address more realistic scenarios that
we discuss below.

First, taxon selection under PD naturally extends to SD
and becomes taxon selection under SD: For a given set
𝑋 of taxa, its split system (or collection of trees), and
a number 𝑘, find a subset of 𝑘 taxa which maximizes
the SD over all taxon subsets of size 𝑘. Under SD, the
greedy algorithm no longer works [17], [18]. For general
split systems taxon selection under SD was proven NP-
hard [24]. However, for special cases such as circular and
affine split systems [22], [24] and split systems of two
trees [27], efficient algorithms exist.

The second level of complexity is budgeted taxon selec-
tion (under either PD or SD): Preserving each taxon comes
at a cost and given a limited total budget, select those taxa
that maximize PD/SD within the allotted budget (budget
constraints). Taxon selection is a special case of budgeted
taxon selection assuming equal conservation costs among
taxa [28]. Efficient dynamic programming algorithms were
presented for budgeted taxon selection under PD [28], [29]
and under SD for circular split systems [29]. However, no
algorithm is known for general split systems.

The third scenario to include more realistic aspects

2010 Second International Conference on Knowledge and Systems Engineering

978-0-7695-4213-3/10 $25.00 © 2010 IEEE

DOI 10.1109/KSE.2010.24

33



is reserve selection: Assuming that the habitat of the
taxa is partitioned into several geographical areas, find
𝑘 areas such that the PD/SD of the taxa present in the
𝑘 areas is maximized. The selected areas might help
in the establishment of nature reserves. Mathematically,
taxon selection is a special case of reserve selection by
introducing artificial areas containing single taxa. Reserve
selection is also NP-hard [18].

With the aforementioned extensions one may ask if it
is possible to solve the generalized problem that considers
all extensions at the same time, thus providing a unifying
framework for any possible conservation question. This
most general problem is called budgeted reserve selection
under SD: Given a set of areas, each with a conservation
cost, and a total budget find a subset of areas with maximal
SD whose sum of costs do no exceed the total budget. This
general problem is of course NP-hard. An approximate
algorithm [30] was given for budgeted reserve selection
under PD. Here, we present a simple and unifying frame-
work (SDA*) to tackle budgeted reserve selection under
SD that works for arbitrary split systems. To this end,
we transform budgeted reserve selection under SD into a
binary linear programming (BLP) problem [31], which is
then solved with available software packages.

The paper is organized as follows. First, we briefly
describe the measure of split diversity. Second, we explain
how to transform the budgeted reserve selection under
SD into a BLP. We finally discuss the possibility to
include more extended conservation scenarios into the
SDA* approach.

II. THE INDEX OF SPLIT DIVERSITY

Here we briefly introduce split diversity [22]. Let 𝑋 be
a set of taxa. A split 𝜎 on 𝑋 is defined as a bipartition
of 𝑋 into two disjoint and complementary subsets. Splits
are normally denoted by 𝜎 = 𝐴∣𝐵 where 𝐵 ≡ 𝑋 ∖ 𝐴. A
split system Σ is simply a collection of splits on 𝑋 . For a
weighted split system (Σ, 𝜆) the weight function 𝜆 assigns
each 𝜎 ∈ Σ a non-negative weight 𝜆(𝜎). Fig. 1 gives an
example of a weighted split system.

We define the split diversity of a taxon subset 𝑆 ⊂ 𝑋 ,
sd(𝑆), on a weighted split system (Σ, 𝜆) as

sd(𝑆) =
∑

𝜎=𝐴∣𝐵∈Σ:
𝐴∩𝑆 ∕=∅,𝐵∩𝑆 ∕=∅

𝜆(𝜎). (1)

That means the sum is over all splits of Σ that separate at
least two taxa of 𝑆.

III. SDA*: A BINARY LINEAR PROGRAMMING

APPROACH FOR BUDGETED RESERVE SELECTION

UNDER SD

Linear programming (LP) and particularly binary linear
programming (BLP) are powerful mathematical tools with
a wide range of practical applications [31], [32]. Here we
will utilize BLP to solve the budgeted reserve selection
under SD.

Assuming a taxon set 𝑋 together with a weighted split
system (Σ, 𝜆) on 𝑋 . Moreover, suppose that the natural

Σ 𝜆
𝜎1 1∣2345 3
𝜎2 2∣1345 2
𝜎3 3∣1245 4
𝜎4 4∣1235 5
𝜎5 5∣1234 4
𝜎6 12∣345 6
𝜎7 123∣45 4
𝜎8 15∣234 2
𝜎9 23∣145 4
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Figure 1. An example weighted split system (Σ, 𝜆) for five taxa and
its graphical representation, split network, redrawn from [22]. Weighted
split systems generalize phylogenetic trees by allowing for incompatible
phylogenetic signals (See [22] for more details).

habitat of the taxa in 𝑋 is partitioned into 𝑚 (geograph-
ical) areas 𝑅1, 𝑅2, . . . , 𝑅𝑚. We denote the collection of
these areas as ℛ = {𝑅1, 𝑅2, . . . , 𝑅𝑚}. In the following,
it suffices to represent each area with the taxa in 𝑋
that occur in the area. Hence, we will not distinguish
between area 𝑅𝑖 and its taxon set, that is 𝑅𝑖 ⊂ 𝑋 for
all 𝑖 = 1, . . . ,𝑚. For an area-subset 𝒲 ⊂ ℛ we define
the split diversity of 𝒲 as the SD score of the taxa living
in at least one area of 𝒲:

sd(𝒲) = sd

( ∪
𝑅∈𝒲

𝑅

)
=
∑
𝜎

𝜆(𝜎), (2)

where the summation is over all splits 𝜎 = 𝐴∣𝐵 ∈ Σ such
that at least one taxon from 𝐴 and another taxon from 𝐵
must be present in

∪
𝑅∈𝒲 𝑅. Such splits 𝜎 are called to

be preserved in 𝒲 .
The budgeted reserve selection under SD problem is

then: Given a set 𝑋 of taxa, a weighted split system (Σ, 𝜆),
an area collection ℛ = {𝑅1, . . . , 𝑅𝑚} with associated
conservation costs 𝑐1, . . . , 𝑐𝑚, and a total budget 𝐵, select
an area-subset 𝒲max with maximal SD subject to:∑

𝑖:𝑅𝑖∈𝒲max

𝑐𝑖 ≤ 𝐵 (3)

A. Transformation into a BLP

Obviously the evaluation of all 2𝑚 area combinations
to solve the problem is computationally not feasible for
large 𝑚. In the following we will explain how to transform
budgeted reserve selection under SD into a BLP problem.
We illustrate this with the example weighted split system
(Σ, 𝜆) comprising nine splits 𝜎1, . . . , 𝜎9 (Fig. 1) and four
hypothetical areas 𝑅1 = {1, 5}, 𝑅2 = {2, 4}, 𝑅3 =
{3, 5}, 𝑅4 = {1, 2, 3}.

The central idea is to encode any area-subset 𝒲 as an
𝑚-element binary vector (𝑥1, 𝑥2, . . . , 𝑥𝑚). The 𝑥𝑖 (1 ≤
𝑖 ≤ 𝑚) are set to 1 if 𝑅𝑖 ∈ 𝒲 and 0 otherwise. Therefore,
𝑥𝑖 acts as an indicator variable for the 𝑖𝑡ℎ area in 𝒲 .
We call 𝑥𝑖 area-variables. Moreover, for each split 𝜎𝑗 we
introduce a split-variable 𝑦𝑗 : 𝑦𝑗 = 1 if 𝜎𝑗 is preserved
in 𝒲 , and 𝑦𝑗 = 0 otherwise. Therefore, our example has
nine split-variables 𝑦1, 𝑦2, . . . , 𝑦9. With the split-variables
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Table I
INTERSECTION OF FOUR AREAS WITH TWO SIDES OF SPLIT 𝜎8 . A

CROSS INDICATES NON-EMPTY INTERSECTION.

∩ 𝜎8

{1, 5} {2, 3, 4}
𝑅1 = {1, 5} ×
𝑅2 = {2, 4} ×
𝑅3 = {3, 5} × ×
𝑅4 = {1, 2, 3} × ×

we can rewrite (2) as:

sd(𝒲) =
9∑

𝑗=1

𝜆(𝜎𝑗)𝑦𝑗 . (4)

This is the objective function to be maximized.
We need now a way to determine the preserved splits

for arbitrary 𝒲 . With respect to the introduced variables
this reduces to determining the values of split-variables
𝑦𝑗 based on the area-variables 𝑥𝑖. We will show that
the preservedness can be computed independently of the
generation of all possible 𝒲 by comparing each split to
the taxon composition of each area. For example, split
𝜎8 = 15∣234 is preserved in 𝒲 (or 𝑦8 = 1) if and only if
at least one taxon from {1, 5} and one taxon from {2, 3, 4}
are present in 𝒲 . Table I shows that this is the case,
if at least one area from {𝑅1, 𝑅3, 𝑅4} and another area
of {𝑅2, 𝑅3, 𝑅4} are included in 𝒲 . With regards to the
introduced variables, 𝑦8 = 1 if and only if 𝑥1+𝑥3+𝑥4 ≥ 1
and 𝑥2+𝑥3+𝑥4 ≥ 1. On the other hand, we can express
these conditions by two inequalities:

𝑦8 ≤ 𝑥1 + 𝑥3 + 𝑥4,
𝑦8 ≤ 𝑥2 + 𝑥3 + 𝑥4.

(5)

The reason is if the right-hand side of any inequalities
in (5) is zero, 𝑦8 will be zero. If both sums are ≥ 1,
maximizing the objective function (4) will effectively
return 𝑦8 = 1. Thus, we have established the equivalence
of (5) with the boundary condition imposed on 𝑦8. We
call (5) the split constraint inequalities for 𝑦8. This can be
similarly done for every split.

Finally, it is easy to see that the budget constraint (3)
is equivalent to:

𝑚∑
𝑖=1

𝑐𝑖𝑥𝑖 ≤ 𝐵. (6)

Taking the above arguments together, budgeted reserve
selection under SD becomes maximizing function (4) on
binary variables given the transformed budget constraint
(6) and a series of split constraints for 𝑦1, . . . , 𝑦9 (Table
II). This is clearly a BLP problem. To solve the trans-
formed BLP problem one can apply exact branch-and-
bound algorithms [32]. Theoretically, the algorithms have
exponential time complexity. However, their implementa-
tions (e.g., the CPLEX package or Gurobi optimizer) work
very well for large BLP systems.

B. Accelerating SDA*

We denote that the performance of the BLP solver
depends on the number of (binary) variables and the

Table II
THE TRANSFORMED BLP PROBLEM OF THE BUDGETED RESERVE

SELECTION UNDER SD.

maximize:
3𝑦1 + 2𝑦2 + 4𝑦3 + 5𝑦4 + 4𝑦5 + 6𝑦6 + 4𝑦7 + 2𝑦8 + 4𝑦9
subject to:
𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4 ≤ 𝐵 (budget constraint)

𝑦1 ≤ 𝑥1 + 𝑥4

(split constraints)

𝑦1 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

𝑦2 ≤ 𝑥2 + 𝑥4

𝑦2 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

𝑦3 ≤ 𝑥3 + 𝑥4

𝑦3 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

𝑦4 ≤ 𝑥2

𝑦4 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

𝑦5 ≤ 𝑥1 + 𝑥3

𝑦5 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

𝑦6 ≤ 𝑥1 + 𝑥2 + 𝑥4

𝑦6 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

𝑦7 ≤ 𝑥1 + 𝑥2 + 𝑥3

𝑦7 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

𝑦8 ≤ 𝑥1 + 𝑥3 + 𝑥4

𝑦8 ≤ 𝑥2 + 𝑥3 + 𝑥4

𝑦9 ≤ 𝑥2 + 𝑥3 + 𝑥4

𝑦9 ≤ 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

𝑥1, . . . , 𝑥4 ∈ {0, 1}
(binary constraints)

𝑦1, . . . , 𝑦9 ∈ {0, 1}

number of split constraints. First, we observe that due
to the special structure of the split constraints (Table
II), only area-variables 𝑥𝑖 need to be binary. Since all
inequalities for split constraints have a coefficient of 1 and
the objective function solely acts on split variables 𝑦𝑗 , all
returned solutions for 𝑦𝑗 are also binary. Consequently,
we have a so-called mixed integer linear programming
problem (MILP) [32] where 𝑥𝑖 are binary variables and
𝑦𝑗 are real variables of the range [0, 1]. This has a great
effect in practice because the computational time of the
MILP solver depends heavily on the number of binary
variables, thus neglecting the influence of the (possibly
large) number of 𝑦𝑗 .

Second, those split constraints of the form 𝑦𝑗 ≤ 𝑥1 +
𝑥2+𝑥3+𝑥4 (8 constraints in Table II) are always satisfied
if the total budget 𝐵 is enough to cover at least one area,
i.e., 𝐵 ≥ min 𝑐𝑖. Hence, such constraints are redundant
and can be dropped from the system.

Third, a common technique is to solve the MILP
problem in two phases. In the first phase, we solve the
“non-integer” LP system by allowing all 𝑥𝑖 to have real
values in the range [0, 1]. This is done very efficiently with
the simplex or the interior point method [32]. In the second
stage, we check whether the returned solution contain only
binary values for every 𝑥𝑖 or not. If the former is true, we
are done. Otherwise, we have to re-solve the MILP system.

We have implemented SDA* in the PDA software
(http://www.cibiv.at/software/pda) employing the Gurobi
optimizer. We tested the performance on a split system
of 700 taxa and 6000 splits with 200 areas and under
various budget constraints. The results showed an average
running time of 1 minute per transformed MILP problem
on a CPU of 2.66 GHz. SDA* is therefore efficient for
large data sets.
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IV. DISCUSSIONS

BLP has previously been applied for reserve selec-
tion under taxon richness and PD [33]–[35]. Since SD
is a generalization of PD and taxon richness, the pro-
posed SDA* framework generalizes all these LP-based ap-
proaches. Despite its simplicity, SDA* provides a unifying
solution to all recent attempts dealing with subtypes of the
most general problem of budgeted reserve selection under
SD.

Moreover, SDA* allows us to summarize PD from trees
being sampled from a bootstrap analysis, thus account-
ing for uncertainties on the data or tree reconstruction
methods. Similarly SDA* can also be used with the trees
produced by Bayesian analyses. Crozier et al. [36], [37]
also pursued a bootstrap approach, but they were interested
in a different summary statistic, i.e., confidence interval
estimates of PD for single regions.

Greedy algorithms for reserve selection have frequently
been used under the name complementarity principle [5],
[38]. However, it has been criticized for sub-optimality
[33], i.e., the areas obtained may not contain the maximal
diversity. SDA* guarantees to provide the optimal selec-
tion in reasonable time.

Recently, LP has been employed to optimizing PD
under ecological interactions such as prey-predator rela-
tionships [39]. We suspect that such an approach can also
be applied for SD. Other constraints such as requiring
that each taxon is present in at least two selected areas
can also be expressed as linear inequalities. SDA* will
therefore prove to be a versatile bioinformatic tool for
solving conservation questions.
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